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Abstract 

Divergent adaptation to different environments can promote speciation, and it is thus important 

to consider spatial structure in models of speciation. Earlier theoretical work, however, has been 

limited to particularly simple types of spatial structure – linear environmental gradients and 

spatially discrete metapopulations – leaving unaddressed the effects of more realistic patterns of 

landscape heterogeneity, such as nonlinear gradients and spatially continuous patchiness. To 

elucidate the consequences of such complex landscapes, we adapt an established spatially 

explicit individual-based model of evolutionary branching. We show that branching is most 

probable at intermediate levels of various types of heterogeneity, and that different types of 

heterogeneity have, to some extent, additive effects in promoting branching. In contrast to such 

additivity, we find a novel refugium effect in which refugia in hostile environments provide 

opportunities for colonization, thus increasing the probability of branching in patchy landscapes. 

Effects of patchiness depend on the scale of patches relative to dispersal. Providing a needed 

connection to empirical research on biodiversity and conservation policy, we introduce 

empirically accessible spatial environmental metrics that quantitatively predict a landscape’s 

branching propensity. 
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Introduction 

We have only partial answers to questions such as why there are so many species in the world, 

and why some clades are so much more speciose than others (Hutchinson 1959; Schluter 2000; 

Coyne and Orr 2004; Butlin et al. 2012). A central question in speciation theory concerns the 

cause of speciation: in particular, which factors (environmental, ecological, phenotypic, genetic) 

promote speciation, and which factors hinder it? According to the ecological speciation model 

(Schluter 2001), ecology drives speciation: the process of speciation begins with adaptation to 

different environments by different populations or subpopulations. From this perspective, 

evolutionary branching in an ecological trait is the first step toward speciation; reproductive 

isolation follows, either as a byproduct of ecological divergence or as a result of reinforcement 

(Schluter 2001). 

Empirical support for the ecological speciation model has come from studies in which the 

adaptive traits that exhibit divergence between different populations also contribute to 

reproductive barriers (Rundle and Nosil 2005; Hendry 2009; Schluter 2009). Recent theoretical 

work has also demonstrated that local adaptation in a heterogeneous environment, driven by 

local competition for resources, can lead to speciation in both sexual and asexual populations 

(e.g., Doebeli and Dieckmann 2003; Gavrilets and Vose 2005; Birand et al. 2012). 

Complex landscapes 

Theoretical models of divergence as a result of local adaptation to different environments 

necessarily consider some type of spatial heterogeneity. Two types of spatial models have 

dominated: metapopulation models, in which populations inhabit two or more discrete patches 

that differ in some way (e.g., Doebeli and Ruxton 1997; Meszéna et al. 1997; Geritz et al. 1998; 
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Kisdi and Geritz 1999; Day 2000; Gavrilets et al. 2000a; Geritz and Kisdi 2000; Parvinen and 

Egas 2004; Gavrilets and Vose 2005; Thibert-Plante and Hendry 2009; Birand et al. 2012), and 

spatially continuous models of linear environmental gradients (e.g., Kirkpatrick and Barton 

1997; Doebeli and Dieckmann 2003; Mizera and Meszena 2003; Leimar et al. 2008; Heinz et al. 

2009; Ispolatov and Doebeli 2009; Payne et al. 2011; Irwin 2012), although a few models have 

tried to bridge the gap between these approaches (Sutter and Kawecki 2009; Debarre and 

Gandon 2010). 

Real environments are more complex than these simple cases. Patchy environments are not 

always discrete, as metapopulation models assume; rather, spatial environmental heterogeneity is 

often continuous (Manning et al. 2004; Fischer and Lindenmayer 2006). On the other hand, this 

continuous environmental heterogeneity is often not linear, as linear gradient models assume; 

rather, spatial environmental heterogeneity may be pronounced in some areas and minimal in 

others. The effects of more realistically complex spatial heterogeneity on adaptive divergence 

and speciation have not been explored in theoretical models. Given the intimate feedbacks 

between spatial heterogeneity, dispersal, and local adaptation, we expect such heterogeneity to 

be important. 

Here we model the dynamics of evolutionary branching due to local competition and 

dispersal in complex heterogeneous landscapes. These landscapes combine continuously varying 

patchiness and a nonlinear ecological gradient, thus reconciling and extending the “continuous 

linear gradient” and “discrete metapopulation” approaches of previous models. Environmental 

heterogeneity in our model has two components (Figure 1; Online Appendix: Landscape 

generation). The first component is an environmental gradient, described by both a linear 

coefficient, here called the gradient slope, and a quadratic coefficient, here called the gradient 
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curvature. The second component is spatially continuous patchiness, described by its amplitude 

and its spatial scale (autocorrelation length). Together, these components produce a wide variety 

of landscapes with patterns of heterogeneity reminiscent of real environments. In the following 

four sections we present four hypotheses regarding the likelihood that evolutionary branching 

will occur in such complexly heterogeneous landscapes. 

Intermediate heterogeneity maximizes branching propensity 

Although negative frequency-dependent selection due to competition can cause divergence even 

in the absence of environmental heterogeneity (Dieckmann and Doebeli 1999; Doebeli and 

Dieckmann 2000), some degree of spatial environmental heterogeneity must exist for local 

adaptation to produce divergence as a result of external environmental effects (Doebeli and 

Dieckmann 2003). In this way, heterogeneity promotes branching by providing divergent 

selection among environments. However, if heterogeneity is too pronounced, maladapted 

colonizer populations will be unable to persist long enough to adapt, and so organisms will be 

restricted to those areas to which they are already well-adapted. An intermediate level of 

heterogeneity is therefore expected to produce maximal divergence among locally adapted 

populations, and thus to maximally promote evolutionary branching. Doebeli and Dieckmann 

(2003) demonstrated this phenomenon in a model involving spatial heterogeneity due to a linear 

environmental gradient; furthermore, their study suggested that the stringency of this optimum 

depends on dispersal distance, with short-range dispersal allowing branching to occur over a 

broader range of gradient slopes (their Figure 3b). We hypothesize that this finding will 

generalize to other types of heterogeneity; specifically, evolutionary branching will be 

maximized also at an intermediate nonlinear gradient curvature, and at an intermediate amplitude 
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of spatially continuous patchiness, with the stringency of these optima increasing with increasing 

dispersal distance. 

Additivity of heterogeneity types 

If different types of heterogeneity have similar effects on evolutionary branching, each with its 

own intermediate optimum that maximizes branching, then such different types might be 

expected to have additive effects. For example, if the amount of heterogeneity due to gradient 

slope is already optimal, such that adding more heterogeneity by increasing the slope decreases 

the likelihood of branching, then it seems reasonable to think that adding other types of 

heterogeneity, such as gradient curvature, would also decrease branching. Furthermore, this 

decrease in branching might be compensated for by reducing the gradient slope as curvature is 

increased. We thus hypothesize that the maximal branching propensity should be achievable 

through an essentially additive mixture of different types of heterogeneity (gradient slope, 

gradient curvature, patchiness). An increase in one type would be compensated by a decrease in 

another type, to the extent that such additivity applies. 

Refugium effect 

As explained above (Additivity of heterogeneity types), different types of heterogeneity may be 

additive in their effects on branching; however, we expect one major exception to this general 

principle of additivity. This exception arises because the lethality of a given high level of 

environmental heterogeneity, and its concomitant negative effect on evolutionary branching, 

might be lower if some of that heterogeneity is unevenly distributed in the form of spatially 

continuous patchiness. In particular, such patchiness might provide refugia in areas of an 

environmental gradient that would otherwise be too lethal to colonize. These refugia might 
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promote evolutionary branching through several complementary mechanisms. First, a refugium 

might provide an ecologically distinct patch of sufficient size to allow diversification in situ, 

despite the harshness of the underlying steep gradient. Second, a refugium might act as a spatial 

stepping stone, providing a clement habitat patch that could act as a proximate source for 

repeated colonization attempts into the surrounding inhospitable environment (Havel et al. 2005; 

Thomas et al. 2012; Travis et al. 2012). Third, a refugium might act as an adaptive stepping 

stone, providing an environment intermediate between the clement home range and a destination 

too inhospitable to colonize directly; the refugium would thus allow partial adaptation to occur 

prior to further range expansion (Havel et al. 2005; Lombaert et al. 2010; Heinicke et al. 2011; 

Westley et al. 2013). 

For all these reasons, we hypothesize that spatially continuous patchiness should promote 

evolutionary branching particularly strongly when combined with an environmental gradient so 

steep as to ordinarily hinder branching. In other words, a positive interaction between patchy 

heterogeneity and steep gradients should exist, mitigating or even opposing the additivity that 

would otherwise be expected between these different types of heterogeneity. 

Autocorrelation length and dispersal 

The effects of patchiness previously discussed – both the refugium effect and, more generally, 

the promotion of branching due to patchiness – should depend on the size of patches relative to 

the typical dispersal distance. In particular, a population that disperses over a large area 

containing many patches would adapt to conditions over the whole area, whereas populations 

with shorter dispersal distance might divergently adapt to local conditions within particular 

patches (Hovestadt et al. 2001; Bolker 2003; Snyder and Chesson 2003; Bolker 2010; Bonte et 

al. 2010; Hanski and Mononen 2011; Richardson 2012). If dispersal distance is so small relative 
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to patch size that populations effectively never disperse outside their local patch, however, then 

colonization of the larger landscape would be prevented, and the heterogeneity of the landscape 

would no longer promote divergence. We thus hypothesize that the ratio of the autocorrelation 

length (ACL) of environmental heterogeneity to the typical dispersal distance should affect the 

likelihood of evolutionary branching. As this ratio increases, the scale of patchiness relative to 

dispersal should increasingly promote evolutionary branching by allowing local adaptation to 

individual patches, up to some optimum ratio at which branching is maximized. Beyond that 

optimum, branching should be hindered due to a decrease in the colonization of new patches. 

Empirical landscapes and evolutionary branching 

Together, these four hypotheses suggest that metrics of heterogeneity could be taken from a real 

landscape and used to quantitatively predict its propensity for branching. To test the feasibility of 

this idea, we define simple, empirically accessible metrics (“realized-landscape metrics”) that 

describe the salient features of our modeled landscapes. Focusing on ecological divergence – the 

first step of ecological speciation – by considering evolutionary branching in asexual 

populations, we use these metrics to quantitatively predict the branching propensity of our 

landscapes. This method, which could be easily applied to real landscapes using, e.g., satellite 

data and known biodiversity patterns, provides the beginnings of a bridge between theoretical 

and empirical work on biodiversity and speciation. We end by discussing the implications of 

these findings to conservation and management. 
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Methods 

Model summary 

To test our hypothesis, we constructed a spatially explicit, stochastic, continuous-time 

individual-based model, summarized here (for the full model description, see Online Appendix: 

Model description). All parameters of the model are given in Table 1. 

Our model is derived from the asexual model of Doebeli and Dieckmann (2003), who 

explored the propensity for evolutionary branching in two-dimensional landscapes in which the 

optimum phenotype varied across space following a linear environmental gradient. With the 

present model, we explore further types of spatial environmental heterogeneity through the 

addition of a nonlinear environmental gradient and continuously varying environmental 

patchiness (Introduction: Complex landscapes). The heterogeneity of the landscape is governed 

by four model parameters: s, the linear slope of the environmental gradient; c, the nonlinear 

“curvature” of the gradient; gl , the autocorrelation length of the continuously varying patchiness; 

and a, the amplitude of that patchiness (Figure 1; Online Appendix: Landscape generation). 

Generated landscapes are ultimately described through a tabulated function 0 ( , )u x y  specifying 

the optimum phenotype at each location. Landscapes are always periodic in the y-direction, 

while in the x-direction we model four possible boundary conditions: stopping, reflecting, and 

absorbing, with their usual meanings, and reprising, which entails redrawing invalid locations 

until a valid location is obtained. The topology of the landscapes is thus cylindrical. 

The environmental landscape is inhabited by a population of individuals, with their 

abundance regulated by a maximum carrying capacity density 0K . Individuals are each 

characterized by a quantitative ecological trait u and a spatial location ( , )x y . Their fitness 
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depends on their degree of local adaptation as determined by the difference between u and the 

locally optimum phenotype 0 ( , )u x y . Additionally, the fitness of each individual is decreased 

through competition from the other individuals. The strength of competition depends on both the 

spatial and the phenotypic distances between the focal individual and its competitors. The death 

rate of each individual is governed by its fitness, while the birth rate is constant for all 

individuals. 

Individuals reproduce asexually, with each offspring inheriting its ecological trait nearly 

faithfully from its parent. Dispersal in the model is natal; offspring are displaced from their 

parents’ location by a random distance. 

The full model description (Online Appendix: Model description) discusses these and other 

aspects of the model in detail. A movie of the model is provided as Movie 1 (available on Dryad, 

http://dx.doi.org/10.5061/dryad.43cj7/1). 

Model realizations 

A total of 1,500,000 realizations of the model were generated. One set of 300,000 realizations 

was generated for each of the four boundary conditions, and an additional set of 300,000 

realizations was generated with reprising boundary conditions to serve as an independent test 

dataset. Each realization was supplied with random values for the five governing parameters s, c, 

gl , a, and v, with the value for each parameter drawn from a uniform distribution spanning the 

range of values for that parameter (Table 1). 

For each realization, a landscape was generated (Online Appendix: Landscape generation) 

and analyzed to determine its standard deviation , skewness 1 , kurtosis 2 , and 

autocorrelation length rl , together called the “realized-landscape metrics” (Online Appendix: 



 11 

Landscape analysis). The initial state was then constructed and its evolution was traced for 5000 

generations. A histogram of the ecological trait values in the population was recorded every 10 

generations (Online Appendix: Model description, OBSERVABLES). Branching of the population 

was identified from these histograms as a stable divergence from the initially unimodal 

phenotypic distribution into a bi- or multi-modal distribution. Finally, a full census of the 

population was recorded at the end of the realization. A typical model realization is shown in 

Figure 2. 

Statistical analysis 

For analysis of the results of these realizations, binomial (logistic) Generalized Additive Models 

(GAMs; Wood 2006) were fitted. The independent variables in these GAMs were the scaled 

parameters s, c, gl , a, and v. The dependent variable was taken to be whether the realization 

branched, encoded as 0 (not branched) or 1 (branched). This choice was motivated by the clear 

unimodality of branching times; realizations typically either branched early or did not branch at 

all (Online Appendix: Distribution of branching times). Nested models including interactions of 

the independent variables were constructed (Table A1, Figure A1). In the full model, the 

hypothesis of an intermediate optimum for each type of heterogeneity, with an interaction of that 

optimum with dispersal, was represented by s v , c v , and a v  terms. The hypotheses of 

additivity between heterogeneity types and of deviation from additivity due to the refugium 

effect was represented by the three-way interaction s c a  and its component interactions s c , 

s a , and c a . Finally, the hypothesis regarding the importance of the ratio of the dispersal 

distance to the autocorrelation length (ACL) was represented by gl v . 
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Similarly, logistic GAMs were also fitted using the realized-landscape metrics , 1 , 2 , rl , 

and v, with the same dependent variable (not branched vs. branched). Nested models including 

interactions of the independent variables were constructed (Table A2, Figure A2). In the full 

model, the hypothesis that an intermediate optimum for the overall realized-landscape 

heterogeneity would exist, and would be affected by dispersal distance, was represented by 

v , and the hypothesis regarding the importance of the ratio of the dispersal distance to the 

realized-landscape ACL was represented by rl v . 

The Bayesian Information Criterion (BIC; Schwarz 1978) was used to select the best model 

from each of these two sets of nested models. Several other metrics were also calculated for each 

model: the Nagelkerke R2, a standard substitute for R2 in the context of logistic regression 

(Nagelkerke 1991); C, the area under the Receiver Operating Characteristic curve (Metz 1978); 

D, the Discrimination coefficient (Tjur 2009); and the proportion of realizations in which the 

outcome (branched or unbranched) was correctly predicted by the model. 

To fit the GAM models, we used the gam() function in the mgcv package of R (version 1.7-

20; Wood 2006). Tensor product smooths, te(), were used for both variables and interactions 

to ensure proper nesting (S. Wood, pers. comm.). Restricted maximum likelihood (REML) was 

used for fitting because it is the best method with a binary dependent variable (S. Wood, pers. 

comm.). Apart from these choices, default values were used for all fitting parameters. 

Visualizations of two-dimensional slices through the five-dimensional GAM spaces were 

generated using a modified version of the vis.gam() function of mgcv. These slices show the 

predicted probability of branching for given combinations of all five independent variables of the 

GAM (given that three variables are held constant across a slice while varying the other two). 

Since only these slices are shown, caution must be used in interpreting the patterns observed. 



 13 

However, results presented are qualitatively robust to variation of the parameters fixed for each 

slice except where otherwise noted. 

To confirm that our hypotheses encompassed all important interactions among the 

parameters varied, we conducted ex post facto data exploration using logistic Generalized Linear 

Models (GLMs). GLMs were used instead of GAMs for this purpose because fitting GAMs that 

included every possible interaction, up to the full five-way interaction of all parameters, was 

computationally infeasible. This exploration indicated that other interactions were of very small 

effect size, and the prediction rate and Nagelkerke R2 for these GLMs was never as high as for 

the best GAMs; results from these GLMs are thus not presented here. 

Results 

A dataset containing the parameter values, realized-landscape metrics, and outcomes for all 

realizations is published on Dryad (Haller et al. 2013, http://dx.doi.org/10.5061/dryad.43cj7), 

with R code to fit the GAMs presented. End-of-realization censuses and per-generation results 

comprise approximately 500 GB, and the generated landscapes comprise several thousand GB; 

because these sizes greatly exceed Dryad’s 10 GB dataset limit, online provision of these data 

was not possible. 

Reprising boundaries constitute a middle ground between the extremes of stopping 

boundaries, which mostly promote branching by generating disruptive selection, and absorbing 

boundaries, which generally inhibit branching by generating stabilizing selection (Mazzucco et 

al., unpublished manuscript). For this reason, reprising boundaries were used for all main results, 

to minimize the influence of the boundary condition on the results. Results for the other 
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boundary conditions are qualitatively similar, and are presented in the Online Appendix: Effects 

of boundary conditions (Table A3 and Figures A7–A10). 

Generalized additive models 

Of the 300,000 main realizations using reprising boundary conditions, 64,858 (21.6%) exhibited 

evolutionary branching. We fit two nested sets of models to the results of these realizations, 

using, in addition to the dispersal parameter v, either the landscape-generating parameters (s, c, 

gl , a; Table A1, Figure A1) or the realized-landscape metrics ( , 1 , 2 , rl ; Table A2, Figure 

A2), as described in Methods: Statistical analysis. 

The best GAM model using the landscape-generating parameters (henceforth “GAMg”) was 

the full model including all interactions predicted by our hypotheses, 

g g~branched s c l a v s v c v a v l v s c s a c a s c a . 

GAMg, with 13 terms and 167.0 effective degrees of freedom, provided a fit with a 

Nagelkerke R2 of 0.642, and correctly predicted the outcome of 89.5% of realizations, as 

compared to the null model prediction rate of 78.4% (Table A1). GAMg also correctly predicted 

89.6% of the outcomes of the 300,000 realizations in the separate test dataset, indicating that 

overfitting did not occur. 

The best GAM using the realized-landscape metrics (henceforth “GAMr”) was also the full 

model including all predicted interactions, 

1 2 r r~branched l v v l v . 

GAMr, with only 7 terms and 49.3 effective degrees of freedom, provided a fit with a 

Nagelkerke R2 of 0.681, and correctly predicted the outcome of 90.6% of realizations, as 
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compared to the null model prediction rate of 78.4% (Table A2). GAMr also correctly predicted 

90.7% of the test dataset outcomes, again indicating that overfitting did not occur. 

Although GAMg and GAMr were chosen on the basis of their BIC scores, the other model 

metrics assessed (Nagelkerke R2, C, D, prediction accuracy; see Methods: Statistical analysis) 

were also optimized by this choice (Tables A1 and A2, Figures A1 and A2). For further 

discussion see Online Appendix: Comparison of nested GAM models. 

Intermediate heterogeneity maximizes branching propensity 

For all types of heterogeneity explored, branching propensity was maximized at some particular 

level of heterogeneity, showing a “hump-shaped” relationship. In particular, an intermediate 

slope was found to maximally promote branching (optimum 0.75s ; Figure 3A), and likewise 

for an intermediate curvature (optimum 0.25c ; Figure 3B). An intermediate patchiness 

amplitude similarly appeared to maximally promote branching (optimum 2.75a ; Figure 3C), 

but this effect depended on the boundary conditions, being most apparent with absorbing 

boundaries (Figure A7C) and least apparent for stopping boundaries (Figure A7O). For reflecting 

and reprising boundaries, the optimum value appeared to be close to the edge of the parameter 

space explored (Figure A7G and A7K). Branching was also maximally promoted at an 

intermediate level of overall landscape heterogeneity, as measured by the standard deviation of 

the realized landscape,  (optimum 2.0  for 0.5v 0.5 ; Figure 3D). The probability of 

branching always decreased with increasing dispersal distance, but dispersal distance had little 

effect on the optimal values of s, c, and a (Figures 3A–C). The optimum  decreased with 

increasing dispersal distance, reaching zero for 0.5v 0.5  (Figure 3D), although this effect varied 

somewhat among boundary conditions (Figure A7). 
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Additivity and the refugium effect 

The different types of heterogeneity also interacted in their effects on branching, making the 

complete picture somewhat more complex. Slope and curvature showed simple additivity (Figure 

4A). This was not the case, however, for the combination of slope and patchiness amplitude 

(Figure 4B); here, as amplitude increased, the sensitivity to slope decreased, indicating less than 

full additivity between slope and amplitude. This effect was even more pronounced for curvature 

and amplitude (Figure 4C); here for 0.4c 0.4  the probability of branching actually increased with 

increasing amplitude, up to a point, indicating a net positive interaction between large curvature 

and amplitude. 

Autocorrelation length and dispersal 

Landscapes with a larger realized autocorrelation length rl  produced a higher probability of 

branching (Figure 5). An interaction between the effects of rl  and dispersal distance v was also 

observed: the branching probability decreased more strongly with increasing v when rl  was 

larger (Figure 5). The generating autocorrelation length gl  had little effect (see Online Appendix: 

Landscape-generating parameters versus realized-landscape metrics). 

Other results 

We had no specific hypotheses regarding the role that the realized-landscape skewness, 1 , and 

kurtosis, 2 , would play. For this reason, although substantial and significant effects were 

observed for both (Table A2 and Figure A10), they are presented in the Online Appendix: Effects 

of skewness and kurtosis. 
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Analysis using the alternative cluster-based assessment of branching (Online Appendix: 

Model description, OBSERVABLES) produced results very similar to those presented, which 

suggests that our findings are robust to variations in the method used to assess branching (Online 

Appendix: Alternative assessment of branching). 

Branching times for realizations that branched were typically less than 1000 generations, 

following an approximately lognormal distribution, and showed little correlation with the 

predicted probabilities of branching given by the GAM models (Figure A11, Online Appendix: 

Distribution of branching times). Branching was thus generally binary: it happened early or not 

at all, for most realizations. Nevertheless, some effects of parameters on branching time were 

observed (Figures A12 and A13, Online Appendix: Correlations with branching times). 

Although branches occasionally went extinct, merging of branches, or “reverse speciation” 

(Seehausen 2006), was not observed. Furthermore, the phenotype of unbranched lineages often 

drifted over time, while branched lineages appeared to be stabilized by competition and typically 

exhibited evolutionary stasis after arriving at equilibrium. These and other qualitative 

observations are presented further in Figures A14 and A15 and in Online Appendix: Patterns of 

evolutionary branching. 

Discussion 

Here we have shown that complex spatial heterogeneity affects evolutionary branching in several 

ways previously unexplored by theoretical models. An intermediate optimum level of 

environmental heterogeneity exists that maximally promotes branching, and such an intermediate 

optimum also appears to exist for particular types of heterogeneity – linear gradients, nonlinear 

gradients, and spatially continuous patchiness. The effects of these different types of 



 18 

heterogeneity are additive to some extent, but linear gradients of an optimal slope are more 

effective in promoting branching than are the other types of heterogeneity investigated. A 

refugium effect also causes a departure from additivity of different types of heterogeneity 

because patchiness can break up an otherwise hostile environment, leading to a higher branching 

propensity for landscapes than would otherwise be expected given the overall level of 

heterogeneity present. The scale of patchiness relative to the dispersal distance of organisms is 

also important: large patch size relative to dispersal distance isolates populations in distinct 

areas, promoting local adaptation. 

Furthermore, our results allow us to quantitatively and accurately predict the branching 

propensity of heterogeneous landscapes through empirical metrics that might often be easily 

obtained. This method could be used to predict the branching propensity of real landscapes. The 

effects of complex spatial environmental heterogeneity might help explain some contentious 

observations, such as the higher biodiversity of the tropics, differences in the speciosity of 

parapatric sister clades, the causes of adaptive radiation (or the lack thereof) in different 

environments, and the evolutionary effects of differences in dispersal behavior among species. 

This connection between our model and real landscapes also has potential implications for 

conservation. 

Intermediate heterogeneity maximizes branching propensity 

Previous research indicates that an intermediate environmental gradient slope maximally 

promotes evolutionary branching (Doebeli and Dieckmann 2003; Heinz et al. 2009): very 

shallow slopes provide little opportunity for adaptive divergence, while very steep slopes are 

likely to be lethal for dispersers and provide little habitable space in which a colony might settle. 
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Our model confirmed this result (Figure 3A), with good agreement to previous findings (Doebeli 

and Dieckmann 2003, their Figure 3b). 

Going beyond previous results, we also observed an intermediate optimum for the degree of 

curvature of an environmental gradient (Figure 3B), and for the overall measured heterogeneity 

of the landscape (Figure 3D). These findings support our hypothesis that an intermediate 

optimum level should exist for other types of heterogeneity (Introduction: Intermediate 

heterogeneity maximizes branching propensity). In fact, the argument that steep slopes are lethal 

for colonizers readily generalizes to other kinds of heterogeneity, since the area of suitable 

habitat for each species shrinks as heterogeneity increases (Allouche et al. 2012). The existence 

of an intermediate optimum for the amplitude of spatially continuous patchiness depended on the 

boundary condition, however, and was not always apparent (Figure A7). This may be because a 

very high level of patchiness can have both negative effects on speciation, by hindering 

colonization, and also positive effects on speciation, by providing obstacles that increase the 

geographic isolation of populations and thus promote divergence (Golestani et al. 2012). 

Separating these competing effects of heterogeneity would be an interesting direction for future 

research. 

Additivity and the refugium effect 

If there is an optimum overall level of spatial environmental heterogeneity, as discussed in the 

previous section, then it might be natural to expect particular types of heterogeneity – gradient 

slope, gradient curvature, and patchiness amplitude, in this study – to be additive in their effects 

(Introduction: Additivity of heterogeneity types). This effect was observed for the interaction of 

slope and curvature (Figure 4A). If both are too low, then the optimum level of heterogeneity is 

not attained, and branching is hindered. Increasing either one to its optimal level maximizes 
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branching due to that type (although curvature is less effective than slope in promoting branching 

even at its optimum level, presumably because curvature can only optimize a fraction of the 

whole landscape for branching). Finally, mixtures of both slope and curvature exhibit nearly 

straight, diagonal isoclines indicating a high degree of additivity. This supports our hypothesis 

that the overall magnitude of heterogeneity determines the branching propensity of the 

landscape, to a first approximation. However, other heterogeneity types showed more complex 

interactions, as we now discuss. 

We also hypothesized that a refugium effect should cause a deviation from this additivity, for 

the combination of patchiness with an extreme gradient due to either slope or curvature. This 

effect is strongest for curvature, since increasing patchiness amplitude actually increases the 

branching propensity for all magnitudes of curvature substantially greater than the optimum 

curvature (Figure 4C). The effect is less pronounced for slope; here, increasing amplitude merely 

has less strong of an effect than would be expected from pure additivity, and at very steep slopes 

increasing amplitude has almost no effect at all (Figure 4B). The refugium effect, then, causes a 

positive, synergistic interaction between high curvature and patchiness, but merely acts to 

partially mitigate the expected additivity between high slope and patchiness. This difference 

might be because, without patchiness, only a small section of a curved gradient is likely to be 

hospitable; if patchiness can open up the entire landscape to colonization, the refugium effect 

may thus be quite large. 

Because of the refugium effect, the probability of branching (let us here call this p) increased 

substantially with an increase in patchy heterogeneity in some cases – from less than 85% to 

more than 95% for the largest curvatures explored in our realizations with reprising boundaries 

(Figure 4C), and even more with absorbing and stopping boundaries (Figure A8). However, the 
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probability that branching will not occur, 1 p , shows a proportionately much larger effect, 

falling from more than 15% to less than 5%. The odds ratio, (1 )p p , is a standard metric that 

unifies these two perspectives; using it, we can see that in the best case the refugium effect more 

than tripled the odds in favor of branching, from about 5.5:1 to 19:1. Such a large change in odds 

could produce very large effects on the net biodiversification rate in empirical scenarios in which 

branching is not otherwise very likely to occur. 

Autocorrelation length and dispersal 

We also hypothesized that the effects of patchiness – both the refugium effect and the overall 

promotion of branching by patchy heterogeneity – should depend on the relative scales of 

dispersal and patchiness (Hovestadt et al. 2001; Bolker 2003; Snyder and Chesson 2003; Bolker 

2010; Bonte et al. 2010; Hanski and Mononen 2011). Specifically, as the ratio of the 

autocorrelation length (ACL) of patchiness to the typical dispersal distance increases, local 

adaptation to individual patches should be increasingly favored (up to a point), promoting 

evolutionary branching (Introduction: Autocorrelation length and dispersal). This hypothesized 

interaction between ACL and dispersal was observed for the realized ACL, rl  (Figure 5). For 

small values of rl , patches are too small for local adaptation to be possible, and so the dispersal 

distance is relatively unimportant. For larger rl , however, local adaptation becomes possible as 

long as dispersal distance is sufficiently short-range; the longer the dispersal distance, the less 

likely branching is. For very large rl  and short-range dispersal, the isoclines flatten out, 

indicating an insensitivity to rl ; patches in this case are large enough relative to dispersal that 

making them even larger has little effect on branching, because populations are already able to 

fully adapt to their local conditions. These findings demonstrate that for a patch to provide a 
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good site for local adaptation, it must be much larger than the individual dispersal distance, both 

because many individuals in a population will not be located at the center of the patch, and 

because the flat bottom of the patch that provides a relatively constant environment is much 

smaller than the overall patch size; for much of the radius of a patch, the environment is 

changing, with a gradient from inside-patch to outside-patch conditions. 

This interaction between dispersal distance and ACL was not observed for the generating 

ACL, gl  (Figure A3B); indeed, gl  had almost no effect. This was expected, as the realized ACL 

is not highly correlated with the generating ACL due to stochasticity and system size constraints 

(Figure A3A), and because it also depends on the other landscape-generating parameters. For 

these reasons, gl  contains much less information than lr, and is a poor predictor of evolutionary 

branching (Online Appendix: Landscape-generating parameters versus realized-landscape 

metrics). 

Empirical implications 

We have suggested that empirical studies might use our realized-landscape metrics to measure 

the heterogeneity of real landscapes, and then test the predictions of our model against the actual 

biodiversity of clades endemic to that landscape. This exciting opportunity to confront theory 

with data is, however, not without challenges. 

Sampling a landscape at high resolution may be non-trivial for some environmental metrics 

not provided by existing resources such as satellite images (e.g., soil mineral concentrations; 

Yost et al. 2012). However, many environmental variables are typically correlated (e.g., 

temperature, altitude, and rainfall), and in some cases sophisticated methods exist for predicting 

unknown environmental variables across a landscape using such correlated proxies (McKenzie 
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and Ryan 1999). Studies might also compare the predictive value of all available metrics, or 

might compress multiple metrics into a single axis of environmental variation, using Principal 

Components Analysis (PCA). PCA might be particularly appropriate when local adaptation to a 

suite of correlated environmental variables is believed to have occurred; however, it should be 

used with caution, as the axis of greatest environmental variation might not correspond to the 

axis of variation to which a particular clade adapted. 

Furthermore, clades should be chosen that match the biology modeled here (e.g., unbiased 

natal dispersal, asexual reproduction); further theoretical exploration will be needed before other 

radiations can be studied within this framework (see Future directions). We suggest that 

adaptation of asexual or clonal plants and fungi to serpentine soil outcrops might present an 

attractive opportunity, due to the many independent instances of speciation due to local 

adaptation to serpentine soils in heterogeneous landscapes (Brady et al. 2005; Harrison and 

Rajakaruna 2011). Experimental evolution of microbial systems in heterogeneous culture media 

might also be a worthwhile approach (Rainey and Travisano 1998; Bailey and Kassen 2012). 

There may also be cases in which historical data, perhaps from paleoclimatological 

reconstructions and dated phylogenies, are sufficiently complete to test our model’s predictions 

for cases such as post-glacial radiations (Linder 2008) or adaptation to different islands (Givnish 

2010). Finally, natural heterogeneity also commonly varies over time; to test our model’s 

predictions, a landscape would have to be chosen that has been relatively invariant over the time 

in which speciation occurred (or this model would have to be generalized to spatiotemporal 

patterns of heterogeneity; see Future directions). 

Natural heterogeneity might exhibit patterns not modeled here. For example, sudden 

transitions in habitat type may be superimposed on less extreme heterogeneity (e.g., ocean-to-
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land transitions); the autocorrelation length may vary depending upon the spatial axis or the 

position in space (e.g., “basin-and-range” topography); or the landscape structure may not be 

reducible to a single autocorrelation length due to hierarchical structure (Kolasa et al. 2012). In 

such cases, model predictions could still be generated by replacing our generated landscapes by a 

representation of the actual landscape. 

If environmental conditions that promote biodiversification also promote the maintenance of 

biodiversity (Rosenzweig 2001; Rosenzweig 2003), then our results have implications for 

conservation policy. Specifically, the loss of, or alteration of, patterns of environmental 

heterogeneity may lead to “reverse speciation” or the loss of locally adapted taxa (Seehausen et 

al. 1997; Templeton et al. 2001; Seehausen 2006; Seehausen et al. 2008; Crispo et al. 2011; De 

León et al. 2011; Vonlanthen et al. 2012). One implication is that even if a large reserve is ideal 

habitat for a given species, the variation within that species may not be maintained unless 

environmental heterogeneity is preserved to provide divergent selective pressures. A second 

implication is that refugia may provide stepping-stones, both spatially and adaptively 

(Introduction: Refugium effect), allowing more rapid and effective colonization and adaptation 

than would otherwise be possible in the face of anthropogenic disturbances such as climate 

change (Havel et al. 2005; Thomas et al. 2012). Indeed, assisted migration programs might do 

well to consider introducing species into carefully chosen refugia within a larger hostile 

environment, rather than into a larger area of compatible habitat, to maximally accelerate 

adaptation toward anticipated future conditions. The plausibility of this approach is illustrated by 

the importance of heterogeneity, refugia, and adaptation in the spread of invasive species (Havel 

et al. 2005; Lombaert et al. 2010; Heinicke et al. 2011; Tingley et al. 2012; Westley et al. 2013). 

Given this, our results might also help to predict biological invasions (Kolar and Lodge 2001), 
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extending approaches such as environmental niche modeling (Herborg et al. 2007) by adding 

consideration of dispersal and evolution. 

Future directions 

There are many future directions for this research that we expect to be fruitful. Because the 

present model is asexual with natal dispersal, it applies most strongly to selfing and asexual 

plants; extending the model to the sexual case would reveal the importance of gene flow due to 

hybridization (Dieckmann and Doebeli 1999; Doebeli and Dieckmann 2003). The need to 

establish assortative mating in the sexual case can hinder speciation, particularly when mate 

choice is based upon an ecologically neutral marker trait (Felsenstein 1981; Dieckmann and 

Doebeli 1999; Servedio et al. 2011). However, this negative effect of sexual reproduction on 

speciation has been shown to be mitigated greatly by effects of spatial distance and 

environmental heterogeneity (Doebeli and Dieckmann 2003). We expect this to apply also for 

complex spatial heterogeneity, mediated by the interaction between the relative spatial scales of 

heterogeneity and dispersal. 

Similarly, the addition of different types of dispersal, such as non-natal dispersal, conditional 

dispersal, and habitat preference, would allow an exploration of the effects of complex spatial 

heterogeneity with dispersal behaviors more typical of animal species (Ronce 2007; Edelaar et 

al. 2008; Clobert et al. 2009; Payne et al. 2011; Webster et al. 2012). Allowing the evolution of 

dispersal rate (Doebeli and Ruxton 1997; Mathias et al. 2001), distance (Heinz et al. 2009), and 

kernel shape (Hovestadt et al. 2001; Bolker 2010) would also be worthwhile; these factors might 

interact with complex spatial heterogeneity in interesting ways, perhaps modifying the dynamics 

of the refugium effect with an effect of the dispersal kernel shape. Steep environmental gradients 

have previously been shown to promote the evolution of short dispersal distance (Heinz et al. 
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2009), and we expect that the same would likely apply to other types of heterogeneity, but this 

might inhibit branching on some landscapes, if it means that the refugium effect is diminished by 

decreased dispersal into refugia. 

Our results indicate that branching, when it occurs, typically occurs immediately; however, 

some landscapes promote branching in a delayed fashion, perhaps because the population first 

has to attain a favorable spatial configuration on the landscape before branching can occur (see 

Online Appendix, Distribution of branching times and Correlations with branching times). This 

result underscores the need for a theory linking spatial structure to the expected waiting time to 

branching, a question that has barely begun to be explored (Orr and Orr 1996; Gavrilets et al. 

2000b). 

Allowing temporal environmental heterogeneity, in addition to spatial environmental 

heterogeneity, would connect this work to previous studies related to environmental change (e.g., 

Pease et al. 1989; Bürger and Lynch 1995; Kopp and Hermisson 2007; North et al. 2011), with 

particular relevance for predicting the effects of climate change for species occupying 

realistically heterogeneous landscapes. Finally, only one ecological dimension has been 

examined in this work; an exploration of the consequences of complex spatial heterogeneity in 

multiple ecological dimensions is needed (Nosil and Harmon 2009; Guillaume 2011; Birand et 

al. 2012). We hope to pursue these topics in future research. 

Spatial heterogeneity, by producing divergent selective regimes that promote diversification, 

is an important driver of speciation. A complete understanding of the effects of complex, realistic 

patterns of spatial heterogeneity is therefore fundamental to an understanding of the origins of 

biodiversity. The model and results we have presented here represent a step toward that goal. 
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Tables 

Table 1: Model parameters and landscape metrics with symbols, value/range/formula, and units 

 Symbol Value Units 

Initial number of individuals initN  100  – 

Maximum carrying capacity density; scales the number of 

individuals in the system 

0K  500  21 L  

Standard deviation of carrying capacity density; scales the 

reduction in carrying capacity density due to the difference 

of an individual’s ecological character from the locally 

optimal ecological character 0 ( , )u x y  

K  0.3  E  

Standard deviation of the spatial competition function; scales 

the reduction in the strength of competition as the spatial 

distance between individuals increases 

s  0.19  L  

Scaled standard deviation of the phenotypic competition 

function 

pc  5  – 

Standard deviation of the phenotypic competition function; 

scales the reduction in the strength of competition as the 

phenotypic distance between individuals increases 

c  p Kc  E  

Probability of a mutation occurring m  0.005  – 

Standard deviation of the mutation effect size m  0.05  E  

Per capita birth rate; scales time in the model b  1 -1T  

Scaled environmental gradient slope s  0.0 2.0  – 
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Scaled environmental gradient curvature c  0.0 1.0  – 

Scaled environmental patchiness autocorrelation length gl  0.05 3.0  – 

Scaled environmental patchiness amplitude a  0.0 3.0  – 

Scaled standard deviation of natal dispersal distance v  0.01 3.0  – 

Environmental gradient slope S  K ss  E L  

Environmental gradient curvature C  2
K sc  2E L  

Environmental patchiness autocorrelation length gL  g sl  L  

Environmental patchiness amplitude A  Ka  E  

Standard deviation of natal dispersal distance; scales the spatial 

distance offspring land from their parent 

V  sv  L  

Realized-landscape heterogeneity scaled standard deviation  
2 K  – 

Realized-landscape heterogeneity skewness 1  3
3  – 

Realized-landscape heterogeneity excess kurtosis 2  4
4 3  – 

Realized-landscape heterogeneity scaled autocorrelation length rl  See text a – 

Note: Units are expressed using the symbols L  (length), E  (ecological phenotype), T  

(time), and – (dimensionless). The symbols 2 , 3 , and 4  represent the second, third, and 

fourth moments, respectively, of the distribution of values in the realized landscapea. 

asee Online Appendix: Landscape analysis. 
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Figures 

Figure 1: Examples of generated landscapes. We illustrate the effect of the four landscape-

generating parameters on the pattern of spatial heterogeneity. A–D: Small values of parameters s, 

c, a, and gl  (scaled slope, scaled curvature, scaled amplitude, and scaled generating 

autocorrelation length), respectively. E–H: Larger values of the same parameters, so that each 

column shows the effect of a low versus high value of one parameter. Colors indicate locally 

optimal ecological trait values, ranging from white (low) to dark green (high). Black lines show 

locally optimal ecological trait values across one horizontal transect of each landscape. For 

purposes of comparison, all panels are generated with the same random number generator seed 

so that they are based on the same stochastic spatial structure. For each column, the other 

landscape-generating parameters are held to zero (except that to show the effect of the scaled 

amplitude, a particular autocorrelation length must be specified). 

Figure 2: One realization of the model. A–C: A census of all individuals in the model after 50 

(A), 2000 (B), and 5000 (C) generations (circles), superimposed on the generated landscape, 

which includes both a spatial gradient and spatially continuous patchiness. Background colors 

indicate locally optimal ecological trait values, while circle colors indicate the actual trait values 

of individuals, both ranging from white (low) to dark green (high). D: A plot of ecological trait 

values (y axis) through time. For each time, the plot shows the distribution of the ecological trait 

values of the individuals extant at that time in the model. Red lines indicate time points for 

panels A–C. Evolutionary branching can be observed at several points, and three branches exist 

at the end of execution, two of which are phenotypically similar; note also that one lineage went 

extinct after approximately 2600 generations. 
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Figure 3: Predicted branching probabilities from GAMs, showing effects of dispersal distance 

and different heterogeneity types. We show that an intermediate level of heterogeneity typically 

maximizes the branching probability. Panels show contour plots of the branching probability as a 

function of the scaled dispersal distance v and A: scaled slope s; B: scaled curvature c; C: scaled 

amplitude a; and D: scaled landscape standard deviation . Red (white) indicates predicted low 

(high) branching probability (see color scale at right). The probability of branching is maximized 

at an intermediate value of s, c, and perhaps a (see text), regardless of the dispersal distance; an 

intermediate value of  also maximizes branching for 0.5v 0.5 . Results shown are for reprising 

boundaries; results for other boundary conditions are qualitatively similar (Online Appendix: 

Effects of boundary conditions, and Figure A7). Other parameters: A–C: 0s , 0c , 0a , and 

g 0.15l , D: 1 0 , 2 0 , and r 0.15l . Contour lines below 10% and above 90% are placed 

to best show the contours of the data in each panel. 

Figure 4: Predicted branching probabilities from GAMg, showing interactions between 

heterogeneity types. We show additive effects, and deviations therefrom due to the refugium 

effect, between scaled slope s, scaled curvature c, and scaled amplitude a. Panels show the 

branching probability as a function of A: s and c, demonstrating additivity between the two; B: s 

and a, demonstrating non-additive effects between the two, and a weak mitigation of the negative 

effect of steep slope on branching when combined with large amplitude; and C:  c and a, 

demonstrating non-additive effects between the two, and a strong mitigation of the negative 

effect of high curvature on branching when combined with large amplitude. Red (white) 

indicates predicted low (high) branching probability (see color scale at right). Results shown are 

for reprising boundaries; results for other boundary conditions are qualitatively similar (Online 
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Appendix: Effects of boundary conditions, and Figure A8). Other parameters: 0s , 0c , 

0a , g 0.15l , and 0.075v . Contour lines above 90% are placed to best show the contours 

of the data in each panel. 

Figure 5: Predicted branching probabilities from GAMr, showing interaction between dispersal 

distance and realized-landscape autocorrelation length (ACL). Contours show branching 

probability as a function of the scaled realized autocorrelation length rl  and the scaled dispersal 

distance v, demonstrating the importance of the relative scale of the two. Red (white) indicates 

predicted low (high) branching probability (see color scale at right). Branching probability 

decreases with increasing v, but increases with increasing rl ; v and rl  also interact, with v having 

less effect when rl  is small. Results shown are for reprising boundaries; results for other 

boundary conditions are qualitatively similar (Online Appendix: Effects of boundary conditions, 

and Figure A9). Other parameters: 2.0 , 1 0 , and 2 0 . Contour lines above 90% are 

placed to best show the contours of the data. 

Movie 1: Movie of the model realization depicted in Figure 2. Frames show the population 

census at every tenth generation, superimposed on the generated landscape, which includes both 

a spatial gradient and spatially continuous patchiness. Background colors indicate locally optimal 

ecological trait values, while circle colors indicate the trait values of individuals, both ranging 

from white (low) to dark green (high). Dryad, http://dx.doi.org/10.5061/dryad.43cj7/1 (34.9 

MB). 
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Model description 

To test our hypotheses, we constructed an 
individual-based model, described below following 
guidelines suggested for the standardized description 
of such models (Grimm et al. 2006). The model 
description is also intended to follow closely that of 
Heinz et al. (2009), itself a descendant of Doebeli 
and Dieckmann (2003). A brief summary of the 
model is provided in the main text (see Methods, 
Model summary). 

MODEL OVERVIEW 

The purpose of this model is to understand the 
effects of complex spatial environmental 
heterogeneity on the process of speciation. The 
model is related to the spatially explicit individual-
based stochastic model of Doebeli and Dieckmann 
(2003), restricted to the asexual case of that model. 
Our model replaces the linear spatial environmental 
gradient of Doebeli and Dieckmann (2003) with a 
complex landscape composed of a nonlinear 
environmental gradient and continuously varying 
environmental patchiness. As a consequence of the 
individual-based approach, stochasticity manifests in 
several aspects of our model, including variation in 
the landscape, variation in the initial state, 
demographic stochasticity, random dispersal, and 
random mutations during reproduction, as described 
in the following sections. 

ENVIRONMENTAL LANDSCAPE AND STATE 

VARIABLES 

Individuals inhabit a two-dimensional continuous 
landscape. The landscape is constant in time; its 
spatial heterogeneity is composed of a gradient in 
the x-direction, and of patchiness that varies 
continuously in both the x- and y-directions (see 
LANDSCAPE HETEROGENEITY). Individuals in this 
landscape are characterized by their location (x, y), 

with 0 ≤ x, y ≤ 1, and by their ecological character u, 
which affects their adaptation to the local 
environment. The state of the model at any point in 
time is thus fully specified by triplets (xi, yi, ui) for 
all individuals i in the population (i = 1, ..., N, where 
N is the current population size). Individuals are 
affected both by the landscape and by the other 
individuals in the model through their death rate (see 
DEATH EVENTS). 

LANDSCAPE HETEROGENEITY 

The carrying capacity density K at a location (x, y) 
for ecological character u is defined as 

K (u, x, y) = K0Nσ K
u − u0 (x, y)( ) , 

where K0 is the maximum carrying capacity density,   
Nσ (z) = exp(−z2

 / 2σ 2) denotes a Gaussian function of 
standard deviation σ, and u0 (x, y) denotes the 
optimal ecological character value (the value that 
produces the greatest carrying capacity density) at 
the given location; u0 (x, y) thus describes the 
environmental landscape and is defined as 

u0 (x, y) = α + Sx + 1
2 Cx

2 +ΦLg, A
(x, y) . 

In this expression, the centering constant α is always 
selected after landscape generation so as to yield a 
mean value of 0.5 for u0 (x, y) over the landscape as a 
whole, while S and C are model parameters defining 
the slope and curvature, respectively, of the 
environmental gradient in the x-direction. C 
represents the maximum environmental gradient due 
to curvature (at x = 1); with a quadratic curvature 
term, the coefficient 12 C  thus represents the average 
environmental gradient due to curvature. The 
function ΦLg, A (x, y) specifies the autocorrelated 
noise that describes the environmental patchiness, 
which is further characterized by the autocorrelation 
length Lg and the patchiness amplitude A. The 
function Φ is constructed as the convolution of 



 

 

Gaussian white noise and a two-dimensional filter 
function constructed to produce the desired 
autocorrelation length Lg. The model parameters S, 
C, Lg, and A thus together govern the generation of 
the landscape. For further details on the generation 
procedure, see Landscape generation. 

A survey of some landscapes generated by this 
model, and of the effects of parameters on the 
generated landscape, is shown in Figure 1. 

BOUNDARY CONDITIONS 

In the x-direction (the direction of the environmental 
gradient), we tested four boundary conditions: 
stopping, reflecting, reprising, and absorbing. These 
boundary conditions differ in the action taken when 
a natal dispersal location (see BIRTH EVENTS AND 

DISPERSAL) is drawn outside of the valid range 
0 ≤ x ≤ 1. Stopping boundaries replace values x < 0 
or x > 1 by values 0 or 1, respectively, causing 
dispersers to stop at the edge of the landscape. 
Reflecting boundaries replace values x < 0 or x > 1 
by values −x or 2 − x, respectively, as if dispersers 
bounced off of the edge of the landscape (repeatedly, 
if necessary, until the location is valid). Reprising 
boundaries redraw invalid locations until a valid 
location is obtained, as if dispersers avoid areas 
beyond the landscape’s edge. Absorbing boundaries, 
finally, remove the individual from the population if 
an invalid location is drawn; dispersal beyond the 
edge of the landscape is in this case lethal. 

In the y-direction, for which only stochastic 
environmental heterogeneity exists, periodic 
boundary conditions were utilized. Periodic 
boundaries replace values y < 0 or y > 1 by values 
y + 1 or y − 1, respectively (repeatedly, if necessary, 
until the location is valid). The landscape was 
generated in such a manner as to guarantee that it 
meshed seamlessly across the periodic y boundaries 
(see Landscape generation). The landscape thus 
described is cylindrical in topology for all four 
boundary conditions used. Periodic boundaries (or 
cline-periodic boundaries; Heinz et al. 2009) could 
not be used in the x-direction because the nonlinear 
environmental gradient (see LANDSCAPE 

HETEROGENEITY) would cause discontinuity in the 
landscape. 

PHENOTYPE RANGES AND INITIALIZATION 

Initially, the model contains Ninit individuals with 
state (xi, yi, ui) for each individual i, where xi and yi 
are drawn from a uniform distribution between 0 and 
1, and ui = 0.5 (matching the mean value of u0 (x, y) 
over the landscape). No bounds are enforced by the 
model on values of the ecological character u 
thereafter. 

This initial state distributes individuals across 
the entire landscape, although the poorly adapted 
individuals typically die almost immediately. 
Biologically, this distribution might represent an 
unusual event such as a storm that introduces 
individuals, propagules, or seeds across a landscape, 
or might represent a previously homogeneous 
landscape suddenly transformed into heterogeneity 
by a catastrophic event such as fire, flooding, or 
volcanism. However, additional test realizations (not 
shown) suggest that the final outcome of realizations 
does not depend strongly upon this initial 
distribution. With all but the shortest dispersal 
distances, the landscape is quickly colonized and the 
initial distribution has little effect. With very short-
range dispersal, movement across the landscape is 
very slow and the waiting time to branching can thus 
be much longer, but the final outcome is similar. 
Given sufficiently long runtimes, then, we expect 
that different initial conditions would not 
substantially affect our results, other than by 
broadening the branching time distribution. 

INTERACTIONS 

Individuals interact only through local competition 
for resources. The strength of competition felt by 
focal individual i is the sum of the competitive 
impacts of all other individuals in the system, and is 
expressed as the effective number of individuals 
competing with the focal individual, 

neff (ui , xi , yi ) = 2πσs

2( )−1

Nσ c
(uj − ui )

j=1, j≠i

N

∑ Nσ s
(xj − xi ) Nσ s

(yj − yi ).
 

The strength of competition decreases with 
increasing spatial distance, as described by a 
Gaussian function with standard deviation σs, the 
spatial competition radius. The strength of 
competition also decreases with increasing 
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ecological character difference between the 
individuals, as described by a Gaussian function 
with standard deviation σc, the phenotypic 
competition width. The parameters σs and σc can 
therefore be thought of as scaling factors for the 
impact of spatial differences and phenotypic 
differences, respectively, on the strength of 
competition (Doebeli and Dieckmann 2003). The 
normalization factor (2π σs 

2)
−1

 ensures that a spatially 
uniform population is regulated to a given overall 
environmental carrying capacity regardless of the 
value of σs. Interactions span the periodic y-
boundary; the shortest distance between individuals 
in the cylindrical landscape is used. As the 
competition felt by an individual increases, that 
individual’s death rate increases, as described below 
(DEATH EVENTS). 

DEATH EVENTS 

The death rate di of each individual i is computed as 
neff(ui, xi, yi) / K(ui, xi, yi), where neff(ui, xi, yi) denotes 
the strength of competition felt by individual i (see 
INTERACTIONS), and K(ui, xi, yi) denotes the carrying 
capacity density experienced by individual i (see 
LANDSCAPE HETEROGENEITY). Competition in this 
model therefore produces soft selection (Wallace 
1975), and cannot lead to extinction. When an 
individual dies, it is removed from the population. 

BIRTH EVENTS AND DISPERSAL 

The birth rate of every individual i is equal and 
constant: bi = b. When an individual gives birth, an 
offspring individual is generated asexually and 
added to the population. We model natal dispersal as 
the only form of movement; the spatial coordinates x 
and y of the offspring are thus drawn from normal 
distributions with standard deviation V and means 
equal to the parental values xi and yi, and then the 
boundary conditions are applied as described in 
BOUNDARY CONDITIONS. The ecological character u 
of the offspring is nearly faithfully inherited from 
the parent, except that with probability μm a 
mutational offset, drawn from a normal distribution 
with mean 0 and standard deviation σm, is added to 
the parental value ui to represent a mutation event 
during reproduction. 

Since the birth rate b is constant, we scale time 
by 1 / b. In 1 / b units of time every individual is 
expected to produce one offspring, and if the 

population size is at equilibrium, the same number 
of individuals is expected to die in that period of 
time. For this reason, we refer to 1 / b units of time as 
a “generation”. 

PROCESS OVERVIEW AND SCHEDULING 

Overlapping generations of individuals are 
implemented in the model using a continuous-time 
birth–death process implemented following the so-
called Direct Method of Gillespie (1976). First, the 
current birth rate bi and current death rate di of each 
individual i are determined by the state of the model, 
as described above (DEATH EVENTS; BIRTH EVENTS 

AND DISPERSAL). From these, the population-level 
birth and death rates are calculated as sums over the 
individual rates, 

B = bii=1

N∑  and D = dii=1

N∑  

respectively. The overall event rate is then calculated 
as E = B + D, and the waiting time to the next event 
is drawn from an exponential distribution with mean 
1 / E. With probability B / E this is a birth event, and 
an individual i is chosen for reproduction with 
probability bi / B. Otherwise, with probability D / E, it 
is a death event, and an individual i is chosen for 
removal with probability di / D. At the end of the 
event, the model state is updated, and the birth and 
death rates of all individuals are recalculated. 

OBSERVABLES 

The u0 (x, y) values that define the landscape were 
recorded on generation of the landscape, at the start 
of each realization of the model. Each generated 
landscape was analyzed to extract metrics describing 
its salient features: the landscape’s scaled standard 
deviation σ, skewness γ 1, excess kurtosis γ 2, and 
autocorrelation length lr (see Landscape analysis). 

Every 10 generations during each realization a 
histogram of the ecological character values of the 
population was recorded. At the end of each 
realization, the final state (xi, yi, ui) of all individuals 
was recorded. Following the recommendations of 
Grimm (2002) regarding the importance of visual 
debugging, the landscape and the state of all 
individuals were also observable graphically during 
model runs. An example of the information available 
for each realization is presented in Figure 2, and a 
movie showing an example realization is provided as 
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Movie 1 (available in the Dryad data repository, 
http://dx.doi.org/10.5061/dryad.43cj7/1). 

Branching was identified by a heuristic analysis 
of the histograms of ecological character values 
recorded during the realization (for example, Figure 
2D). The initial distribution of ecological character 
values was unimodal, since we set ui = 0.5 for all 
individuals. Branching was defined as divergence 
into a visibly bi- or multi-modal distribution, 
established not only at the end of the realization, but 
for a substantial period of time (3000 generations) 
prior to the end of the realization, to demonstrate the 
stability of the outcome. An alternative assessment 
of branching based on cluster analysis was also 
conducted (see Alternative assessment of 
branching). Finally, for realizations considered to 
have branched, the branching time was determined 
(see Distribution of branching times). 

PARAMETERS 

Parameters of the model, including the metrics taken 
from the realized model landscapes, are shown in 
Table 1. The parameter σs defines a fundamental 
length scale of the model, because distance in space 
affects model dynamics through the strength of 
competition scaled by σs. Similarly, the parameter σK 
defines a fundamental ecological phenotype scale of 
the model, because distance in phenotype affects 
model dynamics through the carrying capacity 
density, scaled by σK. For this reason, following 
Doebeli & Dieckmann (2003), we rescaled all other 
parameters with units involving length or ecological 
phenotype, using σs and σK, to derive dimensionless 
scaled parameters. The unscaled parameters V, S, C, 
Lg, and A were transformed according to the 
formulas shown (Table 1) to produce the scaled 
parameters v, s, c, lg, and a. These scaled parameters 
were varied among realizations of the model. 

Values for the parameters that were not varied 
(Ninit, K0, σK, σs, μm, σm, b) were taken from the 
equivalent parameters of Doebeli & Dieckmann 
(2003) so as to allow easy comparison of results 
between these models. The exception is cp, chosen 
here to explore dynamics in the limit of 
phenotypically indiscriminate competition (large cp). 
In this limit, negative frequency-dependent selection 
would not cause branching in the absence of spatial 
heterogeneity; this choice thus guarantees that all 

observed branching is due to the effects of spatial 
heterogeneity (Doebeli and Dieckmann 2003). 

MODEL IMPLEMENTATION 

The model was implemented in Objective-C using 
the Cocoa object-oriented toolkit (Mac OS X 10.6.4; 
Apple Inc., http://www.apple.com), except for the 
scheduling module, landscape construction module, 
and branching analysis module, all of which were 
written in the R programming language (version 
2.11.1–2.15.1; R Development Core Team, 
http://www.r-project.org). 

Comparison of nested GAM models 

The nested models based on the landscape-
generating parameters s, c, a, and lg, in addition to 
the dispersal distance v, are compared in Table A1 
and Figure A1. Similarly, the nested models based 
on the realized-landscape metrics σ, γ 1, γ 2, and lr, in 
addition to v, are compared in Table A2 and Figure 
A2. 

Intercept-only models correctly predicted the 
outcome of 78.4% of realizations, since that 
percentage of realizations did not branch (Table A3); 
these models simply predict that branching will 
never occur. The prediction rate observed in other 
models should thus be evaluated relative to this 
baseline. 

A model including only the generating ACL, lg, 
only marginally improved on the intercept-only null 
model (Table A1, model #1 vs. #0); similarly, a 
model with the interaction lg ∗ v only marginally 
improved on a model without that interaction (Table 
A1, model #8 vs. #6). However, both terms did 
improve the BIC score, and were therefore retained. 
Other terms were more clearly of non-negligible 
effect size, according to both BIC and Nagelkerke R2 
(change in prediction rate is not a good indicator of 
effect size with a binary outcome, because a term 
can improve the certainty of predictions without 
changing their direction). 

Binary predictions (not branched vs. branched) 
from the best GAM from each set of nested models 
(GAMg and GAMr) agreed in 94.8% of realizations 
(Figure A5). 

The results presented in this section are for 
reprising boundary conditions; qualitative results 
were the same for other boundary conditions. 
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Table A1: Comparison of nested GAM models predicting the outcome of a realization (not branched versus branched) 
from the scaled landscape-generating parameters s, c, a and lg and the scaled dispersal distance v, for reprising boundary 
conditions. 

 Model Terms EDF C R2 D Match ΔBIC 

0. (Intercept) 0 1.0 .500 .000 .000 .784 159104 
1. lg 1 3.2 .507 .000 .000 .784 159098 
2. a 1 4.2 .522 .002 .001 .784 158821 
3. s 1 4.9 .625 .052 .034 .784 148851 
4. c 1 4.9 .703 .130 .088 .784 132781 
5. v 1 5.0 .829 .386 .288 .845 72896 
6. s + c + a + lg + v 5 20.0 .922 .600 .493 .882 11585 
7. [6] + c ∗ v 6 33.0 .923 .601 .493 .882 11473 
8. [6] + lg ∗ v 6 33.6 .923 .601 .494 .883 11350 
9. [6] + s ∗ a 6 33.9 .923 .604 .496 .884 10641 
10. [6] + s ∗ v 6 34.8 .924 .604 .496 .884 10629 
11. [6] + a ∗ v 6 36.2 .925 .609 .502 .885 8910 
12. [6] + s ∗ c 6 36.0 .926 .613 .506 .886 7792 
13. [6] + c ∗ a 6 36.4 .928 .617 .511 .887 6368 
14. [7–13] 12 112.7 .933 .637 .533 .894 753 
15. [14] + s ∗∗  c ∗  a 13 167.0 .935 .642 .537 .895 0 

Note: The Terms column shows the number of terms in the model, while the EDF column gives the estimated degrees of freedom 
used. C is the area under the Receiver Operating Characteristic curve (Metz, 1978), R2 is the Nagelkerke generalized R2 (Nagelkerke, 
1991), D is the Discrimination coefficient (Tjur, 2009), Match is the fraction of cases in which the model prediction matched the 
observed binary outcome, and ΔBIC is the Bayesian Information Criterion relative to the best model (Schwarz, 1978). Better models 
are indicated by high values, except for ΔBIC, for which a low score is better. Models are sorted by descending ΔBIC; the best 
model according to BIC (the “GAMg” model) is shown in bold. All terms in all models are significant with P < 0.001. See Figure A1 
for a graphical depiction of the best ten models. 

Table A2: Comparison of nested GAM models predicting the outcome of a realization (not branched versus branched) 
from the scaled realized-landscape metrics σ, γ  1, γ  2, and lr and the scaled dispersal distance v, for reprising boundaries. 

 Model Terms EDF C R2 D Match ΔBIC 

0. (Intercept) 0 1.0 .500 .000 .000 .784 173875 
1. γ  2 1 5.0 .579 .022 .014 .784 169695 
2. γ  1 1 5.0 .600 .032 .021 .784 167732 
3. lr 1 5.0 .611 .040 .026 .784 165999 
4. σ 1 5.0 .760 .213 .149 .794 129258 
5. v 1 5.0 .829 .386 .288 .845 87667 
6. σ + γ  1 + γ  2 + lr + v 5 20.8 .943 .666 .564 .899 4795 
7. [6] + σ ∗ v 6 35.5 .943 .668 .568 .900 4055 
8. [6] + lr ∗ v 6 33.4 .946 .677 .577 .904 1087 
9. [7–8] 7 49.3 .947 .681 .582 .906 0 

Note: The Terms column shows the number of terms in the model, while the EDF column gives the estimated degrees of freedom 
used. C is the area under the Receiver Operating Characteristic curve (Metz, 1978), R2 is the Nagelkerke generalized R2 (Nagelkerke, 
1991), D is the Discrimination coefficient (Tjur, 2009), Match is the fraction of cases in which the model prediction matched the 
observed binary outcome, and ΔBIC is the Bayesian Information Criterion relative to the best model (Schwarz, 1978). Better models 
are indicated by high values, except for ΔBIC, for which a low score is better. Models are sorted by descending ΔBIC; the best 
model according to BIC (the “GAMr” model) is shown in bold. All terms in all models are significant with P < 0.001. See Figure A2 
for a graphical depiction of the best four models. 
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Table A3: Comparison of results for the four boundary conditions. 

 Absorbing Reprising Reflecting Stopping 

Branched (%) 18.5 21.6 21.9 24.0 
Branched s  0.814 0.804 0.795 0.769 
Branched c  0.358 0.341 0.340 0.336 
Branched a  1.416 1.449 1.473 1.497 
Branched lg  1.555 1.542 1.525 1.524 
Branched v  0.552 0.732 0.728 0.787 
Branched σ  2.856 2.770 2.763 2.714 
Branched γ 1  0.268 0.248 0.248 0.246 
Branched γ 2  −0.784 −0.759 −0.744 −0.717 
Branched l r  1.131 1.115 1.104 1.083 
Clustered (%) 19.6 23.0 23.2 25.4 
Avg. clusters 2.64 2.63 2.65 2.66 
GAMg R

2 0.700 0.642 0.651 0.658 
GAMg pred. 0.918 0.895 0.895 0.887 
GAMr R

2 0.728 0.681 0.689 0.689 
GAMr pred. 0.926 0.906 0.906 0.897 

Note: Branched (%) is the percentage of realizations of the 300,000 realizations conducted for 
the given boundary condition that resulted in evolutionary branching according to our 
phenotypic history analysis. The Branched s , c , a , lg , v , σ , γ 1 , γ 2 , and l r  are the mean 
value of that parameter or metric, among only those realizations that branched. Clustered (%) is 
the percentage of realizations that resulted in evolutionary branching according to alternative 
cluster analysis method of detecting branching; “Avg. clusters” is the average number of clusters 
produced, among only those realizations that produced two or more clusters. GAMg results are 
for the full GAM model fitted using the model parameters, as in Table A1 model #15; the 
Nagelkerke R2 and the proportion of realization outcomes correctly predicted are given. 
Similarly, GAMr results are for the full GAM fitted using the landscape metrics, as in Table A2 
model #9. 

 

Landscape-generating parameters versus realized-
landscape metrics 

Although the generating ACL lg and its interaction 
lg ∗ v had very little effect (Table A1 and Figure 
A3B, and previous section), the realized ACL lr and 
its interaction lr ∗ v had a substantial effect (Table 
A2 and Figure 5). The generating and realized ACLs 
are correlated when lg is very small, because very 
small-scale patchiness can be accurately reproduced 
with little distortion due to stochasticity, but when lg 
is larger the correlation breaks down, because large-
scale patchiness is stochastic at a scale 
commensurate with the scale of the landscape itself; 
the realized ACL of the landscape may therefore be 
quite different from the generating ACL (Figure 
A3A). Since the environmental gradient slope and 
curvature also affect the realized ACL, that is 
another reason why lg and lr are generally poorly 

correlated; for clarity, however, Figure A3A shows 
only values for landscapes with no slope or 
curvature, so that it depicts solely the loss of 
correlation for large values of lg due to stochasticity 
in the landscape generation and system size effects. 

The superiority of lr to lg in predicting branching 
is one aspect of the larger phenomenon that GAMr, 
the best GAM based on the realized-landscape 
metrics, substantially outperformed GAMg, the best 
model based on the landscape-generating parameters 
(Table A1 model #15 vs. Table A2 model #9). This 
was the case even though GAMg contained 13 terms 
and used 167.0 effective degrees of freedom, 
compared to 7 terms and 49.3 effective degrees of 
freedom for GAMr. For large lg, stochasticity caused 
considerable variation not only in lr, but also in the 
realized-landscape metrics σ, γ 1, and γ 2, for given 
values of the landscape-generating parameters s, c, 
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a, and lg (Figure A4). Unsurprisingly, given this, the 
realized-landscape metrics are a better predictor of 
the effect of the landscape than are the landscape-
generating parameters; the realized landscape is 
what the individuals in the model actually occupy, 
and so its properties are what matters. However, it is 
perhaps surprising that the simple metrics we used 
proved so effective; one might ponder whether 
different metrics could be even better. In any case, 
this result suggests that caution must be used 
whenever modeling heterogeneous landscapes, to be 
sure that the effect of the realized pattern of 
heterogeneity, and not solely the effect of the 
landscape-generating parameters, is analyzed, since 
the two may be quite different – an issue that has 
not, to our knowledge, been raised previously. 

The realized-landscape metrics spanned a wide 
range of types of heterogeneity, although negative 
skewness, positive kurtosis, and short ACLs were 
relatively infrequent (Figure A6). Although this 
means that there is less data in some regions of the 
parameter space, the very large number of 
realizations analyzed mitigates this problem, except 
where specifically noted. 

Figure A3: Comparison of the scaled generating autocorrelation 
length (ACL) lg to the scaled realized ACL lr. A: Scatter plot of 
lg versus lr for 500 randomly chosen landscapes; the gray line 
shows the 1:1 line at which lg = lr. The deviation of lg from lr 
illustrates that autocorrelation lengths that are large relative to 
the spatial scale of the landscape can be unrepresentable because 
they correspond to spatial features approaching or exceeding the 
scale of the landscape itself. B: Predicted branching probabilities 
from GAMg, showing the effects of lg and the scaled dispersal 
distance v; compare the weak relationships shown here (little 
effect of lg and little interaction between lg and v) to the stronger 
effects from GAMr shown in Figure 5. The color scale is as 
shown in Figure 5. Results shown are for reprising boundaries; 
results for other boundary conditions are qualitatively similar 
(not shown). Other parameters: s = 0, c = 0, a = 1.5. Contour 
lines above 90% are placed to best show the contours of the 
data. 

 
Figure A4: Examples of generated landscapes. These examples provide an illustration of the variability in realized-landscape metrics 
resulting from different types of spatially continuous patchiness. Vertical pairs of panels used the same landscape-generating 
parameters (scaled amplitude a and scaled generating ACL lg; s = 0 and c = 0 for all panels), but used different random number 
generator seeds and thus differ. Sliders in each panel show landscape-generating parameters (a, lg) and realized-landscape metrics (σ, 
γ  1, γ  2, lr) on an arbitrary scale. Colors indicate locally optimal ecological trait values, ranging from white (low) to dark green (high). 
Black lines show locally optimal ecological trait values across one horizontal transect of each landscape. Panels A, B, E, F used short 
lg while panels C, D, G, H used long lg. Panels A, C, E, G used intermediate a while panels B, D, F, H used large a. These results 
illustrate that landscapes that share generating parameters will also share similar realized metrics if lg is small, but when lg is large the 
realized metrics can be quite divergent because of the stochastic patterns at large spatial scales in the landscapes generated. 
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Figure A5: Correlation between the predictions of the 
two GAM models, GAMg and GAMr. A total of 
300,000 points are plotted; each point represents one 
realization, showing the predicted probability of 
branching from the GAMg model (x-axis) and the 
GAMr model (y-axis). The lower left quadrant, in 
which both models predict no branching, contains 
78.9% of realizations, and the upper right quadrant, in 
which both models predict branching, contains 15.9% 
of realizations; the two models thus made the same 
prediction in 94.8% of realizations. The upper left 
quadrant, in which GAMr predicts branching but GAMg 
does not, contains 2.8% of realizations, while the lower 
right quadrant, in which GAMr does not predict 
branching but GAMg does, contains 2.4% of 
realizations. Note also that for the quadrants in which 
the models agree, both models tend to be relatively 
certain about their predictions (predicted probabilities 
near 0.0 or 1.0), while predictions are generally much 
less certain for the quadrants in which the models 
disagree (predicted probabilities near 0.5). Results 
shown are for reprising boundaries; results are very 
similar for other boundary conditions, with small 
differences in the proportion of realizations predicted to 
branch (see Table A3). 

 
Figure A6: Distributions of the realized-landscape metrics. A: Scaled 
standard deviation, σ. B: Skewness, γ  1. C: Excess kurtosis, γ  2. D: Scaled 
realized ACL, lr. A small number of outliers are omitted in panels A–C to 
allow the remaining data to be better displayed. Distributions shown 
encompass all landscapes generated in realizations utilizing reprising 
boundary conditions; since landscape generation is independent of the 
boundary conditions chosen, this is a representative sample. Note that 
although the landscape-generating parameters were drawn from uniform 
distributions (Methods: Model realizations), the realized-landscape 
metrics were not uniformly distributed, and so the realized metric 
parameter space was not uniformly sampled. Nevertheless coverage was 
extensive due to the large number of realizations conducted; more than 
1000 realizations had lr < 0.2, for example. 

Effects of boundary conditions 

Some basic metrics comparing the four tested 
boundary conditions are shown in Table A3. 
Boundary condition effects generally followed the 
findings of previous research (Mazzucco et al., 
unpublished manuscript). In particular, the stopping 
boundary condition produced the highest branching 
propensity due to its effect of generating disruptive 
selection, while the absorbing boundary condition 
produced the lowest branching propensity due to its 
generation of stabilizing selection. Similarly, 
absorbing boundaries produced branching only for 
relatively short dispersal distances, because long-
range dispersal was more likely to be lethal, while 
stopping boundaries produced branching even for 
large dispersal distances, because long-range 
dispersal predictably stopped individuals at the edge 
of the landscape. Effects of the boundary condition 

on the distribution of branching times followed the 
same pattern, with the modal time to branching 
being longest with absorbing boundaries and 
shortest with stopping boundaries, although the 
differences were slight (see Distribution of 
branching times and Correlations with branching 
times). 

Reprising boundaries were chosen for our main 
results as a middle ground, minimizing the influence 
of the landscape boundary and thus best 
approximating the effect expected on a landscape of 
infinite extent. Stopping boundaries cause an 
accumulation of individuals near the boundary, 
whereas absorbing boundaries cause a deficit of 
individuals near the boundary, and these density 
effects influence the branching propensity. Reprising 
boundaries do not bias the branching propensity 
through such density effects, and thus insights from 
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this case are likely to apply generally – even when 
the density effects of other boundary conditions are 
added in. Reflecting boundaries would have been a 
similarly reasonable choice, and showed very similar 
effects in our analysis. Minimization of boundary 
effects is preferable for theoretical purposes, to 
maximally reveal the effects of model parameters 
without any obscuring influence from the model’s 
assumptions; however, when comparing our model 
results to a particular biological system, the 
boundary condition should be chosen that best 
matches the empirical dispersal characteristics of the 
system. 

The effects of different types of heterogeneity on 
branching are qualitatively similar under different 
boundary conditions (Figure A7). Interestingly, the 
intermediate optimum patchiness amplitude is most 
apparent for absorbing boundaries and least apparent 
for stopping boundaries. A secondary, weaker 
optimal magnitude of curvature is also observed for 
all boundary conditions except absorbing; this may 
reflect the degree of curvature that produces an 
optimal difference between the environments at the 
extreme left and right edges of the landscape, since 
the landscape edges can be exploited as niches with 
non-absorbing boundary conditions (particularly 
stopping boundaries, for which this secondary 
optimum is strongest). 

The interactions between different types of 
heterogeneity are also qualitatively similar under 
different boundary conditions (Figure A8). The 
particular contour line shape that indicates the 
refugium effect (Results: Additivity and the refugium 
effect) appears strongest with reflecting boundaries 
for the interaction of slope and amplitude, and 
strongest with reprising boundaries for the 
interaction of curvature and amplitude, but it is 
visible for all boundary conditions; this suggests that 
the refugium effect is general. 

The interaction between realized ACL and 
dispersal distance is shown for different boundary 
conditions in Figure A9. The insensitivity of 
branching to the dispersal distance for short realized 
ACL is most apparent for stopping boundaries, and 
least apparent for absorbing boundaries; this may be 
a simple result of dispersal distance being least 
important for stopping boundaries (since dispersal 
often stops at the edge regardless of the “intended” 
dispersal distance), and most important for 

absorbing boundaries (since dispersing too far is 
lethal). In any case, the qualitative pattern of 
interaction between the realized ACL and the 
dispersal distance is similar for all boundary 
conditions. 

 
Figure A9: Predicted branching probabilities from fitted GAMs, 
showing a comparison among boundary conditions in their 
interaction between realized autocorrelation length (ACL) and 
dispersal distance. Each row of this figure follows Figure 5, but 
is plotted for a particular boundary condition; the second row, 
for reprising boundaries, thus matches Figure 5 exactly. Contour 
lines show the predicted branching probability; the color scale is 
as shown in Figure 5. Branching is always promoted by large 
realized ACL and by short dispersal distance. An interaction 
between v and lr exists for all boundary conditions, causing a 
decrease in the effect of v for small lr, but this interaction varies 
in strength among boundary conditions. 
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Figure A7: Predicted branching probabilities from fitted GAMs, showing a comparison among boundary conditions in the effects of 
scaled dispersal distance and different heterogeneity types. Each row of this figure follows Figure 3, but is plotted for a particular 
boundary condition; the second row, for reprising boundaries, thus matches Figure 3 exactly. Contour lines show the predicted 
branching probability; the color scale is as shown in Figure 3. The probability of branching is maximized at an intermediate value of 
s and c for all boundary conditions, although this optimum value varies among boundary conditions. Similarly, an intermediate 
optimum for σ exists for all boundary conditions, but typically only for smaller values of v. For a, an intermediate optimum that 
maximizes branching clearly exists for absorbing boundaries, and may also exist for reflecting and reprising boundary conditions (but 
since the optimum in these cases is close to the edge of the parameter space explored, this is uncertain); no well-defined intermediate 
optimum for a appears to exist for stopping boundaries. 
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Figure A8: Predicted branching probabilities from fitted GAMs, showing a comparison among boundary conditions in their 
interactions between different heterogeneity types. Each row of this figure follows Figure 4, but is plotted for a particular boundary 
condition; the second row, for reprising boundaries, thus matches Figure 4 exactly. Contour lines show the predicted branching 
probability; the color scale is as shown in Figure 4. Additivity of the effects of s and c is apparent for all boundary conditions, as is 
the lack of additivity of s and a, and of c and a, due to the refugium effect. The refugium effect, which causes mitigation of the 
negative effect on branching of large s and large c due to increasing amplitude a, is generally visible; however, the effect varies in 
strength, and is always stronger with c than with s. 
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Effects of skewness and kurtosis 

The bias towards positive skewness values among 
our generated landscapes (Figure A6B) is due to the 
fact that curvature, as implemented in our model as 
increasing gradient slope from left to right, leads to 
positive skewness. For this reason, the causes of 
positive skewness and negative skewness in our 
model are not symmetric; positive skewness is 
caused by both patchiness and curvature, while 
negative skewness is caused by patchiness alone. 
These causes would not segregate in this manner for 
real environments; empirically, the meaning of the 
sign of the skewness depends simply on the 
ordination of environmental values (whether a cold 
environment is given a value less than, or greater 
than, a hot environment, for example). Since the 
effect of skewness was found to be reasonably 
symmetric around zero (Figure A10), however, this 
concern can likely be ignored. In general, then, our 
results indicate that large skewness, whether caused 
by gradient nonlinearity or by an uneven pattern of 
patchiness, hinders branching; the optimal level of 
skewness appears to be close to zero (Figure A10). 

Most kurtosis values were negative, with a peak 
near −1 (Figure A6C), indicating that platykurtic 
distributions of environmental conditions were much 
more common than leptokurtic distributions. This is 
unsurprising, since an environmental gradient is 
inherently platykurtic, resembling a uniform 
distribution (kurtosis −1.2) much more than a 
normal distribution (kurtosis 0), not to mention a 
more leptokurtic distribution such as a Laplace 
distribution (kurtosis 3). To a first approximation, 
then, the landscape kurtosis may be thought of as 
representing the degree to which the pattern of 
heterogeneity of the landscape is dominated by a 
linear gradient that produces a uniform distribution 
of environmental values. It is interesting, therefore, 
that more negative values of kurtosis hindered 
branching (Figure A10). We tentatively interpret this 
as a different angle on the same refugium effect 
discussed previously (Discussion: Additivity and the 
refugium effect), since it shows that a linear gradient 
with no other heterogeneity (more negative kurtosis 
values) is less effective in promoting branching than 
more complexly heterogeneous landscapes. 

Interestingly, then, our results suggest that a 
normal distribution of environmental values (with 

both skewness and kurtosis close to zero) may be 
close to optimal for evolutionary branching. The 
spatial distribution of those values is, of course, also 
important, however, and so broad conclusions 
regarding the optimal pattern of environmental 
heterogeneity for the promotion of evolutionary 
branching will require further investigation. 

 
Figure A10: Predicted branching propensities from fitted 
GAMs, showing a comparison among boundary conditions in 
the effects of skewness and excess kurtosis. Branching 
propensity is shown as the branching log-odds (the logit of the 
branching probability); positive log-odds indicate relative 
promotion of branching, while negative log-odds indicate 
relative hindrance of branching. The curve in each panel is re-
centered on a mean y value of zero, removing the absolute 
differences in branching propensity among boundary conditions, 
for ease of interpretation. Gray shaded bands indicate standard 
error confidence intervals. An intermediate skewness maximally 
promotes branching for all boundary conditions. The branching 
propensity generally increases with increasing kurtosis, although 
this effect saturates and even, for absorbing boundary 
conditions, declines at high kurtosis values. Other parameter 
values are unspecified, since no interaction terms involving 
skewness and kurtosis are included in the GAM models. 
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Alternative assessment of branching 

As described previously (Model description, 
OBSERVABLES), a heuristic analysis of the 
distribution of ecological trait values over the final 
3000 generations was used to determine whether 
evolutionary branching had occurred. An alternative 
assessment of branching was also conducted using a 
Gaussian mixture model cluster analysis performed 
on the ecological character values from the end-of-
realization census data, with the Mclust() 
function of the R package mclust (Fraley and 
Raftery 2003). A Bayesian prior was used on the 
variance of the cluster analysis, with a scale 
parameter value of 0.5 for the priorControl(), 
determined by trial and error to provide a good 
detection of clustering as compared to a visual 
determination. 

For the detection of branching, the heuristic 
method and the cluster analysis method produced 
similar results, except that cluster analysis, since it 
considered only the pattern of phenotypes in the 
final generation of a realization, overestimated the 
branching rate slightly (Table A3). Despite their 
very different mathematical bases, the level of 
agreement between the two methods was quite high, 
giving some assurance that our results were not a 
consequence, in some way, of our method of 
assessing branching. Furthermore, GAM models fit 
using the cluster analysis branching assessment 
provided a close match to the GAM models 
presented. 

One advantage of the cluster analysis method is 
that it produces not just a binary assessment of 
whether branching did or did not occur, but a count 
of the number of clusters. This ranged from 1 to 9, 
for the realizations conducted; typically, however, 
even those realizations that did branch produced 
only 2 or 3 clusters (Table A3), with the number of 
clusters produced following roughly a negative 
exponential distribution across all realizations (not 
shown). Interestingly, the number of clusters 
observed was negatively correlated with branching 
times, suggesting that landscapes that can support a 
larger number of species also produce more rapid 
evolutionary branching (see Correlations with 
branching times). Ordinal multinomial GLM fits 
(not shown) indicated that the factors causing a high 
branching propensity are the same as the factors 

causing a large number of clusters, suggesting that 
adaptive radiation in our model is simply adaptive 
branching “writ large”; the two metrics are simply 
different views on the propensity for adaptive 
diversification. 

Distribution of branching times 

For each realization that was classified as branched, 
we also determined the branching time using a 
heuristic algorithm that looked backwards from the 
end of the realization until finding a generation 
without a bimodal (or multimodal) phenotypic 
distribution. Since the phenotypic distribution was 
saved every ten generations (see Model description, 
OBSERVABLES), the branching time was then 
estimated as the generation found, plus five 
(intermediate between the last unbranched and the 
first branched generations). This determination was 
generally robust for a wide variety of phenotypic 
histories, although a small number (~2%) could not 
be assigned a well-defined branching time. 

The distribution of branching times for branched 
realizations using reprising boundary conditions is 
shown in Figure A11A. Most realizations that 
branched did so quite early – within the first ~1000 
generations – as indicated by the strong modal peak 
of the distribution. The distribution also has a long 
tail that asymptotically approaches a non-zero 
constant value. This non-zero offset probably 
represents realizations that branched only after 
establishing a favorable spatial configuration; 
however, there is currently no good theory for 
spatial branching processes that would allow us to 
quantify this contribution (see Discussion: Future 
directions). Finally, the bump at the end of the 
distribution, comprised of realizations evaluated to 
have branched at close to 5000 generations, 
represents noise in the detection of branching times 
caused by stochastic demographic effects. We fitted 
lognormal and exponential curves with a vertical 
offset added, using branching times less than 4500 
generations to exclude the final bump (Figure 
A11B). The exponential fit is poor, suggesting that 
branching is not a Poisson process; the lognormal fit 
is clearly better, and indeed, fits the distribution 
quite closely. In fact this result is expected, since 
branching is the result of many independent random 
events that combine multiplicatively (mutation, 
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dispersal, survival). Wakano and Iwasa (2013) 
showed similar results with a substantially different 
model (their Figure 9). 

The predicted probability of branching had no 
effect on the modal branching time (Figures A11C 
and A11D). This indicates that branching is 
essentially a binary process once a favorable spatial 
configuration is reached: it happens early or does not 
happen at all. However, the mean and median 
branching times were negatively correlated with the 
predicted probability of branching (Figures A11C 
and A11D). This was due to a decreased frequency 
of early branching for realizations with low 
predicted branching probabilities, and thus an 
increased influence of the late-branching realizations 
over the mean and median branching time (see the 
next section, Correlations with branching times). 

Figure A11 shows results only for reprising 
boundary conditions; results varied slightly for other 
boundary conditions, but showed qualitatively 
identical patterns. In particular, the modal time to 
branching estimated by the lognormal fits was 
slightly longer for absorbing boundaries (153 
generations), slightly shorter for stopping boundaries 
(126 generations), and intermediate for reprising and 
reflecting boundaries (136 and 134, respectively). 
These results are in accord with the other effects of 
the boundary conditions (see Effects of boundary 
conditions). However, the general pattern that most 
realizations branched early or did not branch at all, 
discussed above, held across boundary conditions; 
the difference among boundary conditions in 
branching propensity is thus not an effect of these 
differences in the modal waiting time. 

Figure A11: Distribution of branching times for branched realizations, and its relationship to the predicted probability of branching. 
A: The distribution of branching times for branched realizations, showing a strong peak indicating that branching typically occurs in 
the first ~1000 generations, with a long tail asymptotically approaching a non-zero limit, and a final bump (see text). B: The same 
distribution, overlaid with best fit lognormal (red) and exponential (blue) curves that include a height offset parameter. Curves were 
fitted to the branching times < 4500, to exclude the final bump (since it is an analysis artifact; see text). C–D: Scatter plots showing 
the prediction of GAMg (C) and GAMr (D) versus the branching time for branched realizations. Red solid, blue dashed, and green 
dotted curves respectively show the mean, median, and mode of 25 bins of equal x span; the mode is shown only when the early-
branching peak is well-defined. The negative relationship between predicted branching probability and branching time shown by the 
mean and median curves is due to a progressive shift from early branching with a consistent modal branching time unrelated to the 
predicted probability (predicted branching probabilities > ~0.4) to less frequent early branching and thus a higher proportion of 
realizations with longer branching times (the long tail; predicted branching probabilities < ~0.4), and then into a regime in which the 
rare detection of branching is usually an analysis artifact (the final bump; predicted branching probabilities < ~0.1). Results shown 
are for reprising boundaries; qualitative results were the same for other boundary conditions (see text). 

Correlations with branching times 

Mean and median branching times correlated with 
some parameters and metrics; the modal branching 
time, however, was nearly invariant (Figure A12). 
These qualitative differences between the mean and 
median compared to the mode are due to changes in 
the proportion of realizations that branched early 

(the modal peak of the branching time distribution) 
versus realizations that branched later (the long tail 
of the distribution; see Distribution of branching 
times). Large mean/median branching times may 
thus perhaps be understood as indicating that a high 
proportion of realizations had to establish a 
favorable spatial configuration prior to branching 
(see Distribution of branching times). The effects 
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presented are for reprising boundaries; results were 
qualitatively identical for other boundary conditions 
with the exception of an interaction between the 
boundary condition and the effect of dispersal 
distance, discussed below. 

Increasing slope increased the mean/median 
branching time (Figure A12A), as did increasing 
curvature (Figure A12B) and increasing realized-
landscape heterogeneity (Figure A12E). It is worth 
noting that the mean/median branching time was not 

minimized at an intermediate value of these 
parameters (in contrast to Results: Intermediate 
heterogeneity maximizes branching propensity); this 
is another view on the result that branching time and 
branching probability are not closely related 
phenomena in our model. Interestingly, increasing 
patchiness amplitude had no effect on mean/median 
branching time, unlike the other types of 
heterogeneity (Figure A12C). 

 
Figure A12: Correlations between branching times for branched realizations and landscape-generating parameters (top row), 
realized-landscape metrics (middle row), and other parameters and metrics (bottom row). Red solid, blue dashed, and green dotted 
curves respectively show the mean, median, and mode of 25 bins of equal x span (8 bins, for panel K); the mode is shown only when 
the early-branching peak is well-defined. The position of the early-branching peak was nearly constant in all panels, but positive 
relationships were observed between the mean/median branching time and several parameters and metrics: slope (A), curvature (B), 
realized-landscape standard deviation (E) and autocorrelation length (H), and dispersal distance (I). Horizontal jitter was added to 
panel K to separate points. Results shown are for reprising boundaries; qualitative results were the same for other boundary 
conditions, except that the strength of the effect of dispersal (panel I) varied (see text). 
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Large realized ACL increased the mean/median 
branching time (Figure A12H), presumably because 
the scale of heterogeneity was then so large that it 
often took populations a long time simply to reach a 
part of the environment that was ecologically 
different enough to produce branching. The 
generating ACL had no effect (Figure A12D), as 
might be expected (see Landscape-generating 
parameters versus realized-landscape metrics). 

The mean/median branching time increased with 
increasing dispersal (Figure A12I). This effect was 
weak with reprising boundaries (Figure A12I) and 
reflecting boundaries, stronger with absorbing 
boundaries, and entirely absent with stopping 

boundaries (not shown). This variation appears to be 
driven by the interaction between dispersal and the 
boundary condition (see Effects of boundary 
conditions). In particular, long-distance dispersal 
with stopping boundaries does not hinder branching; 
whether dispersal is short or long, realizations that 
are going to branch typically do so early (see 
Distribution of branching times), and so the 
relationship between dispersal distance and 
mean/median branching time is flat. With absorbing 
boundaries, long-distance dispersal is lethal and thus 
early branching is hindered; late branching, 
however, can still (very rarely) occur. 

 

Figure A13: Alternate view of the parameter-region slices shown in Figures 3A (left column), 3B (middle column), and 4C (right 
column), showing branching times for branched realizations near those slices. A–C: distributions of branching times for each set of 
realizations, showing similarity to the overall distribution shown in Figure A11A. D–F: each set of realizations plotted following the 
axes of Figures 3A, 3B, and 4C; colors indicate branching time, from white (0 generations) to red (5000 generations). Comparison to 
Figures 3A, 3B, and 4C shows that intermediate probabilities of branching do not generally correspond to long branching times, 
although a weak association may exist in panel F. Instead, large slope and/or large curvature appear to cause long branching times 
(see also Figure A12). Parameter ranges for these plots: A/D: a < 0.1, c < 0.1, 631 realizations; B/E: a < 0.1, s < 0.1, 166 realizations; 
C/F: s < 0.2, lg < 0.3, v < 0.225, 166 realizations (parameters not listed were unconstrained to maximize the number of realizations 
plotted). Results shown are for reprising boundaries; qualitative results are the same for other boundary conditions. 
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Finally, short mean/median branching times 
were associated with large population size (Figure 
A12J), a large number of phenotypic clusters (Figure 
A12K), and a large ecological trait variance (Figure 
A12L). These associations might appear to be 
almost tautological: the faster branching is, the more 
clusters are produced at equilibrium, the more 
variance there is in the ecological trait, and the larger 
population size can be (due to relaxed competition 
resulting from greater phenotypic variance). 
However, it could have been otherwise; if it were 
true here that “slow and steady wins the race”, then 
realizations with long branching times might have 
ultimately produced the most variation. Our result 
suggests instead that radiations producing a large 
final clade size should be expected to proceed more 
rapidly than smaller radiations. This may fit with 
empirical results, since some of the largest adaptive 
radiations known are believed to have occurred in a 
short time, such as the radiations of cichlids in 
African lakes (Seehausen 2002), of plants in the 
Andes (Hughes and Eastwood 2006) and in the Cape 
flora of South Africa (Richardson et al. 2001), and 
other cases (Schluter 2000); however, the generality 
of this pattern is not clear. 

Figure A13 shows these results regarding 
branching times in the light of three particular cases, 
following three figures in the main text (Figures 3A, 
3B, and 4C). Comparison of Figure A13 to those 
figures shows again that branching time and 
branching probability were unrelated in our model, 
but that branching time increased with increasing 
environmental gradient slope and curvature. 

Complex landscapes 

Some previous work has been done regarding the 
generation of complexly heterogeneous landscapes. 
A method similar to ours was briefly outlined by 
Cliff and Ord (1973; Appendix 1) but was not fully 
specified. Keitt (2000) describes a variety of 
methods for landscape generation; our method is 
essentially a special case of one of these. Similar 
ideas have also been developed in other fields, such 
as materials science (Hu and Tonder 1992; Wu 
2000; Uchidate et al. 2010). However, these papers 
are not generally accessible to non-mathematicians; 
we thus felt there would be value in presenting our 
landscape generation algorithm explicitly. 

A few previous models have looked at 
ecological and/or evolutionary dynamics on complex 
two-dimensional landscapes. However, the 
landscapes of these studies differ from ours in 
several important ways. In some models, the 
landscape consists of only two types of terrain, 
habitable and uninhabitable (e.g., Hiebeler 2000; 
Bonte et al. 2010), or two discrete resource types 
distributed heterogeneously (e.g., North et al. 2011b; 
Karonen 2012). In others, the environment does not 
change smoothly from one type to another, but 
instead exhibits abrupt transitions between types 
(e.g., Birand et al. 2012). Commonly, the landscapes 
modeled are considered to vary in suitability in some 
absolute sense, producing areas that are more 
habitable and areas that are less habitable, rather 
than allowing local adaptation to the different 
environment types to occur (e.g., North and 
Ovaskainen 2007; Stoddard 2010; North et al. 
2011a). As far as we are aware, our model is unique 
in its incorporation of both spatially and ecologically 
continuous complex spatial heterogeneity that 
determines the locally optimal phenotype rather than 
the habitability per se. 

Landscape generation 

Given parameters S, C, Lg, and A, the landscapes 
used in our model are constructed in a six-step 
process. These steps are explained here. 

First, a patchiness matrix with resolution 
sufficient to represent patchiness with 
autocorrelation length Lg (confirmed by post-
analysis of the generated landscape) is filled with 
random values drawn from a Gaussian distribution 
with mean 0 and standard deviation A. 

Second, this patchiness matrix is convoluted 
with a filter function (a modified Bessel function of 
the second kind, order 0) using Fourier transforms. 
This yields the desired periodic properties for the y-
direction; in the x-direction the patchiness matrix is 
padded prior to convolution to remove the 
correlation that would otherwise result between the 
left and right edges. 

Third, an environmental gradient matrix is 
constructed, of the same resolution as the patchiness 
matrix, expressing the linear and quadratic gradients 
as a function e(x) = Sx + 1

2 Cx
2 . 

18Evolutionary branching in complex landscapesOnline Appendix



 

 

Fourth, the final patchiness matrix and the 
environmental gradient matrix are added together to 
produce the preliminary landscape matrix. 

Fifth, the preliminary landscape matrix is 
adjusted by adding a constant α = 0.5 − μenv, where 
μenv is the mean of the preliminary landscape matrix; 
this re-centers the matrix to have a mean value of 
0.5, so that the initial population is adapted to the 
mean environmental value (see Model description, 
PHENOTYPE RANGES AND INITIALIZATION). 

Sixth and last, bilinear interpolation is used to 
construct the canonical landscape matrix. The size of 
this matrix is constant, 512 by 512, for ease of 
implementation. This is a sufficiently high resolution 
to represent with high fidelity all landscapes 
generated by the values of S, C, Lg, and A used in 
this study. Values of u0 (x, y) were obtained from the 
canonical landscape matrix, scaled to exactly span 
the dimensions 0 ≤ x, y ≤ 1 of the landscape. 

Landscape analysis 

The canonical landscape matrix (see previous 
section, Landscape generation) was analyzed to 
derive metrics regarding the heterogeneity of the 
landscape. The scaled standard deviation σ, 
skewness γ 1, and excess kurtosis γ 2 were computed 
across all the values in the canonical landscape 
matrix, thus characterizing the distribution of 
environmental values represented in the landscape 
without regard to their spatial distribution. The 
standard deviation was scaled by σK (Table 1) in 
order to yield a dimensionless metric of the 
environmental heterogeneity, σ. 

Additionally, a metric of the characteristic 
spatial scale of heterogeneity in the landscape was 
computed. First, the autocorrelation function (ACF) 
for the canonical landscape matrix was computed via 
the Wiener-Khinchin Theorem, using Fast Fourier 
Transforms (FFTs); specifically, the autocorrelation 
function is F −1 F E( )F E( )( ) , where F denotes the 
Fourier transform, F 

−1 the inverse transform, F  the 
complex conjugate, and E the canonical landscape 
matrix. To eliminate the periodicity in the x-
direction implicitly imposed by the Fourier 
transform, flipped copies of the landscape were 
pasted to its left and right edge. Given the ACF 
(normalized to a maximum value of 1), the 
autocorrelation length (ACL) was estimated as the 

lag at which the ACF first crossed below the 
threshold value 1 / e (using linear interpolation to 
estimate the exact position of crossing, between the 
last lag above the threshold and the first lag below 
it). The lag was converted to the model coordinate 
system by dividing by 512, and was then divided by 
σs to yield the scaled realized ACL, lr, of the 
landscape. This scaled realized ACL is a 
dimensionless metric comparable to the scaled 
generating ACL, lg. 

Several other ACL estimation methods were 
tried, including fitting an exponential curve to the 
ACF, and using estimates of Moran’s I and Geary’s 
c. Although these metrics were all strongly 
correlated with lr, they produced less accurate 
predictions of the branching propensity of the 
landscape, indicating that they did not capture as 
much useful information as the 1 / e crossing point. 
The 1 / e crossing point was therefore used to 
estimate the realized ACL, lr, in all subsequent 
analyses. 

Patterns of evolutionary branching 

In the analysis presented, we have focused on the 
effects of model parameters on the probability of 
branching during a realization. We have also 
presented data regarding the timing of branching 
(see Distribution of branching times and 
Correlations with branching times), and have briefly 
considered the number of branches generated (see 
Alternative assessment of branching and 
Correlations with branching times). Except for the 
example realization shown in Figure 2, however, we 
have thus far left unaddressed more qualitative 
questions: What does the typical pattern of 
branching in a realization look like? What do 
landscapes that cause branching, or do not cause 
branching, look like? How stable is the branching in 
a typical realization? What does the spatial 
distribution of branched and unbranched populations 
look like? What, if anything, differentiates 
landscapes that allow a single branching event from 
landscapes that allow larger adaptive radiations? To 
answer these questions, we have chosen a small 
selection of unbranched (Figure A14) and branched 
(Figure A15) realizations that illustrate different 
types of observed model dynamics. 
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Figure A14: A selection of realizations that did not branch. Each panel is composed of three subpanels: the landscape (upper left), 
the end-of-realization population census (upper right), and the evolutionary history (bottom). Landscape colors indicate locally 
optimal ecological trait values, while circle colors indicate the actual trait values of individuals, both ranging from white (low) to 
dark green (high). The evolutionary history shows ecological trait values (y-axis) through time (from the beginning of the realization, 
on the left, to the end at 5000 generations, on the right). A: a steep gradient can inhibit branching; note the small population size due 
to low mean fitness. B: a shallower gradient allows a larger population size and higher genetic variability. C: a relatively flat 
landscape with mild patchiness allows even larger population size and genetic variability. D: curvature pushes the population to the 
left, toward the shallower end of the gradient. E: fine-grained heterogeneity promotes branching, but branches may be ephemeral. F: 
strong patchiness promotes branching, but it can be difficult to persist; note how the population’s distribution fits to the shape of the 
landscape. G: very short-range dispersal creates highly localized clusters, but with extreme heterogeneity even this may be 
insufficient to allow branching. H: A steep gradient hinders branching; note the lone colonist on the right, which will surely die. I: 
Strong patchiness also hinders branching, but refugia may mitigate this; note the lone colonist on the right, which might establish a 
foothold and found a new branch. 
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Figure A15: A selection of realizations that branched. Each panel is composed of three subpanels: the landscape (upper left), the 
end-of-realization population census (upper right), and the evolutionary history (bottom). Landscape colors indicate locally optimal 
ecological trait values, while circle colors indicate the actual trait values of individuals, both ranging from white (low) to dark green 
(high). The evolutionary history shows ecological trait values (y-axis) through time (from the beginning of the realization, on the left, 
to the end at 5000 generations, on the right). A: simple branching on a gradient; note that branching was somewhat delayed. B: 
sometimes several branches can become established; however, note the transient branch that went extinct. C: large-scale patchiness 
creates local gradients that can promote branching. D: medium-scale patchiness can support several locally-adapted groups. E: close 
to pure competitive branching (subdivision of a homogeneous resource maintained by character displacement due to competition); a 
very slight gradient is present, however. F: strong patchiness can subdivide the landscape into interleaved, fragmented habitat types. 
G: branching with long-range dispersal on a curved gradient; note that the flatter part of the gradient supports a larger population, 
allowing further branching to occur (although it may not persist). H: very strong patchiness can restrict the population to a single 
zone, just as with a very steep gradient. I: A rare example of extreme adaptive radiation, the product of an optimally intermediate 
degree of heterogeneity, a short dispersal distance, and luck. 

G H I

D E F

A B C

21Evolutionary branching in complex landscapesOnline Appendix



 

 

Beyond remarks on individual realizations (see 
captions, Figure A14 and A15), some general 
observations can be made. Perhaps the broadest 
observation is that branching is a one-way process in 
this model; “reverse speciation” (Seehausen 2006) 
does not occur, although branches occasionally go 
extinct. This is likely for two reasons. First, the 
collapse of incipient branching due to non-
assortative mating does not occur since this model is 
asexual; this might be expected to occur in a sexual 
version of the model, until the strength of assortative 
mating grew sufficiently strong to prevent 
hybridization (Felsenstein 1981; Dieckmann and 
Doebeli 1999; Doebeli and Dieckmann 2003). 
Second, the heterogeneity in this model is 
temporally invariant, and thus causes a constant 
selective pressure towards diversification; temporal 
variation in environmental heterogeneity, on the 
other hand, might be expected to lead to more 
ephemeral divergence (Seehausen 2006). 

Another common pattern is that of evolutionary 
stasis (Estes and Arnold 2007) apart from branching 
and extinction (“punctuated equilibrium”, Eldredge 
and Gould 1972; Gould and Eldredge 1977; Gould 
and Eldredge 1993). The phenotype of unbranched 
lineages often wanders over time due to drift (e.g., 
Figures A14B, A14D, A14I), particularly on 
landscapes with weak heterogeneity that provide 
some variety in local conditions, but not so much 
variation (e.g., Figures A14A, A14H) as to constrain 
evolution through strong selection. Branched 
lineages, on the other hand, more typically reach an 
equilibrium and exhibit stasis thenceforth (Figure 
A15) – although reaching equilibrium may take a 
long time, as populations jockey for position on both 
the physical landscape and on an adaptive landscape 
with peaks that shift due to frequency-dependent 
selection. Once equilibrium is reached, each branch 
exerts selection on every other branch, due to 
competition, and this stabilizes the system. 
Destabilization occurs, however, when a new branch 
arises, causing other branches to evolve away to 
avoid competitive pressure (e.g., Figures A15C, 
A15D). Similarly, when a branch goes extinct this 
may remove previously existing competitive 
pressures, allowing other branches to stop diverging 
(e.g., Figure A14F) or even evolve toward the now-
unoccupied niche (e.g., Figure A15B). Nevertheless, 

after character displacement has equilibrated, stasis 
is generally again observed. 

These qualitative patterns are not here developed 
to the point of rigorously shown results; rather we 
offer them as interesting observations, in the spirit of 
“natural philosophy”, to spur further inquiry into 
less-studied aspects of the process of diversification 
in biological systems. 
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