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Abstract

Food security and water scarcity have become two major concerns for future human’s sustainable development, particularly
in the context of climate change. Here we present a comprehensive assessment of climate change impacts on the
production and water use of major cereal crops on a global scale with a spatial resolution of 30 arc-minutes for the 2030s
(short term) and the 2090s (long term), respectively. Our findings show that impact uncertainties are higher on larger spatial
scales (e.g., global and continental) but lower on smaller spatial scales (e.g., national and grid cell). Such patterns allow
decision makers and investors to take adaptive measures without being puzzled by a highly uncertain future at the global
level. Short-term gains in crop production from climate change are projected for many regions, particularly in African
countries, but the gains will mostly vanish and turn to losses in the long run. Irrigation dependence in crop production is
projected to increase in general. However, several water poor regions will rely less heavily on irrigation, conducive to
alleviating regional water scarcity. The heterogeneity of spatial patterns and the non-linearity of temporal changes of the
impacts call for site-specific adaptive measures with perspectives of reducing short- and long-term risks of future food and
water security.
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Introduction

Climate change, in addition to population increase, economic

growth and shifting diets, is one important driving force

influencing earth’s food and water ecosystems, and its impacts

have become a topic of increasing research attention

[1,2,3,4,5,6,7,8,9]. With increasing scientific and political interest

in prioritizing investment needs for climate change mitigation and

adaptation, there is a strong impetus to identify climate impact

hotspots on a global scale but with a high spatial resolution [4].

Understanding spatial patterns of climate change impacts on crop

production and water use is necessary not only for identifying

climate change hotspots but also for helping formulating adaptive

and mitigating measures at all geographical levels [4]. Such spatial

assessments have become possible with recent advances in

information technology and modeling techniques, in particular,

with the development of GIS supported biophysical and ecological

models (e.g. GEPIC[10], LPJmL[11] and GCWM[12]).

There are large numbers of studies devoted to assessing impacts

of climate change on future world agricultural production

[3,4,13,14,15] and agricultural water use [7,18,19]. However,

most global level analyses often have not made full use of the

spatially explicit databases available to address uncertainties of the

assessments stemmed from using different Global Climate Models

(GCMs) as well as the emission scenarios. Meanwhile, they often

provide aggregated results on the global, national or regional

scales (e.g. [9,15]) and rarely pay attention to the spatial variations

within a country or region. Spatially explicit assessments still

remain lacking for simultaneous analysis of changes in crop

production and agricultural water use in the context of climate

change.

In this study, we analyze the impacts of climate change on the

production and water use of major cereal crops on a global scale

with a spatial resolution of 30 arc-minutes (about 50650 km2 near

the equator) for the 2030s (short term) and the 2090s (long term),

respectively. A GIS-based EPIC (GEPIC) biophysical crop model

is applied for the investigation. The simulation is performed at the

grid level. The results then are aggregated to national, continental

and global levels to address broader implications. Three crops, i.e.

wheat (Triticum aestivum L.), maize (Zea mays L.) and rice (Oryza

sativa L.), are selected as representatives due to their importance

for humans. They provide more than 60% of human dietary
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calorie intakes either as cereals for direct human consumption or

as feed grains to produce livestock products [28]. These crops will

continue to account for the bulk of the future human food supply

because of their higher productivity, faster growth, easier way for

storage and transportation, and less fuel and labor requirements

for processing and cooking compared to other food crops [29].

Materials and Methods

2.1 Crop production and consumptive water use (CWU)
The simulation of crop yield and evapotranspiration (ET) is

performed with a GEPIC model [10]. EPIC is a biophysical crop

growth model developed in the mid 1980s [16] and has been

widely applied in the literature [17,18,19,20,21,22]. The develop-

ment of GEPIC extends the model’s capacity for spatially explicit

investigation. The GEPIC model has been well calibrated and

validated on different geographical scales for the simulation of

crop yield and production [10,23] [24,25] and for the simulation

of ET [26,27]. The simulation results from the GEPIC model are

satisfactory for crop yield and ET [10,23] and for irrigation depth

on a global scale [26–27]. In addition, the simulated crop water

productivity (the ratio of yield to ET) from the GEPIC model [10]

shows a good correlation with measured values from a global

literature review by Zwart et al. [28]. Zward et al. [29] also

confirmed that their results of crop water productivity compare

very well with the simulated results from GEPIC for most

countries. Also EPIC itself has been validated and applied in

several studies on climate change impacts on large geographical

scales (e.g. van der Velde et al. [30]; Gaiser et al. [31]). The model

has demonstrated a good performance in its application in

different regions of the world [17,18,19,20,21,22].

GEPIC consists of a crop growth module to calculate crop yield

and a hydrology module to estimate crop ET [10,23]. Crop yield is

estimated by multiplying the aboveground biomass at maturity

with a water stress adjusted harvested index [16]. Biomass is

calculated on a daily basis by considering solar radiation, leaf area

index, a crop parameter for converting energy to biomass, and

several environmental stresses caused by water, nitrogen and

phosphorus deficiencies, extreme temperatures, and poor soil

aeration[16]. Actual crop ET is estimated based on the potential

crop transpiration and soil water content and snow cover[16].

Reference crop ET is calculated with the Hargreaves method[32],

which is a temperature based method and is widely used when

climatological data is limited.

Crop production is calculated by multiplying crop yield by

harvested area. CWU refers to the total evaporative use during

crop growth period, and it is calculated by multiplying actual ET

by harvested area [23].

An aggregated production index (API) and aggregated CWU

index (AWI) are calculated as the total crop production and total

CWU, respectively, of all representative crops under both rainfed

and irrigated systems.

API~
XNC

i~1

XNS

j~1

y
j
i|A

j
i ð1Þ

AWI~
XNC

i~1

XNS

j~1

ET
j
i |A

j
i ð2Þ

where y is crop yield in kg ha21, A is harvested area in ha, i is crop

code, and j is production system code (e.g. rainfed, irrigated), NC is

the number of crops, and NS is the number of production systems.

For wheat and maize, both rainfed and irrigated systems are

considered. For rice, only irrigated systems are used due to their

dominance in the production.

2.2 Irrigation water proportion
The CWU in the irrigated system consists of water from rainfall

and irrigation. The irrigation water proportion in CWU is

calculated as the ratio of the irrigation (consumptive) water use

to the total CWU of all the representative crops under rainfed and

irrigated systems. In order to quantify the irrigation water use in

irrigated agriculture, a two-soil-water-balance approach is adopted

as described in Liu et al. [26]. For this approach, in the first soil

water balance, it is assumed that soil does not receive any

irrigation water; while in the second soil water balance, it is

assumed that soil received sufficient irrigation. Irrigation water

proportion of a crop is calculated as the ratio of the difference of

ET calculated in the two soil water balances to the ET calculated

in the second soil water balance. The irrigation water use of the

crop is calculated by multiplying the CWU of the crop by the

irrigation water proportion. An aggregated irrigation water index

(AIWI) is calculated by dividing the total irrigation water use of the

representative crops by the AWI value.

AIWI~

PNC

i~1

PNS

j~1

b
j
i|ET

j
i |A

j
i

AWI
ð3Þ

where b is the irrigation water proportion of crop i under

production system j.

2.3 Impacts of climate change
For both the crop growth and hydrology modules embedded in

the GEPIC model, climate variables (e.g. maximum temperature,

minimum temperature and precipitation) are important inputs in

addition to crop and soil parameters, and management practices.

This enables the analysis of the impacts of climate change on crop

production and consumptive green/blue water uses [33]. Here

blue water use refers to ET that is fed by irrigation, while green

water use is ET fed by unsaturated soil water received directly

from precipitation. Three time periods are studied: the baseline

period 1990s and two future periods 2030s and 2090s. The period

of 2030s represents the near future, and this time period is most

relevant to large agricultural investments, which typically take 15

to 30 years to realize full returns[34]. The time period of 2090s

represents the far future, for which long-term effects of climate

change are prominent.

Climate change scenarios are developed from the Intergovern-

mental Panel on Climate Change Special Report on Emission

Scenarios (IPCC SRES) storylines[35] (emission scenarios hereaf-

ter). Results from four GCMs are used: HadCM3[36],

CGCM2[37], CSIRO2 [38] and PCM [39]. These four GCMs

are selected due to three reasons: First, they are standard GCMs,

and commonly used in climate change impact studies; Second,

high-resolution gridded data on monthly climate information have

been generated based on outputs from these GCMs and on

climatological observations [40,41]; Third, for the SRES scenario

A1FI, the CSIRO2 and HadCM3 models can be considered ‘hot’

models with temperature increases of up to 5.5 uC until the year

2100. PCM is rather ‘cold’ with a maximum increase of 3.5uC

Impacts of Climate Change on Crops and Water Use
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until 2100. CGCM2 is in the upper middle with up to 5 uC
[40,41,42]. For each GCM, the two most socio-economically

contrasting emission scenarios A1FI and B2 are selected; hence,

there are eight scenarios for each crop-system combination. A1FI

and B2 are selected in order to cover a wide range of possible

developments of human society. A1FI is characterized by market

globalization and reliance on fossil energy sources, while B2

assumes economic regionalization and use of mainly renewable

energy. In terms of atmospheric CO2 concentration, A1FI has the

highest CO2 concentration among all scenarios (e.g. 480 ppm in

the 2030s and 928 ppm in the 2090s). In contrast, B2 has the

lowest CO2 concentration before the middle of this century (e.g.

441 ppm in the 2030s); while afterward, it still remains a scenario

with relatively very low CO2 concentration (e.g. B2 has the second

lowest CO2 concentration next to B1 in all scenarios at the end of

this century).

We first calculate API, AWI, and AIWI in the baseline period

1990s. We then simulate those variables under eight climate

scenarios in each of the two future periods (i.e. 2030s and 2090s)

by only allowing changes in temperature, precipitation and CO2

concentration while holding other influencing factors unchanged

over time. The settings of climate parameters are described in

detail in Liu [33]. Changes in harvested areas are not considered

because the main purpose is to study the impacts of climate change

(rather than the mixed effects of climate change, land use change,

and changes of other socio-economic factors). In addition, the

amount of arable land has not changed significantly in more than

half a century, and it is unlikely to increase much in the future [1].

Impact ratio (IR) is used as an indicator for analyzing the

impacts of climate change on the output variables (e.g. p) under

different scenarios. IR is defined as the ratio of the output variable

in each future time period (i.e. 2030s or 2090s) to that in the

baseline period (i.e. 1990s). A value of IR higher than 1 indicates

that climate change will lead to higher output variables in the

future study period compared to those in the baseline period, while

a value lower than 1 indicates that climate change will help reduce

the magnitude of the variables [33]. Confidence level is classified

into seven categories based on the IR values in the eight scenarios,

as shown in Table 1.

2.4 Uncertainties from GCMs and emission scenarios
Results of climate change impacts are subject to many

uncertainties due to incomplete knowledge about the underlying

geophysical processes of global change (GCM uncertainties) and

due to uncertain future scenarios (emission scenario uncertainties)

[43]. There are several complex methods to assess the magnitude

of GCM and scenario uncertainties, including nonparametric

methods such as kernel density estimation and orthonormal series

methods [43]. In this paper, we use a straight-forward approach to

get a rough estimate of these uncertainties with a relative

difference (RD) index in order to allow for a quick comprehension

of these uncertainties. Here the RD is used to compare two

numbers (or simulation results), and it is calculated as

RD~
V1{V2j j

max( V1j j, V2j j) ð4Þ

where V1 and V2 represent the two numbers that are compared,

and max is the function for maximum value. Large RD numbers

show high uncertainties.

For GCM scenario, we compare four different GCMs with the

same scenario (e.g. CGCM2_A1FI vs. CSIRO2_A1FI), and this

gives 12 RD values. For emission scenario uncertainty, we

compare two emission scenarios (A1FI and B2) in each of the

four GCMs, and this gives four RD values.

2.5 Data
The data on harvested area of wheat, maize and rice are

obtained from the Center for Sustainability and the Global

Environment (SAGE) of the University of Wisconsin at Madison,

USA[44]. The SAGE data are spatially explicit and consistent

with the statistical data from Food and Agriculture Organization

of the United States (FAO). The harvested areas under irrigated

systems of each crop are taken from the Institute of Physical

Geography of the University of Frankfurt (Main), Germany [45].

The datasets from Portmann et al. [45] are currently the only

source that provides high spatial resolution and crop-specific

irrigated area at the global level. Both data sets are available with a

spatial resolution of 30 arc-minutes. Water stress is measured with

a withdrawals-to-availability ratio and the data are obtained from

the Global Water System Project (GWSP) Digital Water Atlas

[46].

Historical monthly climate data (maximum temperature,

minimum temperature, precipitation, and number of wet days)

for 1901-2002 were taken from the CRU TS2.1 database with a

spatial resolution of 30 arc-minutes [41]. The TYN SC 2.0 dataset

contains the climate projections of these four variables for 2003–

2100 with a spatial resolution of 30 arc-minutes with the four

GCMs (i.e. HadCM3, CGCM2, CSIRO2 and PCM) [41].

Monthly data are disaggregated to daily values with a weather

converter MODAWEC[47]. The CO2 concentrations in different

scenarios are obtained from the IPCC third assessment report[48].

Table 1. Definition of confidence level in this study

Confidence Level Criteria

Increase with high confidence IR*.1 in at least 7 scenarios

Increase with medium confidence IR.1 in 6 scenarios

Increase with low confidence IR.1 in 5 scenarios

Decrease with low confidence IR,1 in 5 scenarios

Decrease with medium confidence IR,1 in 6 scenarios

Decrease with high confidence IR,1 in at least 7 scenarios

Increase/decrease mixed Other conditions except for all above cretiria

*IR (impact factor; see section 2.3) is an indicator for analyzing the impacts of climate change on a variable (e.g. crop production), and it is defined as the ratio of the
variable in a future time period (i.e. 2030s or 2090s) to that in the baseline period (i.e. 1990s).’
doi:10.1371/journal.pone.0057750.t001

Impacts of Climate Change on Crops and Water Use

PLOS ONE | www.plosone.org 3 February 2013 | Volume 8 | Issue 2 | e57750



Data sources for soil parameters and fertilizer application rates are

identical to those in Liu et al.[26].

Results

3.1 Impacts of climate change on crop production
Our results show significant spatial variations in the impacts of

climate change on crop production across regions and among

climate scenarios. Regarding the aggregated production index

(API, the total amount of crop production of the three

representative crops), climate change is likely to lead to higher

API by the 2030s in a large part of Europe, northeast and western

parts of the USA, northern China, southern Africa, the western

and southeastern coastal areas of South America, while it will

likely lead to lower API values in Southeast, East Central, Central,

Midwest and North Central of the USA, the southern part of the

cropland belt in Canada, the southern part of Europe, northern

India, Southeast Asia, a large part of Australia, the south edge of

the Sub-Saharan Africa, the central part of Africa, and a large part

of the Amazon and Parana River Basins in South America

(Fig. 1a). In the 2090s, the pattern of regional changes in crop

production will become more evident. There is a general trend

that high-latitude regions will have larger API values (except for

Southeast and Midwest of the USA), whereas low-latitude regions

have smaller API values (Fig. 1b). Higher crop production is likely

to occur in the northern part of North America, western and

southeastern coastal areas of South America, a large part of

Europe, and the northern part of China, the southern part of

Australia and New Zealand, while lower crop production is likely

to occur in the southern part of North America, almost the entire

Amazon and Parana River Basins, the dominant part of Africa,

and most of India.

At the grid cell level, the projected impacts for the 2090s have a

slightly lower agreement among the different scenarios than those

for the 2030s. The grid cells with a high level of confidence, either

for increase or decrease, account for 66.7% and 62.9% of the total

grid cells simulated for the periods 2030s and 2090s, respectively.

At the global level, clear cut conclusions cannot be made on

whether global crop production will increase or decrease in the

future. Compared to the 1990s, the total crop production will

change by 24.0% – +4.5% in the 2030s and 220.0% – +17.4% in

the 2090s depending on different climate scenarios (Fig. 1c). A

continental breakdown reveals considerable spatial heterogeneity

across regions. In the 2030s, crop production in Africa and South

America is likely to increase with a high level of confidence

compared to that in the 1990s. In contrast, crop production in

North America and Oceania is likely to decrease with a high level

of confidence. Europe has more chances of higher crop

production, while Asia does not have a clear trend in changes in

crop production. In the 2090s, Africa and North America are

likely to have lower crop production due to climate change, while

in all other continent, trends in crop production are not clear,

indicating high uncertainties of the impacts in these regions.

The country level projections are derived from aggregation of

the grid cell simulation results (Table S1). During the period 2030s

the crop production in 107 countries (out of the 166 countries

studied) will benefit from climate change with different levels of

confidence. Of which, 80 countries indicated an increase with a

high level of confidence. Particularly, a large number of countries

in African display an increase with a high level of confidence in the

2030s. However, during the period 2090s, the number of countries

benefiting from climate change with a high level of confidence is

reduced to 39. On the contrary, the number of countries with a

high level of confidence for decrease rises from 33 in the 2030s to

55 in the 2090s. Many African countries turn to losses in crop

production in the 2090s. Worldwide, a general trend is that the

countries with high levels of confidence for increase in crop

production in the 2030s remain an increase but with reduced

levels of confidence. Many countries with low levels of confidence

for increase in the 2030s tend to shift to decrease with low to high

levels of confidence. The countries with the decreasing trend

during the 2030s mostly remain the same trend during the 2090s.

The results suggest a non-linearity of the impact of climate change

over time (i.e. crop production is not directly proportional to

climate parameters over time) for most of the countries. In general,

the confidence level of the impact on crop production is lower

during the period 2090s than the period 2030s. Crop production

will increase or decrease with a high confidence level in 68.1% and

56.6% of the countries in the 2030s and the 2090s, respectively

(Table S1).

3.2 Impacts of climate change on water use
Concerning the CWU for crop production, our results show

that climate change will alter the magnitude of this variable and

also the aggregated consumptive water use index (AWI, the total

amount of consumptive water use for the representative crops) in

cropland.

At the grid cell level, climate change will lead to lower AWI

values in the 2030s with high and medium confidence levels in a

large part of North America, West Africa and East Africa, India,

North China Plain, southern parts of China, and Australia. In

contrast, AWI will increase in northeast and the Great Basin in the

USA, the coastal areas in the west and southeast of South

America, a large part of Europe, the southern part of Africa, and

the northern part of China (Fig. 2a). In the 2090s, the decreasing

trend of AWI will become dominant with only a few regions

remaining increasing trends (Fig. 2b). At the global level, climate

change will reduce AWI. Compared to the 1990s, AWI will

decrease in seven out of eight scenarios (except for the PCM_B2

scenario) for both the 2030s and 2090s (Fig. 2c). Climate change

will reduce AWI values more significantly in the far future than in

the near future. In the seven scenarios, AWI will decrease by 0.96–

4.41% in the 2030s and 3.92–18.08% in the 2090s.

At the continental level, in the 2030s lower AWI occurs with a

high level of confidence in all continents except for Europe which

has no clear trend of increase or decrease (Fig. 2c). In the 2090s, all

continents will have lower AWI. For Europe, lower AWI occurs in

six out of eight scenarios; while in all the other continents, AWI

decreases in seven out of eight scenarios. This indicates less

amount of water (i.e. ET) will be consumed in cropland in the

future. One possible reason for the lower AWI could be that

higher CO2 concentration reduces crop stomatal closure thus

decreases actual crop ET by reducing plant transpiration. This

effect has been confirmed by several previous studies [49–50], and

is one important reason for the decreasing AWI in our simulation.

Agricultural production is practiced in rainfed and irrigated

systems. Under the irrigated system, crop uses both rainfall and

irrigation water brought to the field. An aggregated irrigation

water proportion index (AIWI) is calculated by dividing the total

irrigation water use by the total consumptive water use of the

representative crops. Our results indicate a general increase in

AIWI in the future (Fig. 3a–b). On the global average, AIWI will

increase with a high confidence level. Increase in AIWI occurs in

seven out of eight scenarios with an increasing rate of 5.79–

26.24%. The only exception is the A1FI scenario in PCM, which

will lead to a slight decrease by 0.71%. In the 2090s, uncertainties

are high on the global level. The change in AIWI will range

between 225%–+29% on the world average.

Impacts of Climate Change on Crops and Water Use
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Spatial heterogeneity exists among continents with a general

decrease of AIWI in Asia, and general increase of AIWI in North

America, South America and Oceania and Africa. In Europe,

AIWI will increase in the southern parts while it will decrease in

the northern parts in the 2030s (Fig. 3c). In the 2090s, Asia will

have a lower AIWI with a high confidence level, Africa and South

America will have a higher AIWI with high confidence level. For

other continents, uncertainties are very high, and there are no

clear trends of increase or decrease in AIWI.

The future hotspots of climate change impacts on freshwater

ecosystems are most likely in the regions where water scarcity or

stress problems already exist while irrigation water proportion will

increase. These hotspots include the southern part of India, a large

part of West Asia and the Mediterranean regions, a part of South

Africa, and the Great Plains of the U.S. (Fig. 4 and 5). In these

regions, crops will depend more on irrigation in the future as

compared to the 1990s, though with different confidence levels.

These regions are located mainly in developed countries or in

rapidly developing areas e.g. in India, where mitigation and

adaptation will more likely happen in these regions.

Despite the above hotspots, our results also show that many

people in regions with current water scarcity problems will benefit

from climate change. About 54.2% of the population who are

currently suffering from water scarcity reside in the grid cells with

reduced AIWI in the 2030s (Fig. 4). In contrast, 36.7% of the

population in the water scarce regions will confront with higher

dependency on irrigation. The findings that more people will

benefit from climate change to alleviate water scarcity seem to

conflict with the general increasing trend of AIWI at the global

level. A close look indicates that the higher AIWI values occurs

more often in regions where water is sufficient (e.g. in the

Southeast of the U.S., Southeast of the South America etc) than

the water scarce regions (Fig. 4 and Fig. 5). This spatial

distribution results in more beneficiaries though the global AIWI

has an upwards trend.

3.3 Latitudinal distribution of the impacts on crop yield
and CWU

The distribution of production of wheat, maize and rice varies

in latitudinal gradients. Wheat is produced predominantly in

temperate regions, maize in the sub-tropics and rice in the tropics

(Fig. 6a, d, g). The impact of climate change in the short term

(2030s) on wheat does not display a clear pattern with regard to

latitudinal gradients (Fig. 6b). For maize, the large proportional

increase is found in the high latitudinal areas, which are presently

the marginal areas for maize production under the current climate

(Fig. 6e). For rice, the relative increase is also mainly located in the

high latitudinal marginal areas, while the magnitude of variations

is substantial among different climate scenarios, particularly for the

zone between 400N–600N (Fig. 6h). In the 2090s, variations

among the different scenarios increase. Although the increase in

crop yield remains for the higher latitude areas, the negative

Figure 1. The impacts of climate change on crop production. (a) and (b) show the spatial distribution of confidence levels of increase or
decrease for aggregated crop production index (API) in the 2030s and the 2090s, respectively, in comparison to the 1990s. (c) shows the relative
change (%) of API caused by climate change on the global and continental scales.
doi:10.1371/journal.pone.0057750.g001
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impact on the current major producing areas tends to become

prominent (Fig 6c, f, i), particularly for wheat and maize.

Changes in CWU under climate change scenarios display

similar patterns as to crop yields. In general, for the 2030s, the

high latitudes outside the current major producing areas for the

respective crops tend to have higher percentage increase in CWU

(Fig. 7). For maize around 50uS, changes in the CWU in the 2030s

are smaller than the changes in crop yield (Fig. 6 and 7). Cold

weather there is a limiting factor for the growth of maize. In the

future, temperature will become higher, leading to a more

favorable climate and higher crop yield for maize. Nevertheless,

the harvest areas for maize, as well as rice and wheat are currently

marginal at this latitude. For the 2090s, the decrease in CWU is

projected for many scenarios in the major producing areas for the

respective crops. This is consistent with the lower crop yields

resulted from climate change shown in Fig. 6. One exception is for

the B2 scenario in PCM where the main producing areas of wheat,

maize and rice are projected with significantly higher CWU,

particularly for the 2090s.

3.4 Uncertainties in yield and CWU projections
In the short run (i.e. in the 2030s), the GCM uncertainties are

generally higher than the emission scenario uncertainties (Fig. 8a).

This applies to the results for five continents (Asia, Europe, Africa,

North America and Oceania) as well as for the world as a whole.

The only exception is South America, where GCM uncertainties

are lower than that of the scenario uncertainties. In the long run

(i.e. in the 2090s), the GCM uncertainties are higher than the

scenario uncertainties for Asia, Europe, Oceania as well as the

world, while contrasting situations occur for Africa and North

America. The magnitudes of GCM and emission scenario

uncertainties are similar for South America (Fig. 8b). For CWU

(Fig. 8c,d), the global simulation shows a smaller uncertainty for

the emission scenarios than for GCMs for both the short run and

long run. The patterns, however, vary largely across different

regions in terms of the relative magnitude of uncertainties from

GCMs and emission scenarios.

Discussion

4.1 Comparison with other studies
At the pixel level, we compare our results for crop production

with two studies, which also demonstrate spatial patterns of the

impacts of climate change on crop yield at a global level with high

spatial resolutions. Deryng et al. [51] used a crop growth model

PEGASUS and presented the impacts of climate change on crop

yield of maize and spring wheat in the 2050s in comparison to

1961–1990 with a spatial resolution of 10 arc-minutes. They

presented results for two conditions: fixed planting/harvest dates

and planting/harvest dates allowed changing. The later condition

is similar to our assumption which allows adapting planting/

harvest dates with an automatic calendar algorithm [26]. So we

Figure 2. The impacts of climate change on consumptive water use (CWU). (a) and (b) show the spatial distribution of confidence levels of
increase or decrease for aggregated CWU index (AWI) in the 2030s and the 2090s, respectively, in comparison to the 1990s. (c) shows the relative
change (%) of AWI caused by climate change on the global and continental scales.
doi:10.1371/journal.pone.0057750.g002
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only compare our results for the 2030s with those of the second

condition. We find that our results for maize in general compare

very well with those from Deryng et al. [51]. Both the studies show

increasing maize yield in the high-latitude regions in the Northern

Hemisphere. They also show an increasing trend in maize yield in

western part of North America, western coastal areas of South

America, Northern parts of Europe, northern parts of Asia, and

eastern coastal areas of Australia. Meanwhile, they both show a

decreasing trend in the southeast and Midwest of the US, the

Amazon basin, Southern parts of Europe, a large part of India

(except the northwest), and many Central African countries. The

large differences exist mainly in a large part of Africa i.e. southern

Africa, Eastern Africa, and western Africa, where increasing trends

happen in many grid cells in our study, but decreasing trends

generally occur in many pixels in Deryng et al. [51]. For wheat,

large discrepancies exist between these two studies. We simulate

for both spring wheat and winter wheat, while Deryng et al.[51]

only simulated for spring wheat, and excluded regions where

winter wheat is dominant. Since winter wheat is dominant

compared to spring wheat on a global scale, it may be not easy

to compare our results with Deryng et al. [51].

Tatsumi et al. [52] used an Improved Global Agro-Ecological

Zones (iGAEZ) model to simulate the impacts of climate change

on cereal yields in the 2090s compared to the 1990s with a spatial

resolution of 30 arc-minute. Our results show general agreements

with Tatsumi et al. for the impacts of climate change. For maize,

agreements are found in most parts of North America, Africa,

Australia, India, China, northern Asia and Russia, East Europe

and Western Europe, while disagreements are mainly located in

Central Europe and South America. For wheat, agreements are

found in North America (except for Mid-west), South America,

most parts of Africa, Australia, India, Northern Asia and Russia,

while disagreements mainly occur in China, Europe and mid-west

of the US. For rice, agreements are in North America, Western

coastal regions of South America, Southern Africa, East Africa,

West Europe, northern Asia and Russia, and China, while

disagreements are mainly located in eastern coastal regions in

South America, West Africa, East Europe, India and Australia.

Besides the different approaches, another reason causing the

disagreements may be the fact that Tatsumi et al.[52] only used

one scenario (A1B). For example, for rice, our results indicate

lower crop production in Southeast Asia with lower API values in

most scenarios, while Tatsumi et al.[52] indicated higher crop

production under A1B. According to the study by Babel et al.[53]

in Thailand, an important rice producing country in Southeast

Asia, the future climate change is likely to decrease the crop yield

and production. The results from Babel et al.[53] agree well with

our findings.

We also compare our results with other studies for China and

India. For China, several crop models have predicted that cereal

yields will increase under future climate change when the

fertilizing effect of elevated CO2 is taken into account [54–56].

Figure 3. The impacts of climate change on irrigation water proportion. (a) and (b) show the spatial distribution of confidence levels of
increase or decrease for aggregated irrigation water proportion index (AIWI) in the 2030s and the 2090s, respectively, in comparison to the 1990s. (c)
shows the relative change (%) of AIWI caused by climate change on the global and continental scales.
doi:10.1371/journal.pone.0057750.g003
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According to a comprehensive study by Xiong et al., [55], cereal

production in 2050 will increase by 13%–22% relative to the

average of 1961-1990 in China. Our results are consistent with

these studies. For India, Aggarwal [57] reviewed and concluded

that crop production will be reduced by 10–40% by 2100. Our

simulations show a general decreasing trend of crop production in

India with lower API values of 233.4% – 27.5% in the 2090s

(Table S1).

For Africa, our results suggest that crop production will increase

in the near future (e.g. the 2030s) but decrease in the far future

(e.g. the 2090s). The results for the far future are consistent with

the projections of the IPCC Synthesis Report (AR4), but those for

the near future conflicts with the report. For Africa, a key

conclusion in the IPCC AR4 was that ‘[b]y 2020, in some

countries, yields from rain-fed agriculture could be reduced by up

to 50% …would further adversely affect food security and

exacerbate malnutrition’ [58]. This statement, however, is

criticized for its nature of the underlying science (e.g., lack of

sufficient scientific evidence from peer-reviewed literature) and

procedural issues (e.g., whether the knowledge contained in the

underlying scientific literature was properly represented on all

levels of the report) [59]. Müller et al. [59] provide a

comprehensive review for recent available literature based on

multiple numbers of crops, and report a large uncertainty with no

clear trend of lower crop yield in the 2030s. For Africa in the

2030s, three references were cited: Thornton et al. [60] for maize

and beans; Liu et al.[33] for six major crops including wheat

maize, and rice; and Lobell et al.[4] for 15 major crops also

including wheat, maize and rice. Both Thornton et al. [60] and

Liu et al.[33] indicated higher crop production in Africa, whereas

Lobell et al.[4] show lower crop production. Another independent

study, Adejuwon [61], also projected positive impacts of climate

change on crop yields in Africa based on simulations for maize,

rice, cassava, sorghum and millet. Hence, it still remains

questionable for scientific robustness of the IPCC statement of

Figure 4. Change of irrigation water proportion in the 2030s in relation to water scarcity. Water scarcity is defined for the regions where
total water withdrawal exceeds 40% of the freshwater resources, while water stress is defined for the regions where total water withdrawal is 20%–
40% of the freshwater resources. ABI indicates irrigation water proportion.
doi:10.1371/journal.pone.0057750.g004
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negative effects of climate change on crop production in Africa in

the near future.

4.2 Spatial Neutral Effect
The projection of climate change impacts on crop production

and water use show lower uncertainties at smaller spatial scales

(grid cell and country) than at higher spatial scales (continent and

globe). The ‘spatial neutral effect (SNE)’ is an important reason for

the high uncertainties on large geographical scales. SNE here

means that trends that are displayed in small geographical scales

are neutralized by aggregations and they become less obvious

when observed on large geographical regions. For example, at the

grid cell level, there is an increasing trend of crop production with

a high confidence level for most grid cells at the coastal areas of

Chile, Peru, Argentina, Uruguay and Brazil, but a contrastingly

decreasing trend for many other regions in South America in the

2090s (Fig. 1b). However, the spatial neutral effect leads to high

uncertainties when results are aggregated at the continental level

(Fig. 1c). At the national scale, the confidence level of increase or

decrease in crop production is relatively high. However, for some

large countries like China, the general increasing trend of crop

production hides the spatial variations among the country, e.g. the

decreasing trend in the Guangdong province (southern part of

China) in the 2030s. The generally higher confidence level at the

smaller scale facilitates policy makers and investors to formulate

adaptive and mitigation measures without being puzzled by a

highly uncertain future on the global scale. The SNE phenomenon

implies that climate change impacts should be assessed with high

spatial resolutions to gain more in-depth insights.

4.3 Benefit in the Short Run, Prepare for the Long Run
Our study presents a generally less pessimistic perspective for

climate change impacts in the short run than many other studies

(Fig. 1, Fig. 7). For the short run, the climate change scenarios

mostly projected small change in the yields in the current major

producing areas of wheat, maize and rice. The major change

Figure 5. Change of irrigation water proportion in the 2090s in relation to water scarcity. Water scarcity is defined for the regions where
total water withdrawal exceeds 40% of the freshwater resources, while water stress is defined for the regions where total water withdrawal is 20%–
40% of the freshwater resources. ABI indicates irrigation water proportion.
doi:10.1371/journal.pone.0057750.g005
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occurs in the high latitude areas, which are outside of the current

major producing zones for the respective crops. Hence, the climate

change in the short run will benefit the high latitude areas in term

of crop production. In the long run, the projections show large

variations among climate scenarios. There is a high level of

confidence for a decrease in the yields of wheat and maize in the

currently major producing areas, although the increase remains

for the high latitude areas. The projected increases in high latitude

areas can be in part explained by the temperature increase there

[30]. The projected large percentage increase in these areas

suggests that the future climate change will lead to a geographical

shift of major production areas of the three crops to currently

marginal areas.

For Africa, the results show that the crop production is likely to

benefit from climate change with a high level of confidence in the

2030s (Fig. 1). However, the continuous increase in temperature

will lead to losses of crop production in the 2090s. The positive

impacts in the short run can help alleviate food shortage problems.

However, they may distract the attention paid to adapting and

mitigating measures to combat the long-term negative impacts of

climate change. A long-lasting effort is needed for the world to

increase resilience to climate change and reduce the risks of future

food and water security.

Impacts of climate change on Africa’s crop production are often

a scientific and policy concern. A more rigorous analysis is needed

to assess the impacts for Africa, particularly by integrating

simulations from a combination of a few models, literature

reviews, and expert judgments including indigenous knowledge.

4.4 Uncertainties
We demonstrate the uncertainties from GCMs and emission

scenarios concerning the impacts of climate change on crop

production in the 2030s and the 2090s (Fig. 8). For the 2030s, the

GCM uncertainties are generally higher than the emission

scenario uncertainties. This indicates the importance of selecting

multiple GCMs rather than a single GCM to analyze climate

change impacts. For the 2090s, the GCM uncertainties and the

emission scenario uncertainties appear heterogeneous across

Figure 6. Latitudinal distribution of harvest area, and impacts of climate change on crop yield for wheat, maize and rice. A cut-off for
changes in yield .150% is used to allow for a better interpretation of the impacts of climate change in current major growing regions where changes
are mostly within a range of 250% – +50%. Cut-offs often occur at the latitudes where harvested areas are marginal currently.
doi:10.1371/journal.pone.0057750.g006
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continents. Hence, in the long run, both the GCM and emission

scenario uncertainties are important for analyzing impacts of

climate change on crop production. The increasing emission

scenario uncertainties stems from the difficulties in projecting the

climate in the far future. To assess the climate change impacts, it is

necessary to select multiple GCM as well as scenarios due to the

inherent uncertainties among them.

4.6 Limitations of this study
Given the current absence of simultaneous simulation of

impacts of climate change on crop production and consumptive

water use with high spatial resolution, we consider the results from

this paper encouraging and reasonable as an early approximation.

Nonetheless, a number of limitations in our methodology and

results still remain, and further research is needed in the future.

First, we only provide simulation result with one crop model,

GEPIC. Although the model has been validated at the global,

continental and national scales in several previous stud-

ies[10,26,27,33,62], simulation results may be constrained by the

fundamental assumptions and approaches used in this model. This

shortcoming can be overcome by comparing results from several

crop growth models, which use the same combination of climate,

soil, land use, management and other input data. An intercompari-

sion of different models is currently being conducted in the

Agricultural Model Inter-comparison and Improvement Project

(AgMIP) (http://www.agmip.org/). Second, the results of this study

may be influenced by the lack of several spatially explicit data such

as crop-specific fertilizer application rates, and crop-specific

planting and harvesting data. Third, an unequivocal validation of

our results for CWU is difficult because this article provides an early

comprehensive assessment of the impacts of climate change on

CWU. Forth, we have used a weather generator to disaggregate

monthly data into daily data, and this disaggregation may give

additional uncertainty. However, to the best of our knowledge, daily

weather data are not yet available at the global level with a spatial

resolution of 30 arc-minutes. There is a need for further

improvements of spatially explicit daily weather data, but this is

beyond our capacity as well as the scope of this study.

Figure 7. Latitudinal distribution of harvest area, and impacts of climate change on consumptive water use (CWU) for wheat, maize
and rice. A cut-off for changes in CWU .150% is used to allow for a better interpretation of the impacts of climate change in current major growing
regions where changes are mostly within a range of 250% – +50%. Cut-offs often occur at the latitudes where harvested areas are marginal currently.
doi:10.1371/journal.pone.0057750.g007
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9. Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water

resources: vulnerability from climate change and population growth. Science

289: 284–288.

10. Liu J, Williams JR, Zehnder AJB, Yang H (2007) GEPIC - modelling wheat

yield and crop water productivity with high resolution on a global scale.

Agricultural Systems 94: 478–493.

11. Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, et al. (2007) Modelling
the role of agriculture for the 20th century global terrestrial carbon balance.

Global Change Biology 13: 679–706.
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