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Abstract 

The past forty years have seen significant diffusion of end-of-pipe pollution control 
devices as numerous developed countries have sought to reduce local air pollutants from 
coal-fired power. The apparent success of these technologies have led to the hope that 
Carbon Capture and Storage (CCS)- an end-of pipe technology for capturing and 
sequestering carbon dioxide- could play a similar role in helping humanity achieve its 
climate targets. Consequently, a scaling analysis of various pollution control 
technologies, which describes their rates and extents of growth at both the unit and the 
total market levels, is used as a historical analogue for CCS’ potential in contributing to 
significant emissions reductions. This scaling analysis also provides corroboration of 
models predictions of CCS diffusion under climate policy, and also situates pollution 
control technologies within the existing scaling analysis literature for energy 
technologies. In addition, the cost dynamics of Flue Gas Desulphurization (FGD) is 
explored using regression analysis. It is hoped that this costing analysis will provide 
some insight into the likely future drivers of CCS costs, including a provisional learning 
rate for CCS. 

Keywords: learning rate, diffusion, end-of-pipe, flue gas desulphurization, carbon 
capture and storage, scaling analysis 
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Scaling and Cost Dynamics of Pollution Control Technologies: 
Some Historical Examples 

Stephen Healey 

1. Introduction 

Carbon Capture and Storage (CCS) is frequently touted in energy policy circles as a 
technology that could play a significant role in achieving climate targets. Synthesizing 
the energy modeling literature of the time, the IPCC special report on CCS (2005) has it 
accounting for between 15 and 55 percent of total emission reductions by 2100 in a 
climate constrained world (IPCC, 2005). Despite the large range of estimates, the 
impact of CCS on emissions reductions is important in most model scenarios. A key 
parameter contributing to this range is how models represent technological progress, 
and how this progress translates into future cost reductions for CCS relative to other 
low-GHG technologies. This applies whether models try to represent technological 
progress exogenously or whether they seek to endogenize technological progress 
through a number of diverse methods1. Nemet (2007), for instance, notes how a 
relatively modest change in the learning rate2 -a common method of an aggregate 
representation of endogenous technical progress- for Solar PV from 0.26 to 0.17  results 
in a large change in the timing of its breakeven point with conventional technologies.  
Furthermore, the process of technological progress is complex with uncertainties and 
non-linearities, and it is unclear how well such a complex process is represented in 
traditional energy systems models which require a great deal of aggregation and 
generalization (Winskel et al., 2012).   

Consequently, alternative approaches to assess the potential of CCS might be useful to 
corroborate the story generated from climate policy models. One such approach is the 
scaling dynamics of energy technology framework (as first pioneered in Wilson 2009), 
which employs a historical approach to analyze scaling for a given technology at both 
the unit and industry level. Given that CCS has yet to be implemented at a large scale I 
will use data of historically analogous technologies- end-of-pipe pollution control 
technologies in coal-powered plants- to explore possible rates and extents of CCS 
scaling at both the unit and the total market levels, and then see how these situate within 

                                                 
1 See Loschel, 2002 for an overview of these methods. 
2 The rate of cost decline for a doubling of cumulative capacity (McDonald and Schrattenholzer 2001). In 
above example the cost reductions assumed range from 26 to 17 percent cost reductions per a doubling of 
cumulative installed capacity. 
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the existing modelling literature. Ultimately this work seeks to contribute to an 
understanding of whether policy can realistically induce the large scale deployment of 
CCS on the scale, and in the timeframes, necessary to contribute to significant global 
emissions reductions. Given that CCS is currently operating at only four sites globally, 
none of which are a power plant, this is a legitimate research question.3 

In addition, the cost dynamics of these end-of-pipe technologies will be explored using 
regression analysis. With this, I seek to derive a learning rate for one of these end-of-
pipe technologies-Flue Gas Desulphurization (FGD)- using different model 
specifications than what currently exists in the literature. In addition, I will use this 
analysis of the trends of FGD costs to discern the interrelationships (if any) between 
scaling and costs.  

The paper is thus organized as follows. Section two provides a description of the 
technologies in question and describes their diffusion experience in some key markets. 
Section three explores the existing literature in scaling analysis and learning rate 
estimation for pollution control technologies, while section four describes the two 
aforementioned methodological approaches, and the data used in the analysis, in more 
detail. Sections five and six contain the results from the scaling and regression analysis 
respectively, while section seven discusses the results. Section eight concludes with 
some implications for further research and policy.  

2. Background 

The technologies considered in this paper include: 

 Flue Gas Desulphurization (Wet and Dry) 
 Selective Catalytic Reaction (SCR) 
 Particulate Control Equipment (Electrostatic Precipitators, Baghouse Filters) 

 
A description of these technologies, their diffusion experience in the US, and the 
diffusion experience of Japan and Germany, are outlined in subsections 2.1, 2.2, and 2.3 
below.   

2.1 Technology Description 

The technologies assessed in this paper either employ chemical reactions or physical 
processes to remove pollutants from flue gasses. Flue Gas Desulphurization (FGD) 
technologies are one type of the former, acting to remove Sulfur Dioxide (SO2) from 
waste (flue) gas by bringing the gas into contact with a reactive agent (usually lime or 
limestone). A reaction occurs with the gas in a steel column called an absorber, where 
the SO2 and some of the reactive agent, are converted into solid waste (EPA, n.da). 

                                                 
3 These are the Sleipner and Snohvit projects in Norway, in In-Salah project in Algeria, and the Weyburn 
project in the US/Canada (CCS Association, n.d).  
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FGD technologies can be either wet or dry. Wet FGD systems use a scrubbing liquid as 
the reactive agent, whereas dry FGD technology utilizes a dry/powdered form (EPA, 
n.da).  

Selective Catalytic Reduction (SCR) scrubbers, which covert Nitrogen Oxide (NOx) 
into nitrogen and water, are another pollution control technology which utilizes a 
chemical reaction to achieve its end.  SCR works by passing the waste gas through a 
catalyst container4 where the gas reacts with the catalyst and ammonia to generate water 
and N2 from NOx. On the other hand, the two most common forms of particulate 
control equipment-Electrostatic Precipitators and Baghouse filters- use an 
electromagnetic force and a filtration system respectively, i.e. physical processes, to 
remove particles from the flue gas (EPA, n.db).  

These pollution control technologies are assumed to be analogous to post-combustion 
carbon capture, which is the carbon capture system closest to commercial deployment in 
power plants (IPCC, 2005).  Post-combustion capture operates by passing the flue gas 
through a reactive agent (Monoethanolamine) in an absorber, where the agent removes 
the CO2. A regenerator unit then strips the CO2 from the reactive agent (Gibbins and 
Chalmers, 2008). In a fully integrated CCS system, the CO2 is then compressed, 
transported, and geologically stored, while the solvent is recycled for later use (Gibbins 
and Chalmers, 2008).   

Clearly, some of the aforementioned pollution control technologies prove to be better 
analogies than others. For instance, post-combustion capture has little in common with 
the removal mechanisms employed in particulate control equipment, due to their use of 
magnetism and filters to remove solid particles, however it does display similarities 
with the chemical based FGD and SCR. These similarities have influenced the latter’s 
use as analogies for CO2 capture systems in other papers in the literature (see Rubin et 
al, 2004; Rubin et al, 2007; Van den Broek et al 2009).  

However, some significant differences remain. For one, most FGD systems are non-
regenerative with respect to the reactive agent, consequently resulting in the generation 
of substantial amounts of waste (Calcum and Magnesium sulfite in plants using lime 
and magnesium as the chemical agent respectively, and gypsum in forced-oxidization 
plants). For instance, a 500MW coal-fired plant burning 3.5% sulfur coal that contains a 
forced-oxidation FGD system with 95% removal efficiency can generate about 47 tons 
of gypsum per hour (Chou, 1995). Assuming a capacity factor of 75% (or 6570 annual 
hours of operation), the above plant can generate about 308,790 tons of gypsum per 
year. While regenerative FGD technologies exist, they made up only 3% of the US 
market in 1998 (Srivastava and Jozewicz, 2001).  The second major issue is that the 
capture stage is only one process of CCS, which also requires compression, transport, 
and storage of the captured CO2. Thirdly, CCS costs are generally lower than FGD and 

                                                 
4 A container constructed from reactive metals and which changes the speed of the reaction. 
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SCR costs (per kg removed) due to greater concentration of CO2 in the flue gas relative 
to SO2 and NOx, as costs are generally an inverse relationship to concentration (See pg 
230 in Grubler 1998 for a graphic illustration). Table 1 below compares some key 
engineering parameters for relating to FGD, SCR, and CCS systems from a new 
pulverized 500 MW (with 75% capacity factor) coal-fired power plant burning eastern 
bituminous coal with 3.25% sulfur content and 47.85% carbon content. 

TABLE 1. SELECT ENGINEERING PARAMETERS FOR POST-COMBUSTION TECHNOLOGIES  
 NOx (SCR 

System) 
S02 (FGD System-
Limestone based 
forced oxydation) 

CO2 (Anime Post-
Combustion system 

Cost of control device 
($/ton removed) 

$1200-$3200 
(2008 $/ton) 

$250-$600 
 (2008 $/ton) 

$23-$35  
(Assumed 2005 $/ton) 

Pollutant flow (annual 
tonnes-my estimate) 

1463 13,916  3,059,426 

 

Emission Rate (no 
control) 

0.45g NOx/kWh 2.45g SO2/kWh 941g CO2/kWh 

Data From: (Rao & Rubin, 2002). Cost for NOx and FGD systems from Cichanowicz, 2010 and CCS cost 
from IPCC, 2005.  

 

The adverse impact of these differences on the use of FGD as an analogy, however, are 
lessened by the fact that the regenerative/non-regenerative aspect is one difference out 
of many similarities, as well as by the fact that the other CCS components- transport and 
storage- are estimated to make up only 9-18%5 of total CCS costs. Thus, the capture 
stage will rightfully be the driving force of future CCS dynamics provided that the 
underlying geology is suitable to long-term storage of CO2. Finally, while the initial 
costs of CCS and FGD systems may differ due to the concentration differences 
discussed above, this does not mean that their internal dynamics, reflecting their growth 
and cost decline rates that will be explored here in this report, cannot be analogues.  

2.2 Regulations (US) 

a) Particulates: While particulate matter has a long history of regulation in the US at 
the state and municipal level6, prior to the 1970 Clean Air Act Federal standards did not 
exist. While there was some strengthening of the Federal role through the Air Quality 
Act of 1967, it took the Clean Air Act Amendments (CAA) and the formation of the 
EPA in 1970 to establish widespread Federal regulation of particulates. In 1971, 
National Ambient Air Quality Standards (NAAQS) applied to Total Particulate Matter, 
setting 24 hour and annual average standards. Standards were expanded to target PM10 

                                                 
5 IPCC 2005, see Table TS9 on page 79. 
6 Prior to 1970, 53 cities has imposed limits on PM emissions from combustion and 10 states within their 
air quality standards (Bachmann, 2007). 
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in 1987 and PM2.5 in 1997.7 Figure 1 below demonstrates the diffusion of particulate 
control units in the US between 1937 and 2010. Identified on the figure are the major 
regulations as discussed above. Evident is the pronounced growth in particulate controls 
installed just after the 1971 NAAQS, although diffusion of this technology begins to 
saturate by the time the later regulations are introduced. Note that the y-axis in Figure 1 
has number of FGP units, while the corresponding figures for FGD (Figure 2) and SCR 
units (Figure 3) encountered later in this section are in GW.  Unfortunately, unit 
capacity data was unavailable for FGP systems in the EIA source cited below figure 1. 
Also note that since retirement data was not available for any of the pollution control 
systems, the following graphs represent capacity installations but not retirement. This 
differs from some of the data used in the scaling analysis which employed cumulative 
capacity data (that of Rubin et al., 2004) and thus implicitly incorporated retirements. 
Furthermore, these figures, while representing installed capacity of these technologies 
over time, differ somewhat from the scaling analysis which follows in the later sections. 

 

FIGURE 1. US FLUE GAS PARTICULATE (FGP) CONTROL CUMULATIVE UNITS INSTALLED 1937-201 

Raw Data From: (EIA, 2011). Assembled by author (see supplementary materials 1 and 2).  

 

b) SO2: SO2 was fist regulated at the Federal level under the 1970 CAA and the 1971 
NAAQS (Popp, 2005). Part of  NAAQS were the 1971 New Source Performance 
Standards (NSPS) which applied to new combustion plants, and which effectively 
spurred the beginning of the US Flue Gas Desulphurization (FGD) market (Markusson, 
2012). In 1979, amendments to the NSPS resulted in the creation of differentiating 
emission standards for coals with different sulphur content, and in strict standards which 

                                                 
7 Summarized from Bachmann, 2007. 

1971 NAAQS 

PM10

PM2.5
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effectively required that all new coal-fired power plants have FGD (Popp, 2004). This 
was an intensity target, which regulated the amount of pollutant at 1.2 pounds of SO2 
per million Btu of heat input (Popp, 2004).  Figure 2 below illustrates the diffusion of 
US FGD units in relation to the major US regulations governing SO2 control. Evident 
from the graph is how much the 1979 NSPS drove the diffusion of FGD in the US, 
growing by 44 GW between 1978 and 1990.  

  

FIGURE 2. US INSTALLED FGD CAPACITY 1969-2010 

Raw Data From: (EPA, n.dc). Assembled by author (see supplementary materials 1 and 2). 
 
The 1990 Clean Air Act Amendments were the next major US regulation to impact 
FGD. It established an SO2 emission permit trading scheme, in which plants are 
required to hold permits for each ton of SO2 emitted (Popp, 2004). This occurred in two 
phases, one from 1995-1999 for one subset of plants and 2000-2009 for the other. This 
regulation changed the incentives facing utilities to adopt FGD, for unlike the NSPS, the 
1990 CAA amendments applied to both new and old plants. At the same time, however, 
the regulation was no longer an intensity standard and instead created an aggregate 
emission limit for the power industry (Markusson, 2012). This allowed utilities a choice 
of methods to reduce emissions, ranging from low-sulfur coal with no post-combustion 
controls to FGD. While we see a build-up of FGD in Figure 2 immediately prior to the 
regulation, the growth in installations was nowhere near as pronounced as it was around 
the introduction of the 1979 NSPS.  

In 2005, the US passed the Clean Air Interstate Rule (CAIR) whose goal is to reduce 
PM2.5 arising from SO2 and NOx emissions through additional trading schemes for 

CAA Amends  

CAIR 
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eastern states, and with deadlines for SO2 reductions in 2010 and 2015 (Markusson, 
2012).  As seen in Figure 2, CAIR has resulted in a rapid build of FGD units since 2006. 

c) NOx: While NOX emissions were covered by the 1971 NAAQS, standards were less 
stringent and, consequently, most utilities were able to meet the requirements of the 
regulations at the pre-combustion stage. As seen in Figure 3 below, widespread 
diffusion of SCR systems in the US did not occur until the 1990s, when NOX  

regulations were strengthened in California and in the Eastern US, beginning in 1999. 
Nationally, the 1990 CAA tightened emission standards by 2000, applying a 
differentiated emissions standard to both new and existing plants.8  

 

FIGURE 3. US INSTALLED CAPACITY OF SCR 1991-2010 

Raw Data From: (EPA, n.dc). Assembled by author (see supplementary materials 1 and 2). 

2.3 International Diffusion 

This section broadly situates the US diffusion experience, described above, in an 
international context. Evident from figure 4 below is how both the US and Japan were 
relative leaders in FGD diffusion with Germany and the Rest of the World (ROW) as 
laggards. However, the scale of the graph in figure 4 masks some important differences 
between the two countries in the earlier years of FGD’s introduction. Figure 5 below 
contains capacity data for Japanese Wet FGD units between 1960 and 2004. Comparing 
this graph to total US data in Figure 1, we see Japan had a considerable lead around 
1970 relative to the US. This Japanese head start can be explained by  her 1968 Air 
Pollution Control Law, which set emissions standards in Japan for NOX and SO2, and 
which were further strengthened by amendments in 1970 and 1974 (Popp, 2004). These 
regulations were quite strict relative to the US (Popp 2004).  Similarly, Figure 6 
                                                 
8 The above paragraph was summarized from Popp, 2004 

Stringent NOx 
reductions 



8 

illustrates how Japan was the undisputed leader in SCR diffusion, corresponding to the 
stringency of its NOx regulations, relative to the US (Markusson, 2012). Evident also 
from both graphs was how Germany, while initially a laggard in the diffusion of both 
technologies, saw a subsequent rate of diffusion that was clearly quite rapid. This is due 
to Germany implementing strict air pollution standards considerably later than the US or 
Japan. For large (> 50 MW[thermal]) plants, the Ordinance on Large Combustion plants 
established emissions standards on June 1, 1983. Smaller plants (1-50 MWth) are 
covered by the Technical Instruction for Air Pollution Control, amended in 1986.9 

Although international data is not available for comparison, it is assumed that the US is 
a leading country with respect to diffusion of flue gas particulate control devices.  

 

FIGURE 4. WET FGD CUMULATIVE CAPACITY 

Data From: (Rubin et al., 2004) 
 

                                                 
9 The above was summarized from Popp, 2004. 
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FIGURE 5. WET FGD INSTALLED CAPACITY (JAPAN 1960-2004) 

Raw Data From: (CRIEPI, n.d). Assembled by author (see supplementary materials 1). 
 

 

FIGURE 6. SCR CUMULATIVE CAPACITY 

Data From: (Rubin et al., 2004) 

 

3. Literature Review on Technology Scaling/Costing Analysis 

Scaling, or up-scaling, refers to the increase in size of a technology at both the unit and 
industry level (Wilson, 2012). The literature on the scaling dynamics of energy 
technologies was pioneered in Wilson 2009, Wilson and Grubler 2011, and Wilson 
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2012. With precedents in the extensive work on diffusion theory10 (see Mansfield 1968 
and Grubler 1998 for reviews), the scaling dynamics of energy technologies is unique in 
both its meta-analytic approach, taking historical examples of scaling for a number of 
energy supply and demand technologies in order to discern patterns among them, and in 
its emphasis on both unit and industry scaling and their interrelationships. Some key 
findings from this research include:  

a) Unit level scaling is often preceded by a lengthy formative phase where 
experimentation and learning can occur from the manufacturing of many smaller units 
(Wilson, 2012). 
b) Unit-level scaling precedes industry-level scaling 
c) Specific technology and market characteristics influence unit and industry scaling 
rates across technologies. For example, Wilson argues that the balancing of benefits 
from scale economies with the countervailing benefit of meeting demand for 
heterogeneous markets, is a key driver in understanding unit scaling rates across energy 
supply technologies (Wilson, 2012). Also, considerably faster industry-level scaling 
occurred in a later-adopting periphery relative to an early-innovating core. 
d) There exists a consistent relationship between the extent and duration of industry 
scaling for both supply-side and end use technologies (Wilson, 2009). 

While the aforementioned work explored scaling for a wide range of energy supply and 
end use technologies, pollution control technologies were not analyzed. As a starting 
point of this research I hypothesize the existence of fundamentally different dynamics 
for end of pipe pollution control technologies relative to energy supply and end use 
technologies.  Firstly, the former’s diffusion was almost entirely driven by regulation, 
while most of the latter diffused primarily according to market dynamics. Secondly, 
pollution control technologies are so called “add on” technologies, which serve no 
purpose on their own and need to combine with existing energy supply technologies 
such as coal power generation. This is an important consideration for, unlike energy 
supply/demand technologies, pollution control technologies need not be concerned to 
the same degree with capital stock turnover or missing supporting infrastructure, which 
would affect their rate of diffusion (Wilson, 2009). This is only partially analogous to 
CCS, which combines elements of “add on” technologies (in the capture stage) with the 
requirement of supporting infrastructure and the need to combine with other 
technologies in the transport and storage stages. 

As mentioned previously, this work also seeks to derive a learning rate for Flue Gas 
Desulphurization technologies. Unlike the scaling dynamics of energy technologies, the 
learning curve literature is extensive with considerable antecedents (Wright 1936; 
Arrow 1962, Argote and Epple 1990). Traditional learning curves relate declines in unit 
costs to a measure of cumulative experience gained with that technology, as for instance 

                                                 
10 Research seeking to understand the controlling factors determining the rates and extents of technology 
diffusion, i.e. the spread of technology adoption over time and space. 
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total cumulative production volumes, or cumulative units built. Learning curves are 
used to measure the phenomenon known in economics as learning-by-doing, whereby 
firms get better at producing a given technology by practice and experience manifested 
through improved plant management, improved worker productivity, and improved 
design- all of which drive down costs (Grubler et al. 1999). The learning rate, derived 
from the linear estimation of the aforementioned learning curve, is the rate in which unit 
costs decline for every doubling of cumulative experience. 

In the energy field, almost exclusively cumulative installed capacity (McDonald and 
Schrattenholzer 2001) is used in learning curve analysis, due to the dominance of 
electricity generating technologies in the energy learning curve literature. A serious 
issue with this approach, however, is that unit-level economies of scale and learning are 
confounded by such an aggregate measure of cumulative experience. Learning curve 
concepts have seen a resurgence in the energy literature with the emergence of a so-
called two-factor learning curve model (Klaassen et al. 2005, Barreto and Kypreos 
2003, Miketa and Schrattenholzer 2004) that try to describe the influence of both R&D 
and cumulative capacity on cost declines, referred to as learning “by searching” and 
“doing” respectively. Further studies by Soderholm and Sundqvist (2007), Isoard and 
Soria (2001), and Kalouhi-Brahmi (2010), create simple multi-factor learning curves 
that also try to control for input cost changes, economies of scale, and exogenous 
technological change. Criticisms of these models, however, include (but are not limited 
to) statistical identification issues pertaining to separating learning from exogenous 
technological progress (Nordhaus, 2009), the assumption of R&D and Cumulative 
experience being two separate learning processes which are substitutes for one another, 
rather than complements (Halsnaes et al., 2007), as well as other statistical issues 
pertaining to omitted variable bias and simultaneity (Soderholm and Sundqvist, 2007).  

A more promising approach has been developed by Nemet (2007) who employs a multi-
factor decompositional approach for analyzing cost declines in US Solar PV 
technologies. His use of a bottom-up engineering analysis, rather than industry level 
regression analysis, allows for consideration of a greater number of factors when 
explaining cost changes for a relatively new energy technology. Consistent with the 
findings of the technology scaling analysis literature discussed above, Nemet (2007) 
found significant economies of scale effects at the industry scale. Similar studies were 
performed for nuclear reactors by Zimmerman (1982) and for coal-fired power plants by 
Joskow and Rose (1985).  

For pollution control technologies there are few studies assessing their cost dynamics. 
Rubin et al., (2004) calculated learning rates of 11% and 12% for FGD and SCR 
technologies respectively; however, this paper based these rates off of five data points, 
with standardized engineering parameters, and thus statistically problematic and also 
may not truly reflect the historical reality. Similar work, although with different data, 
was performed by Lohwasser and Madleiner who estimated a two-factor learning curve 
for FGD technologies and found a joint learning rate of 12.1%. After decomposing 
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learning into learning-by-doing and learning-by-researching, the learning-by-doing 
component had a learning rate of 7.1% (Lohwasser and Madlener, 2010).  

Lange and Bellas (2005) conducted a large model, in the style of Zimmerman (1982) 
and Joskow and Rose (1985), to explain capital and operating cost trends for FGD units. 
Interestingly, they found there to be a positive time trend with respect to capital costs, 
contradicting the findings of Rubin (2004). In addition, this trend was not statistically 
significant in explaining cost dynamics.  

4. Data and Methodology 

4.1 Scaling Analysis 

As in Wilson (2009), the scaling analysis seeks to describe the growth of a technology 
at both the unit and industry levels. Following his method, I fitted a three-parameter 
logistic function to historical data of cumulative capacity and unit scale for the 
aforementioned pollution control technologies. The logistic function takes the following 
form (Wilson, 2009): 

ݕ ൌ 

ଵାష್ሺషబሻ
                       (1) 

and                                                  

ݐ∆                                          ൌ
ଵ


 (2)                        81݈݃

where: 

K= the eventual saturation level of a technology  

Tm= the inflection point or maximum growth point 

b= diffusion rate 

Δt= Time, in years, for the technology to go from 10% to 90% of the total extent of 
scaling. Diffusion time. 

 
Parameters of interest included the Δt, Tm, and K which were calculated for the industry 
scaling variable cumulative capacity (measured by units and MW’s), as well as the unit 
scaling variables of average unit size and maximum unit size (both in MW). FGD and 
SCR units had the best data, allowing me to estimate the parameters for all the variables 
described above for these technologies. For Flue Gas Particulate (FGP) control 
technologies, data limitations limited the analysis to the industry scale, and for units 
only.  US industry scale data for most technologies was obtained from EIA Form 860, 
containing detailed information on pollution control equipment. Data for non-US 
cumulative capacity for SCR and Wet FGD technologies was obtained from figures 1 
and 3 in Rubin et al., (2004). Unit capacity data for both US FGD and SCR technologies 
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was obtained from the EPA’s preliminary draft estimates of current and announced 
control technology installation, which is available online11. Finally, Japanese FGD unit 
capacity data was obtained from communications with officials at Japan’s Central 
Research Institute for the Electric Power Industry (CRIEPI, n.d).  

Data fitting was performed by the Logistic Substitution Model II (LSM2), a logistic 
function fitting program freely available online at the International Institute for Applied 
Systems Analysis (IIASA). Rules of thumb for retaining the fitted logistic curve results 
for subsequent analysis were taken from Wilson (2009) and included: a) the data series 
having to cover at least 60% of the full S-curve range and b) the logistic function 
displaying high goodness of fit to the data (>95%).  The use of logistic functions is 
justified on the basis of a wealth of empirical evidence demonstrating the 
appropriateness of S-shaped growth function such as the logistic in describing the 
historical diffusion patterns of most technologies (Geroski, 2000).  

Other analytical simplifications used included taking the average of the stock- that is the 
cumulative average at the end of a given year- to calculate annual average unit scale, 
and using an envelope approach- where the largest unit produced to date is taken to be 
the “maximum” for that year- to estimate maximum unit scale. This was done to 
eliminate the fluctuations that would occur from taking annual averages/maximums that 
would make the fitting of a logistic function nonsensical for these unit-scale indicators.  

Finally, for some data there are multiple logistic curves nested within the same dataset. 
For instance, due to the nature of US regulations for sulfur reductions, which have been 
increasing in scope over time, an initial pattern of growth and saturation for cumulative 
FGD capacity was later followed by a second round of expansion around 2006. For the 
purpose of fitting logistic curves to the data, it is sufficient to employ only one of these 
subsequent phases, as it is assumed that the dynamics inherent in the first phase will 
best represent the initial stages of diffusion of a new pollution control technology (i.e. 
CCS) under a more or less constant incentive/regulatory environment. A similar 
approach was applied to maximum and average unit scale for FGD.  

Once the above parameters were obtained for pollution control technologies, they were 
then compared to the results in Wilson (2009) for conventional and renewable energy 
technologies in order to ascertain if pollution control technologies are characterized by 
fundamentally different dynamics than other energy technologies. In addition, the 
estimated parameters for pollution control technologies were used to see whether or not 
the diffusion experience for pollution control technologies is consistent with some of the 
key tenants of diffusion theory, explained in further detail in section 5. 

                                                 
11See EPA(n.dc) in references 
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4.2 Regression (Costing Analysis) 

In addition to the scaling analysis described above, regression analysis was performed 
to understand the cost dynamics for FGD. Here I estimated as a base model an equation 
relating unit costs (normalized by MW’s) to a number of key engineering and economic 
variables. All cost data was obtained from EIA Form 860 which contained cost data for 
over 600 FGD units.12 This number was reduced to 303 observations after removing all 
sites below 25MW to ensure an apples-to-apples comparison of similar units13 and after 
taking into account considerations of data availability for capacity and other variables 
(see supplementary materials 2 for the final dataset used in the regression). The 
theoretical model is described in equation 1 below:  

COST/MWi = (EXPi, UNSIZEi, PLCONi, RETROFITi, COALSO2i, TRAINSi, INDCONi, 
REMEFFi, STEELi, AVGUNIi, ENERi, WETi)                                                               (3)  

The rationale for these variables, an explanation of their construction, and a 
documentation of their data sources, are all found in Table 2 below. Justification for this 
model was based on the consultation of a number of technical and economic studies of 
FGD systems14-where the aforementioned variables re-appeared regularly. In addition to 
this base model, a number of alternative specifications (with additional variables that 
were mentioned in the literature, albeit less frequently), were included in the sensitivity 
analysis in section 6. A description of the sensitivity analysis is located in Appendix F. 

TABLE 2. VARIABLE EXPLANATIONS 
Variable Explanation and Rationale Construction Data 
COST/MW Dependent variable ($/MW). Total installation cost (structure 

cost, disposal cost, and other) 
and divided by the corresponding 
MW size of the boiler. Being an 
“installation cost”, the value 
reflects markup/profits on the 
part of FGD unit manufacturers.  

EIA 2011. EPA 
n.dc 

EXP Cumulative units built as 
measure of experience and a 
proxy for learning-by-doing. 
As more units are built, FGD 
manufacturers and utilities 
are expected to learn from 
experience, translating into 
lower costs 

Count of all previous FGD units 
constructed preceding the 
construction of the FGD unit in 
question.  

EIA 2011 

UNSIZE Size of the unit in MW. 
Captures (dis)economies of 

Given in EPA’s preliminary draft 
estimates of current and 

EPA n.dc  

                                                 
12 Disaggregated originally as structure, disposal, and other costs. My dependent variable was the sum of 
these three.  
13 Many smaller sites involve FGD units installed in paper mills and other applications. Since the 
emphasis of the costing analysis is on the cost trends of FGD units as an analogy to CCS is coal-fired 
power plants, these observations were removed.     
14 Srivastava & Jozewicz (2001), Cichanowicz (2010), Devitt et al., (1976), EPA (2002) 
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scale where larger(smaller) 
units result in lower(higher) 
costs per unit 

announced control technology 
installation 

PLCON Sulfur concentration in the 
flue gas. The higher the 
concentration, the easier to 
remove from the flue stack 
and thus the lower the costs 

Given pounds of sulfur emitted 
per hour (after pollution control) 
and efficiency of the removal 
unit, one can calculate how much 
SO2 is emitted per hour. Dividing 
this by flow rate in ft3 per hour 
provides the SO2 concentration 
of the plant’s flue gas. 

EIA 2011 

RETROFIT FGD units built 
simultaneously with a new 
plant can be incorporated 
into its design, reducing 
costs. Retrofit applications 
require the system be adapted 
to the existing plant design 
(Hoskins, 2012). 

Binary variable. If the date the 
FGD unit was built is <2 years15 
after the date of construction of 
its associated boiler, one can 
conclude that it was not a retrofit. 

Platts (2011) for 
date of boiler.  
EIA 2011 for 
date of FGD 
unit. 

COALSO2 Sulfur concentration of the 
coal (see PLCON for 
rationale) 

% of SO2 in the coal. Given in 
Form 860. 

EIA 2011 

TRAINS The number of absorber 
trains associated with a given 
FGD unit. Multiple (spare) 
trains were often built in 
order to ensure higher 
reliability. More 
equipment/unit = Higher 
costs 

Divided the number of trains 
associated with a given FGD unit 
by the MW size of the unit. 

EIA 2011 

INDCON Index of market 
concentration of FGD 
suppliers for the year the 
specific FGD unit was built. 
More concentrated market 
implies the ability to engage 
in oligopolistic pricing by 
FGD manufacturers and 
hence higher costs 

Created a Herfindahl-Hirschman 
index of unit manufacturers from 
data provided in EIA form 860. 
Took a five year moving average 
to remove data perturbations 
from economic business cycles. 
See Appendix A for further 
details on its construction.  

EIA 2011 

REMEFF Pollutant removal efficiency. 
Increased performance 
targets and associated design 
changes are expected to 
result in higher costs 

Removal efficiency of the 
scrubber in %. Given in Form 
860 

EIA 2011 

MAT Index measuring the cost of 
key input materials specific 

See Appendix B for details. Took 
the average of the two years 

My construction. 
See Appendix B 

                                                 
15 It takes on average 3 years from design to completed installation for an FGD System with most 
construction work occurring in the latter 2 years (Cichanowicz, 2010) 
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to FGD units for a given 
FGD unit in the sample. 

preceding the unit’s start date as 
it takes an average of three years 
to build and install and FGD 
system with most of the 
construction work occurring in 
the latter two years 
(Cichanowicz, 2010.) 

AVGUNI A measure of economies of 
scale at the firm level. The 
greater the output per firm, 
the greater the opportunity 
for manufacturing-scale 
economies, i.e. economizing 
by reducing 
overlap/redundancy, and thus 
lowering costs. 

Annual output divided by the 
number of firms producing 
output for the year a given FGD 
unit was built. Took a five year 
moving average to remove data 
perturbations from economic 
business cycles. 

EIA 2011 

ENER Index of energy prices. Since 
FGD units employ energy in 
their construction, higher 
energy prices correspond to 
higher unit costs. 

Weighted consumer energy price 
across energy sources which I 
then converted to an index with 
1982 as the base year. Took the 
average of the two years 
preceding the unit’s start date as 
it takes an average of three years 
to build and install and FGD 
system with most of the 
construction work occurring in 
the latter two years. 

EIA 2012 
 

WET  Type of FGD unit (wet or 
dry) which impacts the cost 
structure with wet units 
tending to have higher capital 
costs than dry FGD units  

1 if wet FGD and 0 otherwise. 
Compared relative to the 
reference group of dry FGD 
units.  

EPA n.dc 

 

The functional form for this analysis was similar to that used in Lange and Bellas 
(2005) and results in a log-log specification. Evidently, the model above is quite similar 
to that of Lange and Bellas (2005), who employed a similar approach in explaining 
FGD capital cost trends, including use of a very similar datatset (basically employing 
the same dataset as me until 2005). However, there are some important differences as 
discussed below: 

1) I normalize the dependent variable by MW to determine trends in the cost per 
MW rather than the absolute cost trends. This is important as MW’s are the 
ultimate products delivered by utilities, and so the relative advantage of a 
given technology depends on its trend in costs normalized to this unit.   

2) Similarly, by normalizing the dependent variable to unit size, I capture unit 
economies of scale through an independent variable that tests if larger units 
result in lower costs per unit. Unit economies of scale cannot be captured by 
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simply regressing size against un-normalized cost. Obviously larger units in 
absolute size will result in larger absolute costs. 

3) My model specification includes an explicit consideration of technological 
learning and documents alternative formulations of the experience variable 
used in learning curve analysis. 

4) My base model, combined with the numerous specifications in my sensitivity 
analysis, contains several additional variables identified in the literature as 
important in understanding FGD cost trends.  

5) I update the analysis to include years after 2005, where there was a 
substantial increase in the build of new FGD units with potential 
implications for cost dynamics. 

5. Scaling Analysis Results 

5.1 Market Scaling 

The results from the market scaling analysis are illustrated in Table 3 below. The data 
comes from a number of sources and, in some instances I estimated scaling parameters 
for the same technology from more than one data source to corroborate my findings.  
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TABLE 3. MARKET SCALING ANALYSIS PARAMETERS 
Technology Juris-

diction 
Time Data 

Source 
Unit K Tm Δt R2 

Wet FGD Scrubbers  US 1972-2005 Rubin et 
al., 2004 

GW 91 1985 22 0.98

Wet FGD Scrubbers  Japan 1972-2005 Rubin et 
al., 2004 

GW 22 1989 20 0.99

SCR  Japan 1981-2000 Rubin et 
al., 2004 

GW 46 1999 31 0.98

FGD Scrubbers  US 1969-2006 EPA n.dc GW 80 1985 23 0.98
FGD Scrubbers US 1969-2006 EPA n.dc Units 220 1986 23 0.99
FGD Scrubbers  Japan 1960-2004 CRIEPI 

n.d 
GW 59 1989 38 0.98

FGD Scrubbers Japan 1960-2004 CRIEPI 
n.d 

Units 118 1979 23 0.97

Wet FGD Scrubbers US 1969-2006 EPA 
2011 

GW 72 1984 21 0.98

Wet FGD Scrubbers US 1969-2006 EPA n.dc Units 155 1982 19 0.98
Dry FGD Scrubbers US 1981-2010 EPA n.dc GW 23.5 2001 40 0.97
Dry FGD Scrubbers US 1981-2010 EPA n.dc Units 69 1994 24 0.99
All FGP Units 
(Particulate Removal) 

US 1937-2010 EIA 2011 Units 2249 1980 29 0.99

Electrostatic 
Precipitator 
(Particulate Removal) 

US 1937-2010 EIA 2011 Units 1338 1977 22 0.99

Baghouse (Particulate 
Removal) 

US 1962-2010 EIA 2011 Units 507 1990 21 0.99

FGP- Wet Scrubber 
(Particulate Removal) 

US 1956-2010 EIA 2011 Units 90 1979 29 0.99

Wet FGD Scrubbers  Germany 1972-2005 Rubin et 
al., 2004 

GW 44 1988 7 0.98

Wet FGD Scrubbers Rest of 
World 

1972-2005 Rubin et 
al., 2004 

GW 43 1994 6 0.99

SCR  Germany 1981-2000 Rubin et 
al., 2004 

GW 28 1988 2.7 0.99

SCR ROW 1981-2000 Rubin et 
al., 2004 

GW 20 1995 8.7 0.99

SCR US 1981-2000 Rubin et 
al., 2004 

GW 18 2000 8 0.98

SCR US 1991-2010 EPA n.dc GW 118 2001 9.6 0.99
SCR US 1991-2010 EPA n.dc Units 240 2002 10.2 0.99

 
The main parameter of interest is the delta t (Δt), which, as described earlier, measures 
the number of years for the technology in question to grow from 10% to 90% of its 
eventual market size. Evident from the table, this varies substantially between the 
technologies and jurisdictions in question, ranging from 2.7 years for German SCR 
units to 40 years for US dry FGD units.  

This aggregation of jurisdictions, however, masks an important distinction- that between 
core and periphery markets. Core markets are the initial markets where diffusion of a 
given technology begins, while periphery markets are followers which see diffusion 
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later. One of the key tenants of diffusion theory is that the delta t’s exhibited for a 
technology in its core market tends to be higher- that is, diffusion is slower- than the 
corresponding delta t in a non-core markets (Grubler, 1996). Non-core markets benefit 
by learning from the experiences of the core area (Grubler, 1996). The separation of 
these two types of markets- core and non-core- is thus essential for making meaningful 
comparisons of rates of diffusion. 

Figure 7 below compares my estimated delta t’s for pollution control technologies 
(blue) with those for conventional and renewable energy technologies for core markets 
as estimated in Wilson (2009).  

 

 

FIGURE 7. INDUSTRY SCALE ACROSS TECHNOLOGIES (CORE MARKETS) 

Assembled by Author: See Supplementary Materials 1  
 

We see from Figure 7 that the delta t’s for pollution control technologies compare rather 
well with conventional energy technologies. Thus, even though these technologies were 
forced into the market through various regulations, their rates of diffusion were no 
different than energy technologies which were more market driven in nature. The 
consistency of this observation across technologies, across countries, and thus, across 
regulatory regime is particularly fascinating. Further exploration of this phenomenon 
will be elaborated upon in Section 6.  
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Figure 8 below compares the delta t’s for non-core markets for pollution control 
technologies (green) with the delta t’s for non-core markets for other energy 
technologies (taken from Wilson 2009).  

 

 

FIGURE 8. INDUSTRY SCALING ACROSS TECHNOLOGIES (NON-CORE) 

Assembled by Author: See Supplementary Materials 1  
 
In contrast to the earlier finding surrounding core markets, here we see the delta t’s for 
pollution control technologies to be much lower than that of conventional technologies 
diffusion in non-core markets. While the reason behind this finding is unclear, its 
implications are quite positive for the prospects of CCS as it implies that once CCS has 
seen diffusion in a core market, and if there are policy regimes in the non-core markets 
supportive of CCS, we could see a rapid diffusion of CCS in these jurisdictions. An 
important caveat to this last point, however, is that CCS’s diffusion is also constrained 
by the suitability of geological storage, and so we are likely to only see the above rates 
of diffusion in areas where the geology supports CO2 storage and where sufficient CO2 
transportation infrastructure is developed.  

In addition to the above analysis, it can be also shown that pollution control 
technologies are consistent with most key aspects of diffusion theory. Three aspects to 
be tested include: 

1) The inverse relationship between delta t and adoption date (where we would 
expect to see higher Delta T’s for core markets relative to non-core). 

2) The inverse relationship between intensity of diffusion and adoption date (core 
markets essentially witness a more thorough extent of diffusion than non-core 
markets) (Grubler 1996).  
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3) The positive relationship between the rate of scaling (delta t) and the extent or 
magnitude of scaling (k) (Wilson, 2009). 

Regarding the first point, Figures 9 and 10 below plot the estimated delta t against the 
adoption date (measured as the date the first unit was installed) for FGD and SCR 
technologies respectively. As one can see, there are less FGD observations in Figure 9 
relative to Table 3 as I only include the calculated diffusion rates for wet and total FGD 
while excluding dry FGD which I categorize as a separate technology.   

 

FIGURE 9. FGD DELTA T VS. ADOPTION DATE 

Assembled by Author: See Supplementary Materials 1 

 

FIGURE 10. SCR DELTA T VS. ADOPTION DATE 

Assembled by Author: See Supplementary Materials 1 
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As expected, for both technologies we see a downward sloping relationship, where 
jurisdictions who adopt earlier show slower diffusion (higher delta t), albeit a much 
stronger one for FGD technologies compared to SCR. With so few data points and a 
major outlier (Germany for SCR), one cannot state any firm conclusions about the 
above exercise. However, its consistency with a major point in diffusion theory is 
reassuring. 

A second finding in diffusion theory is that although diffusion is slower in core markets 
relative to non-core, the intensity of adoption tends to be higher, indicating a greater 
preponderance of that technology in core markets (Grubler, 1996). Although the 
relationship is not as strong as the adoption date-diffusion rate relationship, the 
experience with pollution control technologies appears somewhat consistent with this 
intensity finding for SCR technologies, although barely for FGD units  demonstrated in 
Figures 11 and 12 respectively, which plot intensity (measured by GW pollution control 
equipment installed  per TWh of coal use)  against the adoption date. We again witness 
the expected negative relationship, as adoption intensity is higher among early adopters, 
consistent with diffusion theory. Part of the reason for the weaker relationship seen here 
is Germany, who is a major outlier in both cases. Evidently, the number of observations 
in each figure is much lower than compared to the tables and figures above. This is 
because here I am measuring intensity as my dependent variable rather than diffusion 
speed and so, it would not make sense for me to subdivide FGD units into dry and wet 
FGD systems (as dry FGD systems employ a niche market relative to Wet FGD, they 
would differ in intensity by definition). Similarly, because intensity was measured as 
GWe per TWh of coal use, all data points in units were excluded. 

 

 

FIGURE 11. INTENSITY VS. ADOPTION DATE FGD 

Data from: (Rubin et al., 2004 for GWe, IEA 2007 for TWh of coal use). Assembled by Author: See 
Supplementary Materials 1 
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FIGURE 12. INTENSITY VS. ADOPTION DATE SCR 

Data from: (Rubin et al., 2004 for GWe, IEA 2007 for TWh of coal use). Assembled by Author: See 
Supplementary Materials 1 
  
The final point explored was the relationship between the eventual K (saturation point) 
and delta t. A major finding in Wilson (2009) was that technologies with higher 
saturation levels (higher K) also took longer to diffuse (higher delta t). While this is 
partially a simple artifact of the fact that it takes longer to diffuse in larger markets, the 
consistency and strong fit of this relationship for various technologies, ranging across 
jurisdictions and policy regimes, and applying equally well to both supply and end-use 
energy technologies, was definitely noteworthy (Wilson, 2009). Figure 13 below 
demonstrates this phenomenon with core market data from Wilson (2009) for a number 
of energy technologies. Since the saturation level will vary depending on the 
jurisdiction chosen, I chose diffusion rates for one country (the US) to compare to 
Wilson’s OECD data (which I reduced by 65% to reflect that the US is roughly 35% of 
the total OECD in GDP) to ensure an apples-to-apples comparison. Furthermore, SCR 
data points for the US were excluded due to the fact that the US was a periphery rather 
than a core market for these technologies (see Figure 10). Finally, as was mentioned 
previously, capacity data was not present in EIA Form860 for US particulate removal 
equipment, hence their exclusion here.      
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FIGURE 13. LOG K VS. DELTA T (CORE-MARKETS) 

Assembled by Author: See Supplementary Materials 1 
 
The resulting  pollution control technologies red triangles) when added, fit the line 
almost perfectly, indicating that pollution control technologies are no different in this 
respect than the supply and end use technologies reported by Wilson (2009). 

5.2 Unit Scaling 

Thus far, I have been discussing market diffusion of pollution control technologies. 
However, another important dimension of scaling analysis, as mentioned previously, is 
unit scaling, which seeks to understand the dynamics of increases in scale at the unit 
level. As mentioned in Section 4, this involved taking both the average unit scale and 
the maximum unit scale for various pollution control technologies subject to data 
availability. These two variables were measured by taking the average of the stock of 
the time series, and by taking the largest unit produced to date, respectively. Table 4 
contains the key results regarding the estimated scaling parameters. 
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TABLE 4. UNIT SCALING ANALYSIS PARAMETERS 
Type Juris-

diction 
Time Source Unit K Tm Δt R2 

FGD US 1969-1986 EPA,  
n.d c 

Average 
(MW) 

390 1973 10 0.95 

FGD US 1969-1986 EPA,  
n.d c 

Max Scale 
(MW) 

844 1972 5 0.97 

Wet FGD US 1969-1986 EPA, 
n.d c 

Average 
(MW) 

394 1973 11 0.95 

Wet FGD US 1969-1986 EPA 
n.d c 

Max Scale 
(MW) 

844 1972 5 0.97 

Dry FGD US 1978-1988 EPA 
n.d c 

Average 
(MW) 

435 1981 17 0.95 

Dry FGD US 1978-2010 EPA 
n.d c 

Max Scale 
(MW) 

948 1983 11.3 0.94 
(no fit) 

FGD Japan 1960-1971 CRIEPI 
n.d 

Max Scale 
(MW) 

383 1961 7.2 0.93 
(no fit) 

FGD Japan 1960-1966 CRIEPI 
n.d 

Average 
(MW) 

319 1960 13.9 0.91 
(no fit) 

SCR US 1991-2010 EPA 
n.d c 

Average 
(MW) 

7533036 993 -463 0.45 
(no fit) 

SCR US 1991-1999 EPA 
n.d c 

Max Scale 
(MW) 

865 1990 6.2 0.88 
(no fit) 

 
As was the case with market scaling, only part of the dataset was fitted with logistic 
curves if it was noticed that a section of the data was one logistic function nested within 
a series containing multiple logistic functions. Graphs of the data for both industry and 
unit scaling are located in Appendix C. The dashed lines on some graphs indicate the 
point where the series was truncated when estimating the above parameters. Even after 
truncating the data this way, I was unable to meet the 0.95 goodness of fit inclusion 
criteria for some instances of unit scaling. As a result, these estimates were excluded 
from later analysis. The strange outlier pertaining to US SCR units can be explained by 
the US being a non-core market for SCR technologies, where much of the normal 
scaling evolution would have been seen in the core market. Again, since unit scale data 
for particulate removal equipment was unavailable in form EIA860, the unit scaling 
analysis for those technologies was excluded here.   

Evident from these estimates are how the delta t’s are quite small, indicating rapid 
upscaling at the unit level. This rapid upscaling is further illustrated in Figure 14 below, 
which compares unit scaling parameters for core markets calculated in Wilson (2009) to 
my estimates. Evident is how the Delta T’s for both maximum and average unit 
scale for pollution control technologies (green) is systemically lower than those 
estimated for other energy technologies (light blue). The implications of this finding are 
considerable, and will be discussed further in the discussion section. 
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FIGURE 14. UNIT SCALE ACROSS TECHNOLOGIES (CORE MARKETS) 

Assembled by Author: See Supplementary Materials 1 

5.3 Scenario Corroboration 

As mentioned previously, the scaling dynamics of energy technology framework could 
be a useful metric with which to corroborate the results generated by energy economy-
models. Work to this regard was done by Wilson et al (2012), where they compared the 
extent-duration relationship of a number of technologies that were generated from 
integrated assessment modeling scenarios and compared them to the historical extent-
duration relationship for eight energy technologies. They found that the scenario derived 
extent-duration relationships were inherently conservative, with longer durations of 
growth than seen in the historical data (Wilson et al., 2012). However, they also noted 
how the scenario derived extent-duration relationship for CCS was closer to the 
historical trend seen by the eight energy technologies (Wilson et al., 2012). 

Since my estimates for the delta t’s for FGD technologies in core-markets fit well with 
the extent-duration relationship of these other technologies (See figure 13), then it 
implies that the existing CCS adoption trajectories seen in models have some semblance 
to reality. Furthermore, Table 5 below compares the range of my estimated delta t’s for 
core-markets to some which I estimated from several modeling studies. As one can see, 
the estimated delta t’s for the scenarios fall within the range of the historic data. This is 
true across a range of, relatively stringent, policy targets. Unfortunately, the measures 
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used for diffusion (i.e. the market size variable) across the studies differed from one 
another and so I was unable to directly compare extent-diffusion relationships to those 
found in Wilson (2009). For future scenario studies, therefore, it may be beneficial for 
modellers to report their diffusion findings using several metrics in order to ease 
comparison with the growing historical scaling literature.  

TABLE 5. COMPARISON OF MODEL GENERATED DELTA T’S VS. HISTORIC DATA 
Source Model Target Jurisdiction Delta T 
My Estimate Historical Data NA US, Japan 20-40 
IEA 2009, CCS 
Roadmap 

MARKAL 50% Reduction relative 
to 2005 emissions by 
2050 

North 
America 

31 

Odenberger and 
Johnsson, 2011  

PRIMES 85% Reduction relative 
to 1990 emissions by 
2050. 

Europe 26 

Kitous et al, 2010 POLES Stabilization at 
400ppm by 2100 

Global 26 

 

6. Costing Analysis 

6.1 Cost Trends 

Figure 15 below demonstrates the cost trend for FGD units from the sample, normalized 
by unit size (MW), using the GDP deflator (base year 1982) to account for the general 
inflation level and its impact on costs.  

 

 

FIGURE 15. COST/MW FOR FGD UNITS (ANNUAL AVERAGES)  

Cost data obtained from (EIA, 2011) while unit capacity data was obtained from (EPA, n.dc). Indexing 
and unit cost calculations performed by author (see supplementary materials 2).  
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Evidently, costs/MW are both high and increasing over time. This has some interesting 
implications for supposed learning-by-doing in the installation of FGD units, for if 
capital costs are increasing over time, where is the learning? This increase in normalized 
costs, it should be noted, is not consistent across the choice of deflator, with a GDP 
deflator and a general PPI commodity index yielding an increasing price while a PPI 
Chemical price index and a Handy-Whitman price index yield a decreasing cost. With 
all indicators, however, the trend is not very steep- hence the sensitivity to deflator. The 
graphs showing the cost trend for these other indicators is located in Appendix D. 

This, of course, does not mean that learning is not an important phenomenon for this 
technology. A large number of factors influence cost simultaneously and, thus, 
downward cost pressure from learning could be overshadowed by other cost-inflating 
factors. The regression analysis, which follows, is an attempt to understand these cost 
dynamics, and account for the numerous factors which influence costs over time. 
Finally, learning-by-doing can also manifest itself through a decline in the variance of 
the cost of FGD units over time. Here we do see a weak negative trend in the variance 
of costs (correlation coefficient of -0.04 to -0.16 between time and annual cost standard 
deviations) which is consistent across deflators.  This is demonstrated by the error bars 
in figure 12 above. However, as also evident by these error bars, as well as by the box in 
figure 12 reporting some common measures of dispersion, the variance of the dependent 
variable in the sample is immense, a fact further highlighted by a scatterplot of the 
dependent variable in table D4 of Appendix D, which also superimposes annual means 
and 10th/90th percentile values of the data.  

The broad movements in costs over time are also consistent across deflators.  Initially, 
we see a rapid increase in cost to about 1973, where there is a slight decline before costs 
spike again around 1982. After this spike, however, costs experience a significant 
decline until about 1994, before beginning a second rise from 1995 to the present. 
Figures 16, 17, and 18 disaggregate the above cost trend (using the GDP deflator) into 
finer intervals that correspond to some key intervals in the diffusion of a technology. 
These are:  

a) The early formative years of a technology (1969-1979)  
b) The period of core market growth and expansion (1980-1998), and  
c) The post 2000 period (1999-2010) where almost all energy technologies have seen 
substantial cost increases.  
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FIGURE 17. COST TRENDS 1969-1979 
 

 

Cost data obtained from (EIA, 2011) while unit capacity data was obtained from (EPA, n.dc). Indexing 
and unit cost calculations performed by author (see supplementary materials 2). 
 
 

 
 
 
 

Figure 18. Cost Trends 1980-1998 
Cost data obtained from (EIA, 2011) while unit capacity data was obtained from (EPA, n.dc). Indexing 
and unit cost calculations performed by author (see supplementary materials 2). 
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FIGURE 19. COST TRENDS 1999-2010 

Cost data obtained from (EIA, 2011) while unit capacity data was obtained from (EPA, n.dc). Indexing 
and unit cost calculations performed by author (see supplementary materials 2).  

6.2 Regression Results (Core Model 1969-2010) 

The base model regression results, summarized in column 1 of Appendix E, provide 
some interesting insights concerning FGD cost trends over time. Apparent immediately 
is the poor fit of the model, with an adjusted R2 of only 0.1. Thus, variation in my 
independent variables explains only 10% of the variation in the dependent variable. This 
was an unexpected result, for this core model contains many of the key variables 
identified by economists and engineers in the literature as important determinants of 
FGD cost. The implications of this low goodness of fit will be elaborated upon further 
in the discussion section.  

Most key variables-unit size, sulphur content of the coal, average firm size, and removal 
efficiency- are not of the expected sign. All else being equal, one would expect a greater 
concentration of sulphur in the coal to result in facilitated emissions control relative to a 
more dilute strain. Likewise, the expectation of economies of scale implies a negative 
sign for both unit scale and output per firm. Furthermore, according to the model, higher 
removal efficiencies lead to lower FGD prices, which is counterintuitive as we would 
expect higher costs in building a more advanced design. Fortunately none of these 
variables are statistically significant at any conventional significance level. Of the 
twelve independent variables in the model, only two are significant at conventional 
significance levels. Whether the unit is wet or dry FGD technology is significant at the 
1% level, and the number of spare absorber trains per MW capacity was significant at 
the 5% level. The experience variable, while of the expected negative sign, was not 
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statistically significant. Thus, after controlling for other key engineering and economic 
parameters, learning did not lead to any cost declines which were statistically 
noticeable.     

A white test, as well as results from Breusch-Godfrey and Durbin Watson tests, indicate 
that heteroskedasticity (non-constant variance of the error) is an issue with this dataset, 
but not serial correlation (systemic movements in the error term). . Consequently, all 
results reported in Appendix E have corrected for heteroskedasticity (using Huber-
White standard errors). In addition, some severe multicollinearity exists between a few 
of the variables, with trains and unit size yielding a correlation coefficient of -0.78 and 
with the energy price and cumulative capacity yielding a correlation coefficient of 0.91. 

6.3 Sensitivity Analysis 

In addition to the base model run, a number of alternative tests were performed to 
discern the model’s sensitivity to alternative specifications. This sensitivity analysis was 
quite extensive and involved the following runs: 

 Base Model + Regional variables (Run2) 
 Base Model + Ownership category (Run3) 
 Base Model + Simultaneous construction of multiple units (Run4) 
 Base Model + Plant learning (Run5) 
 Base Model + Utility learning (Run6) 
 Base Model + Scale/Technology interactions (Run7) 
 Base Model + By-product recovery (Run8) 
 Base Model + HW Index (Run9) 
 Base Model + Regulations (Run10) 
 Base Model + Manufacturing firm dummies (Run11) 
 Base Model + Manufacturing firm learning (Run12) 
 Base Model + Flue gas/unit generating capacity (Run13) 
 Base Model + Retrofit*Generating capacity interaction (Run14) 
 Base Model + Bypass technology (Run 15) 
 Base Model + Odixation Technology (Run 16) 
 Base Model + Alternative Specification for Learning (Cumulative Capacity in 

MW (Run17) 
 Base Model + Year dummies (Run 18) 
 Base Model + Manufacturing firm dummies + other significant engineering 

factors (Run 19) 
 Base Model + Patent Data (Run21) 
 Base Model + Patent Data Lag1 (Run 21) 
 Base Model + Patent Data Lag2 (Run 23) 

A detailed description of each of the runs, and the respective data sources for each new 
variable specification, are located in Appendix F, while their results are summarized in 
columns 2-23 of tables E3 to E6 of Appendix E.  For our purposes, the changes which 
were significant were learning at the utility level, the simultaneous construction of 
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multiple units, whether the unit engages in by-product recovery or not, flue gas 
volume/generating capacity, the inclusion of firm dummies, the inclusion of year 
dummies, whether the FGD unit used forced/inhibited oxidation, the interaction of unit 
scale with the type of FGD system (wet or dry), and the inclusion of patent data.  Of 
these, only two runs had practical significance, that is, with considerable implications 
on the explanatory power of the model- the inclusion of firm dummies, which increased 
the adjusted R2 of the model to 25% from ~10% in the base case, and the inclusion of 
year dummies (column 18 of Appendix E), which increase the adjusted R2 of the model 
to 19%.  

If we take most of the above runs with statistically significant variables (I exclude the 
patent variables as they were estimated using a subset of the data-given their low 
practical significance, that is, their low impact on the adjusted R2 for their respective 
runs- I do not expect them the affect the R2 that much in the below exercise), and then 
combine them with our base model, we get a very large, non parsimonious model 
(column 19 in Appendix E) that explains only 30% of the cost variation. All things 
considered, this is quite a negative result, indicating that most of the economic and 
engineering factors identified in the literature as important determinants of the cost of 
FGD units explain a little less than one third of the actual variation in costs seen in the 
US FGD sample. The implications of this result are discussed further in section 7 
below. Finally, while the experience variables were not statistically significant across 
any of the alternative runs, the sign did switch from negative to positive in runs 7, 10, 
17 and 18- indicating the possibility of negative learning.   

In addition to the above, I ran regressions for the time periods 1969-1979, 1980-1998, 
and 1999-2010. Due to degrees of freedom issues, especially pertaining to the 1969-
1979 period which only had 44 observations, I limited my analysis to the base model 
and observed any changes relative to the base model for the whole sample period. Table 
E7 in the appendix contains the results. Immediately evident is how the explanatory 
power of the model changes across different timeframes, with adjusted R2 values 
ranging from a high of 0.45 for the 1969-1979 period to only 0.14 for the 1999-2010 
period. The 1980-1998 period is close to the low end, with an adjusted R2 value of only 
0.17. Furthermore, the significance, magnitude, and the sign of many variables change 
across timeframes. While the 1969-1979 period had a moderately high adjusted R2, 
most of the statistically significant variables in this run were of the opposite sign, 
suggesting possible spurious results. The fact that severe multicollinearity was present 
among all combinations of the material price index, energy prices, industry 
concentration, and cumulative capacity makes it difficult for the regression to identify 
and isolate their individual effects on the dependent variable for this timeframe. Overall 
the breaking up of the core model into finer intervals continues the trend of negative 
results, doing little to aid the analysis. While learning becomes statistically significant at 
the 5% level in the 1969-1979 period, the sign remains positive indicating negative 
learning.   
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6.4. Further Learning Analysis 

Table 6 below demonstrates the results of the simple bivariate model where cumulative 
capacity (measured using the alternative specification of cumulative units installed and 
cumulative MW capacity installed) influences costs. This was then repeated with the 
addition of an additional variable, unit size, to control for economies of scale which can 
be conflated with learning if the latter is measured by cumulative capacity in MW. All 
of these specifications above were then repeated with cost deflated using the Handy-
Whitman Index. 

TABLE 6. LEARNING CURVE ESTIMATES-VARIOUS SPECIFICATIONS  
Row Dep Variable Indep Variable Coefficient- 

Learning 
Learning 
Rate 

Coefficient- 
Unit Size 

1 Cost/Mw Deflator CCAP (Units) -0.06 4.1% NA 
2 Cost/Mw Deflator CCAP (Units) + Unit 

Scale 
-0.06 3.8% -0.02 

3 Cost/Mw Deflator CCAP (MW) 0.01 -1% NA 
4 Cost/Mw Deflator CCAP (MW) + Unit Scale 0.02 -1.2% -0.03 
5 Cost/MW HWI CCAP (Units) -0.18 11.7% NA 
6 Cost/MW HWI CCAP (Units) + Unit 

Scale 
-0.18** 11.4% -0.05 

7 Cost/MW HWI CCAP (MW) -0.09 5.9% NA 
8 Cost/MW HWI CCAP (MW) + Unit Scale -0.08 5.1% -0.07 
9 Cost/Mw Deflator Base Costing Model 

(Units) 
-0.14 9% 0.09 

10 Cost/Mw Deflator Base Costing Model 
(MW) 

0.28 -21% 0.12 

 
Comparing Rows 1 and 3 with rows 9 and 10, we see that the single explanatory 
variable model yields a considerably different learning rate than that derived from the 
base model that was estimated in Section 6.2. For instance, regressing cumulative units  
on unit costs yields a learning rate of 4.1%- that is, a 4.1% cost decline for every 
doubling of cumulative units. The corresponding rate for the base model, however, is a 
learning rate of 9%.  

After changing the specification from cumulative units to cumulative capacity (in MW), 
we see an even greater discrepancy between the single explanatory variable model and 
the base costing model. In both of these specifications- the learning variable switches 
sign, going from negative to positive or, going from actual (positive) learning to so-
called negative learning. Here, the full model gives a negative learning rate of 21%, 
relative to only 1% in the bivariate case (row 3).  Controlling for unit size further results 
in less learning than the one variable case, however, this impact is constant across the 
two specifications of experience- cumulative MW’s and units. Evident from the above 
analysis is that learning/experience rates is highly sensitive to the specification chosen- 
something which needs to be accounted for in future learning studies. Note also, how 
the results from row 5 correspond well with the learning rates found in the literature for 



34 

FGD systems- that of 11% in the Rubin et al., (2004) paper, and 12.1% in the 
Lohwasser and Madlener (2010) paper. 

7. Discussion 

The scaling results provide some interesting insights into the nature of both industry and 
unit scaling of pollution control technologies. Firstly, even though these technologies 
were forced into the market through various regulations, their rates of diffusion in core 
markets were no different than the more market driven technologies. The consistency of 
this observation across technologies, across countries, and thus, across regulatory 
regimes, is particularly noteworthy. Of course, this finding cannot be generalized. 
Policies are a product of human agency and thus can be varied in their intensity to 
promote rapid or slow diffusion. However, this ability is, in practice, limited by 
important factors such as political and economic acceptability (the costs of policy). 
With this in mind, a possible interpretation of the aforementioned findings of the 
consistency of rates of diffusion is that the political-economic constraining factors 
preclude an overambitious and rapid introduction of environmental add-on control 
technologies, which results in diffusion rates similar to technologies competing in the 
marketplace. Another possible interpretation is that, even in the presence of moderate 
regulations, new technologies need a certain amount of time to overcome the slow 
initial growth inherent with new technologies that causes the pervasive S-shaped 
diffusion pattern, particularly with long-lived capital assets such as power plants which 
often precludes premature retiring of the capital stock and results in diffusion rates 
resembling a “natural” rate of capital turnover   

 The above has interesting implications for CCS, for if CCS’s rate of diffusion is 
expected to range 20-40 years in core markets, policies conducive to CCS need to start 
to be implemented soon (immediately) in order for CCS to make a dent in emissions by 
2050. The prospects of CCS are furthered hampered by the fact that many low GHG 
technologies- biomass, renewable etc.- have already undergone substantial debugging 
and increased user familiarity from their having already diffused into niche markets. 
This has given them a head start relative to CCS in the path to widespread diffusion. 
This of course is not to say that there are no advantages to CCS relative to these 
technologies (cost, dispatchability, political acceptability in fossil fuel producing 
regions etc.), however, it is a significant disadvantage which could hinder its adoption.     

Secondly, the speed of industry diffusion of the add-on technologies examined in non-
core jurisdictions, relative to that for other technologies, was evident and pronounced 
(yet faster diffusion catch-up than that observed for other technologies). The likely 
reason for this is that these technologies are add-on technologies, with no additional 
requirements in terms of supporting infrastructure, and that can benefit thus somehow 
more from standardization effects and from learning (knowledge) spillovers from core 
regions. Thus, once the technology has diffused substantially in a core market, where 
FGD manufacturers and installers have worked out many of the kinks and risks inherent 
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in new technology, and once a sufficient policy framework is in place in non-core 
markets, diffusion in these non-core regions occurs quite rapidly.  

The exemplary case for this was Germany which saw rapid diffusion of FGD and SCR 
technologies. Germany was able to implement stricter standards than the US and Japan 
due to almost 20 years experience of those two regions with these technologies. 
Consequently, what would potentially be a policy perceived to be of great economic 
cost to society was made acceptable and achieved with less.  

Finally, the scaling analysis illustrated the rapid upscaling at the unit level for pollution 
control technologies.  Wilson (2009, 2012) observed that the increase in scale at the unit 
level is often preceded by a lengthy formative phase which sees the build out of 
multiple smaller units where experimentation and learning can occur.  Shorter formative 
phases occur if the potential cost decline arising from economies of scale exceeds the 
potential cost decline arising from learning in an extended formative phase (Wilson, 
2012).  

Putting this together with some of the regression work, FGD’s rapid upscaling was 
unlikely due to economies of scale due to the lack of significance and the wrong sign of 
the unit scale variable across the regression runs (the exception being the unit scale/wet 
interaction term, suggesting that perhaps wet FGD units may experience economies of 
scale while dry FGD units do not). A more plausible explanation was that FGD units, 
being an add-on technology, were built to a scale that matched the size of existing coal-
fired boilers.  This is analogous to the concept of derived demand in economics (where 
the demand for a product is driven from a product it is commonly associated with) 
except it is “derived” scaling, where the scale of the pollution control technology is 
driven by factors influencing the scale of the underlying technology of power plants 
they are combining with.  

Another interesting finding from the regression analysis was the learning variable, 
which was only statistically significant in four of the twenty-six runs. For all intents and 
purposes, even when we control for other factors, there was no learning effect in driving 
the costs of FGD and, potentially, there was “negative learning”. This is a significantly 
different dynamic than what is commonly assumed in many modelling studies, and so 
modellers may want to reconsider this assumption. A possible reason for this was the 
extremely short formative phase for FGD technologies prior to the rapid upscaling seen 
at the unit level. This rapid upscaling, in turn, may have meant insufficient time to 
adequately debug the technology, leading to errors and dead ends with greater 
consequences due to their occurring at a larger scale.      

The major finding from the regression, however, was its lack of explanatory power, 
indicating that much of the economic and engineering factors identified as important 
determinants of the cost of FGD units explain little of the cost variation seen in the 
sample. This is even the finding after running some very generous regression 
specifications. For instance, the specification of binary variables for each FGD 
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manufacturing firm- simply implying that different firms in the FGD industry have 
different costing/pricing strategies and that these should, in turn, explain a non-trivial 
part of the cost variation over time- explains only 24% of the variation in cost.  

The likely reason for these poor results is a number of site specific factors that influence 
FGD costs which are unobservable given available data. For instance, differences in 
boiler location within a given plant could make it more difficult, and thus more costly, 
to retrofit. Similarly, other site specific factors such as local labour market conditions, 
local geography, and distance from suppliers would play a key role in explaining 
differences in FGD installation costs across the sample. Katzberger and Jayaprakash 
noted in an article in COALPower Magazine how critical labour shortages in key 
positions such as boilermakers and welders have contributed to the recent cost rise of 
FGD systems (Katzberger and Jayaprakash, 2007). In many of the technical analysis of 
FGD systems cited earlier in this paper, site specific factors were frequently mentioned 
as important determinants of FGD installation costs. 

8. Conclusions and Policy Implications  

The oft stated goal is for climate policies to be technologically neutral, due to the poor 
precedent of governments selecting “technological winners” (Azar and Sanden, 2011). 
In practice, however, this goal is rarely achieved and so, should society introduce 
policies to promote CCS, the above research indicates some challenges they may face, 
adopting as analogy the case of FGD, i.e. sulfur removal technologies. 

Firstly, the primacy of site-specific factors on costs makes it very difficult for 
policymakers or engineers to manipulate costs through traditional economic or 
engineering channels. This is because, by definition, these factors are idiosyncratic and 
cannot be applied on mass across to FGD and CCS projects alike. Secondly, like the 
case for FGD units, the learning potential for CCS may well range from low to non-
existent, and thus the potential of demonstration projects to start riding the learning 
curve may be misguided investments. Thirdly and finally, it appears that promoting the 
early and rapid up-scaling up of these technologies may be misguided as economies of 
scale do not appear to be very important in governing their costs, at least when judging 
the results of my “after the fact” analysis of the history of FGD technology in the US. 
As was potentially the case with FGD, rapid unit upscaling may result in an insufficient 
formative phase which implies less learning and increasing costs (or at the minimum 
higher costs than would be the case otherwise)  

Thus, while the policy implications presented here are purely negative- what 
policymakers should not do- they guide us towards other areas of research which could 
supply the necessary information for helpful policy recommendations. In particular, the 
rapid diffusion of FGD units in Germany deserves greater attention and thus, a similar 
costing and scaling analysis for Germany would be most informative.  
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Appendix A: Herfindahl-Hirschmann Index (HHI) construction 

The HHI Index is a measure of market concentration with the following formula: 

HHI = (S1)
2 + (S2)

2 +…..+ (Sn)
2                                                        

Where: 
HHI= Herfindahl-Hirschmann Index 
Sn= Market share of nth firm.  
 
Thus, the HHI index is simply the sum of the squares of the market shares of all the 

firms in the market for a given period. In estimating my HHI Index for each year, I 

calculated the market share for each firm for the past five years in order to smooth the 

annual fluctuations which would otherwise occur. 
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Appendix B: Material Price Index Construction  

To calculate an index of the price of the material inputs used in FGD units, I required 
three things: the types of materials used in the construction of FGD units, how this 
basket of materials changes over time, and price data for the various materials in the 
basket.  Table B.1 provides the weights for the various steels used in construction of 
FGD units by decade. The most common Stainless Steel Alloy used in FGD 
construction, prior to 2000, in SS317L and the most common Nickel Alloy used is 
Alloy22 (Dene et al., 2011).  

B1. PROPORTION OF MATERIALS USED IN FGD CONSTRUCTION (%) 
 1969-1980 1981 to 1990 1991 to 2000 2001 to 2010 

Stainless Steel 19 58 57 46
Nickel Alloy 0 5 14 0
Tile Lined 0 5 11 38
Fibreglass 0 0 4 11
Flakeglass 
Carbon Steel 

54 18.5 3.5 5

Rubber lined 
Carbon Steel 

27 13.5 10.5 0

Data from Weilert and Meyer (2010) 

Unfortunately, I was unable to find price data for such specialized materials. 
Consequently, an article by Milobowski (1997) provided the price of these materials 
relative to the price of steel for 1991, allowing me to obtain their 1991 price. From this 
point, I had the option to simply keep this ratio constant over the sample period, or, 
attempt to vary this ratio based on changes of the underlying raw materials that 
comprise the steel or the alloy. Using commodity indices for molybdenum, chrome, 
nickel, and iron ore taken from the United States Geological Society (Kelly & Matos, 
2011). I varied the price of the specialized steel/alloys from its 1991 value according to 
variations in the price of the raw materials making up the steel.  It must be noted that 
this is only an approximation of the prices of these materials as changes in demand 
conditions and their market concentration will also cause variation in their price. 
Furthermore, for some specialized materials-tile lined carbon steel, flakeglass carbon 
steel, and rubber lined carbon steel- I kept their ratio to the price of steel constant over 
the sample period as I couldn’t find any reference to their underlying composition. 

Once these prices were obtained, a combined “FGD material price” was obtained by 
weighing the price of the steel with the weights found in Table B1. This was then 
indexed to the base year 1982 to obtain the Material Price Index, which I lagged by 1 
period in the regression.    
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Appendix C: Graphs of fitted logistic functions 

Note: Dashed lines shown below represent the data segment used when estimating 
logistic parameters 

 

FIGURE C1. FGD WET DIFFUSION BY COUNTRY: 1972-2005  

Data from: (Rubin et al., 2004) 
 

   

FIGURE C2. CUMULATIVE CAPACITY (US‐FGD)‐1969‐
2010 

FIGURE C3. AVERAGE UNIT SCALE (US FGD)‐1969‐2010       

Raw data from: (EPA, n.dc). Assembled in current format by author (see supplementary materials). 
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FIGURE C4. MAX UNIT SCALE (US FGD) 1969‐2010  FIGURE C5: AVERAGE UNIT SCALE (US WET FGD) 1969‐
2010 

Raw data from: (EPA, n.dc). Assembled in current format by author (see supplementary materials 1 and 
2). 

          

 

FIGURE C5: MAX UNIT SCALE (US WET FGD) 1969‐
2010 

FIGURE C6: CUMULATIVE CAPACITY (US WET FGD) 1969‐
2010 

Raw data from: (EPA, n.d c). Assembled in current format by author (see supplementary material 1 and 
2). 
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FIGURE C7: CUMULATIVE CAPACITY (US WET 

FGD) 1969-2010 –UNITS 

Raw data from: (EIA, 2011)                                    

FIGURE C8: CUMULATIVE CAPACITY (US DRY 

FGD) 1978-2010 

Raw data from: (EPA, n.dc)          

Raw data from: (EPA, n.dc). Assembled in current format by author (see supplementary materials 1 and 
2). 
 

 

FIGURE C9: CUMULATIVE CAPACITY (US DRY FGD) 1978-2010 -UNITS                                                     

Raw data from: (EIA 2011). Assembled in current format by author (see supplementary materials 1 and 
2). 
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FIGURE C10. AVG UNIT SIZE (US DRY FGD) 1978‐2010 FIGURE C11. MAX UNIT SIZE (US DRY FGD) 1978‐2010 

Raw data from: (EPA, n.dc). Assembled in current format by author (see supplementary materials 1 and 
2). 
 

    

FIGURE C12. TOTAL US FGP CUMULATIVE CAPACITY (1937-2010)  

Raw data from: (EIA, 2011). Assembled in current format by author (see supplementary materials 1 and 
2). 
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FIGURE C13. TOTAL US ELECTROSTATIC PRECIPITATORS CUMULATIVE CAPACITY (1937-2010)  

Raw data from: (EIA, 2011). Assembled in current format by author (see supplementary materials 1 and 
2). 
 

 

FIGURE C14. TOTAL US BAGHOUSE CUMULATIVE CAPACITY (1962-2010)  

Raw data from: (EIA, 2011). Assembled in current format by author (see supplementary 
materials 1 and 2). 
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FIGURE C15. TOTAL US WET FGP SCRUBBER CUMULATIVE CAPACITY (1956-2010)  

Raw data from: (EIA, 2011). Assembled in current format by author (see supplementary materials 1 and 
2). 
 

 

FIGURE C16. SCR CUMULATIVE CAPACITY 

Data From: (Rubin et al., 2004) 
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FIGURE C17. WET FGD CUMULATIVE CAPACITY (JAPAN 1960-2004) 

Raw data from: (CRIEPI, n.d). Assembled in current format by author (see supplementary materials 1). 
 

 

 

FIGURE C18. WET FGD CUMULATIVE CAPACITY (JAPAN 1960-2004) 

Raw data from: (CRIEPI, n.d). Assembled in current format by author (see supplementary materials 1). 
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FIGURE C19. AVERAGE UNIT SIZE (JAPAN- WET FGD) 1960-2004 

Raw data from: (CRIEPI, n.d). Assembled in current format by author (see supplementary materials 1). 
 

 

FIGURE C20. MAXIMUM UNIT SCALE (JAPAN- WET FGD) 1960-2004 

Raw data from: (CRIEPI, n.d). Assembled in current format by author (see supplementary materials 1). 
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FIGURE C21. SCR AVERAGE UNIT SCALE (US 1991-2010) 

Raw data from: (EPA, n.dc). Assembled in current format by author (see supplementary materials 1). 
 

 

FIGURE C22. SCR CUMULATIVE CAPACITY (US 1991-2010) 

Raw data from: (EPA, n.dc). Assembled in current format by author (see supplementary materials 1). 
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FIGURE C23. SCR CUMULATIVE CAPACITY (US 1991-2010) 

Raw data from: (EPA, n.dc). Assembled in current format by author (see supplementary materials 1). 
 

 

FIGURE C24. SCR MAXIMUM UNIT SCALE (US 1991-2010) 

Raw data from: (EPA, n.dc). Assembled in current format by author (see supplementary materials 1). 
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Appendix D: FGD Costs- Other Indices 

 

FIGURE D1. COST/MW FOR FGD UNITS (HANDY-WHITMAN INDEX) 

Cost data obtained from (EIA, 2011) while unit capacity data was obtained from (EPA, n.dc). Indexing 
and unit cost calculations performed by author (see supplementary materials 2).  

 

 

FIGURE D2. COST/MW FOR FGD UNITS (PPI COMMODITY INDEX) 

Cost data obtained from (EIA, 2011) while unit capacity data was obtained from (EPA, n.dc). Indexing 
and unit cost calculations performed by author (see supplementary materials 2).  
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FIGURE D3: COST/MW FOR FGD UNITS (PPI CHEMICAL INDEX) 

Cost data obtained from (EIA, 2011) while unit capacity data was obtained from (EPA, n.dc). Indexing 
and unit cost calculations performed by author (see supplementary materials 2).  

 

 

FIGURE D4: COST/MW DISPERSION (GDP DEFLATOR) 

Cost data obtained from (EIA, 2011) while unit capacity data was obtained from (EPA, n.dc). Indexing 
and unit cost calculations performed by author (see supplementary materials 2). *Error bars show 
10th/90th percentiles. 
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Appendix E: Regression Results  

TABLE E1. REGRESSION RUNS 1-5 
 1. 2. 3. 4. 5. 
 LN(COST/MW) LN(COST/MW) LN(COST/MW) LN(COST/MW) LN(COST/MW) 
WET 
LN(UNSIZE) 
LN(PLCON) 
LN(REMEFF) 
LN(TRAINS) 
LN(COALSO2) 
RETROFIT 
LN(EXP) 
LN(STEEL) 
LN(AVGUNI) 
LN(INDCON)L
N(ENER) 
CONSTANT 
PACIFIC 
SATLANTIC 
NCENTRAL 
SCENTRAL 
PLATEAU 
IOWNED 
MUNIICIP 
COOP 
#BUILTSIM 
PLANTLRN 
 
 

0.78(0.19)*** 
0.09(0.12) 
-0.03(0.05) 
-0.44(0.58) 
0.49(0.24)** 
0.12(0.09) 
0.23(0.18) 
-0.14(0.31) 
0.7(0.44) 
0.84(0.55) 
0.04(0.23) 
0.53(0.58) 
14.29(3.63)*** 

 

0.76(0.2)*** 
0.08(0.12) 
-0.02(0.05) 
-0.59(0.55) 
0.48(0.25)* 
0.17(0.13) 
0.21(0.18) 
-0.14(0.32) 
0.78(0.45)* 
0.8(0.57) 
0.05(0.24) 
0.54(0.62) 
15.05(3.41)*** 
0.15(0.43) 
-0.12(0.28) 
-0.14(0.31) 
0.01(0.42)
0.05(0.35) 

 

0.79(0.2)*** 
0.09(0.12) 
-0.03(0.05) 
-0.45(0.58) 
0.49(0.25)** 
0.11(0.1) 
0.21(0.17) 
-0.16(0.31) 
0.64(0.45) 
0.86(0.55) 
-0.01(0.26) 
0.54(0.58) 
14.11(3.67)*** 
 
 
 
 
 
0.18(0.3) 
0.09(0.3)
0.06(0.38) 

 

0.77(0.19)*** 
0.06(0.12) 
-0.02(0.05) 
-0.27(0.55) 
0.47(0.23)** 
0.11(0.09) 
0.30(0.18)* 
-0.10(0.31) 
0.82(0.45)* 
0.86(0.56) 
0.08(0.23) 
0.41(0.56) 
13.58(3.49)*** 

 
 
 
 
 
 
 

-0.34(0.17)** 
 

0.84(0.2)*** 
0.12(0.12) 
-0.03(0.05) 
-0.54(0.58) 
0.51(0.24)** 
0.10(0.09) 
0.21(0.18) 
-0.11(0.32) 
0.72(0.44)* 
0.82(0.55) 
0.03(0.23) 
0.5(0.59) 
14.49(3.64)*** 

 
 
 
 
 
 
 
 
 

-0.29(0.2) 

Number of 
Observations 
Adj. R2 

DW Stat 
White 

303 
 

0.1 
1.97 

115.19** 

303 
 

0.09 
1.97 

160.73 

303 
 

0.09 
1.97 

155.42** 

303 
 

0.11 
2 

126.43* 

303 
 

0.1 
1.98 

136.45** 
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TABLE E2. REGRESSION RUNS 6-9 
 6. 7. 8. 9. 
 LN(COST/MW) LN(COST/MW) LN(COST/MW) LN(COST/MW)-

HWI 
WET 
LN(UNSIZE) 
LN(PLCON) 
LN(REMEFF) 
LN(TRAINS) 
LN(COALSO2) 
RETROFIT 
LN(EXP) 
LN(STEEL) 
LN(AVGUNI) 
LN(INDCON) 
LN(ENER) 
CONSTANT 
UTILLRN 
DISPOSAL 
LNSIZE*WET 
 

0.85(0.19)*** 
0.16(0.13) 
-0.03(0.05) 
-0.59(0.59) 
0.53(0.25)** 
0.09(0.1) 
0.28(0.18) 
-0.08(0.32)
0.66(0.44) 
0.88(0.54) 
0.02(0.23) 
0.5(0.59) 
14.41(3.61)*** 
-0.3(0.14)** 
 

 

2.96(1.01)*** 
0.39(0.18)** 
-0.02(0.05) 
-0.4(0.61) 
0.55(0.22)** 
0.14(0.09) 
0.21(0.18) 
0.05(0.32)
1.01(0.46)** 
0.78(0.54) 
0.11(0.22)
0.29(0.6) 
12.1(3.9) *** 

                                     
-0.39(0.18)** 

 

0.65(0.19)*** 
0.1(0.12) 
-0.06(0.05) 
-0.53(0.6) 
0.48(0.24)** 
0.08(0.1) 
0.2(0.18) 
-0.1(0.31)
0.83(0.46)* 
1.02(0.55)* 
0.04(0.23)
0.29(0.56) 
13.82(3.6)*** 
 
0.5(0.21)** 

 

0.77(0.19)*** 
0.09(0.12) 
-0.03(0.05) 
-0.44(0.57) 
0.51(0.24)** 
0.12(0.09) 
0.23(0.18) 
-0.21(0.31)
0.45(0.44) 
0.69(0.55) 
-0.12(0.23)
0.43(0.58) 
14.48(3.59)*** 

 

Number of 
Observations 
Adj. R2 

DW Stat 
White 

303 
 

0.11 
1.98 

125.22* 
 

303 
 

0.11 
1.96 

121.45* 

303 
 

0.12 
1.97 

131.63** 

303 
 

0.09 
1.97 

116.11** 

 

TABLE E3. REGRESSION RUNS 10-13 
 10. 11. 12. 13. 
 LN(COST/MW) LN(COST/MW) LN(COST/MW) LN(COST/MW) 
WET 
LN(UNSIZE) 
LN(PLCON) 
LN(REMEFF) 
LN(TRAINS) 
LN(COALSO2) 
RETROFIT 
LN(EXP) 
LN(STEEL) 
LN(AVGUNI) 
LN(INDCON) 
LN(ENER) 
CONSTANT 
NSPS1979 
CAA1995 
CAA2000 
CAIR2005 
FIRMLEARN 
FLUEGAS/GENCAP
AA 
ABB 
AL 
AM 
AP 
BL 

0.8(0.19)*** 
0.05(0.13)
-0.02(0.05) 
-0.45(0.59) 
0.42(0.26)*
0.10(0.1) 
0.28(0.17)* 
0.28(0.51)
1.13(0.57)** 
0.86(0.52) 
-0.45(0.74) 
0.02(1.12) 
11.84(4.61)** 
-0.87(0.64) 
-1.33(0.95) 
-0.38(0.62) 
-1.14(0.62)* 

 

0.86(0.24)*** 
0.16(0.13)
0.02(0.04) 
0.2(0.6) 
0.44(0.23)*
0.14(0.1) 
0.24(0.18) 
-0.44(0.34)
0.7(0.43)* 
0.48(0.47) 
0.12(0.24) 
0.98(0.64) 
13.56(3.57)*** 
 
 
 
 
 
 
0.73(0.68) 
0.46(0.34) 
-0.17(0.29) 
-0.45(0.42) 
0.95(0.44)** 
0.59(0.4) 

0.78(0.19)*** 
0.09(0.12)
-0.03(0.05) 
-0.45(0.57) 
0.49(0.24)** 
0.11(0.09) 
0.23(0.18) 
-0.12(0.31)
0.72(0.45) 
0.86(0.53) 
0.04(0.23) 
0.52(0.58) 
14.22(3.59)*** 
 
 
 
 
-0.03(0.08) 

 

0.79(0.19)*** 
0.07(0.12)
-0.01(0.05) 
-0.51(0.59) 
0.45(0.23)*
0.12(0.09) 
0.27(0.18) 
-0.21(0.31)
0.69(0.42) 
0.88(0.55) 
0.06(0.22) 
0.54(0.58) 
12(3.55)*** 
 
 
 
 
 
0.26(0.12)** 
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BW 
CA 
CC 
CE 
CO 
EE 
FL 
FM 
FW 
GE 
HA 
HT 
IH 
JO 
KE 
LLB 
MI 
MX 
OT 
PB 
RC 
RS 
SHU 
TH 
UO 
WA 
WAP 

-0.18(0.24)
-1.55(0.79)* 
-0.28(0.38) 
-0.51(0.34)
-0.46(0.42) 
1.36(0.49)*** 
-1.06(0.66)
0.11(0.36) 
2.42(0.6)*** 
-1.25(0.9)
-0.28(0.41) 
0.25(0.24) 
-0.2(0.34)
0.58(0.39) 
0.06(0.33) 
0.46(0.35)
-1.24(1.03) 
0.08(0.34) 
0.58(0.24)** 
-1.04(0.55)* 
0.04(0.34) 
0.19(0.7) 
1.39(0.34)*** 
0.14(0.4) 
-0.32(0.34) 
-6.84(0.39)*** 
0.34(0.26) 

Number of 
Observations 
Adj. R2 

DW Stat 
White 

303 
 

0.1 
1.99 

169.29** 

303 
 

0.24 
1.93 
NA 

303 
 

0.1 
1.97 

145.79*** 

303 
 

0.11 
1.97 

123.27* 
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TABLE E4. REGRESSION RUNS 14-17 
 14. 15. 16. 17. 
 LN(COST/MW) LN(COST/MW) LN(COST/MW) LN(COST/MW) 
WET 
LN(UNSIZE) 
LN(PLCON) 
LN(REMEFF) 
LN(TRAINS) 
LN(COALSO2) 
RETROFIT 
LN(EXP) 
LN(STEEL) 
LN(AVGUNI) 
LN(INDCON) 
LN(ENER) 
CONSTANT 
RETROFIT*GENCAP 
BYPASS 
FORCEDOXIDATION 
INHIBOXIDATION 
CCAP(MW) 

0.79(0.19)*** 
0.09(0.12) 
-0.03(0.05) 
-0.43(0.58) 
0.49(0.24)** 
0.12(0.1) 
0.6(1.42) 
-0.13(0.32) 
0.73(0.44)* 
0.84(0.55) 
0.04(0.23) 
0.52(0.59) 
14.15(3.63)*** 
-0.05(0.2) 

 

0.79(0.19)*** 
0.09(0.12) 
-0.03(0.05) 
-0.44(0.58) 
0.49(0.25)** 
0.12(0.1) 
0.23(0.18) 
-0.14(0.32) 
0.69(0.44) 
0.84(0.54) 
0.03(0.23) 
0.52(0.59) 
14.27(3.64)*** 
 
-0.04(0.17)*** 

 

    0.5(0.23)** 
-0.05(0.12) 
-0.04(0.05) 
-0.47(0.59) 
0.38(0.23)* 
0.12(0.9) 
0.08(0.2) 
-0.37(0.33) 
0.64(0.46) 
0.81(0.52) 
0.02(0.23) 
0.73(0.61) 
15.82(3.75)*** 
 
 
1.18(0.29)*** 
1.44(0.3)*** 

0.85(0.2)*** 
0.12(0.11) 
-0.04(0.05) 
-0.61(0.54) 
0.53(0.24)** 
0.12(0.09) 
0.26(0.19) 
 
1.16(0.4)*** 
0.94(0.54)* 
0.26(0.25) 
-0.17(0.46) 
11.56(3.7)*** 

 
 
 
 
0.28(0.21) 

 

Number of 
Observations 
Adj. R2 

DW Stat 
White 

303 
 

0.1 
1.97 

142.95*** 

303 
 

0.1 
1.97 

142.43*** 

303 
 

0.13 
1.96 

169.42*** 

303 
 

0.1 
1.99 

119.06** 
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TABLE E5. REGRESSION RUNS 18-19 
 18. 19. 
 LN(COST/MW) LN(COST/MW) 
LN(UNSIZE) 
LN(PLCON) 
LN(REMEFF) 
LN(TRAINS) 
LN(COALSO2) 
RETROFIT 
LN(EXP) 
LN(STEEL) 
LN(AVGUNI) 
LN(INDCON) 
LN(ENER) 
CONSTANT 
FORCEDOXIDATION 
INHIBOXIDATION 
WET 
#BUILTSIM 
UTILLEARN 
FLUEGAS/GENCAP 
LNSIZE*WET 
DISPOSAL 
AA 
ABB 
AL 
AM 
AP 
BL 
BW 
CA 
CC 
CE 
CO 
EE 
FL 
FM 
FW 
GE 
HA 
HT 
IH 
JO 
KE 
LLB 
MI 
MX 
OT 
PB 
RC 
RS 
SHU 
TH 
UO 

0.21(0.14) 
0.05(0.05) 
0.08(0.54) 
0.95(0.25)*** 
0.07(0.12) 
0.52(0.18)*** 
1.15(1.13) 
  (dropped)16 
   (dropped) 
-1.01(0.84) 
-1.07(2.88) 
6.6(8.6) 
 
 
0.57(0.23)** 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.27(0.17) 
0.04(0.05) 
-0.43(0.59) 
0.33(0.20) 
0.09(0.1) 
0.15(0.22) 
-0.23(0.37) 
1.48(0.52)*** 
0.66(0.48) 
0.22(0.244) 
0.42(0.73) 
10.71(3.83)*** 
0.76(0.38)** 
1.19(0.44)*** 
4.08(1.29)*** 
-0.23(0.21) 
-0.1(0.12) 
0.3(0.11)*** 
-0.62(0.22)*** 
0.5(0.21)** 
0.27(0.57) 
0.6(0.4) 
-0.08(0.35) 
0.07(0.45) 
1.53(0.53)*** 
1.83(0.46)*** 
-0.02(0.32) 
-1.23(0.85) 
0.1(0.4) 
-0.25(0.38) 
1.6(0.62)*** 

1.22(0.48)* 
-0.71(0.68) 
0.03(0.51) 
2.11(0.68)*** 
-0.54(0.77) 
-0.59(0.53) 
0.53(0.36) 
-0.18(0.4) 
0.71(0.52) 
0.22(0.51) 
0.57(0.42) 
-0.37(0.97) 
1.36(0.58)** 
0.97(0.56)* 
-0.73(0.56) 
0.34(0.43) 
-0.23(0.6) 
1.5(0.43)*** 
-0.06(0.37) 
0.26(0.39) 

                                                 
16 Variables were dropped in this specification due to perfect collinearity with some of the year binary 
variables.  
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WA 
WAP 
1971 
1972 
1973 
1974 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1994 
1995 
1996 
1997 
1998 
1999 
2001 
2002 
2003 
2004 
2006 
2007 
2008 
2009 
2010 

 
 
-0.38(0.73) 
1.59(0.71)**
1.9(0.82)** 
1.44(0.72)** 
1.7(0.23)***
1.52(0.52)*** 
0.34(0.63) 
0.09(0.91)
-0.23(0.84) 
-0.37(0.43) 
-0.031(0.38)
-0.30(0.32) 
-0.73(0.57) 
 (dropped)
-0.58(0.36) 
-0.73(0.43)* 
-0.67(0.58) 
-5.4(0.84)*** 
-0.97(0.79) 
-1.72(0.87)** 
-1.07(0.47)** 
-2.7(1.11)** 
-1.15(1.04) 
-1.26(1.17) 
-0.72(0.95) 
-2.99(1.33)** 
-2.1(1.61) 
   (dropped) 
-0.23(0.29) 
-0.58(0.31)* 
-1.62(0.34)***
-1.83(1.13) 
-0.3(0.91) 
-0.16(0.88)
0.49(1.17) 
0.42(1.12) 

-6.72(0.49)*** 
0.49(0.33) 

 

Number of Observations 
Adj. R2 

DW Stat 
White 

303 
 

0.19 
2.13 
NA 

303 
 

0.3 
2.01 
NA 
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TABLE E6. REGRESSION RUNS 20-23 (PATENT SAMPLE) 
 20. 21. 22. 23. 
 LN(COST/MW) LN(COST/MW) LN(COST/MW) LN(COST/MW) 
LN(COALSO2) 
LN(TRAINS 
LN(REMEFF) 
LN(PLCON) 
LN(UNSIZE) 
WET 
RETROFIT 
LN(CCAP) 
LN(STEEL(-1)) 
LN(AVGUNI) 
LN(INDCON) 
LN(ENER(-1)) 
CONSTANT 
PATENT 
PATENT(-1) 
PATENT(-2) 
 
 

0.24(0.12)** 
0.52(0.34) 
-0.31(0.47) 
-0.12(0.09) 
0.18(0.17) 
0.66(0.25)*** 
0.01(0.22) 
0.29(0.33) 
1.37(0.65)** 
1.18(0.83) 
-0.67(0.46) 
-1.01(0.78) 
8.11(3.37)** 

 

0.23(0.12)* 
0.55(0.35) 
-0.36(0.47) 
-0.13(0.1) 
0.16(0.16) 
0.66(0.25)*** 
0.08(0.22) 
-0.73(0.37)** 
0.73(0.63) 
1(0.74) 
-0.7(0.45) 
-0.87(0.75) 
3.25(3.75) 
1.45(0.42)*** 

 

0.23(0.12)* 
0.55(0.35) 
-0.35(0.47) 
-0.14(0.1) 
0.16(0.16) 
0.65(0.25)*** 
0.08(0.22) 
-0.64(0.36)* 
0.63(0.64) 
0.93(0.73) 
-0.72(0.45) 
-0.94(0.76) 
4.82(3.5) 
 
1.17(0.32)*** 

 

0.23(0.12)* 
0.54(0.35) 
-0.32(0.48) 
-0.13(0.09) 
0.16(0.16) 
0.64(0.25)** 
0.09(0.22) 
-0.73(0.40)* 
0.53(0.65) 
0.83(0.68) 
-0.78(0.44)* 
-1.11(0.76) 
4.62(3.46) 
 
 
1.25(0.41)*** 

 

Number of 
Observations 
Adj. R2 

DW Stat 
White 

188 
 

0.11 
1.96 

        143.83*** 

188 
 

0.12 
2.06 

152.76*** 
 
 

188 
 

0.12 
2.06 

152.09*** 
 
 

188 
 

0.12 
12.07 

152.59*** 
 
 

 

TABLE E7. REGRESSION RUNS- ALTERNATIVE TIMEFRAMES 
 1969-1979 1980-1999 1999-2010 
 LN(COST/MW) LN(COST/MW) LN(COST/MW) 
LN(COALSO2) 
LN(TRAINS 
LN(REMEFF) 
LN(PLCON) 
LN(UNSIZE) 
WET 
RETROFIT 
LN(CCAP) 
LN(STEEL(-1)) 
LN(AVGUNI) 
LN(INDCON) 
LN(ENER(-1)) 
CONSTANT 
 
 

0.01(0.12) 
-0.03(0.19) 
0.67(0.49)
0.09(0.1) 
-0.05(0.14) 
NA (all obs wet) 
0.39(0.28) 
1.12(0.43)** 
49.33(24.47)* 
1.34(0.7)* 
2.69(0.81)*** 
-14.65(7.12)** 
-3.61(5.41) 

 

 

0.19(0.16) 
0.72(0.42)* 
-1.2(0.61)*
-0.17(0.11) 
0.26(0.22) 
0.68(0.27)** 
0.27(0.26) 
0.75(0.69) 
1.45(1.2) 
-0.97(2.12) 
-3.03(1.13)*** 
-1.55(1.06) 
6.7(7.48) 

 

-0.05(0.2) 
0.18(0.26) 
2.64(2.83) 
0.01(0.05) 
-0.73(0.25)*** 
0.8(0.35)** 
0.81(0.36)** 
2.48(6.63) 
0(1.44) 
0.58(1.25) 
1.46(1.14) 
1.26(4.25) 
-10.62(40.85) 

 

Number of Observations 
Adj. R2 

DW Stat 
White 

44 
0.45 
2.05 
44 

139 
0.17 
2.18 

113.15* 

120 
0.14 
2.14 

100.11* 
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Appendix F: Sensitivity analysis run description 

Run Explanation and Rationale Construction Data 
Base Model + 
Regional Variables 
(Run 2) 

Dummy variables 
representing the region of 
the US the plant was located 
to test for regional labour 
market conditions or other 
regional factors influencing 
costs. 

. The sample was 
divided into six regions 
based on the Handy 
Whitman Index. The 
North East region is the 
base case.  

EIA 2011 

Base Model + 
Ownership category 
(Run 3) 

Used to determine whether 
there was systemic 
misreporting of costs based 
on whether the utility was 
investor owned, owned by a 
municipality, owned by the 
state, or a co-operative 

 Dummy variables 
representing whether the 
utility was investor 
owned, owned by a 
municipality, owned by 
the state, or a co-
operative.   

Platts 2011 

Base Model + 
Simultaneous 
Construction (Run 4) 

Costs associated with 
overhead and administration 
would be spread out over 
multiple units, thereby 
lowering costs. 

A series of binary 
variables representing 
whether two, three, or 
more, FGD units were 
built (or planned) 
simultaneously. 
Assumed simultaneous 
construction if the 
variables were built 
within the same year or 
one year apart. The base 
case represents no 
simultaneous 
construction.    

EIA 2011 

Base Model + Plant 
Learning (Run 5) 

Included to see if a history 
of constructing a FGP, a 
SCR, or a FGD unit by the 
power plant will influence 
cost. Assumes some of the 
knowledge/experience with 
installing pollution control 
devices garnered by plant 
operators will translate into 
lower costs. 

A continuous variable 
which counts the number 
of pollution control 
devices built by the plant 
prior to the construction 
of the given unit.  

EIA 2011 

Base Model + Utility 
Learning (Run 6) 

Included to see if a history 
of constructing a FGP, a 
SCR, or a FGD unit by the 
utility will influence cost. 
Assumes some of the 
knowledge/experience with 
installing pollution control 
devices obtained at the head 
office will translate into 
lower costs. 

A continuous variable 
which counts the number 
of pollution control 
devices built by the 
utility prior to the 
construction of the given 
unit.  

EIA 2011 

Base Model + Included to determine if Interaction term between EIA 2011, EPA 
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Scale/Technology 
interactions (Run 7) 

scale economies change 
based on the type of 
technology utilized. 

the unit scale variable 
with the Wet FGD 
binary variable.  

n.dc 

Base Model + By-
product recovery 
(Run 8) 

Included to determine the 
impact of the presence of 
waste/by product recovery 
on cost. It makes sense that 
the building of such 
functionality into the FGD 
design should raise costs 
relative to a system without 
such functionality. 

Binary variable 
indicating whether the 
FGD unit includes a by-
product recovery system.  

EIA 2011 

Base Model + Handy 
Whitman Index (Run 
9) 

Used an alternative index to 
deflate the dependent 
variable. As mentioned 
previously, the use of the 
Handy-Whitman index 
resulted in a different cost 
trend for the sample as a 
whole relative to GDP 
deflator.  

Estimated the base 
model using the Handy 
Whitman index to 
deflate unit costs. 

EIA 2011 for 
costs, EPA n.dc 
for capacity 

Base Model + 
Regulations (Run 10) 

The ever-expanding scope 
and scale of regulation of 
SO2 in the US may have 
raised FGD costs by making 
it more favourable to build 
FGD units in plants where it 
previously was not 
economic to do so.  

Binary variables 
representing the most 
recent regulation passed 
when the FGD unit was 
built. Variables are for 
the NSPS 1979, the 1995 
CAA Amendments, the 
2000 CAA 
Amendments, and the 
2005 CAIR. The base 
case is the regulatory 
regime prior to 1979 (no 
regs for 1969 and for all 
others NSPS 1971). 

NA 

Base Model + Firm 
dummies (Run11) 

Aimed at capturing impacts 
which are firm-specific but 
time invariant on cost. 
Reason to believe that some 
firms can produce FGD 
units cheaper/more 
expensive than others over 
the sample period due to 
differences inherent to the 
particular firms 

A series of binary 
variables identifying the 
firm who built the unit. 
Relative to a base case 
using the company BPE. 

EIA 2011 

Base Model + 
Manufacturing firm 
learning (Run12) 
 

This variable is to determine 
if the cumulative experience 
of FGD construction at a 
given plant results in lower 
costs per unit. In essence, 
this variable captures 
learning by doing at the 

Cumulative summation 
of the number of FGD 
units built prior to the 
unit in question by the 
company who built the 
unit.  

EIA 2011 
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plant level rather than the 
industry level. 

Base Model + Flue 
Gas/unit generating 
capacity (Run 13) 

Greater flue gas volume/unit 
generating capacity 
necessitates more duct work 
when installing FGD 
systems, which affects 
costs. 

Divided the rate of the 
volume of actual flue gas 
per minute by the total 
generating capacity of 
the plant. 

EIA 2011 

Base Model + 
Retrofit*GenCapacity 
(Run 14) 

Plants with smaller 
generating capacities 
(generally smaller plants in 
absolute size) may have less 
space to retrofit with FGD 
systems and thus, may see 
higher costs relative to 
retrofits in large plants. 

Interaction term between 
generating capacity of 
the plant and its retrofit 
status.  

Platts 2011 (for 
retrofit status), 
EIA 2011 for 
generating 
capacity. 

Base Model + Bypass 
(Run 15) 

Configuring the FGD 
system to account for the 
bypass of a fraction of the 
flue gas may cause higher 
costs to account for this 
additional functionality. 

Binary variable for 
whether the FGD unit in 
question 

EIA 2011 

Base Model + 
Oxidation (Run 16) 

Forced/Inhibited oxidation 
technologies have additional 
steel requirements 
associated with it, 
necessitating higher costs.  

Binary variable for 
whether the FGD unit in 
question was forced 
oxidation. This 
necessitated the 
adjustment of the wet 
binary variable into three 
separate binary 
variables- one for forced 
oxidation, another for 
inhibited oxidation, and 
yet another for regular 
wet FGD. Dry FGD 
units remain the 
reference case.    

Weilert et al., 
2010. 
*If not 
reported, 
assumed was 
not forced 
oxidation. 

Base Model + 
Cumulative Capacity 
(Run 17) 

Replaced the experience 
variable (measured in 
cumulative units) with a 
cumulative capacity variable 
measured in cumulative 
MWe  

Cumulative summation 
of the capacity of all 
FGD units built prior to 
the unit in question.  

EIA 2011 

Base Model + Year 
Dummies (Run 18) 

To capture year specific 
effects which do not vary by 
location and which were not 
already captured in the base 
model. 

A series of binary 
variables identifying the 
year the unit was built. 
Relative to a base case 
1969. 

EIA 2011 

Base Model + 
Cumulative Patent 
Data (Run 20-23) 
 

Test to see if the cumulative 
number of patents (taken 
contemporaneously and 
lagged by 1 and 2 periods) 

Dataset compiled by 
Lohwasser & Madlener- 
used for analysis in 
Lohwasser & Madlener 

Lohwasser & 
Madlener 
(2010) 
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impacts unit costs as per the 
learning-by-researching 
phenomenon 

(2010). In the 
contemporaneous case, a 
value of the number of 
cumulative patents up to 
that point in time is 
assigned to any FGD 
units built that year.   

 


