
RESEARCH ARTICLE

Physical Forces between Humans and How
Humans Attract and Repel Each Other Based
on Their Social Interactions in an Online
World
Stefan Thurner1,2,3*, Benedikt Fuchs1

1 Section for Science of Complex Systems, Medical University of Vienna, Vienna, Austria, 2 Santa Fe
Institute, Santa Fe, NewMexico, United States of America, 3 International Institute for Applied Systems
Analysis, Laxenburg, Austria

* stefan.thurner@meduniwien.ac.at

Abstract
Physical interactions between particles are the result of the exchange of gauge bosons.

Human interactions are mediated by the exchange of messages, goods, money, promises,

hostilities, etc. While in the physical world interactions and their associated forces have

immediate dynamical consequences (Newton’s laws) the situation is not clear for human

interactions. Here we quantify the relative acceleration between humans who interact

through the exchange of messages, goods and hostilities in a massive multiplayer online

game. For this game we have complete information about all interactions (exchange events)

between about 430,000 players, and about their trajectories (movements) in the metric

space of the game universe at any point in time. We use this information to derive “interac-

tion potentials" for communication, trade and attacks and show that they are harmonic in

nature. Individuals who exchange messages and trade goods generally attract each other

and start to separate immediately after exchange events end. The form of the interaction

potential for attacks mirrors the usual “hit-and-run" tactics of aggressive players. By measur-

ing interaction intensities as a function of distance, velocity and acceleration, we show that

“forces" between players are directly related to the number of exchange events. We find an

approximate power-law decay of the likelihood for interactions as a function of distance,

which is in accordance with previous real world empirical work. We show that the obtained

potentials can be understood with a simple model assuming an exchange-driven force in

combination with a distance-dependent exchange rate.

Introduction
Maybe the most influential concept in physics is the notion of Newton’s laws of motion, which
say that in any inertial frame the external forces F that act on an object are proportional to its
acceleration a, or F =m a, where the proportionality constant is the mass of the object. This
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law is the heart of classical mechanics. In physics there are four forces that are considered to be
fundamental, the electromagnetic force, that exists between electrically charged and magnetic
objects, the weak force that acts on subatomic particles, the strong force that is responsible for
the interactions between quarks, and finally gravitation, that acts between objects that have a
mass. The origin of these four forces has been clarified over the 20th century. The current view
is that the forces can be understood in terms of exchange of so-called virtual bosons between
interacting particles. Electromagnetism is a result of the exchange of photons, see Fig 1A, the
weak force rests on the exchange of W- and Z-bosons, and exchange particles of the strong
force are the so-called gluons. Gravitation is thought to be mediated by the exchange of (hypo-
thetical) gravitons. By treating virtual exchange particles as excitations of a field the functional
form of the interaction potential can be derived [3, 4] from first principles.

In classical physics a force can often be expressed as a negative gradient of a potential V(x),

ma ¼ m
d2

dt2
x ¼ �rV ðxÞ: ð1Þ

If a central force is present, meaning that only the distance r between the two particles matters,
the potential becomes a function of r, V(x) = V(r), and we get

ma ¼ � d
dr

V ðrÞ þ V0ðrÞ½ �; ð2Þ

where V0(r) is an effective-potential term, which can arise for example by the presence of angu-

lar momenta V0ðrÞ ¼ L2

2mr2
(in cylindrical coordinates).

Similar to physical interactions, human interactions are to a large extent based on the con-
cept of exchange. The objects that are exchanged can be information, messages, goods, money,
presents, promises, aggression, bullets, etc. In Fig 1B we schematically draw the trajectories of
two individuals who exchange messages and a gift; their relative distance reduces over time. It
is in general not possible to experimentally determine if exchange events between humans gen-
erate effective attractive or repulsive forces that influence their relative trajectories. This is due
to the lack of simultaneous information on the exchange events and the trajectories of the
involved individuals. The existence of potentials causing and influencing the relative motion of
humans is not new and has been conjectured in [5]. New technologies in data acquisition and
storage are about to change the experimental situation. Data from mobile phone networks,
email networks, and several online social networks show that the probability for interaction
events decays with distance as an approximate power-law, P/ r−α [6–14], with exponents
ranging from α = 0.83 [13] to α = 2.0 [6–8], see Table 1. Few empirical studies go beyond the
analysis of the relation between distance and social dynamics. It was found that humans mostly
travel towards others with whom they share a (weak) tie [15]. In [13] human mobility is
described as a combination of a periodic daily pattern (from “home” to “work”) and long-dis-
tance travels which are influenced by social networks. This model was successfully applied to
mobile phone data and the social networks Brightkite and Gowalla [13]. In a slightly wider con-
text, the role of the number of interaction partners in spacial iterated prisoner’s dilemma
games on regular lattices has been shown to have an influence on the size of collaborative clus-
ters [16, 17]. There however the players are static, and do not represent real individuals.

In this work we study a unique data set containing all interactions between the players of
the massive multiplayer online game (MMOG) Pardus. In addition we know the players’ exact
positions at any point in time. The MMOG has been extensively studied as a human model
society, with respect to a wide number of socio-economic aspects, and including a wide
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spectrum of methodology [2, 18–25]. In [20, 26] entropy based approaches were used. For
recent developments on the use of entropy methods in the context of complex networks see
[27–30].

Pardus has more than 430,000 players who “live” in a virtual environment and interact with
each other in a multitude of ways. The game is open ended and players pursue their self-
defined goals. Players earn virtual currency through economic activities such as mining raw
materials, processing them, or trading. We consider trading between two players as one form
of an exchange event; it usually involves the exchange of goods against currency. Players com-
municate with each other through the exchange of messages via an internal messaging system
which is comparable to one-to-one emails. There exist destructive forms of interaction where
players attack each other if they are in close proximity. Additional types of interaction, which
are not considered in this work include friendship and enmity markings, destruction of

Fig 1. Interactions mediated by exchange of particles. A Electromagnetic interaction between a proton and an electron is mediated by the exchange of
virtual photons (after [1]). B Two players in Pardus interact by exchanging messages and goods. C Map of the Pardus universe. Nodes are sectors (cities),
lines between them are connections (streets). Colors represent different regions (countries) [2].

doi:10.1371/journal.pone.0133185.g001

Table 1. Power-law exponents obtained from interaction probabilities as a function of distance for var-
ious data sets.

Interaction type α Source

Phone calls 2 [6]

Call duration 2 [7]

Facebook, email, etc. 1.98 [8]

LiveJournal friendship 1.2 [9]

Email 1 [10]

Facebook friendship 1.05 [11]

Brightkite, Foursquare, Gowalla 0.5–1 [12]

Gowalla friendship 0.82 [13]

Brightkite friendship 0.83 [13]

Twitter, Gowalla, Brightkite 0.7 [14]

Messages in Pardus 1.3 Fig 2

doi:10.1371/journal.pone.0133185.t001
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equipment, revenge, piracy, and indirect forms of interaction through the formation of groups
and governance. For further details on the game see [19, 31]. Note that while communication
can happen over large distances, trading (exchange of goods) and attacks require temporal and
spatial “locality”. The different interaction types that we study here are labeled by β = 1,2,3 for
communication, trade, and attack, respectively. For the case of no interaction we use β = 0. In
Materials and Methods we define the way in which interactions between players are counted.

The game is constrained to a 2 dimensional virtual universe that is partitioned into 400 so-
called “sectors”, which play the role of cities. Sectors are connected by 1,064 local and 77 long-
range connections (streets). A map of the universe is shown in Fig 1C. Movement is not for
free. Traveling long-distance connections costs more than short moves. Travel can be fast but
it takes time; traversing the entire universe needs about three days. We define the distance
between two sectors as one “step” (network distance 1) if they are directly connected by a local
or a long-range connection. For sectors that are not directly connected, we define their respec-
tive distance as their network-, or Dijkstra distance. The sectors are formally embedded into a
twodimensional Euclidean space as shown in Fig 1C. However the Euclidean length of the con-
nections has no consequence for the players. Therefore, the effective distance inside the game
universe is the Dijkstra distance and not the Euclidean distance. As a side note, these two met-
rics are strongly correlated, with a Pearson’s correlation coefficient of ρ = 0.754 for the dis-
tances between all pairs of sectors. The network of sectors has a diameter of 27 steps, see also
[2, 31]. Given the metric of the Dijkstra distance we can now not only talk about the position
xi(t) of player i at time t, but also about relative distances rij(t) of players i and j, their relative
velocities vij(t), and accelerations aij(t), at any given time t. For the definitions of rij, vij, and yij,
see Materials and Methods. Time is measured in days.

We can now address a series of questions of how social interactions between humans influ-
ence their relative motion. In particular, do interactions predominantly happen locally? Or in
other words, what is the interaction density as a function of distance? Is it possible to derive
interaction-specific potentials from Eq (2)? How is interaction strength related to the relative
motion of players, and does motion change after interactions have taken place? Finally, we try
to understand the observed interaction potentials by the help of a simple model.

Results

Locality of interactions

We define the probability Pb
i ðrÞ that player i interacts with any other player j who is at a dis-

tance r = rij away from i, within a unit time interval. Pb
i ðrÞ is shown as a function of r in Fig 2.

Even though the distributions are clearly not power-law, if an approximate power-law expo-
nent was fitted for β = 1 (communication). We obtain a slope of* 1.3. In Table 1 this expo-
nent is compared to those found in previous works. For trade and attack, the probability for an
interaction decays faster than a power-law. The stronger decay for trade or an attack can be
explained by the fact that for these interactions players need to reduce their relative distance to
zero within a 24h time window. For r> 20 we see a finite size effect that is due to the finite
extension of the universe.

Interaction potentials of social interactions
To obtain the interaction potentials Vβ(r) it becomes necessary to integrate Eq (2). Since we are
working with discrete variables, we set dr = 1 and the integration reduces to a simple sum over
distances. Assuming thatm = 1 in Eq (2), the interaction specific potential Vβ(r) is then simply
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obtained by

VbðrÞ ¼ �
Xr

r0¼1

abðr0Þ � a0ðr0Þ: ð3Þ

Here we assume that V0(r) is caused by the random background motion of players on the finite
network of sectors. The relative motion of those players that do not interact with each other (V
(r) = 0) is therefore governed by V0(r). To estimate V0(r) in Eq (2) we set V(r) = 0 and solve for
V0ðrÞ ¼ Pr

r0¼0 a
0ðr0Þ, where aβ = 0 means acceleration between non-interacting pairs. The

resulting unit of V is steps2/days2. Starting the sum at r0 = 1 sets the reference point Vβ(0) = 0.
The resulting potentials for the three interaction types are shown in Fig 3. They can be well

approximated by a harmonic and linear potential,

VbðrÞ ¼ kbr2 � bbr; ð4Þ

where κβ is the respective “force constant”. The corresponding equilibrium distance is at

rbm ¼ bb

2kb. Potentials increase with distance without signs of saturation. For communication this

is consistent with the real-world observation that “(. . .) the effect friends have on our move-
ment grows with their distance from us” [13]. For trades and attacks there is the simple expla-
nation that players need to reduce their distance to zero at one instance so that the interaction
is possible.

We use least-square fits to quantify the parameters in Eq (4). For non-interacting players
(V0) we find κ0 = 0.133 [0.130;0.136], where the intervals give the 95% confidence intervals of
the fit. b0 = 3.1 [3.0;3.2], corresponding to an equilibrium distance of r0m ¼ 11:7 steps, which is
close to the average distance of any two randomly selected players (12.1 steps). For trade we
find κtrade = 0.52 [0.50;0.53], btrade = 1.1 [0.9;1.3], and rtradem ¼ 1:1. For attacks we get κattack =
0.453 [0.447;0.458], battack = 2.9 [2.8;3.0], and rattackm ¼ 3:2. Vattack is repulsive for r< 3, which
reflects a common “hit-and-run” strategy of players. Finally, for messages we have κmessage =

Fig 2. Probability of interactions of type β, Pb
i as a function of the distance r between players. An

approximate power law exponent for communication events is found to be* −1.3 (black line).

doi:10.1371/journal.pone.0133185.g002
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0.04 [0.03;0.05], and bmessage = −1.5 [−1.7;−1.3]. It is obvious from Fig 3 that Vmessage is mainly
dominated by the linear term.

Interaction strength and relative motion
We analyze the average number Nβ of messages sent, trades performed, and attacks carried out
between the players. Only pairs of interacting players are taken into account. Fig 4, panels A B
C show the number of interactions Nβ as a function of distance rβ, respectively. The gray lines
indicate the level obtained from shuffled data (see Materials and Methods) which serves as a
baseline level. In A we see that the number of exchanged messages is strongly over-represented

Fig 3. Interaction-specific potentials for messages, trade, and attacks, computed from Eq (3). Solid
lines are least-squares fits to a harmonic potential as defined in Eq (4). V0 is a result of the background motion
of non-interacting pairs of players. The inset is a blow-up for small distances. Clearly, the potential for attack
shows a minimum at rattack * 3. For all fits (lines) the explained variance is R2 > 0.99.

doi:10.1371/journal.pone.0133185.g003

Fig 4. Average number of (uni-directional) interactions per day as a function of rβ, vβ, and aβ. Errorbars
are standard deviations of the mean. The results for randomized data are shown with dashed gray lines.
Clearly, interaction intensity is strongest for players in the same sector (r = 0). For trade and attack, stationary
players (with velocity and acceleration zero) interact the most. For messages, interaction is most intense for
players who move towards each other but slow down.

doi:10.1371/journal.pone.0133185.g004
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(above baseline) at zero distance. For all other distances messages are under-represented,
reaching the baseline level for large distances. The minimum of messages is found at a distance
of 2. Trades are over-represented for distances 0 and 1 (B); attacks for distances 0, 1, and 2 (C).
For attacks a clear minimum is reached at distance 4. Panels D E F show the number of interac-
tions Nβ as a function of velocity vβ. It is clear from D that the higher the velocity toward each
other the higher is the number of messages. Small positive velocities (away from each other)
are slightly underrepresented and approach the baseline for large velocities. The situation is dif-
ferent for trade and attack. Both positive and negative velocities are under-represented (posi-
tive ones slightly more). For trade (E) only zero velocity is over-represented. For attacks (F)
absolute values of zero and 1 are over-represented. This clearly shows the needed stationarity
for trade and attack. Finally, panels G H I display the number of interactions Nβ as a function
of acceleration aβ. G shows that the number of sent messages increases from a minimum at
a = 0 with the radial acceleration: the highest number of messages is exchanged between play-
ers who move towards each other, but slow down. For trades and attacks, accelerations close to
zero are over-represented, while the baseline is approached for large accelerations. Both are
skewed towards positive values of the acceleration.

In Fig 5 we show distance, velocity and acceleration as a function of the number of interac-
tions. Randomized data is shown by gray symbols. In panel A it is visible that the average dis-
tance for messages is about 6.5, for trade about 2, and just below 4 for attacks. These
characteristic distances depend relatively little on the number of interactions Nβ. The relative
large distance for attacks might reflect a “safety” distance. For the randomized data the charac-
teristic distance is r* 12.1 for all interaction types and independent of the number of interac-
tions. In Fig 5B it is seen that for trade there is a typical constant convergence speed of* 0.6
irrespective of interaction counts. For messages the characteristic convergence speed increases
slightly with the number of interactions. The positive characteristic separation speed of attacks
is quite pronounced, and increases with the number of attacks until a plateau is reached from
about Nattack * 4 on. Characteristic acceleration values for trade and attack are constant in Nβ,
for communication there is a slight increase of acceleration with Nmessage.

Relative motion before and after interactions
Finally we study the effects on characteristic distances right before and after interaction events.
In Fig 6 we look at characteristic distances rβ at three consecutive time points. Time windows
where interactions happen are indicated by a black bar. Panel 6 A shows how distances change
after a period where interaction(s) occurred. It is clearly visible that when players cease to

Fig 5. Average rβ, vβ, and aβ as a function of the number of interactionsNβ. Errorbars are standard
deviations of the mean. Randomized data are shown with gray symbols. For the randomized data rβ * 12.1
for all interaction types and independent of the interaction strength (not shown). Characteristic distances are
relatively constant inNβ, the characteristic convergence speed for communication increases with the number
of messages. The separation speed for attacks increases up to Nattack * 4 and remains constant afterward.
Acceleration in positive direction, i.e. slowing of convergence for messages increases withNmessage.

doi:10.1371/journal.pone.0133185.g005
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interact rβ immediately increases (at t+1), i.e. they move away from each other. The effect is
especially pronounced for β = 2,3 (trade and attack). There is a slight indication that the higher
the number of trades, the closer the interacting players are (light and dark colors), see also Fig
5. From Fig 6B we learn that right before interactions take place, players approach each other
(from t−1 to t). This effect can be understood in the following way: If two players are closer to
each other than the expected distance for a random pair of players, and assuming that they
move independently and randomly, there is an increased likelihood that they will be farther
apart on the next day. Similarly there is an increased likelihood that they have been farther
apart one day earlier. This effect constitutes the repulsion at r < r0m captured by V0. Since Pi(r)
(Fig 2) causes interacting players to be close to each other, i.e. mostly closer than r0m, they move
towards each other before an interaction. The strongest effect is seen for attacks, for which the
beginning separation after the attack is also visible at t+1. For attacks we clearly identify a “hit-
and-run” tactics where before the attack the players move towards each other (attacker closes
in on victim). Right after the attack the attacker moves away from the victim, see panel A. In
Fig 6C we see that players who communicate with each other for a more extended period of
time (2 days) are closer than those who begin or end a communication, (compare to rmessage in
panels A and B). Their distance remains approximately constant over the three days. The same
observations hold for trades. For attacks, again the “hit-and-run” tactics is visible.

Model
We try to understand the observed interaction potential for messages with the use of a simple
model. The basic idea is to model a pair of random walkers i and j on the Pardus universe net-
work Fig 1C. At every timestep i sends a message to j according to the distance-specific interac-

tion probability Pb¼message
i ðrÞ, shown in Fig 2). Both players move to a randomly chosen new

sector, which is d steps from their current position. d is sampled independently for each player
from the empirical jump-distance distribution in the game, P(d), see Materials and Methods. If
an interaction took place at the current timestep t, the player who initiated the interaction (sent
the message) moves one step towards the other player along one of the shortest paths. If an
interaction took place at the previous timestep t−1, the player who initiated the interaction
moves two steps towards the other player along (one of) the shortest path(s). If both players
have initiated an interaction, both move towards each other independently, each one step at
the timestep they initiated the interaction and two steps in the timestep after the interaction.
Note that it is highly unlikely that both players initiate an interaction at the same time, since

Pb¼message
i ðrÞ < 10�3 for all r. If i and j are already within the same sector, they remain there.

The procedure is repeated for 5 × 108 days for 20 different random initializations.

Fig 6. Relative distance rβ of players before and after interactions. The black line indicates the time
interval where interactions take place. A the players interact on the first day, but not on the second, B the
players interact on the second day, but not on the first, C the players interact on both days.

doi:10.1371/journal.pone.0133185.g006
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From the resulting relative movements of the players we derive the potential in exactly the
same way as before by using Eq (3). In Fig 7 we see that the model (squares) reproduces the
potential to a large extent. The model is further able to explain the motion of players toward
each other before an interaction that was mentioned in the context of Fig 6B. Note that the
inputs were the topology of the universe, the empirical jump-distance distribution of players,
the empirical distance-dependent interaction probability, and an acceleration that does not
depend on the distance.

To illustrate the importance of the distance-dependent interaction probability we set Pi(r) =
const, and arrive at a potential that underestimates the empirical one (triangles). The effect of
the jump-distance distribution is seen when we set P(1) = 1, i.e. players always move one step,
bigger moves as well as no moves are now forbidden. The resulting potential (+) has no more
explanatory power. The same result is obtained when setting Pi(r) = const, and P(1) = 1 (not
shown). Note that for the case P(1) = 1, V0 in Eq (2) is no longer the one shown in Fig 3.

Discussion
We present a phenomenological study of a comprehensive data set of literally all social interac-
tions and all trajectories of the inhabitants (players) of the virtual world Pardus. The data
allows us to investigate if social interactions have an influence on the relative movements of
players within the virtual universe. We first focused on the locality of interactions by looking at
the probability to interact, as a function of distance between two players. Social exchange inten-
sities are found highest for characters that occupy the same sector. We find that the probability
to interact decays with relative distance (very) roughly as a power-law with an exponent of
about 1.3. We relate this exponent to previous estimates of power-law exponents in a variety of
real world settings [6–14].

We find that relative movement patterns of people in the game can be well understood by
approximately harmonic interaction potentials. These potentials vary considerably for different

Fig 7. Interaction potential derived from the randomwalker model. The interaction potential derived from
the random walker model (squares) reproduces to a large extent the empirical potential for messages (blue
circles). The model uses the actual topology of the universe and assumes an attractive acceleration that is
conditional on interaction but independent of the distance. Triangles show the situation where the distance-
dependent interaction probabilities are set to be constant, (+) represent an unrealistic constant jump-distance
distribution of one step per time. Lines are least-squares fits to harmonic potentials as in Eq (4).

doi:10.1371/journal.pone.0133185.g007
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types of social interactions. Vattack has a clear minimum at distance of 3.2 steps, which is close
to the observed average distance between players attacking each other (slightly below 4). We
observe a characteristic distance of players interacting through messages between 5 and 6 steps,
and about 2 for those interacting through trade. Since we can not define “kinetic energy” in a
meaningful way in the game framework, it is not possible to understand the typical distances as
“bound states” of interacting individuals.

Players who exchange messages or trade with each other generally tend to move towards
each other; when they stop communicating, they typically move away from each other. This is
consistent with earlier studies on real-world data, which showed that positive social ties are
attractive [13, 15], and that the attraction increases with distance [13]. Players show a tendency
to move towards each other shortly before they interact. The more intensive the communica-
tion (number of exchanged messages), the stronger is this effect. For an attack, the attacker
usually closes in on her victim before the attack and backs up directly after having carried it
out. This “hit-and-run” tactics is clearly reflected in the respective potential.

To understand the origin of the potential for the message exchange, we devise a simple
model of random walkers, whose interactions cause an attractive acceleration. The model
allows to disentangle several relevant effects such as the distance-dependence of interaction
probability, and the jump-distance distribution of walkers. Both are essential for explaining the
observed potential. The main message learned from the model is that it is possible to under-
stand the distance-dependence of inter-human forces from the distance-dependence of interac-
tion probabilities. The acceleration following individual interactions can be uniform and
independent of relative distance.

Summary and Conclusion
The most important finding in this work is that social interactions (mediated through exchange
processes) lead to a measurable reduction or increase of relative distances and acceleration
between people in the game. The type of social interaction turns out to be essential for the
details of these “forces”. Even though we believe that we were able to quantitatively characterize
these forces there are some shortcomings of the work that should be addressed in future work.
The origin of the background potential V0 is yet to be understood. It is conceivable that an
appropriate mean field assumption together with taking the geometry of the “universe” into
account could lead to its full understanding. Another area for potential improvement could be
the use of alternative distance measures other than the Dijkstra distance that was used here,
such as distances mentioned in [32, 33]. The discussion of human interactions and their influ-
ence on relative movements in different metrics could be an interesting topic for future work.
Even though we have seen in previous work that many social networks in the game are very
similar to those observed in the real world, it is necessary to stress that the results from this
work might not be directly reflected in the real world. Further research is necessary on other
data sets that contain both, information on social interactions and localization of humans
simultaneously. Mobile phone data could be potentially used to perform a similar study in a
real world scenario.

Materials and Methods

Interaction counts

We use Nb
ij ðtÞ for the number of times i interacted with j in the time interval [t, t+1[. Time is

measured in days, i.e. t represents a day. β = 1,2,3 specifies the type of interaction, communica-
tion, trade, and attack, respectively. For the case of no interaction we use β = 0.
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Definition of distance, velocity and acceleration
We denote the position of player i at time t (measured in days) by xi(t). Every position of a
player is inside one sector and we define the distance of two players i and j as

rijðtÞ � DðxiðtÞ; xjðtÞÞ; ð5Þ

where D(x, y) is the Dijkstra distance between sectors x and y. The players’ (relative radial)
velocity vij(t), and acceleration aij are

vijðtÞ � Dðxiðt þ 1Þ; xjðt þ 1ÞÞ � DðxiðtÞ; xjðtÞÞ;
aijðtÞ � Dðxiðt þ 1Þ; xjðt þ 1ÞÞ þ Dðxiðt � 1Þ; xjðt � 1ÞÞ � 2DðxiðtÞ; xjðtÞÞ;

ð6Þ

respectively. For every interaction type β, the average distance rβ is the conditional average over
all distances between interacting players in the time window [t, t+1[,

rb ¼ hrijðtÞji interacts with j through b in ½t; t þ 1½ifi;j;tg: ð7Þ

The average velocity vβ, and number of interactions Nβ are computed in the same way. The
average acceleration as a function of the distance is calculated as the average over all interacting
pairs {i, j} given that rij(t) = r,

abðrÞ � haijðtÞji interacts with j through b in ½t � 1; t þ 1½; and rijðtÞ ¼ rifi;j;tg: ð8Þ

Negative velocity means motion toward each other. Note that negative acceleration can mean
three things: either that players increase speed towards each other, or that they slow down
when moving apart, or that they change their direction from moving apart to moving towards
each other. Most players interact with several others at the same time and the effect of interac-
tions between a pair of players is potentially disturbed by other interactions and factors.
Assuming naive superposition of dyadic interactions by taking averages, random disturbances
should cancel out.

Data
Our data contain all players’ positions at a time resolution of one day over 1,238 consecutive
days. Messages, trades, and attacks are recorded with a time resolution of one second. To accu-
rately describe the motion of non-interacting players we exclude inactive players on a day-to-
day basis: For all results containing acceleration a we only consider players who have per-
formed at least one action between t − 1 and t+1; for all other results players must have at least
performed one action between t and t+1. Given these requirements we get 3,414,091 data
points of 31,496 unique players on 1,237 days. For the one-day time interval we have 3,126,842
occurrences of messages, 358,825 occurrences of trades, and 169,227 occurrences of attacks.
For all results regarding a, pairs of players who interacted only on one of two consecutive days
are wrongly treated as two independent data points by the procedure described above. To cor-

rect for this error the standard error of the mean is multiplied by a factor of
ffiffiffi
2

p
to account for

the (at most) two-fold over-estimation of the number of independent data points.

Randomized data
Data are reshuffled by assigning the positions (xi(t − 1),) xi(t) and xi(t+1) to some other active
player j at random. This is done separately for every day. This way individual trajectories, pop-
ulation densities, and interaction networks are left intact while the relation between positions
and interactions are randomized.
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Jump-distance distribution P(d)
For all players i who have at least performed one action between t and t+1, we measure the

jump-distance di(t)� D(xi(t), xi(t+1)). P̂ DðxiðtÞ; xiðt þ 1ÞÞ ¼ dð Þ denotes the empirical prob-
ability distribution of these jump-distances. The distribution used in the model, P(d), is derived

from the measured probability of travel distances P̂ðdÞ by setting P(d)� 0 for d> d�, where
d� �minxmaxy D(x, y) = 20, and normalizing.

Supporting Information
S1 Data. Data as plotted in Figs 2–7.
(ZIP)
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