A. Colette¹, B. Bessagnet¹, R. Vautard², S. Szopa², S. Rao³, S. Schucht¹,

Z. Klimont³, M. Holland⁴, L. Menut⁵, F. Meleux¹, and L. Rouïl¹

European atmosphere in 2050, a regional air quality and climate perspective under CMIP5 scenarios

(1) Institut National de l'Environnement Industriel et des Risques (INERIS) (2) Laboratoire des Sciences du Climat et de l'Environnement, IPSL/CEA/CNRS/UVSQ, (3) International Institute for AppliedSystems Analysis (IIASA) (4) Ecometrics Research and Consulting (5) Laboratoire de Météorologie Dynamique, IPSL/Ecole Polytechnique/CNRS/UPMC

Abstract :

We present a first assessment of future air quality under CMIP5 scenarios. This assessment relies on explicit representation of climate mitigation and air quality legislation, hence including a quantification of associated costs. It also relies on comprehensive atmospheric models (global and regional climate as well as chemistry and transport) hence offering a detailed representation of external factors. The modelled air pollutant concentrations are analysed in a monetised health assessment framework in order to put the costs in perspective with the sanitary benefits.

The main conclusion of this work are : (1) air pollutant emission reduction dominate the projected changes (compared to climate penalty and long range transport) and (2) mitigation costs are largely compensated by expected sanitary benefits.

designed, developed and implemented a suite of climate and chemistry models designed to assess future air quality at the regional scale taking into account external factors such as climate change or long range transport of pollution in addition to regional air

Exposure to air pollution

concentration of relevant indicators: annual mean for PM_{2.5} and SOMO35 for ozone.

Subgrid scale covariance of pollution and population is taken into account as well as the

Health Impact Assessment

Exposition is quantified as population weighted Using relevant concentration response functions we can quantify the health oucome of exposure to air pollution in terms of premature death, number of hospital admissions, life years lost etc.

> values (Value of Statistical Life, used for valuing premature deaths or Value Of Life Year, used

Annual health impacts due to air pollution in 2005 and 2050					
Impacts	WEU & EEU	Pollutant	2005	REF - 2050	MIT - 2050
Acute Mortality (All ages) median VOLY	Premature deaths	03	37 736	55 767	13 102
Respiratory Hospital Admissions (65yr +)	Cases	O3	29 669	61 361	14 399
Minor Restricted Activity Days (MRADs 15-64yr)	Days	O3	100 171 110	90 021 573	21 294 845
Respiratory medication use (adults 20yr +)	Days	O3	33 516 583	39 475 865	9 309 955
Chronic Mortality (All ages) LYL median VOLY	Life years lost	PM	5 370 638	1 761 520	891 230
Infant Mortality (0-1yr) median VSL	Premature deaths	PM	2 161	319	169
Chronic Bronchitis (27yr +)	Cases	PM	210 441	100 359	51 092
Respiratory Hospital Admissions (All ages)	Cases	PM	83 150	35 941	18 254
Cardiac Hospital Admissions (All ages)	Cases	PM	51 282	22 166	11 258
Restricted Activity Days (RADs 15-64yr)	Days	PM	453 169 956	157 534 882	79 757 470
Respiratory medication use (children 5-14yr)	Days	PM	5 081 740	1 871 472	952 977
Respiratory medication use (adults 20yr +)	Days	PM	37 161 881	16 944 013	8 616 990
LRS symptom days (children 5-14yr)	Days	PM	249 824 045	89 015 374	45 007 712
LRS among adults (15yr +) with chronic symptoms	Days	PM	383 215 915	171 076 139	86 974 976

Annual health damage due to air pollution in 2005 and 2050					
amage, €M/year	WEU & EEU	Pollutant	2005	REF - 2050	MIT - 2050
Acute Mortality (All ages) median VOLY	Premature deaths	O3	2 177	3 218	756

Cost Benefit Analysis

SS Clim 2050

The sanitary benefits brought about by air pollution improvement as a result of climate policies can be compared to the cost of mitigation.

We find that the expected health improvement largely compensates the increase in energy expediture.

Conclusion

Using a new modelling suite, relying on the latest quantitative projections, and analysed in a cost-benefit framework, we could assess future air quality pointing out the relative role of external factors and concluding on the balance between the technological cost of mitigation and expected sanitary benefits.

The main conclusions of the work regarding (1) the dominating role of emission reduction compared to external penalties and (2) the compensation of costs by projected sanitary benefits clearly argue in favor of the effectiveness and efficiency of climate mitigation.

The comprehensiveness of the present modelling suite includes a number of assets, and also offers the possibility to highlight the main uncertainty sources and future research needs. Implementing a state-of-the-art chemistry transport model (Chimere) driven by regional climate projection (CORDEX) and using future boundary conditions (ACCMIP) allows quantifying the non-linear role of external factors. It also make the results more sensitive to possible biases in driving data than using fitted transfer functions. The main route to improve the robustness of the present findings consists in moving towards ensemble approaches, raising significant computational challenges for the years to come.

Acknowledgements

The following projects supported the present work: SALUT'AIR, ACHIA, ATOPICA, CITYZEN, and also the EEA through its Topic Center on Air and Climate Mitigation. This work also benefited from emission data made available through the ECCAD portal, and computing ressources of the TGCC/CEA.