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FOREWORD 

In the early years following IIASA's founding in 1972, its Ecology and Environ
ment Project undertook a number of studies to explore the interface between 
the natural and policy sciences and to develop approaches to solving problems 
at this interface. This work focused on specific policy-design problems that 
nonetheless had broader implications for areas as diverse as fisheries manage
ment, Alpine development, regional energy issues, and pest control. Augmented 
by other work at IIASA and within a network sponsored by the United Nations 
Environment Programme, these studies yielded a set of concepts, methods, and 
procedures for environmental policy design. 

The first comprehensive account of the findings of this work appeared in 
C.S. Holling (editor) , Adaptive Environmental Assessment and Management 
(Wiley, Chichester, United Kingdom, 1978), volume 3 in IIASA's International 
Series on Applied Systems Analysis; Expect the Unexpected: An Adaptive 
Approach to Environmental Management, a brief account for the general reader, 
appeared in 1979 as an IIASA Executive Report. 

Detailed accounts of the individual case studies and their scientific and 
technical . foundations are now beginning to appear. The energy work, for 
example, is described in W. Foell (editor) , Management of Energy/Environment 
Systems: Methods and Case Studies (Wiley, Chichester, 1979), volume 5 in the 
International Series; its extensions will appear soon in the same Series in a 
volume with the same editor. The pest-management work will be described in 
some detail in another forthcoming volume in the International Series: William 
C. Clark et al. , Ecological Policy Design. The present paper reviews some of the 
more important scientific results emerging from this pest-management work. 

ROGER E. LEVIEN 

Director 
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WILLIAM C. CLARK 
Institute of Resource Ecology, University of British Columbia, Vancouver, BC V6T 1W5, Canada, and 
International Institute for Applied.Systems Analysis, A-2361 Laxenburg 

This paper analyses relationships among dispersal, spatial heterogeneity, and local ecological processes 
in the spruce budworm (Choristoneura fumiferana CLEM.) - boreal forest system of eastern North 
America. A range of simulation and topological models are developed to reflect various hypotheses 
concerning tbose relationships. Model predictions are treated as guides to effective experimental design 
and efficient allocation of research priorities, rather than as ends in tbemselves. The analysis demon
strates the shortcomings of studies treating either dispersal or local processes alone, and argues instead 
for an integrated approach to spatial structure research in population ecology. 

If we had held this conference a quarter century ago, our discussions of 
population dynamics would have been largely local in character. New projects on 
spruce budworm, pine looper, and larch budmoth - to name only those whose 
wizened descendents are with us today - were then focusing on regulatory inter
actions among organisms and their immediate environments. Questions .of animal 
movement and environmental heterogeneity were not seriously addressed, ex
cept by a "few unconventional souls laboring in the wilds of Australia (ANDRE
W ARTHA & BIRCH, 1954) and Africa (RAINEY, 1951). 

A decade or so later, the situation would have changed. Seminal works of 
DEN BOER (1968), HUFFAKER (1958), and others had begun to have wide impact, 
and spatial heterogeneity, habitat patchiness, and the like would have been topics 
of the day. The relevance of dispersal behavior to population dynamics was also 
becoming more and more evident. And JottNHON's (1969) monograph would soon 
usher in the 1970's as a period of heightened interest and progress in this most dif
ficult area ecological research. 

Each of these historical developments introduced new perspectives on clas
sical questions of population dynamics and regulation. But it is only in the last 
several years that we have begun to interpret changing patterns of animal abun
dance as a collective and simultaneous function of all three areas of concern. 
Local interactions, habitat heterogeneity, and animal movement - in short, the 
spatial structure of ecosystems - have now become the joint foci of population 
dynamic studies on a range of theoretical (LEVIN, 1978), marine (STEELE, 1978), 
microtine (KREBS & MYERS, 1974), large mammal (SINCLAIR & NoRTON
GRIFFITHS, 1979) and, of course, insect systems. 

Professor Delucchi opened this conference by noting that even the best of 
our long-term studies of local population dynamics did not make sense in the 

'Paper presented at the Conference on «Dispersal of forest insects: evaluation, theory, and management 
implications», sponsored by the Intern. Union of Forestry Research Organizations (IUFRO), Entomo
logy Dept. of the Swiss Federal Institute of Technology, Ziirich and Zuoz, Switzerland, 4-9 September, 
1978. 
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absence of attention to insect dispersal. I argue in this paper that the symmetric 
argument is equally true. We cannot understand the significance of dispersal and 
habitat pattern without appreciating th~ «stage» of local interactions on which they 
are carried out. Continuing attempts to study dispersal or spatial heterogeneity as 
such will be interesting and intricate, just as were the isolated local interaction 
studies of earlier decades. But ten years hence I suspect we will be looking back 
on integrated spatial structure studies as the source of some of the most exciting 
practical and theoretical insights of the day. 

DATA, MODELS AND QUESTIONS 

The conduct of integrated spatial structure studies is certain to be a difficult 
undertaking, requiring coordination of the best in field study approaches, technical 
gadgetry, and analytic technique. No single approach is likely to monopolize 
advances when they do occur, but one thing seems virtually certain. The critical 
shortage at this point is one of data, not theory or instrumentation. To remedy this 
we need not just more data but rather an understanding of which data are critical 
for defining and differentiating alternative spatial structure hypotheses. I shall 
explore in this paper the role which formal modeling approaches can play in 
helping to meet these needs. My emphasis will be on the use of models as an ex
plicit framework for the synthesis of existing data and hypotheses, and for the 
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Fig. 1: The spatial outbreak pattern. Maximal extent of heavy budworm defoliation damage in eastern 
North America for 1938-1948, the last outbreak sequence before extensive insecticide spraying was 
introduced. Redrawn from BROWN (1970). 

analysis of their implications. In this role, models become aids to asking better 
questions, helping to focus scarce research funds, manpower, and opportunities 
where they will do the most good. 

Relatively few efforts have yet been made to apply modeling approaches to 
the comprehensive analysis of spatial structure problems in ecology. Some of the 
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Fig. 2: Location and configuration of the modeled area. Approximately seven million hectares of the 
Canadian province of New Brunswick are decomposed into 393 grids of dimension 15.43 km (E-W) x 
10.92 km (N-S), as shown. Events within grids are treated as spatially homogeneous representations of 
the model suggested in fig. 3. Grids are linked by insect dispersal. 

best work has been done in marine plankton systems (STEELE, 1978; O'BRIEN & 
WROBLEWSKI, 1976), but pioneering entomological studies have begun to appear 
as well (MYERS, 1976; R. JoNES, 1977a, b; several papers in this volume). In this 
paper I shall illustrate some of the problems and potentials of one such approach 
through a summary of results obtained in studies of the spruce budworm 
(Choristoneurafumiferana)- boreal forest system of eastern North America. 

The budworm-forest system is described by several contributors to this 
volume (see especially the contribution by SANDERS). In the briefest of terms, it 
consists of a lepidopteran defoliator which, in its periodic epidemic irruptions, is 
capable of inflicting heavy mortality on several important tree species. (Abies ba/
samea, Picea glauca) of the eastern boreal forest. Outbreaks occur irregularly at 
20-80 year intervals (BLAIS, 1968), expanding to cover many millions of hectares 
in a few years (fig. 1). 

Budworm-forest relationships have been studied extensively, particularly in 
the Canadian Province of New Brunswick (fig. 2). The classic population 
dynamics research reported in MORRIS (1963) provided a soild base on which 
much subsequent work has been based (see, e.g., PREBBLE, 1975; BELYEA, 1975). 
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More recently these studies have been extended to include analysis of the mana
gerial and policy design aspects of man-budworm-forest interactions (BASKER

VILLE, 1976; CLARK et al., in press). Finally, a growing awareness of the 
importance of spatial structure considerations to both ecological and managerial 
understanding of the system led in the early 1970's to a unique multidisciplinary 
research program on budworm dispersal (GREENBANK et al., unpublished). 
Modeling studies to synthesize these findings have been reported elsewhere 
(JONES 1977; CLARK et al., 1978; CLARK, 1979; CLARK & HOLLING, in press), and 
are summarized below under the headings of local structure, dispersal, and spatial 
structure (cf. LEVIN, 1976). 

LOCAL STRUCTURE 

A simulation model of local processes 

It is convenient to begin with a discussion of budworm-forest interactions as 
they would occur over an arbitrarily small spatial area in the absence of adult 

Fig. 3: The process cycle for the budworm-forest system. The inner ring represents the forest cycle, the 
outer ring the budworm cycle. Ellipses indicate insect life stages; arrows show causal relationships 
among processes and insect life stage densities. After JoNES (1977). 
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moth dispersal. The relevant relationships at this scale are essentially those studied 
by MORRIS (1963) and his colleagues : growth, feeding, reproduction, predation, 
parasitism and the like. Using MORRIS' (1963) and more recent data, these relation
ships are combined in what GILBERT et al. (1976) have called a «dynamic life 
table» model of the budworm-forest system. The equations and parameter values 
are given in JONES (1977). Figure 3 summarizes those relationships for the bud
worm and forest as they apply to a single year's modeled population dynamics. 

Because the model is biologically realistic, its equations must be solved by 
recourse to computer simulation. When such simulations are carried out, they 
yield predictions of outbreak magnitude and frequency which are not inconsistent 
with observations made on the real world system (CLARK & HOLLING, in press). 
But although computer simulation is a necessary tool for exploring complex eco
logical models it is not a particularly satisfactory approach for gaining under
standing of the system's behavior. 

Equilibrium manifolds for budworm 

My colleagues and I have found it useful to supplement our extensive simu
lation studies with a form of graphical compression known as «equilibrium mani
folds». Introduced into the ecological literature by JoNES (1975), similar ap
proaches have since been put to good use in the analysis of a wide range of 
population dynamic studies (SOUTHWOOD & COMINS, 1976; JoNES & WALTERS 
1976; MAY, 1977; PETERMAN et al., in press; BERRYMAN, 1979). The development 
of manifolds for our budworm-forest model is described at length in CLARK & 
HOLLING (in press). For present purposes a brief summary will suffice. 

Figure 4 shows a typical equilibrium manifold calculated from our local 
model of bud worm-forest interactions. The ordinate gives the population densities 
of budworm (N) which have the characteristic that, other things being equal, 
growth equals mortality and they will not change from one generation to the next. 
The abscissa shows a measure of forest density (F), roughly equal to mean tree 
age. For forest densities less than F' there is no nonzero budworm equilibrium. 
No matter what insect density is present at the beginning of one generation, this 
will fall towards zero in the next year due to the sparse condition of the forest 
resource. For F>F"' there is a single stable equilibrium(N+), corresponding to 
the epidemic condition of the insect population. No matter how low the initial 
insect densities in such mature forests, subsequent populations will rise towards an 
outbreak at N-+: Between F" and F"', three budworm equilibria are present simul
taneously. A lower stable surface (N ) corresponds to the endemic situation, while 
the upper stable surface (N-) represents the epidemic situation as before. An 
intermediate unstable equilibrium surface (N°) separates these two stable surfaces, 
forming a «Watershed>> between the epidemic and endemic conditions. All initial 
insect densities less than N° will be drawn towards 'N-;- and all greater than N° will -+ -
move towards N . The N° surface is thus analogous to the «escape» threshold of 
HOLLING (1959, 1973), MORRIS (1963), TAKAHASHI (1964), and later writers. 

Manifolds for systems analysis 

It is worth emphasizing that the manifold of fig. 4 is calculated directly from 
the realistic simulation model of budworm-forest interactions. Its configuration 
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Fig. 4: Equilibrium manifold for the local structure model of budworm-forest interactions, assuming no 
dispersal. The surface represents larval densities (N) whi~h+5h~w no ten~ency to change when branch 
(forest) density is held constant at its specified value. N , N-; and N° are stable epidemic, stable 
endemic, and unstable «release» equilibria, respectively. 

therefore reflects the detailed ecological relationships included in that model. In 
particula!?_ it can be shown (PETERMAN et al., in press) that the upper equilibrium 
surface (N+) is largely defined by intraspecific competition for food among high 
density budworm. The intermediate unstable surface can arise from any number 
of Allee-type mechanisms which impart an increasing survivorship rate over some 
range of densities (OKUBO, 1974; SEGEL & LEVIN, 1976). In the present model the 
«pit-like» configuration formed by this unstable surface (N°) and the lower stable 
one (i.e. N-) is due to the saturating «Type-III» functional response of the bud
worrns vertebrate predator guild (MORRIS, 1963; HOLLING, 1965; MURDOCH & 
OATEN, 1975). The general possibility of similar effects from invertebrate predators 
and parasitoids has been stressed by HASSELL et al. (1977). In any event, as 
predation is decreased from the level found in nature to zero, the «pit» gradually 
disappears in the manner shown in fig. 5. The significance of such changes in the 
manifold configuration can be appreciated as follows. 

Refer to fig. 6, which shows the same basic local structure manifold devel
oped earlier in fig. 4. As the forest grows following fire, logging, or previous bud-
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worm attacks, the forest density (F) rises. At F> F', nonzero budworm equilibria 
become possible. The budworm population tracks along the N-surface, and any 
random fluctuations are drawn down to that surface. As the forest matures past 
F"', the lower endemic equilibrium surface (NJ d~~pears, and all budworm 
densities are drawn to the epidemic equilibrium at N . Note, however, that al
though this upper surface is stable for the budworm, it is not so for the forest. 
High insect populations inflict mortality on the forest, reducing F, lowering bud
worm, and finally cycling the system back to its original endemic condition. It is 
evident that changes to local system structure (such as decreases in predation) 
which reduce the «depth» of the low density «pit>> should permit this natural out
break cycle to initiate at lower forest densities (F"'). This is born out by simulation 
experiments which confirm the additional expectation that smaller «pits» tend to 
yield higher frequency outbreak cycle's. 

Immigration and local strncture 

Before turning to an explicit consideration of the dispersal process, it is 
useful to consider the several effects of exogenously generated budworm immi
grants on local system structure. In the previously developed outbreak scenario of 
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Fig. 5: Equilibrium manifold for budworm as a function of predation intensity and branch density. 
Predation scaled from 0 (no predation) to I (natural level of predation as included in model); other 
conventions as in fig. 4. Note that the manifold for PREDATION = I is the same as that shown in 
fig. 4. 
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Fig. 6: Equilibrium manifold for the local structure budworm model showing a typical outbreak 
trajectory. ti (F) is the quantity of random fluctuation or immigration necessary to boost the system 
from its endemic to its epidemic attractor surface. 

fig. 6, budworm populations remain locked on the lower stable equilibrium sur
face (i'i-) provided that forest densities are less than F"'. But for F':'.':F:'.':F"', 
random fluctuation in budworm density or immigration of a quantity of budworm 
greater than fJ. (F) (see fig. 6) is sufficient to boost the system across the unstable 
equilibrium N° and into a «premature» outbreak. The necessary level of pertur
bation fJ. (F) decreases as F increases until, above F"', the outbreak occurs sponta
neously. Viewing the same relationship another way, an increase in the net level of 
immigration causes a decrease in the range of forest conditions over which the 
three distinct budworm equilibria exist. This is shown graphically in fig. 7, where I 
have recomputed manifolds for the local structure model under an arbitrary range 
of constant immigration rates. 

The resemblance between these immigration manifolds and those computed 
for decreased predation levels (fig. 5) is striking and significant. In both cases, the 
alteration of a biological rate or process results in a major alteration of the 
system's low density equilibrium structures. The range of forest conditions under 
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which triple equilibria occur is reduced, the minimum forest density for sponta
neous outbreak decreases, and the system's natural oscillation frequency rises. In 
short, the effects of decreased predation and increased immigration are so similar 
that most observations of system behavior will be unable to distinguish them. 
Furthermore, experimental analyses of either process alone clearly risk being con
founded by unmeasured variation in the orther. The strategic implications for 
experimental design are clear, though related tactical issues require further de
tailed investigation. 

Finally, it is evident from fig. 7 that the quantity of immigrants actually arriv
ing at a local site can have a major qualitative impact on system dynamics there. 
The remainder of this paper focuses on the interaction of local structure with 
insect dispersal processes and environmental heterogeneity to determine that 
quantity. 

DISPERSAL 

The dispersal process 

Insect dispersal is now widely recognized as a distinct behavioral process 
through which organisms interact with spatial variation in their environments. As 
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Fig. 7: Equilibrium manifold for bud worm as a function of externally generated budworm immigration 
rate and branch density. Immigration scale from 0 (no immigration) to 1 (an arbitrary but feasible rate; 
see CLARK et al. 1978). Other conventions as in fig. 4; compare with fig. 5. 
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with other ecological behaviors, it can be analyzed via a functional components 
approach of the sort developed for predation studies by HOLLING (1966). Reviews 
by KENNEDY (1975, 1961), SOUTHWOOD (1962), DINGLE (1974, 1972), JoHNSON 
(1969, 1966), SCHNEIDER (1962), and WILLIAMS (1957) identify three basic com
ponents of flight dispersal, although terminology varies: the exodus response deter
mines who leaves the local habitat, and under what conditions they do so; the 
displacement response determines the distance and direction moved following 
exodus; the settling response determines the «triviab> or «appetitive» search flight 
undertaken on termination of displacement activities and locates the animal in its 
new habitat. 

I analyze budworm moth dispersal with respect to each of these components 
in the following Sections. Data are drawn from the largely unpublished studies of 
DAVID GREENBANK (Canadian Forest Service), R.C. RAINEY (Center for Overseas 
Pest Research) and GLEN SCHAEFER (Cranfield Institute of Technology). A jointly 
authored article by these authors is in preparation, while some preliminary results 
are reported in GREENBANK (1973), RAINEY (1976), and SCHAEFER (1976). I review 
these data at length elsewhere (CLARK, 1979), and summarize some of the more 
interesting results below. 

The exodus response 

In his review of insect dispersal strategies, SOUTHWOOD (1962; see also 1977) 
concludes that «irruptive» species in general should exhibit facultative, habitat
sensitive exodus behavior. The same conclusion is reached in theoretical studies 
of GADGJL (1971), and has been discussed in the general context of multiple equi
librium systems by CLARK et al. (1978). 

Two <<Variable exodus» hypotheses have received most attention in recent 
budworm dispersal studies. The first (called «Type C» for historical reasons), is 
based on early observations of WELLINGTON & HENSON (1947) and BLAIS (1953). It 
is an essentially ontogenetic argument which supposes a minimum basal exodus 
rate such that at least 35% of locally produced eggs are exported. This fraction 
increases substantially when stressful conditions lead to the production of small, 
light weight, low fecundity moths. A more recent hypothesis, first raised by 
GREENBANK (1973), postulates a direct density dependence in which no exodus 
flight occurs at low moth densities (less than, say, 1 moth/m2 of branch area). 
Above this «threshold» density the exodus rate rises rapidly to a maximum of 50% 
or so of total fecundity. 

This essay is not the place to argue the relative merits of these two 
hypotheses or their obvious variants. What is useful, however, is to show how we 
can explore their relative effects on the local structure analysis. Recall that the 
equilibrium manifolds of figs. 4-7 were computed on the assumption of zero 
exodus and, except for fig. 7, of zero immigration. Maintaining the zero immi
gration assumption but introducing the two exodus hypotheses described above 
allows calculation of the more realistic manifolds shown in fig. 8. Several interest
ing conclusions can be drawn immediately from inspection of these manifolds, 
whereas an exploration of the alternative hypotheses by direct simulation is time 
consuming and confusing in the extreme. 

Focusing first on the «Type C» (ontogenetic) manifold, it is clear that the 
basal exodus rate (here, 35%) will have a major effect on system dynamics. The 
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Fig. 8: Equilibrium manifolds for the budworm model under three exodus hypotheses and no immi
gration (see text). The Type 0 manifold is identical to that of fig. 4. 

minimum forest densities necessary to permit and to trigger outbreaks are all 
much higher, and natural outbreak frequencies will be correspondingly lower than 
in the zero exodus (Type 0) case. Similarly, for any given forest density (F), the 
necessary Ii (F) to flip the system from its edemic to its epidemic attractor is much 
larger under Type C exodus. One additional point of interest is not evident in fig. 
8. This Type C manifold, reflecting the Wellington/Blais fecundity-mediated 
variable exodus rate, is essentially indistinguishable from a manifold computed 
under the assumption of a constant basal rate of exodus. Further analysis of this 
observation (CLARK, 1979) shows that the postulated fecundity effect occurs only 
at such high insect densities as to rarely affect local dynamics, and thus merits a 
low priority rating in future research efforts. 

Compare now the manifold for the moth density-mediated Type B exodus. 
Here, the refusal of moths to exodus at all below a certain threshold density 
causes the Type B and Type 0 (zero migration) manifolds to overlap at low den
sities. Significantly, the actual threshold values hypothesized turn out to be largely 
above the «pit» formed by the unstable {N°) and endemic (N-) equilibrium sur
faces (see fig. 8). It follows that predictions of system behavior under endemic and 
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outbreak release situations will be essentially identical under Type 0 and Type B 
exodus hypotheses, while these will differ radically from those under Type C 
exodus. Finally, fig. 8 shows that the strong exodus response of the Type B hypo
thesis above the threshold density level will result in substantially lower epidemic 
equilibria cN+) than either the zero migration (Type 0) or ontogenetic (Type C) 
hypotheses. This can have profound implications for system dynamics by affecting 
the level of tree stress and mortality induced under epidemic conditions (see 
section «Exploring alternative dispersal hypotheses»). 

Analyses of the sort summarized here cannot determine which, if any, of the 
competing exodus hypotheses are correct. What they have done is to identify 
certain priority research areas (Is there in fact a low density exodus threshold?), 
deemphasize others (What is the fecundity or size vs. exodus relationship?), and 
suggest critical tests to differentiate alternative theories. 

The displacement response 

As the budworm moth leaves its breeding place in exodus flight, it rises 
above the boundary layer {TAYLOR, 1958) and is displaced via the wind system 
prevailing at the time and altitude of flight. Where the insect lands is a complex 
function of its own behavior, environmental conditions, and wind field hetero
geneities of the sort discussed by RAINEY (1979). But though it would be very 
difficult to assess the fate of a given insect on a given flight, some useful things 
can be said about the mean seasonal displacement distribution of the total popu
lation of moths emigrating from a source location through the course of a full 
dispersal season. 

Several early estimates of this displacement distribution were made using a 
variety of techniques (GREENBANK, 1973), but it is only with the advent of radar 
techniques (SCHAEFER, 1976) that quantitative estimates of moth flight duration 
have become available. Combined with data on wind velocity at flight altitudes 
and moth air speed, these yield the displacement distance distributions of fig. 9. 

p 

r (km) 0 100 200 

Fig. 9: Probability distribution for single flight displacement of dispersing budworrn moths under three 
interpretations of radar observation data. P is normalized for I km increments from 0-200 km. 
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The three plotted functions result from three alternative interpretations of the 
available flight duration data, and are sufficiently similar to justify a deemphasis of 
concern regarding those alternatives. For all curves, the shape of the empirical 
distribution is qualitatively that of the Gausian plume models discussed by 
CAMERON & McMANus (1979). Few moths land within 10 km of their exodus site, 
about 25% fly less than 30 km, and 25% of the moths fly 75 km or more. Such 
dispersal scales are consistent with analyses of the rate of outbreak expansion 
(Frns, 1938-1975; CLARK, 1979). Furthermore, simulation experiments of the sort 
discussed in section on spatial structure show that large scale patterns of popula
tion dynamics are relatively insensitive to changes on the order of ± 50% to the 
displacement distributions of fig. 9, again suggesting that this phase of the dis
persal studies on budworm may now be satisfactorily developed. 

The settling response 

A third component of insect dispersal behavior is referred to as «settling» 
(JoHNSON, 1966), «stopping» (R. JoNES, 1977 a), «immigration/deposition>> (GREEN
BANK, 1973), or «a return of appetitive response» (KENNEDY, 1975). Whatever their 
terminology, most authors agree that the phenomenon encompasses termination 
of long-range movement and installation of the disperser in its new habitat. For 
many insects this installation constitutes an active, sensory search for appropriate 
vegetative stimuli (SournwooD, 1962; DINGLE, 1972). But beyond such broad 
generalizations, the settling response is little understood or studied : in his massive 
monograph on insect flight dispersal, JOHNSON (1969) declares the problem to 
constitute a subject in itself, and leaves it to others - still not in evidence - for 
review. 

Research on settling response in budworm is almost nonexistent, and 
relevant evidence is both largely anecdotal and wholly descriptive. In such cases, 
an approach of last resort is to pose various extreme but physically feasible 
hypotheses, assess the sensitivity of emergent population dynamics to those 
extremes, and focus subsequent field research accordingly. 

For the budworm studies reported here, the physical model suggested by fig. 
10 has been employed. To settle successfully, moths must descend on land con
taining host species of trees (on average, about 40% of New Brunswick). Those 
which do so must also reach trees of an age class which will support larval 
development (ages> 20 years are classed as «susceptible»). Finally, moths landing 
on susceptible host trees must locate live foliage on which to oviposit (a poten
tially difficult task under outbreak conditions). 

In the most pessimistic case for budworm, success at each stage of the 
settling process will be proportional to the relative target areas. Total success will 
be a product of those individual rates. Under circumstances commonly encounter
ed early in an outbreak, total settling success under this assumption will average 
less than 30%. Not too far towards the opposite extreme, a physical model based 
on the assumption of multiple, but still passive, targeting attempts at each stage 
can easily yield total settling successes in the neighborhood of 80% (CLARK, 1979). 
The implied difference of 50% in settling survival rates would be expected to have 
major consequences for population dynamics, especially when it is recognized that 
it operates directly on reproductive females . Simulation experiments confirm this 
expectation (see section on exploring alternative dispersal hypotheses), pointing to 
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Fig. 10: Settling response model for budworm moth dispersal. Successful dispersers must sequentially 
target on the portion of the environment containing host tree species, susceptible age classes of those 
species, and live foliage. 

the collection of meaningful settling response data as perhaps the highest priority 
item for future research on the budworms' (and perhaps other insects') dispersal 
behavior. 

SPATIAL STRUCTURE 

A simulation model of spatial interactions 

Analysis of local structure and dispersal movements along the lines discus
sed in previous sections can provide the basic components for spatial theories of 
population dynamics. But to assess the long term, large scale interactions of those 
components, and to incorporate the effects of environmental heterogeneity in the 
analysis, it is necessary to develop an explicitly spatial model of the budworm
forest system. In the present study, this is done by subdividing the 7 million hec
tares of New Brunswick into 393 local «patches» (fig. 2). 

Population dynamics in each patch are governed independently by the local 
structure equations and manifolds, and patches are linked via the dispersal proces
ses, as discussed in the two previous sections. It is necessary realistically to specify 
the proportion of each patch covered by the budworm's preferred host species, the 
age-class structure of those species, and the «initial» budworm densities at each 
location. These data were gathered from historical forest inventory and insect 
survey records for the year 1953, and used as starting conditions for model runs 
and validation tests (CLARK & HOLLING, in press). 

The typical simulation model run begins with the historical conditions of 
1953 and invokes the previously discussed ecological process relationships to 
generate the next year's conditions for each of the 393 local patches of the system. 
The results are most directly viewed as a temporal map sequence of predicted 
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Fig. 11: Twenty-year sequence of spatial patterns predicted by the model. Horizontal (x,y) coordinates define a north-south by east-west spatial grid of393 individual 
patches, each representing about 17.000 hectares of New Brunswick forest. Initial conditions are those for corresponding locations in New Brunswick in 1953. The 
vertical (z) axis dep icts relative budworm egg densities on a linear scale. 



0 10 20 30 40 50 60 70 80 90 100 
TIME (YEARS) 

Fig. 12: Space-time plot for the basic model. This figure shows a time series plot of predicted egg densi
ties on a one-dimensional spatial transect of the full map series for the basic model as originally shown 
in fig. 11. Each transect runs from NW to SE through the center of the modeled region, and shows the 
relative budworm egg density on the vertical (z) axis. A separate transect sample is taken for each of the 
100 simulated years, and arranged sequentially on the time (x) axis. This figure shows clearly the 30-odd 
year outbreak periodicity characteristic of the province as a whole, as well as the tendency for a few 
patches (usually near the SE end of the transect) to oscillate out of phase and at a higher rate. Note the 
evident spread of the initial (t=O) outbreak from NE to SW; the origin of the second outbreak sequence 
(t,,,30) in the center and its spread NW and SE; and the progression of the third outbreak (t"'60) from 
SE to NW. Compare with the complete data of fig. 11 'P-3' is an index code for the computer run. 

densities for forest and budworm. A sample series is shown in fig. 11. The general 
asymmetrical wave pattern, the rates of spread, and the out-of-phase «hot spots» 
are nicely in accord with historical observation, as are responses to managerial 
perturbation (CLARK et al., 1978). 

For many purposes, it is more revealing and concise to compress the full 
map series predictions by sampling each map along a fixed linear transect, and 
then plotting the transects as a temporal series. This is done in fig. 12 for the full 
simulation results of which fig. 11 shows the first 20 years. Again, the rates of 
spread and «hot spots» are obvious, and now the typical 30 year outbreak interval 
is clear as well. In the next section I couple this spatial output format with local 
manifold analyses to illustrate some of the question-asking purposes to which the 
spatial simulation model can be put. 

Exploring alternative dispersal hypotheses 

The spatial implications of the alternative dispersal hypotheses developed in 
the section on dispersal can now be explored through integrated use of the full 
simulation model and eqvilibrium manifolds. As a preliminary check, fixing the 
exodus rate in each of the 393 local sites at zero (Type 0 exodus) results in a loss 
of the integrated wave pattern and the emergence of independent outbreak 
phasing in the individual patches of forest (CLARK et al., 1978; fig. 14a). It follows 
that the historically observed pattern of spatial coherence in budworm outbreaks 
requires the homogenizing influence of moth dispersal, and does not follow from 
forest age class structure or environmental heterogeneities alone. On the other 
hand, as expected from the manifold analysis, moth dispersal is not a necessary 
precondition for local outbreak development. 

Fig. 13 shows the results of several other representative dispersal experi
ments. For fig. 13A, the Type C (ontogenetic) exodus used in the simulation of 
fig. 12 is replaced by the alternative Type B (threshold) exodus hypothesis. The 
consequences are dramatic, and the periodic outbreak pattern is replaced by a 
more and more even distribution of budworm in space and time. This result is 
historically unprecedented, and the temptation is to conclude that the Type B 
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Fig. 13: Space-time plots for alternative dispersal hypotheses. The basic format is the same as that for 
fig. 12. A (run P-41) shows the results of substituting Type B exodus (fig. 8) for the Type C exodus used 
to generate fig. 12. B (run P-52) reflects a flight displacement distribution with ordinate values one 
half of those given in fig. 9 and used for the simulation of fig. 12. C replaces the poor targeting success 
of fig. 12 with more effective assumptions. See text. 

exodus hypothesis is false. This may be the case, but the only valid conclusion at 
this point is that the total theory represented by the local structure, spatial hetero
geneity, Type B exodus, and other dispersal processes of the present model gener
ate predictions at odds with reality. The confusing spatial picture of fig. 13 A can, 
however, be somewhat unravelled by returning to the manifold considerations of 
the section on the exodus response. Further analysis at this level suggests that the 
shortcomings of the theory may in fact lie not in the dispersal formulations, but 
rather in the local structure relationships between budworm feeding and tree mor
tality. New research efforts are consequently focused on those insect-tree relation
ships, as well as the exodus process per se. But whatever the eventual findings of 
this research, it is important to realize that the potential shortcomings of the 
present local structure theory were revealed only through an explicitly spatial 
analysis of system dynamics. This is a good specific illustration of STEELE'S (1975) 
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general contention that such spatial models may often constitute the only practical 
means of distinguishing among otherwise similar local hypotheses. 

For fig. 13B, I again employ the Type C exodus hypothesis, but now intro
duce a displacement function for which all of the distances on the ordinate of 
fig. 9 are halved. The resulting patterns of population dynamics are virually indis
tinguishable from the standard case of fig. 12, supporting my earlier conclusion 
regarding the relative unimportance of precise refinements to the existing dis
placement data. 

Finally, fig. 13C shows the result of shifting from the pessimistic, low suc
cess settling hypothesis used in generating fig. 12, to the more optimistic «multiple 
attempt>> hypothesis described in the section on the settling response. The higher 
survival rates thus imposed effectively shift the Type C manifold of fig. 8 towards 
the Type 0 form. The result is higher outbreak densities, more dispersers, and a 
consequently greater degree of spatial homogeneity (including elimination of 
isolated «hot-spots»). The associated increases in forest mortality drive F further 
left on the manifolds, leading in turn to a lengthening of the interoutbreak period. 
Once again, the population dynamic consequences of the alternative hypotheses 
are substantially different, thus indicating a priority area for future research. 

Spatial heterogeneity 

It remains to explore consequences of what LEVIN (1976) has called «local 
uniqueness» - i.e. the fact that various biological «rules of change» may differ 
among local patches of the total spatial system. 

RAINEY (1951; 1976 and references therein) was one of the first to point out 
that wind field heterogeneities affecting insect dispersal could constitute a «local 
uniqueness» factor of critical importance to population dynamic studies. His 
recent work on budworm (RAINEY, 1979) has contributed greatly to our under
standing of the atmospheric arena in which that insect executes its dispersal 
processes. Io consultation with RAINEY and others, the spatial structure theory 
generating the predictions of fig. 12 was formulated so as to include influence on 
moth displacement of wind convergence and frontal phenomena (see also the 
comments on «sea breeze fronts» by CAMERON et al., this volume). 

Somewhat to our surprise, when these heterogeneous effects are removed -
leaving only the spatially homogeneous patterns of mean prevailing winds - the 
predictions of fig. 14a result. The large-scale, long-term dynamics of the budworm 
system model seem to be qualitatively similar in the cases with and without wind 
field heterogeneities, though the quantitative values at given locations certainly are 
affected. 

In retrospect, the reasons for this similarity are again implicit in the local 
structure manifold of fig. 6. Wind field heterogeneities concentrate airborne 
moths, thus yielding sufficient influx /:J. (F) to trigger outbreaks at a lower forest 
density and with a lower total quantity of moths than would otherwise be possible. 
But once a sizable outbreak is initiated, there are far more than the necessary 
/:J. (F) moths available for colonization of even a hundred kilometers from the out
break center (CLARK, 1979). Wind field heterogeneities are therefore super
fluous to rapid outbreak spread. Furthermore, in the present theory such sizable 
outbreaks inevitably develop, independent of disperser concentrations, since forest 
growth eventually carries forest density beyond the F"' threshold. 
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The implication of this analysis is that we need not be overly concerned with 
complex wind field patterns in our future work on the «macro» spatial dynamics 
of spruce budworm. This conclusion holds precisely to the extent that we credit 
the basic budworm theozy modeled here. To conclude otherwise requires another 
equally plausible theozy of budworm-forest interactions in which there is no 
equivalent to the forcing-function role of forest density, or a much lower level of 
overall dispersal [Note, however, that nothing said in the foregoing argument dis
counts the potential importance of wind field heterogeneities for short-term, local 
dynamics and management in the budworm-forest system]. 

Spatial heterogeneities 

A second and more commonly considered sort of heterogeneity includes all 
those geographic, edaphic, and other factors which make the «stages» of real 
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Fig. 14: Space-time plots for alternative spatial heterogeneity hypotheses. A (run P-51) shows the results 
of removing all wind field heterogeneities used in the basic theory of fig. 12. B (run P-55) imposes a 
reduced tendency for exodus in the high, cold (generally NW) region of the study area. C (run P-57) 
supplements the heterogeneities of P-55 with an additional phenological influence on larval survival. 
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world spatial structure different from place to place. The question here is not 
whether such heterogeneity exists - which of course it does - but rather which 
aspects of the heterogeneity make a substantial difference to overall patterns of 
population dynamics. 

The basic spatial structure theory underlying fig. 12 is constructed on the 
simple assumption that no spatial heterogeneities are necessary to account for 
qualitative patterns of population dynamics in the New Brunswick budworm 
system. A variety of more complex alternative hypotheses are available in the 
literature. In fact, the patterns predicted of figs. 11 and 12 appear to be rather more 
homogeneous than those encountered in nature (CLARK et al., 1978). A statistical 
effort to screen alternative hypotheses by correlating observed spatial variance in 
population dynamic patterns with a range of geographically distributed variables 
suggested two potentially important heterogeneities for detailed investigation 
(CLARK, 1979). Sample results are shown in figs. 14B and 14C. 

Several workers (e.g. GREENBANK, 1973) have suggested that rapid radiation 
cooling in the evening might well prevent moth emigration from highland areas of 
New Brunswick, while still allowing immigration to those areas from lowland 
sources. Imposing this hypothesis on the model yields predictions of the sort 
shown in fig. 14B. Population densities do become more heterogeneous, with a 
clear concentration of insects in the highland (NW) area of the map transect. Out
break spread rates and frequencies, as well as the «hot-spot>> phenomena of the 
basic model, remain largely unchanged. 

A second potential source of heterogeneity is implied by the hypothesis that 
budworm larvae survive better in areas that are phenologically advanced (tree 
development early in season) than in those which are phenologically retarded (see 
MORRIS, 1963). Incorporating this effect with the previously described altitude
temperature-flight inhibition relationship produces a spatial structure theory with 
the predictions shown in fig. 14C. Again, a comparatively high degree of popula
tion heterogeneity is induced, while outbreak frequency remains unchanged. On 
the other hand, the typical «hot-spot>> heterogeneities of earlier evaluations are 
largely eliminated. Further manifold analysis shows that this is due to increased 
budworm survival in the phenologically advanced «hot-spot>> area, which in turn 
leads to increased tree mortality, which finally removes the food supply upon 
which hot-spots had formally fed. 

Many other environmental heterogeneities could be introduced. It seems 
likely that a number of these will have the general effect seen above, creating 
spatial heterogeneities in population densities and maintaining them in the face of 
substantial homogenizing dispersal. How much effort we should expend in this 
endeavour depends on how necessary or desirable we view an ability to realis
tically predict small scale spatial pattern in our theories of population dynamics. 
This, however, is as much a question of aesthetics as science, and therefore offers 
a convenient point at which to close the present discussion. 

SUMMARY 

In this essay, I have attempted to sketch some approaches to spatial structure 
analysis developed in the course of studies on population dynamics of the spruce 
budworm system. The basic framework for the analysis has been an array of 
formal theories or models hypothesizing various relationships among local 
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structure, insect dispersal, and spatial heterogeneity in the budworm-forest eco
system. Such theories are perpetually incomplete, and are better viewed as aids to 
critical question asking, rather than as predictors of future population dynamics. 
The analysis of these budworm models emphasizes the fundamental role of local 
system structure as a stage from which dispersal processes are carried out, and on 
which they attain their broader adaptive significance. Furthermore, it promotes an 
integrated perspective of what we don't yet know, as well ·as what we do, thereby 
allowing a more productive allocation of overall resources for continuing research. 

The study of spatial structure-population dynamics relationships is of critical 
importance, both to our general understanding of ecosystem behavior, and to our 
ability to manage such systems effectively. The time is ripe for progress, but this is 
as unlikely to come from mathematicians and modelers as it is from population 
and behavioral ecologists, so long as both groups continue to work in isolation 
from each other. The examples of RAINEY, BALTENSWEILER, and FISCHLIN (this 
volume) provide an encouraging sign that times are changing in this regard. The 
next ten years should be truly exciting ones. 
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