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PREFACE 

In recent years there has been considerable interest in the development of 
models for river and lake ecological systems. Much of this interest has been 
directed toward the development of progressively larger and more complex 
simulation models. In contrast, relatively little attention has been devoted to 
the problems of uncertainty and errors in the field data, of inadequate numbers 
of field data, of uncertainty in the relationships between the important system 
variables, and of uncertainty in the model parameter estimates. The International 
Institute for Applied Systems Analysis Resources and Environment Area's Task 
on Models for Environmental Quality Control and Management addresses prob­
lems such as these. 

The subject of this paper is model calibration. But rather than solving the 
customary problem of model parameter estimation, given an established structure 
for the model, the paper attempts to answer the prior question of identifying 
the dominant relationships between the system inputs, state variables, and out­
put responses. That, then, is the problem that needs to be solved before one 
can consider how to estimate the model parameter values accurately. And it is a 
problem because, despite very many laboratory-scale experiments and a number 
of major field studies, our knowledge of the relationships between the mineral, 
organic, and microbiological components of an aquatic ecosystem is still quite 
uncertain. 
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SUMMARY 

This paper is reprinted from the book Theoretical Systems Ecology: Advances 
and Case Studies, edited by E. Halfon of the Canada Centre for Inland Waters 
and published by Academic Press, New York. Acknowledging that systems 
ecology has had a large impact on all aspects of environmental research, the 
book aims to bridge the gap in communication between theoreticians, modelers, 
and field ecologists. Three classes of problems are treated in the book. They 
separate approximately into (a) how the model should be developed and ana­
lyzed prior to the collection and use of field data, (b) how the model should be 
developed or modified when it is evaluated against field data, and (c) the desired 
properties of the models for control and management purposes. The objective 
of this paper is to emphasize the fact that the second of these three problem 
categories is not simply a matter of straightforward model parameter estimation. 

The basic problem of model calibration - or system identification - is that 
information about the "externally" observed behavior of a system is required 
to be translated into information about the model-based description of the 
system's "internal" mechanisms of behavior. The measured input and output 
variables represent the system's external description, whereas state variables 
and parameter values refer to the system's internal description. In other words, 
during model calibration, and especially in the process of identifying the model's 
structure, we seek improved understanding of those physical, chemical, and bio­
logical phenomena that are thought to govern the system's observed behavior. 
Model structure identification is important in many water quality modeling 
exercises because the analyst is frequently confronted with the need to offer 
plausible hypotheses about "unexplained" relationships in a set of field data. 

In order to discuss model structure identification, this paper first provides 
a brief review of the essential steps of system identification - experimental 
design; choice of model type; model structure identification; parameter esti­
mation; and verification and validation. Two case studies are then presented 
that illustrate approaches to the solution of the model structure identification 
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problem. A key feature of these approaches is the use of recursive parameter 
estimation schemes, which, through their ability to estimate time-varying model 
parameter values, can yield useful insight into where and how the structure of 
the model relationships is inadequate. For example, an estimated parameter 
value that varies significantly with time is an indication of the invalidity of the 
common hypothesis that the model coefficients are constant with time. Such 
diagnostic information, however, while it reveals what is wrong with the model, 
does not prescribe a formal means of finding a better formulation for the 
model structure. The methods of the paper are therefore clearly limited in their 
ability to solve completely the problem of model structure identification. 

ABSTRACT 

Methods for identifying the structure of dynamic mathematical models for 
water quality by reference to experimental field data are discussed . The context 
of the problem of model structure identification is described by briefly reviewing 
the steps involved in the overall process of system identification. These steps 
include experimental design; choice of model type; model structure identifi­
cation; parameter estimation; and verification/validation. Two examples of 
approaches to solving the problem of model structure identification are pre­
sented. The first example is concerned with identifying the structure of a black 
box (input/output) model for the variations of gas production in the anaerobic 
digestion process of wastewater treatment. Correlation analysis is used as the 
principal method of solution, although it is found to have significant limitations 
for certain kinds of data. The second example addresses the more difficult prob­
lem of identifying the structure of an internally descriptive ("mechanistic") 
model form. The application of an extended Kalman-filtering algorithm to this 
problem is discussed in detail. The approach is illustrated with a model for 
phytoplankton- biochemical-oxygen-demand (BOD) interaction in a freshwater 
river system. 
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260 M. B. Beck 

1. INTRODUCTION 

Dynamic model structure definition (identification) is arguably one 
of the major unresolved technical problems in the field of system 
identification and parameter estimation. It is certainly true in practice that 
model structure identification from experimental field data gives rise to all 
manner of difficulties. This chapter has the objective of presenting some 
theoretical techniques which can be applied to the solution of the 
identification problem. 

Throughout the chapter we shall assume a pragmatic approach to 
modeling: Namely, the act of modeling implies the collection of 
experimental field data. In order to avoid confusion we may state that the 
term system identification is interpreted herein as the complete process of 
deriving mathematical models from, and by reference to experimental data; 
the term identification means the specific process of model structure 
identification. If the system under investigation can be represented by the 
(dynamic) model of Fig. 1, all variables thus being functions of time t , a 
broad definition of model structure identification can be given as the 
establishment of how the measured system inputs u are related to the 
system's state variables x and how these latter are in turn related both to 
themselves and to the measured system outputs y. The dynamic modeling 
context arises for the following reason : An experimenter studying a system 
under laboratory conditions wishes to keep that system as close to steady 
state as possible while he tests the relationship between, say, two particular 
variables. Such steady-state conditions, and especially so for ecological 
systems, rarely prevail in the field. Hence in order to establish any 
significant theory of the system's behavior it is necessary to set up the 
problem within a framework which recognizes the dynamic and stochastic 
(random) nature of experimental data. We are, however, concerned 
exclusively here with identifying a structure for the deterministic component 
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Figure 1 . System and variables definition. 
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of the model. The techniques employed in the modeling analysis should 
therefore operate so as to discriminate effectively against the ever-present 
random noise component of measured signals. The motivation for solving 
the model structure identification problem stems from the experience of 
studying river water quality modeling and control (Beck, 1977) ; the 
following illustrative examples are drawn from this subject area. 

2. SYSTEM IDENTIFICATION: A BRIEF REVIEW 

The field of system identification has developed rapidly over the past 
decade, and like any other discipline which has emerged and matured so 
quickly, its accompanying literature is vast but not well coordinated. For 
the reader previously unacquainted with system identification a carefully 
guided introduction to the literature is appropriate. 

The book by Eykhoff (1974) is to be recommended as giving the 
broadest and most comprehensive treatment of system identification; for a 
more brief survey of the subject and its earlier literature there is the review 
by Astrom and Eykhoff (1971). Box and Jenkins' (1970) detailed account of 
discrete-time, input/output, black box modeling must also receive due 
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Figure 2. Individual steps in the procedure of system identification. 
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reference: This text, probably more so than others, has had a very 
significant impact on the application of time-series analysis in many diverse 
technical fields. Among the multitude of publications on methods of 
parameter estimation the easily readable article by Young (1974) provides 
an excellent introduction to recursive estimation techniques, or alter­
natively, these same techniques are given a rigorous treatment in 
Soderstrom et al. (1974). 

Each of the above publications offers a suitable point of departure 
into the subject of system identification. The purpose of this section is to 
outline a scheme of individual steps in the procedure of system 
identification, thereby describing the context of the model structure 
identification problem (see Fig. 2). 

2.1. Experimental Design 

Besides the definition of the system and its variables, which we have 
assumed to be according to Fig. 1, a prerequisite of system identification is 
an appropriate record of the observed process dynamics. Any a priori 
knowledge of the system's dynamic behavior is an advantage, since this 
knowledge can be used in assessing the following important aspects of 
experimental design (Gustavsson, 1975): (a) major process time constants; 
(b) sampling (measurement) frequency; (c) duration of the experiment; (d) 
choice of input test signals u; (e) noise levels ; (f) process nonlinearities. 
When confronted with a modeling problem it is thus not particularly 
encouraging to reflect upon the fact that a good experimental design, and 
hence the likelihood of useful results, is strongly dependent upon a good a 
priori knowledge (model) of the system! A particularly thorny problem with 
respect to ecological systems is the inability to probe the process dynamics 
with artificially manipulated signals such as step, impulse, or pseudorandom 
binary sequence (PRBS) inputs u. In other words, our experiments reduce 
simply to the observation of behavior without any intervention on behalf of 
the experimenter, that is, "normal operating conditions" (Eykhoff, 1974). 
Later sections of the chapter will illustrate how difficult it can be to 
undertake modeling exercises under the very limiting constraints of data 
derived from normal operating conditions. 

2.2. Choice of Model 

A distinction should be drawn between parametric and nonparametric 
classes of models since Fig. 2 assumes implicitly that only the former are to 
be dealt with here. Nonparametric models, such as Volterra series, impulse, 
and step response representations, are intrinsically of infinite order; they are 
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characterized, in principle, by an infinite number of parameters. For instance, 
if a system with simple first-order dynamics (an exponential lag) were to be 
represented by its discrete-time impulse response, an infinite number of 
response coefficients (parameters) would be required to characterize those 
dynamics completely. Parametric models, in contrast , are characterized by a 
finite (and usually small) number of parameters. Indeed, we may remark that 
the translation of a nonparametric model into a parametric model 
representation constitutes the basis of the black box model identification 
problem (see Section 2.3). 

Broadly speaking, a choice can be made between two parametric 
model forms: (a) a black box (or input/output) model and (b) an internally 
descriptive (or mechanistic) model. These two model representations reflect 
two opposite, yet complementary, approaches to modeling. Either one takes 
existing theory (that is, physical, chemical, biological, ecological theory) and 
develops this model so that it may be tested against experimental data- a 
deductive reasoning approach associated with a model of type b, or, 
assuming no a priori knowledge (theory) of process behavior, one attempts 
to develop the specific information acquired from the data into a more 
general model- an inductive reasoning approach closely related to black 
box model representations. 

2.2.1. Black Box Model 

For simplicity and brevity a linear form of the black box model is 
given by the discrete-time, difference equation 

A(q - 1 )y(tk) = I q-b,B;(q - 1 )u;(tk) + E(q - 1 )e(tk) (1) 
i= 1 

in which u;(td, i = 1, 2, . .. , v, and y(tk) are, respectively, observations of the 
multiple (v) system inputs and the system output at the kth sampling 
instant; e(k) is a sequence of independent, Gaussian, random variables and 
q - 1 is the backward shift operator 

q-' {y(tk) } = y(tk _ 1 ), etc. 

A (q - 1
) and B;(q - 1

) are polynomials in q - 1 , of orders n and m;, respectively, 
with parameters ai and bii to be estimated 

A(q- 1 )= l+a 1q- 1 + · ··+anq - ", 

B( - 1) b +b - I b - m . 
i q = iO ilq +· ··+ im,q •; i = 1,2, .... , v, 

(2) 

and c5;, i = 1, 2, . . . , v, represents a pure time delay in the response between 
output and input u;. The form of E(q - 1

) is left unspecified, except to state 
that it is in general a rational function. The precise description of the lumped 
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Figure 3. Schematic representation of the black box model [Eq. (1)). 

stochastic process v(td in Fig. 3, which accounts for the combined effects of 
system noise ~ and measurement error '1 (in Fig. 1) as white noise e(tk) 
passed through this "shaping filter" E(q- 1 

), depends partly on the type of 
parameter estimation method to be applied (see Section 2.4). Details of this 
stochastic process description will not concern us greatly here since we are 
trying to establish the nature of deterministic relationships between u and y. 

Equation (1) states essentially that the current value of the output y(tk) 
is a (scalar) function,f. of current and past measurements of the inputs ui, of 
past measurements of the output, and of current and past realizations of the 
stochastic process v, as in Fig. 3, 

y(tk) = f {y(tk- i), · ·., y(tk-n), U1 (tk- o), · · · ' U1 (tk -o 1 -m), · · ·' 
u,. (tk- b, ), .. ., u,.(tk -b, -mJ, v(tk), .. . , v(tk_, )}. (3) 

Here r denotes that y(td depends upon a finite number of realizations of v. 
Such a black box model, being specific to the sample data set from which it 
is derived, is unlikely to be a universal description of a system's dynamics. 
Nor is this model necessarily amenable to interpretations on the perceived 
physical nature of process behavior. The black box is literally a fair 
reflection of our insight into the internal mechanisms of the system. As a 
model it is a first attempt at elucidating any observed basic cause/effect 
relationships, such as which inputs affect which output, by how much, and 
how quickly. Yet these are just the advantages that a black box modeling 
approach can offer : It is simple, and there are many situations where an 
internally descriptive model, although available, has a form which is too 
unwieldy or complex to be properly verified against field data. 

We have, however, imposed a restriction on the model of Eq. (1) in 
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that it refers to a single-output process. It is worth noting that the majority 
of applications of black box models have been similarly so restricted, 
although this is not a justification for imposing the constraint. Multivariate 
forms of the model are discussed in greater detail in Rowe (1970) and 
Young and Whitehead (1977). 

2.2.2. Internally Descriptive Model 

An internally descriptive model exploits much more, if not all, of the 
available a priori information on the physical, chemical, biological, and 
ecological phenomena governing process dynamics. As with Eq. (1) we 
confine the discussion to linear forms of the model for ease of illustration. 
The internally descriptive model may then be represented by the following 
linear, continuous-time, state vector differential equation (see also Fig. 4) 

x(t) = Fx(t)+Gu(t)+~(t) (4a) 

with sampled, noise-corrupted observations 

(4b) 

in which the dot notation refers to differentiation with respect to time t. 
The variables are defined as: x, the I-dimensional state vector; u, the 
v-dimensional input vector; y, the p-dimensional vector of outputs; e, 
I-dimensional vector of zero-mean, white, Gaussian disturbances ; ,,, 
p-dimensional vector of zero-mean, white, Gaussian measurement errors ; 
F, G, H, are accordingly Ix I, Ix v, and p x I matrices whose elements are the 
parameters that characterize the system. 

The attractions of working with this type of model are its potentially 
universal applicability and its apparent grounding in theory or the laws of 
nature. But in a sense this latter feature is the source of many model 
structure identification problems because theory, at least in the ecological 

((t} 

G H 

Figure 4. Schematic representation of the (linear) internally descriptive model [Eq. (4)]. 
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microcosms of wastewater treatment processes (Curds, 1973 ; Olsson, 1975) 
and rivers (Thomann et al., 1974), may diverge considerably from what is 
observed to happen in practice. 

2.3. Model Structure Identification: Problem Definition 

2.3.1 . Black Box Model 

Recalling the introductory definition of model structure identification 
we note that the problem for a black box model is considerably simplified 
since only input --> output relationships are being sought. There are two 
specific identification problems to be solved with respect to Eqs. (1) and (2). 
The first sounds deceptively easy: For the multiple-input case it concerns 
the determination of which of these several input variables are in any way 
significantly related to the output y . Let us call this problem the 
identification of cause/effect relationships, that is, examination of the 
existence of a deterministic connection between inputs and output. The 
second identification problem is associated with defining the time 
dependence of the relationships between inputs and outputs. Of interest is 
the determination of factors such as the speed and nature of the output 
response to changes in a given input variable. 

In formal terms we require a definition of the values of n, m;, and b; in 
Eqs. (1) and (2) ; or, rather more precisely, we need to know further which of 
the bii parameters of the B;(q - 1

) polynomials are significantly nonzero. And 
last, although Eq. (1) is restricted to a linear form, it is also necessary to 
investigate possible nonlinearities in the terms of the model. Postulation of 
the correct structure for the nonlinearity, as an identification problem, is 
not at all trivial. However, providing the model remains "linear-in-the­
parameters" - a term defined by Eykhotf (1974) and illustrated below- such 
nonlinearities present no additional difficulties in the subsequent parameter 
estimation phase of modeling. 

The black box model structure identification problem may be loosely 
summarized as a problem of transferring from a nonparametric to a 
parametric representation with minimal loss of accuracy. 

2.3.2. Internally Descriptive Model 

If the principles of mass, momentum, and energy conservation are 
applied for the description of our system's behavior, we should be in a 
position to test the identifiability of the resulting internally descriptive 
model, as Eq. (4), with a view to subsequent planned experimentation. This 
kind of a priori identifiability analysis is presented rigorously elsewhere in 
this volume by Cobelli et al. (Chapter 10) ; it is not the model structure 
identification problem to be tackled here. 
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Our a posteriori identification problem is defined as follows: Given a 
set of measurements of u and y, determine an appropriate state vector x, the 
number of elements l in that vector, and which of the elements of the 
matrices F, G, H are significantly nonzero. The essence of the internally 
descriptive model structure identification problem is the testing of 
hypotheses and the evolution of a theory. So identification can be viewed as 
a procedure of repeated hypothesis testing and decision making - an intuitive 
interpretation which has been illustrated earlier in Beck (1978). There are 
two points about this view which are of some considerable importance: 
First, it reinforces the notion that modeling is subjective- it depends on the 
analyst's choice of criteria and his decision to accept or reject a hypothesis 
(model) on the basis of those criteria; second, it emphasizes the fact that the 
ultimate problem of modeling is the generation of a subsequent hypothesis 
given that the current hypothesis is inadequate. 

The earlier assumption that an internally descriptive model derived 
from the application of basic theoretical principles has a linear structure is 
not a restriction on the following discussion. In fact, a nonlinear model 
structure arises frequently in the analysis of ecological (Di Cola et al., 1976) 
and microbiological systems (Beck, 1977), although no explicit examples 
thereof are presented here. The assumption that the model form is lumped, 
thus enabling us to use ordinary differential equation representations in 
preference to partial differential equations, is much more restrictive. 
However, it is our intention to uphold this latter simplifying assumption in 
order to avoid consideration of the problem of identifying a correct lumping 
of the parameters from a distributed-parameter system. The problem 
already posed is quite sufficiently difficult, and not the least of these 
difficulties is that, unlike the black box model which may take a rather 
arbitrary structural form , the abstractions x, F, G, H of the internally 
descriptive model must bear some resemblance to the real world. 

2.4. Parameter Estimation 

The estimation of parameters is required in two different contexts : It 
is often implicit in the solution of the identification problem, as will be 
seen later; and parameter estimation is, of course, the means whereby 
the coefficients appearing in the finally identified differential/difference 
equations are accurately evaluated. 

A basic principle of parameter estimation is that the estimates fj, say, 
of the model parameters p are obtained by minimizing some function of the 
error 

(5) 
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between the output observation y and a (model) prediction y of that output 
variable. One of the simplest and most well known of parameter estimation 
schemes is that of least-squares estimation where the loss (error) function 

N 

J(tN) = L t:2(t) 
j= 1 

(6) 

is minimized; N is the number of data samples. A more complete discussion 
of least-squares estimation and its fundamental role in time-series analysis is 
given in Young (1974). 

2.4.1 . Black Box Models 

In most cases of practical interest least-squares estimation gives 
parameter estimates P that are biased, that is, 

in which C { ·} is the expectation operator, because the statistical properties 
of v(tk) (see Fig. 3) do not satisfy the conditions, 

(7) 

But this is not to deny the importance of least-squares estimation ; it is a 
ubiquitous technique and can be employed to good advantage as evidenced 
elsewhere in this book (see Chapter 13 by Ivakhnenko et al.). Indeed, the 
variety of parameter estimation methods stems from the many diverse 
attempts to overcome the problem of bias. Noting that Eq. (7) implies 
E(q- 1

) = 1 in Eq. (1), the principal alternative methods of estimation are 
each associated with different noise process characterizations: 

Generalized least-squares (Clarke, 1967; Hastings-James and Sage, 
1969) 

Maximum likelihood (Astrom and Bohlin, 1966) 

E(q-1) = D(q-1). 

Instrumental variable-approximate maximum likelihood as in Young 
(1976) 

with the additional polynomials C(q- 1 
), D(q- 1

) being defined in a fashion 
similar to A (q- 1 ) in Eq. (2). 
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2.4.2. Internally Descriptive Models 

The number of techniques available for estimating parameters in Eq. 
(4) is remarkable for its smallness. To the best of our knowledge only a 
maximum likelihood (Kallstrom et al., 1976) method and variants on the 
extended Kalman filtering (EKF) (Jazwinski, 1970) theme have been applied 
to the analysis of field data. This latter method, however, we shall consider 
in detail as a method for solving the model structure identification problem. 

2.5. Verification and Validation 

In deriving the models of Eqs. (1) and (4) some important assumptions 
(see Section 2.2) have been made about the statistics of e, ~, and 'I· Model 
verification, in our terminology, sets out accordingly to check that the 
sample statistics of, say, the one-step-ahead prediction errors (residual 
errors, innovations process errors), 

c:(tkltk- i) = y(tk)- y(tkltk-d 

approximate the conditions 

(8) 

i&"{c:(tkltk-t)} = 0, (9a) 

i&"{c:(tkltk-l)e(tjltj_i)} = a20kj• (9b) 

i&"{c:(tkltk - i)u;(t)} = O; for all k,j; i = 1, 2, . . . , v, (9c) 

where (5ki is the Kronecker delta function such that 

for k =I j 
fork= j 

and .Y(tkltk - i) is the one-step-ahead prediction of y(tk) given all past 
sampled observations of the input and output time-series. Conditions (9a) 
and (9b) specify that the residuals are a zero-mean, white noise sequence, 
that is, not correlated with themselves in time, with variance a2

; condition 
(9c) requires the residuals to be independent of the inputs u;. If these 
conditions hold then our statistical assumptions are valid and it is 
reasonable to conclude that the model is an adequate characterization of 
the process behavior observed in the sampled data set from which the 
model is derived. 

There is, however, no guarantee that the model's validity extends 
beyond this specific set of data. Validation is, then, the testing of the model's 
adequacy against a new set of field data and this will almost certainly entail 
the design and implementation of new experiments. So finally it can be seen 
how model building is properly accommodated within the easily recogniz­
able scientific tradition of repeated experiment/analysis/and synthesis. 



270 M. B. Beck 

3. MODEL STRUCTURE IDENTIFICATION: BLACK BOX MODELS 

Solutions to the problem of identifying a black box model structure 
are dealt with first since a black box modeling approach may sometimes be 
employed as a prelude to working with internally descriptive models. 

The identification problems outlined in Section 2.3 (cause- effect ; time­
di:pendence) can both be partially solved by computing sample cross­
correlation functions from the data 

1 N-B 

Puy(()) = -N L (u(ti)-µu)(y(ti +B)-µy); 
(Ju(Jy j ; I 

P.y(- ()) = Pyu((}); () = 1, 2,. ·.,()max· 

() = 0, 1, ···' ()max ; 

(10) 

Hereµ. , µY, and (J} ,(J/ , are, respectively, the sample means and variances 
of the chosen input and output observation sequences. If p.y(()) is not 
significantly nonzero for () = - ()max• .. . , 0, . .. , ()max• then it can be concluded 
that no dynamic relationship exists between u and y (cause/effect 
identification). 

In an ideal situation it is desirable to have u(tk) approximating a white 
noise sequence, for it can then be shown (for example, Box and Jenkins, 
1970) that Puy(()) approximates the impulse response h(()) between input and 
output. Hence it is possible to see how the solution of the time-dependence 
identification problem is to be constructed as a matter of transferring from 
a nonparametric to a parametric model representation, as has already been 
mentioned in Section 2.3. The statistical properties of u(tk) do not generally, 
however, approximate those of white noise, although it may be justified to 
assume that u(tk) can be characterized by 

( 11) 

in which W(q - 1 
), a rational function, is termed a "shaping filter," and u*(tk ) 

is a white noise sequence. If Eq. (11) is a valid assumption, and provided we 
can find W (q- 1 

), then (Box and Jenkins, 1970), 

Pu•y•(()) ~ h(()), (12) 

where Pu•y•(()) is the cross-correlation function between the prefiltered (or 
prewhitened) time series 

In theory it is then possible to determine by inspection of the computed 
impulse response the pure time delay b; and appropriate orders n and m; for 
the A(q- 1

) and B;(q - 1
) polynomials of Eqs. (1) and (2). For the interested 

reader an exhaustive treatment of solving the identification problem in this 
manner is given in Box and Jenkins (1970). Note that the impulse response 
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determined through Eqs. (12) and (10) is a truncated approximation of the 
true impulse response function since it has only a finite number of 
coefficients fore = 0, 1, . . . , emax (compare with Section 2.2). 

The values so derived for n, m;, and b; should at best be regarded as 
initial intelligent guesses. The cross-correlation function, while it is an 
indispensable component of any data analysis, has its limitations (see 
below). Moreover, it is important to note also that the use of input 
prewhitening involves a second subproblem of identification, namely, the 
specification of the orders of the numerator and denominator polynomials 
of W(q- 1 

). And even with b;, n, m; specified we have yet to examine whether 
each bii parameter is significantly nonzero. 

Not all methods of black box model structure identification require 
the use of input/output cross-correlation functions as described above. A 
distinguishing feature of this first approach to the identification problem is 
that it attempts to solve model order determination (that is, obtain values 
for b;, n, m;) without recourse to any subsequent estimation of parameters. A 
transposed version of this approach, as it were, takes trial values 
(hypotheses) of n, b;, and m; and analyzes the variance and statistical 
properties of the error sequences t:(tk) from the resulting fully estimated 
model (see, for instance, Astrom and Eykhoff, 1971; Chan et al., 1974). 
Other methods which rely on the estimation of parameters as an index of a 
properly identified model structure include the novel auxiliary system 
method of Wellstead (1976) and the notion of "time-invariance of recursive 
parameter esti_w_ates" illustrated by Whitehead and Young (1975) and 
Whitehead (1976) (see also Section 4.4). Rather more unorthodox 
approaches to model structure identification include lvakhnenko's (1968) 
group method of data handling (GMDH) algorithm (see also Chapter 13 by 
lvakhnenko et al. in this volume) and the application of methods of pattern 
recognition (Kittler and Whitehead, 1976). For other reviews of specific 
details of this problem the reader is referred to the papers by Van den 
Boom and Van den Enden (1974) and Unbehauen and Gohring (1974). 

3.1. An Example: Anaerobic Digestion of Waste Organic/ 
Biological Sludges 

The results presented in this example are taken from an analysis of gas 
production dynamics in the anaerobic digestion of waste municipal/dom­
estic sludges (Beck, 1976). The principal biochemical feature of the process is 
the multistage breakdown of complex (insoluble) organic substrates to 
simple end products, primarily methane and carbon dioxide. The last stage 
of the overall reaction, in which methanogenic bacteria metabolize the 
volatile acid intermediates with the release of methane, is generally believed 
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Figure 5. Cross-correlation function P., between volatile acids concentration (u) and gas 
production rate (y) ; correlation coefficients marked withe denote (assumed) significant 

correlation between input and output. 

to be rate limiting (Graef and Andrews, 1974) and thus crucial to an 
investigation of digester dynamics. Volatile acid concentration and gas 
production rate are frequently used to monitor process stability. 

In the original study a multiple-input/single-output model repre­
sentation is identified; for the purposes of illustration, however, merely the 
identification of a single-input/single-output model for volatile acid 
concentration, input u, and volumetric gas flow rate, output y, is selected. 
Figure 5 shows, thus, the cross-correlation function Puy; the experimental 
data represent normal operating conditions at the Norwich Sewage Works 
in England. Initial conclusions from Fig. 5 are that , according to Eqs. (1) 
and (2), () = 0 and m = 4, approximately. So together with the assumption 
of n = 1 (by inspection of the autocorrelation function of the output time 
series) we can broadly state that there exists the following deterministic 
time-dependence relationship between volatile acids and gas production 
[compare with Eq. (3)] 

y(tk) = f {y (tk _ 1), u(tk), u(tk _ 1), u(tk _2), u(tk _ 3), u(tk _4)}. (13) 

The inclusion of the term u(tk) in Eq. (13) probably occurs as a consequence 
of the relatively slow sampling frequency of the data which obscures some 
of the faster dynamic aspects of the relationship between volatile acids and 
gas production. This observation, apart from the several other attendant 
difficulties, is a cautionary message on the use of data from badly designed 
experiments, that is, normal operating conditions. 

The interpretation of values for () and m from Fig. 5 is clearly 
somewhat speculative. But any attempt at circumventing such imprecision 
by designing a prewhitening filter results in a cross-correlation function 
Pu* y* which is equally inconclusive (Fig. 6) . It is necessary, ultimately, to 
incorporate repeated parameter estimation of trial model structures, within 
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Figure 6. Cross-correlation function p •• , . for the prewhitened volatile acid concentration 
series (u*) and prewhitened gas production rate series (y*). 

the range of combinations allowed by Eq. (13), as a method of identification. 
At this stage we can exploit an intuitively useful criterion which states 
simply that if 

(8µ/P) ~ 1 

for any model parameter estimate p, where 

8pz ~ C{(/3-p)z} 

(14) 

is an estimate of the parameter estimation error, then the parameter f3 is not 
significantly nonzero and its associated term can be dropped from the 
model structure. 

A final structure of the model obtained in such a fashion is given by 

y(tk) = a1y(tk _ 1 )+b0 u' (tk)+b 2u'(tk-z) 

with u'(tk) = (µ ufu(tk)) where µ" is a sample mean value for u(tk). The 
interesting point here is the fact that the model remains linear-in-the­
parameters (Section 2.3) but is quite nonlinear in terms of u(tk). 

What can be concluded from the example presented? Primarily it is 
observed that solving the identification problem is subjective, clearly so in 
the inspection of cross-correlation functions and rather less obviously so in 
the use of Eq. (14). Second, it should be evident that there are good reasons 
for avoiding the analysis of normal operating data where at all possible. 

4. MODEL STRUCTURE IDENTIFICATION: INTERNALLY 
DESCRIPTIVE MODELS 

The technique to be applied exclusively to internally descriptive model 
structure identification is the extended Kalman filter (EKF). In order to see 
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how the need for the EKF develops from the linear Kalman filter (Kalman, 
1960; Kalman and Bucy, 1961) it is first necessary to pose the problem of 
combined state parameter estimation. Hence model structure identification 
in this case can be constructed as a problem of assessing diagnostic 
information on recursive parameter estimates and residual error 
sequences-a notion already introduced in Section 3. 

A formal derivation of the EKF is given in the source reference of 
Jazwinski (1970). Alternatively, Young (1974) provides an outline of how the 
EKF algorithms can be obtained from an extension of linear regression 
analysis. 

4.1. Formulation of the Combined State Parameter 
Estimation Problem 

For the linear system of Eq. (4) the linear Kalman filter would provide 
recursive estimates x(tkltk) of the state vector x(tk) conditioned upon all 
sampled process measurements up to and including those at time tk . 

Suppose now that some of the unknown, or imprecisely known 
elements of the matrices F , G, H, that is, a vector of parameters ex, say, are 
required to be estimated simultaneously with the estimation of the state 
vector. One approach to realizing a simultaneous state parameter estimator 
is to augment the state vector x with the parameter vector ex and 
accordingly to postulate a set of additional differential equations represent­
ing the parameter dynamics. If the augmented state vector x* is defined by 

x* g [ -:] 

the state parameter dynamics and observation equation are given m the 
following general nonlinear form 

x*(t) = f{x*(t), u(t)}+~*(t), 

y(tk) = g{x*(tk)} + 11(tk). 

(15a) 

(15b) 

The functions f{ ·} and g{ ·} are vector functions; they are nonlinear 
because of the product terms involving elements of ex with elements of x and 
u. e*(t) denotes that the vector of stochastic disturbances in Eq. (15a) is 
now ofa different order to that defined for e(t) in Eq. (4a) . 

Let us consider the problem of specifying the dynamics of the 
parameters ex. Of particular importance to the subsequent discussion are 
two such specifications : (a) we might assume that the parameters are 
constant, that is, time invariant 

ii(t) = 0, (16) 
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or (b) it might be proposed that they vary in an unknown "random walk" 
fashion, 

.i(t) = ~(t). (17) 

Were there to be more a priori information on the parameter variations, 
then it would be appropriate, for instance, to define the dynamics as 
oscillatory in accordance with some diurnal or seasonal fluctuation . 

4.2. The Extended Kalman Filtering Algorithms 

The EKF is a linear approximation of the nonlinear filter which 
would ideally be needed to provide estimates of x* in Eq. (15). The principal 
steps in its derivation are listed as follows. 

(a) Linearization of the nonlinear augmented state equations. For small 
perturbations ox*(t) of the state x*(t) about some nominal reference 
trajectory x*(t), a set of linear dynamic equations in ox*(t) are obtained by 
taking a first-order Taylor series expansion off in Eq. (15). Here ox*(t) is 
defined by 

ox*(t) = x*(t)-x*(t) (18) 

and 

dx*(t)/dt = f {x*(t),u(t)}. (19) 

(b) Linearization of the nonlinear observation equation. By defining a 
nominal measurement trajectory in terms of x*(t) we can similarly derive 
the linear small perturbation observation equation for oy(tk). 

(c) Application of a linear Kalman.filter to the perturbational equations. 
From step a we have 

d{ox*(t)} /dt = F* {x*(t0 ),u(t)}ox*(t)+~*(t), (20) 

where 

(21) 

Integration of Eq. (20) over the interval t k -> tk + 1 gives 

and from step b we have 

(22b) 
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with the definitions 

and 

H*{x*(tk)} ~ [agi~::;tk)}J. (24) 

Note that Eqs. (20) and (21) imply that F*{ · } and hence <I>{·} are 
determined for all t by the choice of the initial conditions x* (t0 ) of the 
reference trajectory; note also that w(tk + 1 ) is the discrete-time equivalent of 
~* (t ). 

By applying a linear (discrete-time) Kalman filter to the linear system 
of Eq. (22) estimates o-x* of the small perturbations can be derived and 
hence through Eq. (18) we see a means of "reconstructing" estimates of the 
state x*, that is, 

(25) 

(d) A suitable choice of reference trajectory. Clearly the choice of 
reference trajectory is crucial to the operation of the filter. If the choice of 
x*(t0) were inaccurate then there is no guarantee that the perturbations 
about the reference trajectory are small, and thus the linearization is no 
longer a valid approximation. For the EKF the particular substitution of 
the current state estimate as the reference trajectory is made; in step e below 
we shall discuss how the term "current" is interpreted. 

(e) The algorithms. The EKF algorithms provide for prediction of the 
estimates and estimation error covariances between sampling instants, 

Prediction: 

(26a) 

P(tk+ 1 ltk) = <I> { tk +I• tk ; x*(tkltd, u(tk)} P(tkltk) 

X <l>T{tk + l• tk; X*(tkitk) , u(td} +Q(tk + 1), (26b) 

and for corrections to be applied to those predictions at the sampling 
instant, 

Correction: 

x*(tk + 1ltk+1) = x*(tk + 1 ltk) + K(tk + 1 )[y(tk+ i)- g{ x*(tk + 1 ltk)}] , (26c) 

P(tk + 1 ltk +I) = [I - K(tk +I )H*(tk + i)]P(tk+ 1 ltk)[I- K(tk + 1)H*(tk +1 )JT 
+K(tk +i)R(tk +1)KT(tk+t), (26d) 
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Figure 7. Block diagram of the extended Kalman filter and the (linear) system dynamics. 

where K, the Kalman gain matrix, is given by 

K(tk+ i) = P(tk + 1 ltk)Hfl (tk+ I )[H*(tk + i)P(tk + 1 ltk) 

xH*T(tk +1 )+R(tk + 1)]-
1

. (26e) 

I denotes the identity matrix and superscript T denotes the transpose of a 
vector or matrix. 

In Eq. (26), P(tltk) is the estimation error covariance matrix defined as 

P(tltk) ~ g { (x*(t )- x* (tltk)) (x* (t )- x* (tit kW} 

and Q(tk) and R(tk) are, respectively, the system noise covariance and 
measurement noise covariance matrices 

O"{w(tk)wT(ti)} = Q(tdbki and 0"{11(tk)'1T(tJ} = R(tk)bki 

with O"{w(tk)} = 0"{11(tk)} = 0. 
To conclude the arguments leading to the EKF algorithms of Eq. (26) 

we note that the matrices <I>{ · } and H*{ ·} of the perturbational system (Eq. 
22) are required only in the computation of the covariances, Eqs. (26b) and 
(26d), and for the gain matrix, Eq. (26e). This is so since the substitution 

x*(tk+i) = x*(tk+iltk) 
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for the evaluation of H* and the substitution 

x*(tk) = x*(tkltk) 

for the evaluation of <I> enable us to employ the original nonlinear system 
functions f{ ·} and g{ ·} in Eqs. (26a) and (26c). Hence also by these 
substitutions the nonlinear equations are effectively relinearized at each 
sampling instant tk. Because of the prudent choice of reference trajectory the 
filtering algorithms can be formulated directly in terms of the augmented 
state vector x* instead of, as suggested at step c, a linear filter applied to the 
perturbation vector 1>x* together with the solution of Eq. (19) for x*. A 
block diagram of the EKF is given in Fig. 7. 

4.3. Operation of the EKF Algorithms 

In order to implement the algorithms of Eq. (26) there are three 
matrices and one vector which must be quantified. These comprise the 
initial conditions of the filter, in other words, the a priori state parameter 
estimates x*(t0 lt0 ); the a priori estimation error covariances P(t0 lt0 ); and 
the noise covariances, system noise covariances Q(tk); and measurement 
noise covariances R(tk). Any identification (and parameter estimation) 
results obtained with the EKF are open to debate because the specification 
of these "unknowns," and especially that of Q(tk), may depend strongly on 
the subjective judgement of the analyst. There are also analytical problems 
in that global convergence of the estimates is not guaranteed and thus the 
choice of ~(tolto) in x*(tolto) should reflect a vector of a priori parameter 
estimates which are within the locality of the true parameter values. 

Only a few guidelines can be offered on the mechanics of 
implementing the filter for any given system. First, it is probably common 
sense to evaluate x*(tolto), in particular ~(tolto), by prior trial and error 
deterministic simulation comparisons with the experimental field data. 
Second, if 

(27) 

as is often the case, then R(tk) and that submatrix of P(t0 lt 0 ) which refers to 
estimates of the state vector x can be quantified on the basis of standard 
instrumentation and laboratory analysis measurement errors. Third, it is 
customary to assume that Q and R are time invariant and further that 
P(t0 lt0 ), Q and R are diagonal, unless there is evidence supporting an 
alternative choice. 

For the quantification of Q there is indeed little that can be stated 
categorically. Loosely speaking, one might suggest that the Q matrix 
diagonal elements for x be evaluated from the relative accuracy (un-
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certainty) of the model dynamics (Eq. 4) with respect to the accuracy 
(uncertainty) of the measurements, that is, the corresponding elements of the 
R matrix. Quantification of those portions of P(t 0 lt0 ) and Q which refer to 
the parameter vector oc are discussed later in Section 4.5. Otherwise the 
reader is referred to Bowles and Grenney (1978) for further discussion of 
covariance matrices specification for the EKF. 

4.4. Intuitive Criteria for Model Structure Identification 
with the EKF 

With some understanding of the EKF and its limitations we are now 
in a position to consider how the filter can be used to solve the model 
structure identification problem. In the following our heuristic approach 
hinges primarily upon interpretation of the recursive parameter estimates 
ii(tkltd as indices of an adequate/ inadequate model structure. 

An internally descriptive model will in general have an inadequate 
model structure if it does not contain explicit representations of all the 
significant physical, chemical, biological, or ecological processes associated 
with the system. Significance in this context implies that the effects of such 
relationships between inputs and states can be measured in the output 
observations y. The filter has a tendency to provide estimates x of the state 
vector that track the observations y unless the system model is very 
accurate. If the model is inaccurate, which is more probable, then the filter 
attempts to adapt this model to the dynamic characteristics observed 
between u and y. Clearly the filter cannot adapt the model structure and 
thus significant parameter adaptation results. 

On the basis of this argument it is possible to define a first intuitive 
criterion for model structure identification: 

Criterion I . A model structure is adequate if the recursive estimates 
ii(tkltk) of all parameters defined to be time invariant according to Eq. (16) 
display trajectories which are sensibly stationary once any initial transients 
have decayed away. 

Now suppose we have estimated oc such that the matrices F, G, H in 
the original linear system dynamics of Eq. (4) are completely specified. In 
this event it would be possible to pass through the experimental data with 
the linear Kalman filter applied to Eq. (4) (note that for the functions f and 
g being linear the EKF algorithms of Eq. (26) reduce to those of the linear 
filter). The sequence of innovations process residual errors 

(28) 

thereby generated should have certain statistical properties - providing our 
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initial assumptions about ~ and 'I are valid - and a second intuitive 
criterion can be introduced: 

Criterion 2. A model structure is adequate if the residual errors 
e(tkltk - 1) of the linear Kalman filter for the original linear system model, Eq. 
(4), approximate zero- mean, white, Gaussian sequences. 

Clearly the use of criterion 2 is somewhat restricted since the original 
system dynamics are required to be linear. Notice, however, that Eq. (28) is 
equivalent to 

which has obvious similarities with Eq. (8)- compare also with the 
analogous situation for the EKF in Fig. 7. 

It should be apparent that Criterion 1 is the more readily applicable 
criterion of model structure identification: Its use naturally precedes the 
application of Criterion 2. The reader should also note that, in principle, 
nonlinear system dynamics present no additional analytical problems for 
the implementation of the EKF. Nevertheless, having defined two criteria 
for model structure identification, it must be admitted that there will be few 
modeling exercises in which these criteria can be applied in any systematic 
manner! 

4.5. Parameter Dynamics and Model Structure 
Identification 

A familiar means of formulating a dynamic model from the available 
biological and ecological theory is the application of component mass 
balances across the system boundaries. For our specific purposes these 
components are usually the concentrations of dissolved substances, for 
example nutrients, or the magnitudes of microorganism populations. Thus 
Eq. (4a) might be rearranged to give 

x(t) = Y'{x(r), u(t)} + ff{ x(t),u(t),ix1 } + O/i{ ix2(t)} +~(t), (29) 

where Y'{ · } represents the bulk transport (flux) of components into and out 
of the system, and ff { · } includes a priori well-known theoretical 
relationships for population growth, death, nutrient uptake, respiration, and 
so on. O/i { · } accounts for all physical, chemical, biological, and ecological 
phenomena whose presence in the observed data is a matter of speculation 
and for which no well-established formal mathematical relationships are 
available a priori. The distinction drawn between ff and O/i is, of course, 
rather arbitrary. There tends to be a complete spectrum of shades of 
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confidence in the theories incorporated in the model; the distinction serves 
primarily to illustrate both how to characterize the respective parameter 
dynamics and how to quantify the associated submatrices of P(t0 lt0 ) and Q. 

Let us denote by P 1 (t0 lt0 ), P 2 (t0 lt0 ), and Q1,Q2 the submatrices of 
P(t0 lt0 ) and Q corresponding to oc 1 and oc 2 . In principle the parameter vector 
oc 1 in Eq. (29) is defined as time invariant according to Eq. (16), whereas the 
dynamics of oc2 may be said to conform to Eq. (17), that is, random walk 
idealizations. The a priori estimates ii1 (t0 lt0 ) ought to be quantifiable from 
previous empirical evidence or prior simulation results. Suitable initial 
guesses for oc2 might be that 

(30) 

If P 1 {t0 lt0 ) is evaluated in terms of the (albeit subjective) confidence bounds 
on ii1 (t0 !t0 ), then P 2 (t 0 lt0 ) should express the intuitively reasonable 
assumption that relatively less initial confidence is placed in the estimates 
&2 (t0 lt0 ) than in &1{t0 !t0 ). Our objectives in so specifying P 2 (t0 lt0 ) are to 
permit the rapid adaptation of subsequent recursive estimates, ii 2 (tkltk), to 
values more "realistic" than those of Eq. (30). It is important to note, 
however, that for the EKF the matrix P(tkltd cannot be interpreted as an a 
posteriori measure of the true estimation error covariances. Finally, by 
virtue of Eq. (16) it is easy to see that 

Ql =0, 

and on a very approximate ad hoc basis Q2 could be chosen such that 

Q2 ~ 0.1P2 (t0 lt0 ). 

The procedure for model structure testing according to Eq. (29) is 
formulated with the hope that various hypotheses about the form and 
combination of ff and O/t can be assessed. The ideal objective would be to 
eliminate O/t from Eq. (29) by modification and/or expansion of the structure 
of ff. In this last respect it is particularly useful either to seek relationships, 
that is, correlated variations, between ii2 (tdtk) and x(tk), u(tk); or, with O/t { ·} 
= 0, to check any dependence of the innovations errors e(tkltk- t) of Eq. (28) 
on variations in u(tk). 

4.6. Problems of Stability and Partially Observed State 
Vectors 

The majority of the discussion so far has been centered implicitly 
upon the assumption that Eq. (27) is valid, namely, 

y(tk) = x(tk) + 11(tk). 
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If this assumption is not valid, for instance, 

then Criterion 1 cannot be applied with any confidence since there is the 
likelihood that filter estimates of those states not measured directly are 
adapted in preference to ~(tkltk). Model structure identification under these 
constraints becomes an almost impossible task of checking the statistical 
properties of the residual errors (Criterion 2) for each set of trial (known) 
values for the vector a. It is unfortunate, therefore, that such models arise 
naturally and readily in water quality and wastewater treatment systems 
where substrate and metabolic end product concentrations are measurable 
but the magnitudes of mediating enzyme and microorganism populations 
cannot be measured (see, for example, Beck, 1977). 

We note, furthermore, as did Di Cola et al. (1976), that for certain 
microbiological and ecological constituents the state vector dynamics of Eq. 
(4) reduce to the (deterministic) form 

x(t) = a(t)x(t). (31) 

For any x(t 1 ) > x(t2), t2 > t 1, that is, population growth, it is implied that 
Eq. (31) exhibits temporary, marginal instability. Thus a small inaccuracy in 
the filter estimate &(tkltk) can lead to severe computational problems- in 
physical terms, estimates x(tkltk) of organism populations, for example, 
assume erroneously large proportions. Yet even here such adversity can be 
turned to our advantage, for if the filter estimates remain reasonably 
bounded this is evidence of a kind that the chosen model structure is 
adequate. 

4.7. Further Considerations of the Measurement Process 

The primary objective of identification is to determine the structure of 
the state vector dynamics (Eq. 4a), rather than the nature of the 
measurement process (Eq. 4b). Nevertheless, a correct characterization of 
Eq. (4b) is clearly of fundamental importance to identification of the correct 
model structure. Two commonly occurring variations on the theme of Eq. 
(4b) which can be easily accommodated within the analytical framework of 
the EKF are: (a) the situation of systematic measurement error bias 

and (b) the case of a single observation of multiple state variables 

y (tk) = x 1(tk)+x2(tk)+ x 3(tk)+ry(tk) . 

(32) 

(33) 
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In Eq. (32) the bias is estimated as an additional parameter o:, which may or 
may not be time varying. A typical example of Eq. (33) is the measurement 
of suspended solids in an aquatic environment which may embrace a 
number of bacterial populations at different states in their life cycle (see, for 
instance, Busby and Andrews, 1975). 

A rather more improbable version of the measurement process 
concerns the analytical determination of biochemical oxygen demand 
(BOD), a macromeasure best defined as the amount of oxygen consumed in 
supporting the breakdown of organic matter by aerobic bacteria. (In fact, 
BOD is frequently interpreted even more loosely as a measure of the 
polluting strength of typical municipal/domestic effluents.) A BOD 
measurement is carried out over a period of 5 days under laboratory 
conditions in a sealed vessel, at constant temperature, and in the absence of 
light. The BOD of the sample, for instance river water, is defined as the 
change in dissolved oxygen (DO) concentration of that sample between the 
beginning and end of the 5-day period. This measurement, therefore, is itself 
a dynamic process since it resembles a batch reaction in a closed system. In 
the example of the following section we shall deal with a modeling exercise 
which leads ultimately to a description of DO-BOD- algae interaction in a 
reach of river. The correct characterization of the BOD measurement 
process turns out to be crucial in interpreting the results of model structure 
identification. Suppose the BOD measurement is represented as 

(34) 

where 

for C=O 

and where y is the measured value of BOD, x 1 is the in situ river BOD 
concentration, and g1 is some function of x 2', the concentration of live algae 
in the bottle, and of x 3 ' , the bottled sample DO concentration. x 2 is the 
concentration of live algae in the river, and C is a dummy variable of time 
(in days). It is thus not at all clear which of the following two mechanisms is 
responsible for an apparent increase in river BOD concentration, x 1 : death 
and decay of algal matter in the river - a phenomenon which would be 
described by an appropriate term in !!/ (Eq. 29) ; or respiration (in the 
absence of light), and subsequent death, of a live algal population caught in 
the river water sample of the BOD measurement, as described by Eq. (34). 

Although we shall not discuss these latter stages of the identification 
analysis below, it may be noted that it is impossible to resolve the above 
issue for this particular example. 
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4.8. An Example: The Interaction between BOD and an 
Algal Population in a Freshwater River 

This example, as has been mentioned already, forms a part of a larger 
model for river water quality, that is, DO-BOD-algae interaction (Beck, 
1975); the experimental data are taken from a field study of the River Cam 
in eastern England (Beck and Young, 1975). The DO balance in a river is 
generally believed, among other factors, to be determined by: (i) the 
withdrawal of oxygen by BOD decay; and (ii) the photosynthetic/res­
piratory activity of plants and algae. Our treatment here is necessarily brief 
and sets out to examine how a dead and decaying algal population places 
an additional BOD load on the river's oxygen resources. We assume, 
therefore, that this is the dominant of the two alternative mechanisms 
suggested in Section 4.7. A comprehensive report on the use of the EKF in 
this specific model structure identification context is given in Beck and 
Young (1976). The primary aim in presenting the example is to illustrate 
some of the basic principles of internally descriptive model structure 
identification summarized in Sections 4.4 and 4.5. 

An a priori model for the BOD dynamics can be derived from the 
classical studies of Streeter and Phelps (1925) 

x(t) = .9"(t)-1X1X(t)+~(t) (35) 

in which, according to the scheme of Eq. (29), 

ff{x(t),u(t),ixi} = -ix1x(t); 

x is the concentration of BOD in the river, and ct 1 is a parameter 
representing the BOD decay rate constant under the assumption of simple, 
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0 - - · - ·-·-· - · - · - · - ·-· - · - · 

-0.2 

0 ~ w w ~ ~ w w w 
TIME (days) 

Figure 8. Recursive EKF estimates of the BOD decay rate constant, ix1 , in the model of Eq. 
(35). 
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Table I A Priori Estimates and Covariance Specifications for the Example of Section 4.8 

State parameter x;*(tolto) Pu(toito) qii 

x (gm- 3) 1.4 1.0 0.4 
a 1 (day- 1) 0.32 0.005 0 
a2 (gm- 3 day - 1) 0 2.0 0.05 

first-order kinetics. The augmented state vector of the EKF is 

x*(t) = [x(t),cx1Y 

rii 

0.4 

with the observation equation y(tk) = x(tk)+17(tk) and the a priori estimates 
and covariance specifications are given in Table I. The recursive estimation 
trajectory for &1 (tkltk) shown in Fig. 8 is clearly nonstationary and 
considerable adaptation of the parameter occurs, in particular, at about day 
t 40 • It is known that over this period of the experiment the weather was 
warm and sunny with very low flows in the river, in other words, conditions 
likely to stimulate algal growth. We may conclude that the a priori model 
does not satisfy Criterion 1 of Section 4.4. 

By means of a modification of the Streeter- Phelps theory due to 
Dobbins (1964) a term 

Olt{cx1 (t)} = cx1 (t) 

can be incorporated into Eq. (35) such that 

x(t) = Y'(t)-cx 1 x(t)+cx1 (t)+~(t), (36) 

where cx2 (t) is, in effect, a time-variable parameter which accounts for the 
rate of addition (removal) of BOD in the river by unknown physical, 
chemical, or biological mechanisms. The estimates &1 (tkltk) in Fig. 9 are 
thereby much improved, that is, they are more stationary. The variations in 
&1 (tkltk), on the other hand, can be shown to be strongly correlated with the 
day-to-day variations in the hours of sunlight, u(tk), incident on the river 
system during each 24-hr period. However, for the purpose of illustrating 
the use of Criterion 2 from Section 4.5 this same result can be presented in 
an alternative fashion . Assuming cx 1 = 0.32 a linear Kalman filter applied to 
Eq. (35) generates the residual errors e(tkltk - 1 ) from Eq. (28) shown in Fig. 
10. The cross-correlation function between these e(tkltk- 1 ) and u(tk) is given 
in Fig. 11. 

Beyond this point the analysis becomes less straightforward. It is 
sufficient to say that we now have to establish how and why u is related 
through cx2 to x. In fact a final version of the DO-BOD-algae interaction 
model assumes that algal population growth obeys Monod (1942) kinetics 
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Figure 9. Recursive EKF estimates of(a) ex 2 and (b) ex 1 in the model of Eq. (36). 

with sunlight, u, being growth-rate limiting ; after death some of the 
particulate, algal cell material redissolves, th us creating an apparent 
additional BOD load in the river (Beck, 1975). During the course of the 
complete analysis (Beck, 1978) the order of the overall model state vector I 
(see Section 2.2) is expanded from two states [DO, BOD] to four states 
[DO, BOD, live algae, dead algae]. 
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Figure 10. Residual errors i; (l,lr,_ 1 ) for the linear Kalman filter applied to Eq. (35); ex 1 

= 0.32day - 1 . 
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-0.5 

Figure 11. Cross-correlation function between u(td, the hours of sunlight incident on the 
river during each day, and E(tkltk_i); correlation coefficients marked withe denote (assumed) 
significant correlation between u(tk) and E(tkltk- 1 ). 

5. CONCLUSIONS 

There are three points to be stressed about the model structure 
identification problem. The first, and most fundamental, is that its solution 
is in many ways unavoidably subjective. There is no "best" model of a 
system and, indeed, different types of models are required to fulfill different 
roles and objectives. Our specific objectives in this instance have been to 
increase the degree of understanding of a system's dynamic behavior. The 
second point concerns the distinction made between black box and 
internally descriptive models. Such a distinction is necessary only in terms 
of presenting the various theoretical techniques for model structure 
identification. In an actual problem-solving context solutions evolve from 
the interplay between both approaches to modeling (see, for example, Beck, 
1978). Third, emphasis has been placed upon the extended Kalman filter 
as a method of identification. It is not an easy technique with which to work 
and perhaps this is one reason why it appears to have received less-than-fair 
treatment in the system identification literature. Another reason may be 
that the EKF lacks certain theoretical guarantees (convergence, efficiency of 
estimation) on its performance. But then, in a more general sense, the 
analysis of field data rarely yields elegant solutions, especially when these 
data are derived from the predominant "normal operating conditions" of 
microbiological and ecological systems. 
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