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PREFACE 

This paper has its origins in a set of lecture notes pre- 

pared for a course entitled "Modeling and Control of River Qual- 

ity" which was jointly sponsored by the Politecnico di Milano 

and IIASA and held in Florence during June, 1978. The initial 

justification for converting lecture notes into a paper lay with 

the observation that many people who might potentially be inter- 

ested in applying techniques of system identification were dis- 

couraged from doing so by the apparent sophistication of the 

associated theory. There is no doubt that some of the techniques 

are elegant, but the purpose of this paper is certainly not one 

of seeking sophistication in its theoretical development. The 

paper originally had two objectives: to present some of the the- 

oretical background of system identification from the starting 

point of basic least squares regression analysis; and then to 

demonstrate this theory at work by means of illustrative case 

studies. 

However, while writing what is here Part 1 of the paper it 

became evident that the complete manuscript would take a long 

time to complete. Hence for reasons of time-constraints there 

is an undesirable division of the paper into a Part 1 (theory) 

and a Part 2 (applications). Moreover, other interests within 



Resources and Environment's Task on "Models for Environmental 

Quality Control and Management" make it seem incomplete to dis- 

cuss merely theory and its application. It ought to be possible 

to provide a synthesis of the major problems and future directions 

in identification, estimation, and forecasting of water quality; 

perhaps even to provide an overall framework for modeling such 

badly defined environmental systems. Thus when Part 2 has 

materialized it may well be that a Part 3, dealing with these 

broader issues, will have come more clearly into view. 



SUMMARY 

This paper presents some background theory for algorithms 

of system identification, estimation, and forecasting. Special 

attention is given to the application of these algorithms in 

the field of water quality modeling. 

The paper starts with some qualitative definitions of the 

problems to be addressed, for example, problems of model structure 

identification, parameter estimation, state estimation, state 

reconstruction, and combined state-parameter estimation. The 

central theme of the paper, however, is the idea of an on-line, 

or recursive estimation algorithm. In particular a derivation 

of the linear Kalman filter is given; this is achieved by ex- 

tending the principle of linear least squares regression analysis. 

Having derived the filtering algorithms, which refer to the prob- 

lem of state estimation, the paper turns to the subject of recur- 

sive parameter estimation algorithms in the context of conven- 

tional time-series analysis. Finally, the algorithms of an ex- 

tended Kalman filter are developed in order to treat the problem 

of combined state-parameter estimation. 

The primary objective of the paper is to present the methods 

of system identification, estimation, and forecasting in a fashion 

which will be understandable for those more familiar with the 

subject of water quality modeling. 





SYSTEM IDENTIFICATION, ESTIMATION, AND FORECASTING 
OF WATER QUALITY - PART 1: THEORY 

1. INTRODUCTION 

Whether one disagrees or agrees with it, mathematical model- 

ing of water quality is a well-established field of study and 

research. The literature on the subject is indeed vast and the 

effort expended on model development and verification must be 

equally large. There are many ways in which to approach the prob- 

lem of mathematical model construction, and probably each person 

involved in such an activity has his own unique collection of 

procedures. A major proportion of these procedures, as applied 

to water quality modeling, might be counted as essentially pro- 

cedures of "trial and error" deterministic simulation. In other 

words, this is the type of informal modeling procedure whereby 

(see Figure l), starting with some initial model structure and 

set of associated parameter (coefficient) values, the simulated 

performance or response of the model is compared with the actually 

observed behavior of the system under investigation. Then, if the 

model is found to be inadequate in its characterization of reality, 

the analyst may decide simply to adjust some of the parameter 

values on an ad hoc basis until the desired performance is ob- 

tained. On the other hand, the model may be so much in error 

that the analyst is required to alter the structure of the 

relationships between the variables accounted for in the model. 



Reality is, of course, somewhat subject to randomness in 

its observed behavior, and rather strongly so in the field of en- 

vironmental and water quality systems. Thus an essentially 

deterministic approach to modeling is incomplete in its recogni- 

tion of the real system's properties. The aim of this paper is 

to be partly tutorial and partly review in character. In being 

tutorial it seeks to present a number of techniques of estimation 

which should permit a more formal and adequate treatment of model 

development by reference to noise-corrupted field data. In part- 

icular, we should like these techniques to be capable of admitting 

the existence of both random disturbances of process behavior and 

random measurement error. At the same time formal methods of est- 

imation should be able to discriminate effectively against such 

ever-present noise and chance error in the field data. It is not 

in practice a matter of the analyst being unaware of the sto- 

chastic aspects of the modeling problems nor of the informal 

deterministic simulation method being wholly inadequate. For 

whether one models a system's behavior along the lines of Figure 

1 or Figure 2, a large part of the modeling exercise is devoted 

precisely to the activity of filtering out the uncertainty (noise) 

in the observed patterns of behavior. 

Yet the paper by the nature of its title deals with more than 

just the subject of estimation methods: it treats also the topics 

of system identification and forecasting. This is because the 

techniques of estimation that we shall introduce derive in part 

from the broader field of system identification, which incorpor- 

ates estimation with other problems of specialized experimental 

design, model structure identification, model verification and 

model validation. Another reason is that the central theme of 

the paper, namely Kalman filtering, is perhaps better known with- 

in the context of on-line forecasting and control situations. 

All three topics, identification, estimation, and forecasting, are 

closely interrelated. We shall exploit these interrelationships 

for illustrative purposes wherever appropriate in the paper. 

Most of the background technique here necessary for devel- 

opment of the estimation algorithms derives from control theory. 



Since control theory is frequently understood, and perhaps mis- 

understood, to be concerned merely with black box models of input/ 

output behavior, it is possible that matters such as system iden- 

tification and estimation are by association regarded with 

suspicion. This suspicion may arise for two reasons. Firstly, 

the term "black box model" suggests a lack of desire for under- 

standing or acknowledging the true physical mechanisms which 

govern process dynamic behavior. And secondly, the association 

with statistical features of the modeling problem is all too re- 

dolent of sterile curve-fitting exercises. The theoretical 

development of this paper is, therefore, especially concerned with 

presenting an estimation method suitable for use with what will be 

called internally descriptive models (see section 2.2.2). In fact 

both black box and internally descriptive models have important 

roles to play in the analysis of field data. Likewise, though an 

accurate model would be the ultimate goal of any modeling exer- 

cise, curve- fitting is not necessarily very meaningful in itself: 

the identification of mathematical models from field data is es- 

sentially a learning procedure in which models are working 

hypotheses about the nature of reality. 

A large section of the paper is occupied by the mathematical 

development of the linear Kalman filter (LKF), from which is 

finally required a derivation of the extended Kalman filter (EKF). 

This particular derivation commences with a well-known and simple 

parameter estimation technique, linear least squares regression 

analysis, and then builds upwards in complexity towards the linear 

Kalman filter. Such an approach has previously been adopted by 

Young (1974). It is not necessarily an elegant or an efficient 

derivation; our intention is that the analysis should be as trans- 

parent as possible and that the reader will thereby obtain a 

picture of several other closely related recursive parameter est- 

imation algorithms. To aim for clarity at the expense of theor- 

etical elegance is justified by the lack of previous application 

of these techniques in water quality modeling (as evidenced by 

Beck (1978a), J$rgensen (1979), and J$rgensen and ~arleman (1978)). 

This may have been due to the kind of suspicion we have rentioned 

earlier. Porther, given the belief that much can be learned from 



the demonstration of theory applied to practice, Part 2 of the 

paper has been desiqned to complement the theoretical development 

of Part 1 with a number of case study results. 

The organization of the paper is as follows. Section 2 dis- 

cusses the principles and qualitative features of system 

identification, estimation, and forecasting in the specific con- 

text of wastewater treatment and river water quality modeling. 

Section 3 presents the development of the linear Kalman filter 

from the starting point of linear least squares reqression ana- 

lysis; again here emphasis is placed on the qualitative features 

of the filtering algorithms. The evident attention to detail in 

Section 3 gives way to a more brief treatment in Section 4 of 

conventional time-series analysis and recursive parameter esti- 

mation techniques closely related to the linear Kalman filter. 

Likewise the development of the extended Kalman filter algorithms 

for combined state-parameter estimation in Section 5 is relatively 

brief and relies strongly on the resources of Section 3. Part 2 

will then deal with illustrative examples from case studies. 

These examples include topics such as: designing experiments to 

test the behavior of a full-scale anaerobic digestion unit; esti- 

mating the parameters of a nodel for dissolved oxygen (DO) and 

biochemical oxygen demand (BOD) interaction; on-line estimation 

of the behavior of nitrifying organisms in an activated sludge 

plant; and adaptive forecasting of sewer network flows. 

It is not in general the purpose of Part 1 of the paper to 

enter any philosophical debate regarding environmental or ecolo- 

gical systems modeling, as in, for example, Young (1978a) or 

Halfon (1978). We do assume, however, a certain pragmatism in 

modeling in that field data of an adequate kind and number are 

a priori available or necessary. And in Part 3 we shall assume 

the license of discussing future possible foci of attention for 

identification, estimation, and forecasting of water quality. 

with that our review of current successes and problems of this 

subject will be completed. 



2. PROBLEMS OF SYSTEPl IDENTIFICATION, ESTIMATION, AND PREDICTION 

Let us start with some problem definitions. In this section 

we first consider a basic abstract characterization of the dynamic 

behavior of a system. From here onwards it is assumed that un- 

steady, transient, or dynamic behavior will be of primary interest. 

The abstract characterization is then interpreted within the con- 

text of modeling interactions in microbiological and ecological 

systems. Both the abstraction and the microbiological/ecological 

example will hence serve to illustrate the principal qualitative 

features of system identification, estimation, and prediction. 

2.1 Definitions and Objectives 

Figure 3 gives a schematic definition of the dynamic system 

model and variables, i.e. the component features of our portrayal 

of reality. To give a more immediate appreciation of this dia- 

gram let us suppose the following, that: 

(i) The group of variables denoted by - u, measured input 

disturbances, might comprise the recorded day-to-day 

variations of total BOD, suspended solids (SS), and 

ammonia-N concentrations in the settled sewage in- 

fluent to an activated sludge plant. 

(ii) The group of variables denoted by 5 represent un- - - 
measured (unknown) input disturbances. These might 

include items such as random variations in the rate 

of dissolved BOD and organic phosphorus addition 

to a river by local surface runoff. Other unde- 

tected disturbances, which in concept can be 

equated with input disturbances, would include 

random fluctuations in the mixing regime of the 

liquors in an activated sludge aerator unit. 

(iii) The process state variables, both x and zu, are -m 
quantities that characterize the essential prop- 

erties and behavior of a process with the passage 

of time. There are two types of state variable: 

those that can be measured (easily) , 5, such as 
the pH level and temperature of the sludge con- 

tained in an anaerobic-digester; and those that 



are extremely awkward, if not impossible, 

to measure, x , for example, mixed liquor -u 
nitrosomonas bacterial concentration, or 

the viable fraction of a biological floc. 

(iv) The group of variables - y are termed - mea- 

sured output variables. In fact, 

frequently these variables are merely 

measurements of the (measurable) state 

variables, %, and the labels state and 

output are therefore loosely interchange- 

able in some cases. However, in order to 

emphasize the idea of an output response 

of the process to an input disturbance, 

we can visualize the time-variations of 

downstream DO concentration in a stretch 

of a river as an output response to 

changes in the upstream (input) BOD 

concentration. 

(v) The last group of variables, - r l ,  repre- 

sents the respective random and 

systematic measurement errors which 

derive from process instrumentation 

and laboratory analysis; such errors 

are inherent in all measurements y thus - 
precluding the possibility of - y being 
an absolutely exact measure of zm. 

One further group of quantitites in Figure 3 remains to be dis- 

cussed -- these are the model parameters, a ,  - for instance, the 

reaeration rate coefficient or chemical kinetic rate constants 

which appear in the equations of the systen model. In general, 

the desirable property of the parameters is that they be invari- 

ant with time, i.e. truly constant. In the following, this 

desirable property is seen to be an extremely important feature 

of certain aspects of model development and analysis. The other 

five groups of variables, as indicated in Figure 3, are assumed 

to be functions of time t; they are also implicitly functions of 

space. 



A common theme of identification, estimation, and predic- 

tion is that they are all concerned with the retrieval, 

manipulation, and restructuring of measured information about a 

system's dynamic behavior. Figure 3 indicates, therefore, that 

in order to compute values for x - and a ,  - or statistical properties 

of I and - 0, the information available to the analyst is represented 
by the measured input and output data for - u and - y respectively. 

Given that restricted measurement facilities and considerable 

complexity are the dominant characteristics of microbiological/ 

ecological systems, what is the likelihood of success in the ap- 

plication of the algorithms we are about to develop? 

To answer this it is instructive to recast Figure 3 as the 

representation of Figure 4 .  Let us start with Block 1 of Figure 

4 in which we have the fundamental microbiology and biochemistry 

of the system, such as phytoplankton production, or microorganism/ 

substrate interaction. At this level a high degree of literally 

microscopic detail would be required to characterize (i.e. model) 

all the phenomena present in the process under study. Yet the 

structure of these relationships, and the changing patterns of 

dominant species in the ecological community, though microscopic 

in detail, cannot necessarily be ignored, for they may have gross 

macroscopic impacts on overall process conditions, as for exam- 

ple in algal blooms with the consequences of severe oxygen 

depletion and so forth. 

For Block 2 the more macroscopic features of the process 

state dynamics, e.g. variations in pH and temperature, will re- 

ciprocally influence what happens at the microscopic biochemical 

level. In general, however, most of the microscopic detail of 

Block 1 falls under the category of variables which are not easily 

measured, zu, and hence this fine detail is "lost," as it were, 
to the process environment (Block 3). That is to say, direct 

measurement of the variables characteristic of Block 1 is ex- 

tremely difficult unless specialized experimental and analytical 

facilities are available to the investigator. The relatively 

small number of variables in Block 2 which are easily measured, 

that is - s, amount only to the more macroscopic, sometimes 



crude, measurements of quantities like chemical oxygen demand 

(COD), suspended solids, and dissolved oxygen concentrations. 

Block 3 of Figure 4 represents in part the system environ- 

ment, from which all manner of unobserved disturbances and 

unpredictable mechanisms of behavior ( 5 )  - will interact with the 

more deterministic features of the phenomena accounted for in 

Blocks 1 and 2. Block 3 also represents the instrumentation and 

analytical procedures from which arise unavoidable components of 

measurement error ( 3 ) .  Thus Block 3 is intended to introduce ele- 
ments of uncertainty into the picture of a system's behavior. 

So finally the following can be stated in answer to our 

earlier question about the, likelihood of success in the applica- 

tion of "sophisticated" algorithms to modeling and forecasting 

water quality. Clearly, if only measurements of some of the pro- 

cess inputs, - u, and of some of the process outputs, y, can be 
obtained, then relatively very little information is available 

concerning the basic biochemical/ecological nature of Block 1 in 

Figure 4. Ploreover, the relationships between - u, - x, and - y are 

significantly obscured by the uncertainty originating from the 

process environment and instrumentation. In fact it will become 

evident that irrespective of whether the primary objective is model 

development or forecasting, the application of the algorithms has 

two major functions: (i) during analysis, to discriminate against 

the effects of the stochastic components 5 - and - Q ;  (ii) to assist 

in making inferences about the behavior of the inaccessible* 

"microscopic" portion of the state variables from information on 

the more accessible "macroscopic" sector of the process dynamics. 

If the algorithms can fulfill these functions, even in some small 

measure, then we might consider their application to have been 

successful. It is always important to bear in mind that the con- 

struction of large,apparently comprehensive, and detailed models 

does not necessarily imply that these models are either accurate 

or that the model-builder has a good understanding of observed 

process behavior. 

- -- - - * intended here as not easily measurable. 



2.2 System Identification 

The term system identification is meant here as the complete 

process of deriving mathematical models from, and by reference to 

experimental field data. One can now perhaps call it a subject in 

its own right after the rapid developments of the past ten to £if- 

teen years, see for example Eykhoff (1974) and Mehra and Lainiotis 

(1976); it has its roots in statistical and control theory with 

strong branches of application in econon~trics and biometrics. 

2.2.1 Experimental Design 

Several separate stages can be distinguished along more or 

less formal lines within the procedure of system identification. 

The first of these stages is that of experimental design, since a 

prerequisite for model development is an appropriate record of the 

observed process dynamics. Unless otherwise stated this field 

data base will be required to comprise regularly and discretely 

sampled values of several input/output variables over a given 

period of time, i.e. a group of time-series. 

The success of any modeling exercise which sets itself the 

objective of demonstrating how well, or how badly, the model sim- 

ulates reality is strongly dependent upon the quality of the field 

data available. The ideal would be the ability to make certain 

specialized and deliberate experiments. Experiments of"this kind 

are usually designed for the observation of process dynamic be- 

havior as a response to well-defined input disturbances (forcing 

functions). For instance, in the case of an activated sludge 

unit it might be desirable to measure how the mixed liquor sus- 

pended solids concentration and the clarifier effluent BOD and 

SS concentrations change with time in response to a sudden step 

increase in the volumetric feed-rate of settled sewage to the 

aerator. A good experimental design involves the assessment and 

determination of several factors (Gustavsson (1975)), some of 

which -- in a circular fashion -- depend upon a reasonable knowl- 
edge of the model before the modeling exercise begins! Two 

factors of special importance are the rate at which sampled mea- 

surements of the system behavior should be taken, and the length 



of time over which to conduct the experiment. Two very rough 

rules of thumb state that: 

(i) The sampling interval should be at most as long 

as the minimum time-constant of interest; or 

alternatively the sampling interval should be 

one-sixth of the period of the fastest sinusoidal- 

type variation expected in the behavior of the 

system. 

(ii) The length of the experiment would ideally cover 

a period with magnitude of at least ten times 

the magnitude of the largest time-constant of 

interest; to some extent this kind of deter- 

mination is related to the observation that 

the degree of subsequent parameter estima- 

tion error is inversely proportional to the 

length, i.e. number of samples, of the 

experiment. 

Both points have to do with the speeds of response of the output 

variables to changes in the input variables. For example, DO 

concentration in the mixed liquor of an activated sludge unit 

would be expected to respond quickly, of the order of minutes, 

to changes in the air blower speed; gas production in an anaer- 

obic digester varies over a period of hours after batch feeding 

has been completed; and the growth of nitrifying bacteria in 

activated sludge flocs can be measured within the time-scale of 

days and weeks. So if we wished to determine a dynamic relation- 

ship between air blower speed and DO concentrationlit would be 

necessary to take measurements of these variables at very £re- 

quent intervals, but the experiment could be completed in a few 

hours. On the' other hand, to determine the behavior of nitrification 

in biological wastewater treatment, much less frequent measure- 

ments are required but the experiment would probably have to 

continue for several months. Thus, if the idea of a time- 
* 

constant is approximately interpreted as, say, the detention 

time for water in a reach of river, and assuming that the sane 

* 
Strictly speaking, for complex nonlinear systems it would be 
more appropriate to use the term response time. 



idea roughly translates into the tine-scales for biological 

growth of a species and rates at which nutrients are cycled in 

an ecological system, one has the beginnings of an experimental 

design. 

The opportunities offered for specialized experimentation 

in environmental systems are, however, rare. This is because two 

major practical problems must be overcome: 

(i) While experimenting with, for example, a unit 

process of wastewater treatment, satisfactory 

operation of the plant still has to be assured. 

(ii) The manipulation of input disturbances may demand 

quite extraordinary facilities for implementation 

of the given experimental design, as for example 

the manipulation of variations in upstream BOD 

concentration of a reach of river. 

These problems are not always insurmountable; but they are, never- 

theless, factors contributing to the slow progress in mathematical 

modeling of water quality and wastewater treatment processes. On 

the whole, current experimental work in this area reduces simply 

to a matter of observing behavior under normal operating conditions, 

a term used by Eykhoff (1974); there are few exceptions to this 

rule where there has been significant intervention by the experi- 

menter, see for example Olsson and Hansson (1976). 

2.2.2 Choice of Model Type 

Choosing the type of model to be used is relevant primarily 

in as much as the problem at hand may dictate the outcome of this 

choice; and once the-choice. is madelthe nature of any parameter 

estimation algorithm for subsequent application to the model is 

also thereby broadly defined. To state the choice as one between 

an internally descriptive model or a black box model is merely to 

define the two polar extremes of a spectrum of models. An inter- 

nally descriptive (or mechanistic) model exploits all the available 

a priori information on the physical, chemical, biological, and 

ecological phenomena thought to govern process dynamics. This 



lends to the internally descriptive model -- thus called because 
it characterizes - -  how u, - x, and y are related to each other (Figure 
3) -- the potential for universal applicability and the appearance 
of being grounded in theory or "the laws of nature." 

The black box (or input/output) model, in contrast, while 

it can usually command simplicity, reflects only what changes 

the input disturbances - u will bring about in the output responses 
. A black box model makes no claim to be universally applicable 

and the range of its validity is restricted to the sample data 

set from which it has been obtained. It has already been mentioned 

in the introduction of section 1 that black box models are regarded 

with a degree of suspicion for these kinds of reasons. We shall 

return again to this subject in greater detail in section 4. In 

defense of black box models, however, it must be said that they 

can prove to be very useful in on-line forecasting applications 

and as initial attempts at elucidating any basic cause/effect re- 

lationships not immediately apparent in the given field data. 

For instance, when the analyst comprehends but a little of the 

process behavior under study, the identification of which inputs 

affect which outputs, by how much, and how quickly, may yield 

important clues about the further development of internally des- 

criptive models. 

In this paper and elsewhere (Beck (1978b)) the view taken is 

that black box and internally descriptive models represent comple- 

mentary, conceptual frameworks for system identification; more is 

to be cjained fromtheir joint application than from the exclusive 

use of either model. For much of the time system identification 

is confronted with the need to offer plausible hypotheses about 

"unexplained" relationships in a set of field data. It seems only 

prudent therefore to approach each such problem from a variety of 

different angles and to gather together all the available evidence 

for synthesis of the next hypothesis. 

2.2.3 Model Structure Identification and Parameter Estimation 

We come now to two features of system identification which 

are central to the subsequent technical development of the paper: 



(i) Model structure identification addresses' the problem of 

establishing how the measured system input disturbances 

u, are related to the system's state variables x, and - - 
how these latter are in turn related both to themselves 

and to the measured system outputs - y. 

(ii) Parameter estimation deals with the computation of 

values for the parameters which appear in the model 

equations, once the structure of these relationships 

has been properly identified. 

The distinction between the two concepts is important for an ap- 

preciation of the procedure of model development. In practice, 

as will be demonstrated later, the application of a parameter 

estimation algorithm is frequently implicit in the solution of 

the model structure identification problem, see also Beck (1978~). 

It may be helpful to visualize model structure identification 

as analogous to the choice of whether to fit a straight line or 

a curve to a set of experimental data. Or again, within the 

abovebroad definition of this problem, model structure identifi- 

cation is also concerned with identifying the correct form of the 

mathematical expressions which are contained in the model equations. 

A simple example may serve to illustrate this point. Suppose we 

are investigating the uptake or removal of a nutrient/substrate 

in a batch chemostat reaction, and our first hypothesis is a 

linear model, 

blodel I: dxl(t) = dl(t) = - [a ]x (t) 
- 1 1  

in which the dot notation refers to differentiation with respect 

to time t; xl, the concentration of substrate, is the state vari- 

able and al is a parameter representing a first-order kinetic 

decay-rate constant. For our second hypothesis about the observed 

system behavior we might propose a blonod-type kinetic expression 

and the presence of a mediating micro-organism in the reaction, 



Model 11: kl (t) = - [a;x2 (t)/(a; + xl (t) )I xl (t) 
(2.2) 

P (t) = [alx (t) / (a; + xl (t) )I xl (t) - aix2(t) 
2 3 2 

where the additional state variable x is the micro-organism 
12 I I 1 

concentration and we have a vector [a a ].of associated 1' "2' a3' 4 
model parameters. Now recall that there are presumably some noise- 

corrupted measurements available from this experiment, but that 

we do not know which, if either, of Models I and I1 best charac- 

terizes the nature of the observed behavior. Model structure 

identification is then the problem of choosing -- by reference 
to the in situ data -- the number of state variables to be ac- 
counted for in the model, the problem of defining how these state 

variables depend upon each other, and the problem of identifying 

the correct form of the expression to go inside the square paren- 

theses [ - 1  of equations (2.1) and (2.2) . If both models are 

thought a priori to be good approximations of reality, we might 

also call this a problem of model discrimination. But if neither 

hypothesis is adequate and a more complex pattern of behavior is 

suggested by the analysis of the data, the first definition will be 

the most useful interpretation of'model structure identification to 

be borne ' in nind for the following. 

For parameter estimation, an important distinction can be 

made between algorithms which are off-line (or block data pro- 

cessing schemes) and algorithms which are on-line (or recursive). 

Figure 5 provides a pictorial representation of the essential dif- 

ferences between the two types of algorithm. An off-line procedure, 

Figure 5(a), holds the parameter estimates constant at their a 
A 0 priori values, - a , while the complete block of time-series field 

data -- from time t -+ t of the experimental period -- 
0 N is 

processed by the algorithm. Usually all the data are processed 

together at one computation. A loss function, almost certainly 

based on the errors between observed and nodel responses, is 

calculated at the end of each iteration; the algorithm attempts 

then to minimize the loss function over the parameter space and 
-1 conputes an updated set of parameter values, a , for substitution 

into the next iteration through the data (from t -+ tN). A 
0 



recursive algorithm, in contrast, computes updated parameter 
0 estimates, - 8 (tk), at each sampling instant tk of the field data; 

the minimization of the error loss function is implicitly, rather 

than explicitly, included in the algorithms. At the end of the 
0 block of data the estimates - 8 (tN) are substituted for the a 

1 priori parameter values - 8 (to) of the next iteration through the 

data. Because of their potential for estimating time-varying 

parameter values, upon which certain very useful interpretations 

will be placed shortly, and because of a more general interest 

in on-line, ergo real-time,estimation and forecasting applications, 

the paper will focus attention solely upon recursive algorithm 

development. 

Equipped now with more knowledge of parameter estimation 

algorithms, let us return to the problem of model structure iden- 

tification. Imagine that the state variables - x in a model may 

be represented conceptually by the nodes of Figure 6(a) and that 

the parameter values are visualized as the "elastic" connections 

between the state variables. If the assumption has been made 

that all the parameters have values which are constant with time 

and yet a recursive algorithm yields an estimate of one or more 

of the parameters, a4 say, which is significantly time-varying, 

one may question the correctness of the chosen model structure. 

The reason for this is as follows. The general nature of an 

estimation procedure is to fit the model (i.e. state variable) 

predictions to the field observations. Hence, when any persist- 

ent structural discrepancy is detected between the model and 

reality this will manifest itself as an attempt by the estimation 

procedure to adapt the model, i.e. the parameter values, towards 

reality. Such time-variations of the parameter values can, of 

course, occur for different reasons, for instance, the parameter 

may be truly time-varying in accordance with some seasonal fluc- 

tuation. .But for the purposes of our example in Figure 6 (a) we might 

suppose that the actual structure of the relationships underlying 

the observed system behavior is better represented by the intro- 

duction of a new state variable and two new parameters, Figure 

6(b). If this were indeed the correct model structure, 



recomputation of the parameter values should give recursive 

estimates which are essentially constant. 

Our example here has two objectives. Firstly, it should 

emphasize the earlier statement that model structure identifica- 

tion and parameter estimation are closely interrelated and that 

the former problem can sometimes be solved by recourse to a par- 

ameter estimation routine. Secondly, it should be apparent that 

an exercise in accurate parameter estination is of dubious signi- 

ficance if the problen of model structure identification has not 

been satisfactorily resolved. 

2.2.4 Verification and Validatioz 

Model verification may be defined as, among other definitions, 

the determination of whether the "correct" model has been obtained 

from a given single set of experimental data. It can thus be said 

that model validation, on the other hand, concerns itself with 

checking the accuracy with which the same model predicts the be- 

havior observed in different independent data sets. 

On reflection it must aDpear that our definition of verifi- 

cation is s~mething of a truism. And in fact the arguments for 

satisfying oneself that the model is verified are also rather 

circular. Let us assume that the model structure has been iden- 

tified, the parameters estimated, and thus a sequence of final 

model response errors can be computed according to Figure 7. Al- 

most inevitably it will have been necessary at some stage in the 

model development and data analysis to have made assumptions about 

the statistical properties of the noise sequences in Figure 7, i.e. 

5 and Q in Figure 3. If these assumptions are valid, the model - - 
response errors should also conform to certain statistical prop- 

erties, and in. particular to those of white noise, i .e. the errors 

are not correlated with themselves in time and they are statis- 

tically independent of the measured system input disturbances 

(forcing functions). Evaluation of the error sequences in this 

fashion can therefore provide a check essentially on whether the 

final model invalidates some of the assumptions Inherent in its 

development. 



Should the error sequences not conform to their desired 

properties, this suggests that the model does not characterize 

adequately all the relatively more deterministic features of the 

observed dynamic behavior. A strong correlation between varia- 

tions in a given input and the variations in the model response 

errors of a given output, for example, would indicate that the 

model structure should be modified to accommodate additional sig- 

nificant relationships between those two variables. Analysis of the 

model performance along these lines, therefore,directs attention 

once again back to the model structure identification problem. 

PJe can draw two conclusions from this. First, while not les- 

sening the importance of model verification, it may be argued that 

model structure identification is the fundamental issue of overall 

model development, see also Beck (1978~) . Second, it will be evi- 

dent that model development is not rigorously constrained to the 

sequence of procedures outlined here. 

2.3 State Estimation and Prediction 

The difference between a quantity which is a state variable 

and a quantity which is a parameter becomes almost negligible when 

one considers a state variable which does not vary with time, i.e. 

part of the system is at steady state, or a parameter which exhib- 

its seasonal, and therefore temporal fluctuations. To attempt to 

preserve a difference between state and parameter is actually 

not particularly useful either in the later mathematical develop- 

ment of estimation algorithms or for fully appreciating the 

scope for application of these algorithms. Perhaps an anbivalent 

attitude towards the distinction is desirable: sometimes the dif- 

ference between state and parameter is important, and sometimes 

it is not! 

2.3.1 A Preview of the Kalman Filter 

On occasion it is helpful to have a preview of the end-point 

of an analysis and especially so if the analysis is lengthy;'&s 



is the intention of the present section. In section 2.2.3 and 

Figure 5(b), we gave the basic ideas behind recursive parameter 

estimators. From Figure 5(b) it is possible to write down in 

skeletal form the mechanism of updating the parameter estimate, * 
i.e. in scalar terms , 

in which &(tk) is the error between a model prediction of the 

system response at time tk and the noise-corrupted measurement 

y(tk) of that output response. The gain factor k(tk) is a factor 

which weights the importance of the error in providing a correction 

of the old estimate B(tk - obtained at the previous sampling in- 

stant tk-l. The manner in which the gain factor is computed will 

eventually be seen to be of great importance, but it will not con- 

cern us at this point. It is not difficult to see that a recursive 

state estimator could be constructed along exactly analogous 

lines, namely 

where again ~ ' ( t  ) and k'(t ) are response error and gain factor k k 
respectively (the prime notation merely indicates that they may 

+ 
be different from the error and gain of (2.3)). fi(tk) denotes 

the newly updated (a posteriori) state estimate immediately after 

the receipt of the output measurement y(tk) at time t whereas k t  
~ ( t k )  represents a "best" forward extrapolated (a priori) estimate - 
of the state - x immediately before the instant of time tk. 

A subtle but very significant distinction between (2.3) and 

(2.4) lies in the arguments of B and 2 .  As one would expect, the 

state of a system will change between the measurement sampling 

instants t k-1 and tk; it is therefore sensible to use a dynamic 

*This is for simplicity; in general, we shall be dealing with 

vectors and matrices for systems with many state variables and 

multiple parameters. 



model to make an extrapolated prediction over this interval for 

comparison with the measurement at time tk. In contrast the as- 

sumed model of parameter dynamics (time-variations) is that in 

fact the parameter remains constant. Hence the best prediction 

of the value of a parameter at a later instant of time is that 

it has the same value as its most recent estimate. 

we are now in a position to introduce a conceptual picture 

of the Kalman filter. This is given in Figure 8 as an extension 

of Figure 2. The original results of Kalman (Kalman (1960), 

Kalman and Bucy (1961)) refer to the problem of state estimation; 

they were intended for purposes of stochastic control. In other 

words, for a feedback controller the desired aim is to match the 

performance (behavior) of the measurable state variables 11, with 
some desired reference process performance. Such a controller 

usually acts upon the perceived error between the measurements - y 

and the reference performance; but - y is error-corrupted and thus 

the Kalman filter sets out to permit control on the basis of the 

error between the state estimates (s) and the desired performance. 

Figure 8 treats the case of combined state and parameter estima- 

tion for which the algorithms of an extended Kalman filter (EKF) 

will be required. The important difference between the EKF and 

linear Kalman filter (LKF) is that the EKF is an (approximate) 

algorithm for a system with nonlinear dynamic behavior while the 

LKF is an algorithm for systems with linear behavior. Suffice it 

to say here that the combined state and parameter estimation 

problem is equivalent to state estimation for a nonlinear system. 

In Figure 8 we see that a model of reality is embedded in 

the filter. Predictions of the kind - ?(ti) in equation (2.4) are 

computed by the model and fed forward to the corrector algo- 

rithm(~) together with the current observations - y (tk) of the 

process output response. For the corrector algorithms, equations 

(2.3) and/or (2.4), it is apparent that additional computation is 

necessary for specification of the weightingfactors k(tk) or kt(\). 

This additional computation refers to a parallel set of algorithms 

describing the time-evolution of the estimation error magnitudes, 

which itself is determined by a balance of the levels of uncertain- 

ty (or error) in the model as an approximation of reality, in the 



unmeasured input disturbances, and in the output response obser- 

vations. But again, this is almost pre-empting the subsequent 

develo~ment of the paper; section 3.8 will deal with the full 

significance of these statements. The results of the corrector 
+ 

algorithm are the updated state and parameter estimates 9 (tk), 
+ -m 

R (tk), g(tk) as indicated by Figure 8. These in turn are fed 
-u 
back to the model for revision of the information available for 

subsequent predictions. 

The essential character of the filtering algorithms is there- 

fore one of information restructuring: from the input/output 

observations of the real system's behavior, the information is 

"translated" into model-related estimates of the state variables 

and parameters. The name "filter" suggests also the intuitive 

idea that here is an algorithm which attempts to filter out from 

the given information the unwanted influences of measurement 

noise and uncertain disturbances. If attention is being focused 

on the parameter estimates as the product of the filtering oper- 

ation, information about significant unexplained parameter 

adaptation can clearly be used to assist solution of the model 

structure identification problem (see section 2.2.3). Alterna- 

tively,, if the filter is tracking truly time-varying parameters, 

this form of parameter adaptation may be subservient to the goal 

of maintaining an adequate state estimation performance. In 

both cases, however, since modification of the model is occurring, 

then modification of the level of uncertainty in the model is also 

implied as shown in Figure 8. Lastly, and of interest also as a matter 

of information restructuring, notice that the filter has the poten- 

tial to provide estimates of those state variables which are not 

measured; this is known as state reconstruction. 

With the aid of some concise notation we can add qualifica- 

tion to the usage of the term estimation. Suppose the current 

time is tk, then, 

(i) estimation of the values - %(tkl tk) is also termed 

filtering, where the notation signifies an estimate at 

time t based upon all the information available up k 
to and including the measurements - y(tk); 



(ii) estimation of - %(tk+rltk) is prediction, since the 

state at time (t +T) in the future is being estimated k 
from measurements up to time t k; 

(iii) estimation of %(t - ~ l t ~ )  is known as smoothing, with k 
the provision of state estimates for some tine (tk-T) 

in the past. 

Of these, smoothing will be of little interest here. 

2.4 Summary 

The followin9 then can be stated to summarize the problem 

definitions and objectives for the remainder of the paper. 

Assume that we are given: 

(i) Time-series of information on the measured input disturb- 

ances - u and output responses - y 0f.a .dynamic process; 

(ii) Some knowledge of, or a set of assumptions about the 

statistical properties of the unmeasured random process 

disturbances, - 5 ,  and random measurement errors, - q .  

PJe wish to determine, by application of recursive estimation 

algorithms to the analysis of the measured information: 

(i) The structure of the dynamic relationships between - u, the 

state variables - x, and the outputs - y (model structure 

identification); 

(ii) The values of the parameters - a that appear in the iden- 

tified model structure (parameter estimation) ; 

(iii) The current and future values of the state variables x - 
(state estimation and prediction); 

(iv) The values of the inaccessible state variables that are 

not measured x (state reconstruction); -u 
(v) Simultaneously the values of - x and - ct (combined state 

and parameter estimation or adaptive prediction). 

Natural extensions of (iii) , (iv), and (v) would be the use of 
recursive estimation algorithms in a real-time control context. 

This will not be treated in any depth here. However, it is worth 

notinq that for adaptive contro1,as an extension of (v), part of the 

function of the controller is to choose values for the control sig- 

nal input, - u, which enhance the possibilities for system identification 

and parmter value updating. 



3. STATE ESTItqATION: A DERIVATION OF T!IE LINEAR KALflAN FILTER 

The problem at hand is that ultimately it will be necessary 

to have available an algorithm for combined state-parameter esti- 

mation, i . e . the EKF. Working backwards from this final objective, 

we shall previously have had to derive the linear Kalrnan filter 

(LKF); and in order to make this derivation as transparent as 

possible it is advisable first to introduce the basic principle 

of linear least squares estimation, with then subsequent spec- 

ial reference to a recursive least squares algorithm. 

The complete sequence of development of the LKF and EKF is 

shown in Figure 9, a key figure to which frequent reference is 

made during the course of this section. Inevitably the decision 

concerning the degree of "transparency" of the derivation has 

been a difficult one. In particular, the heavy use of vector- 

matrix algebra might have been lightened at the expense of a 

longer preszntation. But the reader genuinely interested in 

applying the methods will eventually have to invest the time and 

effort in acquiring familiarity with this algebra. Some compen- 

sation, nevertheless, is provided at regular intervals by reverting 

to scalar equivalents for explanation of various points. The 

original motivation for this particular route in developing the 

LKF derives from Young (1974), although here greater emphasis is 

placed on the Kalman filtering technique for its own sake. Ano- 

ther useful text, and a source of helpful insights, is the book 

on applied optimal estimation by Gelb (1974). From both of these 

authors the following has benefited considerably. 

3.1 An Introduction to the Principle of Least Squares Estimation 

Let us start with the simple and most familiar problem of 

parameter estimation, namely the problem of linear regression 

analysis. Suppose we have a substance, concentration C, which 

decays with first-order kinetics. We wish to estimate the rate 

constant, B1 say, for the decay kinetics from (noise-corrupted) 



observations of the remaining concentration of the substance at 

time t, i.e. C(t). Our model of the process is (for a batch, 

sealed-vessel reaction), 

dC (t) /dt = -BIC (t) 

where C(tO) is the initial concentration of the substance. If we 

define 

and 

then equation (3.2) becomes 

If we have N sampled measurements of x(t), denoted y(tk), where 

tk is the time of the kth sampling instant (k = 1,2, ..., N) and 
where each observation y(tk) is corrupted by a random measurement 

error v(tk), 

then (3.4) becomes 

The parameter estimation problem here is defined thus: 

Given: the measured information tk and y(tk) for tl, t2, ..., -- 



tN (in this exceptional case we shall visualize time 

as being a measurement) then, 

Determine: values for the unknown parameters Bo and B1; 
that is to say, determine the intercept and slope 

respectively of the "best" line that can be drawn 

through the observations in Figure 10. 

One well-known solution of this parameter estimation problem 

is as follows. First, define the two, two-element, vectors 

where the superscript T denotes the transpose of a vector or ma- 

trix, so that (3.6) can be written concisely, 

We now wish to estimate the unknown parameter values - a so that 

the loss function defined as the sum of squared errors, 

is minimized. The estimates - 62 of a that minimize J are called the - 
least squares estimates. (Notice that the model response errors 

T 
E (tk) = y(tk) - - x (tk)E are not in general identical with ~ ( t  ) but k 
converge to n(t ) as 6 converges to the true values a.) k - - 

We-can obtain the minimum value of J by differentiating J with 

respect to - B (see Appendix 1) and then setting this vector of 

derivatives equal to - 0, i.e. 

Hence we have the well-known equations for the least squares para- 

meter estimates 



in which [ ]-I denotes the inverse of a matrix. According to a 

standard text (Draper and Smith(1966)) equation (3.11) is a 

"result of great importance and should be memorized" -- a point 
which emphasizes the fundamental role of least squares as an in- 

troduction to parameter estimation. 

If we pause for a short time we may observe in passing that 

the estimates - B will only converge to the true values - a of the 

parameters provided that the correct model structure has been 

identified (of which more below) and provided the following stat- 

istical properties hold for the measurement errors q(tk), 

(i) the mean value' of n (t. ) is zero, i.e. 
k 

(f{*1 is the expectation operator such that the expected value of 

a random variable X can be computed as Lwxf (x)dx = &?{XI - 
in which f(x) is the probability density function of X). 

(ii) n(t ) is not correlated with itself in time, i.e. 
k 

where 

in which r is the variance of q(tk). 

(iii) q (tk) is not correlated with the variables x (tk) , i .e. - 

6{q(tk)dt.)I = 0 for all k, j. 
7 - (3.14) 



These three conditions may be recognized from the earlier discus- 

sion of section 2.2.4 as those which define the error sequence 

~ ( t  ) as a zero-nean white noise sequence. For the present such k 
statistical assumptions are important only insomuch as they at- 

tribute the desirable property of unbiased convergence to the 

least squares algorithm, i.e. the estimates converge to the true 

values of the parameters. In fact when the assumption of white 

noise is not valid for v(tk) , which is usually the case, the least 

squares parameter estimates will in general be biased -- hence 
the origin of many other parameter estimation routines as attempts 

to overcome the problem of bias. However, at this stage and for 

the next two steps in our development of the LKF, it is - not 

essential to have anv statistical assum~tions since the inter- 

mediate algorithms of these sections are derived using determin- 

istic arguments alone. 

We may also observe that had we wished to fit a higher order 

polynomial to the experimental data, so that in place of equation 

(3.6) we have 

it would have been possible to redefine the vectors x and a of - - 
(3.7) as, 

and thus to arrive at an identical formulation for the least squares 

estimates of (3.11). This is one benefit of employing the concise 

vector-matrix notation for its easy accommodation of problems 

with different and high dimensions. Further, recalling section 

2.2.3 and the discussion of model structure identification, it 

is possible to see how (3.15), as a model of the same data set, 

has a different structure from the .model of (3.6). For the two 

structures, an estimation algorithm would almost certainly yield 



different values for the parameters B 0  and B1 depending upon the 
particular model to which they may belong. 

3.2 Extending the Principle of Least Squares Estimation 

Instead of having a single scalar observation, as in equa- 

tions (3.5) or (3.6), consider the situation where we have Z such 
noise-corrupted measurements of Z different variables, relation- 
ships for which are to be regressed upon a number of other 

qualities, i.e. 

so that along the lines of (3.8) we can write concisely, 

The vectors ~ ( t  ) and n(tk) are of dimension 2, a is an n-element 
k - - 

vector of parameters al, a2, ...,a and X(tk) is an Z x n matrix n' 
containing elements of the vectors -1, x -21 x ..., x . An example -2 
will serve to illustrate the construction of equation (3.18). 

Suppose, 

then, 



Thus for (3.18) we can set up the leastsquares loss~function 

(which is a scalar quantity), 

and once again setting aJ / J& - = - 0, obtain (see Appendix 1) the 
least squares estimates 

Now let us assume that in (3.17) we know the parameters - a, 
but we wish to estimate values for the quantities - x(tk), which 
are assumed constant but unknown. Taking the illustrative exam- 

ple of (3.19) , equation (3.20) can be restated as, 

where the argument tk has deliberately been omitted from - x since 

by assumption - x(t ) = x, a vector of constant, time-invariant k - 
quantities. For the problem of (3.23) three quantities, xl, x 

2 1 

X3' are to be estimated, whereas previously in (3.20) there were 

four quantities, all a2, a3, a4, to be estimated. By analogy with 

the derivation of (3.22) we obtain from (3.23) , 



in which A is a matrix with the known parametersy as some of its 

elements, such that the least squares estimates of - x are given by, 

As an aside we may note that (3.25) can be simplified since 

A is a constant matrix and therefore independent of tk; hence, 

T -1 N 
f = [NA A1 [AT 1 x(tk)l - 

k=l 

so that 

Notice that now the quantity { a )  in (3.27) is nothing more than the 

sample mean value of the vector y(tk). This means that in the - 
simplest scalar equivalent where x is linearly proportional to y, 

that is y(tk) = ax + q(tk), the least squares estimate of x ac- 
cording to (3.27) is simply the mean value of y divided by a, in 

other words 

Let us summarize then the development thus far so that in the 

following section the endpoint of the analysis can be restated in 

more detail. We refer to Figure 9. Here, having passed through 

the stage of multiple regression analysis, we are in a convenient 

position to observe in (3.22) and (3.25) an important duality be- 

tween problems of parameter estimation and state estimation. The 

same correspondence is evident in the discussion of section 2.3. 

It is possible to see that (3.25) provides least squares estimates 

of the states of a system which is time-invariant, or at steady 

state, if we anticipate the future interpretation of - x as a vector 



of state variables. However, we are now at the transition be- 

tween the limits of usefulness of the illustrative example of 

section 3.1 and a return to the notational and conceptual con- 

ventions of section 2.1. The remainder of section 3 focuses upon 

the problem of state estimation. We shall therefore depart from 

the problem of parameter estimation until later in sections 4 and 5. 

3.3 . The Desired Nature of the Kalnan Filter 

In order to define the desired nature of the LKF algorithms, 

it is first necessary to introduce briefly two versions of the 

internally descriptive process nodel discussed earlier in section 

2.2.2--for more detailed presentations of these topics the reader 

is referred to, for example, Rinaldi et a1 (1979), and Szollosi- 

Nagy (1976). Let us suppose, therefore, that the dynamic behavior 

of the state of a system can be described by the following linear 

vector differential equation, 

where from section 2.1 and Figure 3 x is an n-dimensional state - 
vector, u is an m-dimensional vector of measured input disturbances, - 
5 is a p-dimensional vector of stochastic, unmeasured disturbances - 
(system noise) and F, G, L are respectively n x n, n x m, and n x .p 

time-invariant matrices. Equation (3.28) is often referred to as 

a continuous-time description of process dynamics because of the 

argument t of the variable quantities. If equation (3.28) is in- 

tegrated over the interval tk-l + tk we may obtain the corresponding 

discrete-time model, 

in which 

n 
@ = exp (F[ tk - tk-l] ) 



where I is the identity matrix, and 

Strictly speaking, @ in (3.29) is not time-invariant if the samp- 

ling interval (tk - tkml) is not constant; unless otherwise stated, 
however, the sampling interval is assumed to be constant in the 

following. 

To complete our characterization of the input and output 

behavior of the process we require a representation of the noise- 

corrupted output observations of the state variables, i.e. 

where - y(t ) is an ;-dimensional vector of output observations, k 
n(tk) is an I-dimensional vector of random measurement errors - 
(measurement noise) and H is an Z x n observations matrix. This 

discrete-time form of the output measurement process is preferred, 

since generally it is possible to obtain only discrete-time, digi- 

tal measurements of - Y(t ) and not continuous-time, analog records k 
of system behavior. 

Two points are worth noting in connection with the discrete- 

time representation of (3.29) and the state transition matrix @ 

of (3.30), since these may be unfamiliar to the reader. First, 

suppose for simplicity in (3.28) that - u(t) = - E(t) = - 0 and then 

take the scalar equivalent of an unforced system dynamic response, 

i.e., 

so that an analytical solution for x(tk) as a function of ~ ( t ~ - ~ )  

is given by 



The analogy between the scalar $ of (3.35) and its matrix equiva- 

lent @ of (3.30) should now be more evident. Thus we nay remark 

that the solution (3.29) of the differential equation (3.28) is 

the vector-matrix equivalent of solving the general linear first- 

order differential equation with the aid of an integrating factor 

(see Dorf, 1965, Stephenson, 1966). Second, had we chosen to 

solve (3.34) by the following first-order finite difference ap- 

proximation, for small time-intervals, 

then we could have obtained, 

Hence the analogy between $I' as a first-order approximation of $ 

and as an equivalent of the first two terms in the Taylor series 

expansion of the matrix @ should also be apparent. 

But let us return to specification of the desired nature of 

the LKF; it is as follows. Given the two system characterizations 

(3.28) and (3.33), or (3.29) and (3.33), determine an "optimal," 

in our case least squares, estimate - S(t) for the state variables 

x(t) together with the variance-covariance matrix P(t) of the - - .- 

estination errors, . that is 

and 



In other words the filter is to provide a picture of the time 

evolution of the estimated mean, or most probable, values of the 

state variables; and it also attaches a measure of confidence 

(or uncertainty bounds) to these estimated values, as provided 

by the estimation error covariance matrix. 

We have already noted this desired parallel development 

of estimates and estimation errors in Figure 8 and section 2.3. 

Of course, what we seek is a recursive (on-line, real-time) 

estimation algorithm of the type given by equation (2.4). The 

next step is therefore the derivation of a recursive version of 

the least squares algorithm of (3.25) in the preceding section. 

In this a crucial connecting link is that equation (3.33) above 

looks remarkably similar to (3.24), as indeed it is meant to. 

3.4 A Recursive Version of Least Squares Estimation 

All three versions of the least squares algorithms of (3.111, 

(3.22), and (3.25) yield estimates from - one computation when all - 
the N sampled observations are available. Clearly, in the con- 

text of Figure 5(b), a recursive algorithm should be capable of 

computing an updated (a posteriori) estimate at time t given a k 
forward prediction (a priori estimate) based on the information 

available at the previous samplinq instant tk-l. Such a capa- 

bility can be translated either into an equation of the structure 

of (2.4), 

where ~ ( t  ) is some form of model prediction response error, or k 
into an equation 02 the type, 

Both of equations (3.40) will represent the essence of the re- 

cursive estination algorithms for our purposes. In (3.40b) the 



the matrices Ml(tk) and M2(tk) determine how the a posteriori 

estimate is constructed from an intelligent combination of pre- 

diction and actual observation. From Figure 8 it should be 

evident that - ~t(t-) and y(t ) are implicit in the computation of 
k - k 

c(tk) in (3.40a). - 
Let us consider (3.33), 

so that if the system displayed no dynamic behavior, estimates for 

x(t ) are given by direct analogy with (3.25) as, k 

A comparison of (3.41) with (3.25) shows an important difference: 

in (3.41) we have inserted the argunent t for the estimates S(tk) . k - 
We are still assuming that the vector of quantities - x does not 
vary with time but that the estimates - f(tk) of those quantities 
will be functions of time, since as each new piece of information 

is serially processed by the recursive algorithm, the new value 

of - f(t ) will change as it converges to the true value of x. One k - 
may view this as tantamount to minimizing a loss function J(tk) 

which varies with time, i.e. in line with (3.21), 

The loss function varies with time because new pieces of informa- 

tion are continually becoming available for analysis; the estimates 

ji(t ) therefore represent the new estimates which result from a k 
recomputation and minimization of J(tk) over all the currently 

available observations. The significance of estimates that vary 

with time will become apparent, not surprisingly, when the system 

under consideratinn exhibits dynamic behavior and thus requires 

the estimation of time-varying quantities. 

For the derivation of a recursive least squares algorithm, 

we first define, 



so that upon substituting equations (3.43) into (3.41) we obtain, 

Now observe that the following recursive relationships can be set 

up, for P* and - b, 

and thus the matrix P*(tk) and vector b(t ) may be computed as k 
functions of their previous values Px(tk - and - b(tk-l) at time 

tk- 1 . The application of some matrix manipulation (see Appendix 

2) yields eventually the recursive least squares algorithms, 

There are a number of features to observe in the nature of the 

algorithms (3.46): 



(i) Let us put 

then we have in the first of equations (3.46), 

for comparison with (3.40a). Since by inspection of 

the measurement equation, (3.33). H&(tk-l) in (3.48) 

is equivalent, as it were, to a prediction ?(t ) of k 
the actual observations y(tk), it is possible to see 

explicitly how the correction applied to the old 

estimate - f(tk-l) is a function of the weighting (gain) 

matrix K*(t ) and predicted observation errors. k 
(ii) Alternatively, by rearrangement of (3.48) we have 

for comparison with (3.40b), where - B(tk-l) has been 

substituted as the best a priori estimate -  ti) of 
the value of - x at time t k' This accords with our 

current model of the system as one of steady-state 

behavior, see also section 2.3. 

(iii) Finally, a point to which we shall return later, notice 

that the algorithms of (3.46) require the specification 

of initial conditions for the estimates - 8(t0) and the 
matrix P*(t ) at the starting time t = to. 0 k 

Incorporation of Some Statistical Information 

Although occasional reference has been made to some desirable 

statistical properties required of the various random processes in 

our system characterization, we have not yet indicated how such 

information might be incorporated in the estimation routine. The 

algorithms of (3.46), for instance, have been derived by detem-unistic 



arguments alone. This section, therefore, will modify equation 

(3.46) to include some statistical assumptions about the measure- 

ment errors - v(tk) which appear in equation (3.33) of the system 

model. A comparison of the algorithms (3.46) with the desired 

objectives of the LKF, that is equations (3.38) and (3.39), sug- 

gests that we should seek a statistical equivalent of the matrix 

P* for substitution into (3.46). The intention is that the 

interpretation of estimation error variance-covariance can be at- 

tached to such a matrix. 

First, however, it is necessary to demonstrate the conditions 

under which the estimates of - 2(t ) from (3.46) are unbiased. k 
These conditions will turn out to be equivalent to those quoted 

earlier in equations (3.12), (3.13), and (3.14) of section 3.1. 

From ( 3.41) we have, 

which, providing H is a matrix of constant valued elements which 

are not correlated with y(t.), gives (compare with (3.26)), - 3 

where we have substituted - y(t.) = IIx(t.) + ~ ( t . )  from (3.33). 
3 - 3 - 3 

Rearranging (3.52), 

so that taking expectations, 



Hence, under the assumptions that since we are dealing with a 

system which does not exhibit dynamic behavior, i.e. 

such that 

and that qit.) is a zero-mean vector random process, i.e. 
- 3 

then (3.54) becomes, 

Equation (3.56) implies that the estimates ji(t ) are unbiased for k 
the given conditions. 

For ease of illustration perhaps we might briefly remove some 

sophistication from (3.54) above. If we had not applied the 

expectation operator to (3.53), then we should have, with the as- 

sumption concerning the time-invariance of - x, 

Thus 

Suppose now that we had available an infinite number of samples, 

k + m ,  and that the population of random variables from which 

q(t.) are drawn has a mean value of zero, equation (3.58) then - 3 
states that - 2(tk) converges to x in the limit as k tends to - 
infinity. Equation (3.54) with the assumption of (3.55) also 

states this but in a rather different fashion. In practice, how- 

ever, one is very unlikely to have even a large number of measure- 

ments available in the kind of environmental engineering systems 



under study here. The implication of this is that with a finite 

and small number of k samples it is improbable that the mean 

values of those sample realizations of ~ ( t . )  are precisely zero; 
- 3 

2(t ) will be accordingly inaccurate as an estimate of x. The k - 
point of imposing the more rigorous statistical assumptions is 

therefore to acquire the comfort of knowing that the algorithm 

should "behave nicely" under certain limiting conditions. 

Continuing the analysis, we can set up from (3.53) an ex- 

pression for the variance-covariance matrix of estimation errors. 

We have 

which providing x (t ) = x (t . ) = x (tk) for all j , gives - 1 - 3 - 

We wish now to compute the covariance matrix of the estimation 

errors - f (tk) , namely the matrix P of (3.39) , 

in which the errors are defined by, 

From (3.60) we can substitute for these errors giving 



k k 
cov {%(tk) - I = & [(l/k)~-lL n(t.11 [(l/k)H-lln(tj)lT) 

j=1- J j =1 

We now make a second assumption about the statistics of rl - (tk) by 

stating that the vector sequence of - n(tk) is not correlated with 

itself in time, i.e., 

Thus in (3.62) , again making the assumption that rl  (t . ) is uncorre- 
- 3 

lated with the elements of H so that the expectation operator can 

be taken inside the summation procedure, 

Hence, finally 

Equation (3.64) gives a concise expression for the estima- 

tion error variance associated with - 2(t ) as an estimate of x. k - 
It is worth noting an important characteristic of this relation- 

ship by reverting once more to the scalar example. Assume we have 

a measurement equation from (3.33) as, 

which would give for (3.64) , 



where r is the variance of the random variable v(tk), compare 

with equation (3.13). It is now possible to see from (3.66) that 

as we increase the number of measurements, i.e. k increases, the 

estimation error p(tk) decreases and thus our estimates - 2(tk) 

become progressively more accurate -- recall the discussion, 
therefore, of section 2.2.1. 

The clue to establishing a relationship between P(tk) of 

(3.64) and the matrix P*(tk) in the algorithms (3.46) is given 

by the definition of P*(tk) in (3.43), i.e. 

So if we post-multiply (3.64) first by HT and then by R - ~ ,  we 

obtain 

and post-multiplying this equation by (HT) -' yields 

Therefore, 

The relationship (3.68) permits us to substitute for P * ( tk) 
and P*(tk-l ) in (3.46), which after some manipulation (see Appen- 

dix 3) gives the following recursive least squares algorithms for 

the state estimate and error covariance matrix updates of a sys- 

tem at steady state, 



Reference to Figure 9 indicates that one step remains in 

the derivation of the LKF: that of introducing a process dyna- 

mica1 description and thereby relaxing the constraint of assuming 

time-invariance of the state of the process. Taking stock of the 

developments thus far we can summarize as follows. 

3.5.1 Summary 

For the measurements (observations) relationship of equation 

(3.33) 1 

where the state variables - x(tk) do not change with time, i.e. in 

terms of the discrete-time model description of (3.29), 

we have that, on receipt of the measurements - y(t ) we can correct k 
the previous (a priori) estimates 2(t ) of x(t ) and the asso- - k-1 k 
ciated matrix P(tk-l) of (a priori) estimation error covariances 

according to the algorithms of (3.69). If we draw together the 

earlier discussion of sections 2.3.1 and 3.4, and in particular 

if the notation introduced in section 2.3.1 is recalled, a useful 

modification of (3.69) can be suggested. Henceforth in (3.63) 

let us denote - 2(tk-l) and ~ ( t ~ - ~ )  by g(tkl tk-l) and P (tkJ tk-l) 

respectively so that this signifies that - 2(tk(tk-l) and P(\~S-~) are 

the state estimates and error covariance matrix predicted at time t on the k 
basis of all measured information up to and including that avail- 

able at the last sampling instant tk - 1. Likewise - B(tk) and P(tk) 

in (3.69) may be denoted by - % (tk 1 tk) and P (tkl tk) respectively 
which thus represent the updated (a posteriori) estimates and 

covariance matrix at time t given y(tk). A schematic interpre- k 
tation of this procedure and the associated notation is provided 

by Figure 11. 

The algorithms (3.69) actually characterize the LKF for the 

rather special system behavior of (3.70) with the measurements 



of (3.33); this will become evident in the next section. The 

problem now, of course, is one of deterrcining how to extrapolate, 

or predict, the evolution of the state estimates and covariance 

matrix over the interval tk - + tk when (3.70) is no longer valid 

because the system displays unsteady-state behavior. 

3.6 The Discrete-time Linear Kalman Filter 

The "discrete-time" qualification in the title of this sec- 

tion derives from the fact that the algorithms are associated with 

a discrete-time representation of the system state variable dyna- 

mics, i.e. from (3.291, 

and with a discrete-time observations equation 

Given this model of the system dynamics we must consider how a 

forward prediction, or estimate - P(tkltk-l), can be made on the 

basis of (3.71). Suppose we have available the most recent up- 

dated estimate, g(tk-l 1 tkml) , we have measured - u(t ) , and under k- l 
the assum~tion that 

then a "best" estimate &(tk(tk-l) is provided by 

This is simply (3.71) with the state estimates substituted for 

x(tk 1) and with the stochastic sequence vector <(t ) set equal - - - k-1 
to zero; since we cannot know <(t ) ,  then for prediction it js - k-1 I 

reasonable to assign the most probable, or mean value to this 

variable. We are clearly interested to know whether &(tkltk-l) 

from (3.73) will be an unbiased estimate, i.e. E{ij(tkl tk-l)) = - 0. 



subtracting (3.71a) from (3.73) gives, where i(tk (tk-l) = - 
f(t It ) - x(tk) and i(tkltk) = g(tkltk) - s(tk)t - k k-1 - - 

Iience , 

which by assumption (3.72), that - 5 is a zero-mean stochastic pro- 

cess, implies that - S(tkltk-l) will be unbiased provided - B(t It ) k-1 k-1 
is unbiased. This is almost a circular argument and will eventually 

require certain assumptions to be made about the initial conditions 

of the filter. 

Given (3.74) we can also set up a relationship for ~ ( d  L~), 

the estimation error covariance matrix extrapolated ac,ross the 

interval tk-l * tk, 

Hence, under the following assumptions, 

and 

for all k, (3.77b) 



which imply, inter alia, that the system noise - 5 is uncorrelated 
with the estimation errors - 2 ,  and with 

that 

The reader may now be somewhat surprised to learn that e- 

quations (3.73) and (3.78) in fact complete the derivation of 

the LKF. We can at last summarize thus: 

o For the system characterization of (3.71) the linear 

discrete-time Kalman filter algorithms are given by, 

(i) Prediction: between tk - and tk from (3.73) and (3.78): 

(ii) Correction: across t on receipt of y(tk), from (3.69) : k - 

where, the 1:alman gain matrix K(t ) is given by 
k 

In ( 3 . 7 9 ~ ) ~  (3.79d) and (3.79e) observe that we have adopted the 

notation 8 (t 1 t ) and P (tkl tk-l) etc. , as suggested for the - k k-1 
algorithms (3.69) of the previous section. 



3.6 .1  Some I n i t i a l  Comments on t h e  F i l t e r  

L a t e r  i n  s e c t i o n  3.8 some impor t an t  q u a l i t a t i v e  c h a r a c t e r -  

i s t i c s  of  t h e  f i l t e r  w i l l  be d i s c u s s e d  i n  d e t a i l ;  h e r e  w e  merely 

n o t e  a  number o f  t e c h n i c a l  d e t a i l s  concern ing  t h e  a l g o r i t h m s  ( 3 . 7 9 ) .  

(i) Gather ing  t o g e t h e r  t h e  s t a t i s t i c a l  assumpt ions  o f  ( 3 . 5 5 ) ,  

( 3 . 6 3 ) ,  ( 3 . 7 2 ) ,  and (3 .77)  w e  r e q u i r e ,  

(ii) I f  S ( t  ) and r l ( t k )  a r e  Gauss ian  normal d i s t r i b u t i o n s ,  k  - 
t h e n  a  l e a s t  s q u a r e s ,  a  maximum l i k e l i h o o d ,  o r  a  Bayesian mininium 

v a r i a n c e  approach t o  t h e  f i l t e r  d e r i v a t i o n  a l l  y i e l d  i d e n t i c a l  

r e s u l t s .  ( I ndeed ,  among s e v e r a l  o t h e r  d e r i v a t i o n s ,  Gelb (1974) 

t a k e s  t h e  d e s i r e d  f i l t e r  s t r u c t u r e  o f  (3.40b) and proceeds  t o  

o b t a i n  t h o s e  forms of  t h e  m a t r i c e s  Ill ( tk) and M2 ( tk) which pro- 

v i d e  a  minimum v a l u e  f o r  t h e  var iance-covar iance  m a t r i x  P ( t k ( t k ) . )  

(iii) F i g u r e  1 2  shows an i n t e r p r e t a t i o n  o f  t h e  upda t i ng  and 

p r e d i c t i o n  s chedu le  o f  t h e  f i l t e r i n g  a lgo r i t hms ;  when compared w i t h  

F igu re  11, F igu re  1 2  i n d i c a t e s  how t h e  a lgo r i t hms  now pe rmi t  t h e  

p r e d i c t i o n  o f  t h e  t ime-varying s t a t e  v e c t o r .  

( i v )  An implementa t ion o f  t h e  f i l t e r  i s  r e p r e s e n t e d  by t h e  

b lock  diagram form o f  F i g u r e  13.  I f  t h e  d i s c u s s i o n  o f  s e c t i o n  

2 . 1  i s  r e c a l l e d  t o g e t h e r  w i th  F i g u r e  4 ,  F i g u r e  13 re-emphasizes 

t h e  c r u c i a l  r o l e  o f  i n s t r u m e n t a t i o n  and t h e  measurement p r o c e s s  

i n  f a c i l i t a t i n g ,  o r  deg rad ing ,  t h e  performance o f  t h e  f i l t e r  a s  

a  means o f  r e s t r u c t u r i n g  i n fo rma t ion  about  t h e  behav ior  o f  r e a l -  

i t y .  Moreover, s i n c e  t h e  f i l t e r  must i n e v i t a b l y  be c o n s t r u c t e d  

round an impe r f ec t  model of  r e a l i t y  i t s  m a t r i c e s  0 and H a r e  

on ly  approx imat ions  t o  t h e  t r u e  m a t r i c e s  a '  and H ' .  



( v )  The e r r o r s  between t h e  r e s p o n s e  o b s e r v a t i o n s  and  t h e i r  

p r e d i c t e d  v a l u e s ,  i n  ( 3 . 7 9 c ) ,  d e s e r v e  s p e c i a l  m e n t i o n ,  f o r  t h e y  

w i l l  s u b s e q u e n t l y  become i m p o r t a n t  i n  a s s e s s i n g  t h e  r e s u l t s  o f  

a p p l y i n g  t h e  f i l t e r i n g  a l g o r i t h m s .  They are d e n o t e d  by ,  

and a r e  f r e q u e n t l y  r e f e r r e d  t o  a s  t h e  i n n o v a t i o n s  p r o c e s s  r e s i d u a l  

e r r o r s ,  o r  as t h e  o n e - s t e p  ahead  p r e d i c t i o n  e r r o r s .  

( v i )  W e  may a l s o  n o t e  t h a t  s u b t r a c t i n g  - x ( t k )  f rom b o t h  s i d e s  

o f  ( 3 . 7 9 ~ )  y i e l d s ,  

which ,  a f t e r  s u b s t i t u t - i n g  f o r  y  - ( tk)  from ( 3 . 7 1 )  , g i v e s  

Hence, 

E q u a t i o n  ( 3 . 8 2 )  s t a t e s ,  t h e r e f o r e ,  t h a t  x ( t k / t k )  w i l l  b e  u n b i a s e d  

p r o v i d i n g  2 ( t  It ) - k  k-1 
i s  u n b i a s e d ,  which t u r n  w i t h  

i m p l i e s  t h a t  t h e  a  p r i o r i  ( i n i t i a l )  e s t i m a t e s  s h o u l d  b e  chosen  a s  

u n b i a s e d  estimates, i . e .  



with 

These represent the desired initial conditions for the filter. 

(vii) Using (3.82) an alternative expression for P (tk/ tk) may 

be derived. 

which with the additional assumption that* 

then, 

(viii) Lastly, notice that if Q = I, and - u(tk) = - S (tk) = - 0 in 

(3.71), i.e. the state variables are time-invariant, then (3.79a) 

and (3.79b) give - %(tkltk-l) = g(tk-l]tk-l) and ~ ( t ~ l t ~ - ~ )  = 

P(tk-l/tk-l) so that upon substitution of these results in (3.79~). 

* In fact, it follows from the measurement errors being uncorre- 
lated with time that x(t It ) ,  being conditioned upon measlrmts 
up to and including t~osek at-kime tk-l, will be uncorrelated with TI (5) . 



(3.79d), (3.79e), the filter reduces to the algorithms of 

(3.69). 

3.7 The Continuous-Discrete Linear Kalman Filter 

If the discrete-time model of the system state dynamics in 

(3.71a) is replaced by the continuous-time, ordinary differential 

equation representation of (3.28) the qualification "continuous- 

discrete" for the LKF should become self-evident. Since we shall 

retain the discrete-time measurement process, in (3.33) or (3.71b), 

and in view of the manner in which we have derived the LKF, it 

should also be apparent that for the continuous-discrete version 

of the filter we are seeking replacements for the forward extra- 

polation algorithms of (3.79a) and (3.7913). In fact the objective 

of this section is to modify only algorithm (3.79a) and we shall 

not in any case proceed to the completely continuous version of 

the LKF. The reasons for thus restricting the argument are: 

(i) that this form of the continuous-discrete filter 

provides the best conceptual link with the form of 

the extended Kalman filter to be derived in seckion 5; 

(ii) that in practice we shall very rarely require the 

analysis of continuous-time observations; observa- 

tions are nearly always sampled, as has been 

mentioned before; 

(iii) that if we do require knowledge of the system be- 

havior between tk - and tk, then attention will 

almost certainly be focused upon the evolution 

of - f (tl tk - and not on P (t 1 tk-l) : it is also 
rather easier to derive an expression for the 

evolution of - 9(tltk - than it is to derive an 

equivalent expression for P (t 1 tk-l) . 
Recall that from (3.28) 

x(t) =Fx(t) + Gu(t) +LS(t) , - - - - 
< t  < tk, if we have available the estimate so that for tk-l- - 

5?(tk-ll tk-l) , we have knowledge of u(t) , and with (t) 1 = 0,  - - - - 

then a "best" extrapolation of - f(tltk-l) is provided by the 



solution of, 

< t < tk and for tk-l - - 

for - P(tl tk-l) = R(tk-ll tk-l) at t = tk-l = 

Therefore, for the continuous-discrete linear Kalman filter we 

have the algorithms (3.79) with (3.86) replacing (3.79a). Figure 

14 shows this version of the filter in block diagram form. 

3.8 Interpretations of the Filter Covariance and Gain Matrices 

At the very beginning of this derivation it was observed that 

there is no really easy route to an appreciation of the Kalman 

filtering algorithms. Prior to that observation the filter was 

said in section 2.3.1 to behave so as to eliminate, or filter out, 

the random noise effects of the 5 and rl variables. The burden of - - 
compensating for the lengthy derivation, and of fulfilling the 

preview of the filter, rests with this section. Not surprisingly 

it is to a scalar equivalent of the algorithms to which we return 

for purposes of illustrat'ion. 

In algorithms (3.79b), (3.79d), and (3.79e) we have, 

Upon substituting for p(tkltk-l)from (3.87) in (3.88) and (3.391, 

and assuming that h = 1, i.e. y(tk) = x(tk) + rl(tk), gives after 

rearrangement, 



Given the relationships (3.90) and (3.91) for the estimation error 

variance and the gain factor, the key to an appreciation of the 

operating characteristics of the filter is to ascribe to the fil- 

ter the properties of intelligence. In other words, how "well" 

or how "badly" does the filter "believe" it is replicating the 

behavior of reality. 

Table 1 summarizes various filter operating conditions 

which are discussed in the following; it is important, however, 

to recognize that Table 1 expresses relative and qualitative state- 

ments about the expected behavior of the filtering algorithms. 

First, we may note that K, the filter gain, is always less than 

Table 1: A Summary of Filter Operating Characteristics in 
Relation to the Gain and Covariance Matrices (or 
Scalar Equivalents). 

I 

System noise 

9 

! 
I 

Gain 

k 

small (j0.0) 

large (j1.0) 

large 

1 

Measurement 
noise 

r 

large 

small 

large 

small 

Estimation error 
variance 

D 

large 

changes slowly 

large 

Estimate 
corrections 

kc 

small 

large 

changes rapidly 

large 



unity. Now visualize what this ration means in physical terms, 

since , 

(i) the numerator of k is a function of 

Uncertainty propagated from the initial uncertainty in 

the state of the system (p) + Uncertainty contributed 
by the system noise (q) 

(ii) the denominator of k is a function of 

(p) + (q) + Uncertainty in the system output response 
observations (r) 

The implication is that if r is relatively large (in comparison 

with p and q), i.e. relatively inaccurate measurements, k is rela- 

tively-small; and if r is small, k + 1.0. The effect of p being 

relativ.ely large, i.e. inaccurate estimates, is to make k large, 

as is the implied effect of a large q, i.e. large unknown input 

disturbances. * 
From (3.79~) and (3.80) we may recall that the corrections 

applied to the fonvard a priori estimates g(tk 1 tk-l) are a product of 
the gain k and the innovations process residual errors ~ ( t ~ l t ~ - ~ )  , 
i.e. the error between actual and predicted output response. Thus 

if the measurement errors are known to be small (r is small), the 

effect is to make k large -- see Table 1 -- such that the filter 
"takes a lot of notice" of the errors between predictions and ob- 

servations, i.e. the filter weights the errors quite heavily. 

Since the observations are accurate, any prediction.errors must 

presumably result from a poor prediction which therefore requires 

considerable correction. Likewise, when the filter "does not know 

the process well," in other words inaccurate predictions and a 

* q may also be interpreted as a measure of the accuracy (uncer- 
tainty) of the process model as an approximation to reality, 
see Beck (1978~). 



large estimation error variance (p), errors between prediction and 

observation are weighted strongly. On the other hand, when r is 

large, or p is small -- the case of good predictions and/or poor 
measurements -- the filter will tend to ignore the prediction 
errors as k becomes small. In other words, the filter will attempt 

to "filter out" the spurious fluctuations in E since it assumes 

that the measurement noise is the source of these errors. 

Table 1 also indicates that ,for the gain k being small, p 

changes slowly. This corresponds to the situation in which the 

filter "believes" it has adequate knowledge of process behavior, 

p will probably be small, and the magnitude of k will tend to set- 

tle at some constant value. When k is large and p is changing 

rapidly, the filter is much less certain of its ability to pre- 

dict the variations in the output from the process under study. 

The fact that p is changing rapidly, indeed decreasing rapidly, 

suggests however that the filter is quickly learning the process 

behavior and placing more and more confidence in its own 

performance. 

The reader should perhaps satisfy himself that the statements 

of Table 1 are logically consistent. Hopefully it will now be 

evident that the filter in theory responds quite intelligently to 

the specified uncertainty in its operating environment. 



4 .  PARAMETER ESTIMATION AND CONVENTIONAL TIME-SERIES ANALYSIS 

L e t  u s  r e t u r n  t o  F i g u r e  9. The l a g t h y  development  o f  t h e  

p r e c e d i n g  s e c t i o n  d e a l t  w i t h  t h e  c e n t r a l  t o p i c  o f  s t a t e  e s t i m a t i o n  

i n  which a n  o n - l i n e  estimate o f  t h e  s t a te  o f  a sys tem i s  r e q u i r e d  

f o r  p r o c e s s  c o n t r o l  p u r p o s e s ,  see a l s o  s e c t i o n  2 .  I n  t h i s  s e c t i o n  

a t t e n t i o n  w i l l  b e  t r a n s f e r r e d  back t o  t h e  problem o f  pa ramete r  

e s t i m a t i o n ,  p r i n c i p a l l y  i n  c o n n e c t i o n  w i t h  t h e  s u b j e c t  o f  model 

development  and t i m e - s e r i e s  a n a l y s i s ,  b u t  a l s o  a s  it re la tes  t o  

p o s s i b l e  a p p l i c a t i o n s  i n  a d a p t i v e  p r e d i c t i o n  and a d a p t i v e  c o n t r o l  

c o n t e x t s .  Our s t a r t i n g  p o i n t ,  however, w i l l  be  t h e  i n t r o d u c t i o n  

o f  a r a t h e r  u s e f u l  form o f  b l a c k  box model.  The r e a s o n s  f o r  s o  

d o i n g  are  t h a t  t h i s  model i s  r e g u l a r l y  e n c o u n t e r e d  i n  t h e  l i t e r -  

a t u r e  o n  t i m e - s e r i e s  a n a l y s i s  and t h a t  w i t h  s u i t a b l e  t r a n s f o r m a -  

t i o n s  i n t o  t h i s  form of  model ,  many problems of  p a r a m e t e r  estima- 

t i o n  become amenable t o  r e c u r s i v e  l eas t  s q u a r e s  and r e l a t e d  t e c h -  

n i q u e s .  The remainder  o f  t h e  s e c t i o n  w i l l  t h e n  p i c k  up t h e  d e v e l -  

opment of  pa ramete r  e s t i m a t i o n  a l g o r i t h m s  b e g i n n i n g  w i t h  a r e c u r -  

s i v e  form o f  t h e  l e a s t  s q u a r e s  e s t i m a t o r  o f  e q u a t i o n  (3.11)  i n  

s e c t i o n  ( 3 . 1 ) ,  see F i g u r e  9. More d e t a i l e d  d i s c u s s i o n  o f  t h e s e  

t e c h n i q u e s  and c o n v e n t i o n a l  time-series a n a l y s i s  c a n  be  found i n ,  

f o r  example, Box and J e n k i n s  (1 9 7 0 ) ,  Eykhoff ( 1 9 7 4 ) ,  Young ( 1 9 7 4 ) ,  

and Soders t rom e t  a1 ( 1  978) . 

4.1 A U s e f u l  Form o f  Model 

Some of  t h e  groundwork f o r  i n t r o d u c i n g  t h e  model h a s  a l r e a d y  

been covered  i n  s e c t i o n  3.3.  W e  r e q u i r e  t h e  d i s c r e t e - t i m e  c h a r -  

a c t e r i s a t i o n  o f  (3 .29)  and (3 .33)  , namely, 

I t  h a s  a l r e a d y  been shown how t h i s  d i s c r e t e - t i m e  r e p r e s e n t a t i o n  

o f  a n  i n t e r n a l l y  d e s c r i p t i v e  model r e l a t e s  t o  t h e  more f a m i l i a r  

con t inuous - t ime  r e p r e s e n t a t i o n  o f  t h e  dynamic behav iour  o f  a sys -  

t e m .  The i n t e n t i o n  h e r e  i s  t o  d e m o n s t r a t e  t h a t ,  by means o f  a 



simple example, one can proceed from the continuous-time inter- 

nally descriptive model via the above discrete-time formulation 

to a typical input/output time-series analysis model. Perhaps 

the origin of much of the scepticism surrounding black box models 

lies here with the fact that most papers dealing with such sta- 

tistical models assume g priori the form of the model. Any con- 

nection back to the continuous-time internally descriptive model, 

and hence to "reality", is thus lost and with it also may be 

lost the attention and comprehension of the previously unacquain- 

ted reader. 

Our development will first oblige us to make the general 

form of equation (4.1) more specific through a number of assump- 

tions. For a simple, physicochemical example we shall then de- 

rive a model from a component mass balance which resembles the 

specific reduced form of 4.1). Hence from this meeting point 

of particular example and non-specific model we shall finally 

generalise to our proposed useful form of model. 

4.1.1 From the General to the Specific 

In (4.1) let us assume that the observations matrix H is 

equal to the identity matrix I, i.e. all the state variables can 

be observed linearly, 

The restrictions of this assumption in practice are not great 

since ultimately we seek a model which merely characterises ob- 

served input/output relationships without reference to any internal 

state variable description of the process being modelled. With 

this final objective in mind let us further combine equations 

(4.2a) and (4.2b) such that by substituting for x(tk) - - - p k )  
- q(tk) from (4.2b) into (4.2a) we can eliminate x(tk), i.r. - - 



which a f t e r  rearrangement  g i v e s ,  

[ lumped n o i s e  term 1 

I f  w e  t hen  assume t h a t  t h e  system has  on ly  a s i n g l e  o u t p u t ,  t h a t  

is  t h e  scalar y ( t k ) ,  and d e f i n e  

t o  be a corresponding s c a l a r  e q u i v a l e n t  of t h e  lumped n o i s e  t e r m  

i n  ( 4 . 4 ) ,  w e  have 

Equation (4 .6)  might t h u s  be c a l l e d  a p a r t i c u l a r  form of M u l t i p l e  

Inpu t /S ing le  Output (MISO) model r e p r e s e n t a t i o n .  I t  i s  m u l t i p l e  

i n p u t  because w e  have r e t a i n e d  t h e  i n p u t  - u  as  nominally an  m- 

d imensional  v e c t o r ;  t h e  r e s t r i c t i o n  t o  s i n g l e  o u t p u t  w i l l  be  

d i scus sed  i n  due cou r se  below. 

4.1.2 From t h e  S p e c i f i c  t o  t h e  General  

For ou r  physicochemical  example w e  choose once aga in  t h e  

case of a d i s s o l v e d  subs tance  decaying wi th  f i r s t - o r d e r  k i n e t i c s  

i n  a cont inuous  f low,  con t inuous ly  s t i r r e d  t ank  r e a c t o r  (CSTR), 

s e e  F igu re  15. H e r e  u l  ( t )  , u2 (t) , and x  ( t)  are r e s p e c t i v e l y  t h e  

f i r s t  i n f l u e n t ,  second i n f l u e n t ,  and e f f l u e n t  c o n c e n t r a t i o n s  of  

t h e  subs tance ;  V ,  q1 , q 2 ,  and qo, where qo = (q l  + q 2 )  , a r e  

r e s p e c t i v e l y  t h e  tank  l i q u i d  volume, f i r s t  i n f l u e n t  f l ow- ra t e ,  

second i n f l u e n t  f l ow- ra t e ,  and e f f l u e n t  f l ow- ra t e ,  a l l  of which 

a r e  assumed t o  be t ime- inva r i an t .  A s  w i th  t h e  example of s e c t i o n  

3 .1 ,  31 i s  t h e  f i r s t - o r d e r  k i n e t i c  decay r a t e  c o n s t a n t .  A com- 

ponent m a s s  ba lance  a c r o s s  t h e  tank  r e a c t o r  y i e l d s  



w i t h  t h e  assumpt ion t h a t  t h e  s u b s t a n c e  c o n c e n t r a t i o n  i n  t h e  t a n k  

i s  i d e n t i c a l  t o  t h e  c o n c e n t r a t i o n  of  m a t e r i a l  i n  t h e  e f f l u e n t .  

A f t e r  r ea r rangement  and upon i n t e g r a t i o n  o v e r  t h e  i n t e r v a l  

tk- 1  + tk (4 .7 )  becomes 

where 

To be  p r e c i s e ,  n o t e  t h a t  two f u r t h e r  a ssumpt ions  a r e  imp l i ed  by 

(4 .9 )  : 

(i) t h a t  i f  t h e  sampling i n t e r v a l  ( t  - tk-l) i s  assumed k  
c o n s t a n t  f o r  t h i s  d i s c r e t e - t i m e  r e p r e s e n t a t i o n ,  t h e n  

$ , y l  and y2  a r e  a l s o  c o n s t a n t s ;  

(ii) t h a t  u l  ( t )  and u2 (t) f o r  t h e  i n t e g r a t i o n  i n t e r v a l  

< t < tk a r e  assumed t o  b e  he ld  c o n s t a n t  a t  t h e i r  t k - 1 -  - 
i n s t a n t a n e o u s l y  sampled v a l u e s  u l  ( t  and u 2 ( t k - l )  ; k- 1  
t h i s  e n a b l e s  u l  (t) and u2 ( t)  t o  be  t r e a t e d  o u t s i d e  t h e  

i n t e g r a l s  of  (4.9)--compare w i t h  t h e  more g e n e r a l  forms 

o f  (3 .32)  i n  s e c t i o n  3.3. 

A t  p r e s e n t  ( 4 . 8 )  i s  a  p u r e l y  d e t e r m i n i s t i c  c h a r a c t e r i s a t i o n  

of  p r o c e s s  dynamic behav iour ;  c l e a r l y ,  i n  l i n e  w i t h  p r e v i o u s  

developments ,  it i s  n e c e s s a r y  t o  complete  t h e  c h a r a c t e r i s a t i o n  

by i n t r o d u c i n g  a  s t o c h a s t i c  component i n t o  t h e  model. From t h e  

p r eced ing  s e c t i o n  l e t  u s  t h e r e f o r e  h y p o t h e s i s e  a  lumped t e r m  

v  (tk) --compare w i t h  (4 .5 )  --which a c c o u n t s  f o r  a l l  a s p e c t s  o f  un- 

c e r t a i n t y  i n  t h e  obse rved  behav iour  whether  t h e y  a r i s e  from un- 

measured i n p u t  d i s t u r b a n c e s  ( 5 )  o r  from random measurement e r r o r s  

( n )  a s s o c i a t e d  w i t h  measurement of  t h e  system o u t p u t  r e s p o n s e .  



I n  o t h e r  words i n  (4 .8 )  

where y ( t k )  = x ( t k )  + "tk) i s  t h e  e r r o r - c o r r u p t e d  e f f l u e n t  con- 

c e n t r a t i o n  measurement.  Now making t h e  v e c t o r  d e f i n i t i o n s ,  

w e  o b t a i n  

which p e r m i t s  a  d i r e c t  comparison w i t h  (4 .6 )  . A l t e r n a t i v e l y ,  

had w e  d e f i n e d  

T 
= [ q ,y l  ,y21T and z  (tk) = [ ~ ( t ~ - ~ )  t u l  ( tk -1 )  l u 2 ( t k - l ) 1  - - 

T T t h e n  y ( t k )  = a - z ( t k )  + V ( t k )  = - ( tk )a  + v ( t k )  (4 .11)  

which b e a r s  a  r e a d i l y  e v i d e n t  cor respondence  w i t h  (3 .8 )  o f  sec- 

t i o n  ( 3 . 1 ) .  

T h i s  i s  t h e  mid-point  o f  o u r  development.  The c l u e  t o  f u r -  

t h e r  development depends  o n  t h e  i n t e r p r e t a t i o n  o f  ( 4 . 9 )  a s  a  k ind  

o f  r e g r e s s i o n  e q u a t i o n  r e l a t i o n s h i p .  No t i c e  f i r s t ,  t h e r e f o r e ,  

t h a t  (4 .9 )  s t a t e s  e s s e n t i a l l y  t h a t  t h e  c u r r e n t  v a l u e  o f  t h e  o u t -  

p u t ,  y ( t k ) ,  i s  a  f u n c t i o n  o f  t h e  p r e v i o u s  o u t p u t  o b s e r v a t i o n  

~ ( t ~ - ~ ) - - h e n c e  t h e  t e r m  au to regress ive - -and  p a s t  o b s e r v a t i o n s  

~ ~ ( t ~ - ~ ) , u ~ ( t ~ - ~ )  o f  t h e  two i n p u t s ,  t o g e t h e r  w i t h  t h e  c u r r e n t  

unknown r e a l i s a t i o n  of  t h e  n o i s e  p r o c e s s  v  ( t  ) . Equa t ion  (4 .9 )  k  
i s  based s e c u r e l y ,  o f  c o u r s e ,  on  a  p r i o r  knowledge o f  t h e  v a r i o u s  

p h y s i c a l  and chemica l  phenomena which a r e  t hough t  t o  govern  pro-  

cess dynamic behav iou r ,  i . e .  it c a n  be s a i d  t o  be  a n  i n t e r n a l l y  

d e s c r i p t i v e  model. Y e t  what i f  w e  suppose  t h e  converse?  Imag- 



i n e  t h a t  w e  have time-series d a t a  y  (tk) , u l  (tk) , u 2  (tk) , w i t h  

k  = 1 , 2 ,  ..., N ,  b u t  t h a t  w e  make no assumpt ions  a b o u t  t h e  i n t e r n a l  

n a t u r e  o f  t h e  sys tem and s imply  v iew it a s  a b l a c k  box. I t  may 

t h e n  o c c u r  t h a t  a n a l y s i s  o f  t h e  time-series s u g g e s t s  t h a t  t h e  

c u r r e n t  v a l u e  o f  t h e  o u t p u t  i s  more p r o b a b l y  a f u n c t i o n  o f  t h e  

two immedia te ly  p r e v i o u s  o u t p u t  o b s e r v a t i o n s  , ~ ( t ~ - ~ )  - 
t o g e t h e r  w i t h ,  s a y ,  u l  (tk-l , u 2  ( tkml and u 2  (tk-2 . W e  c o u l d  

i n  t h a t  e v e n t  t r y  t o  f i t  a r e l a t i o n s h i p  which " r e g r e s s e s "  y ( t k )  

upon Y ( ~ ~ - ~ )  , Y  ( tk-2)  t u l  ( t k - l )  l u 2  (tk-l  l u 2 ( t k - 2 )  , namely 

and p rov ided  w e  d e f i n e  t h e  pa ramete r  v e c t o r  - a and d a t a  v e c t o r  - z 

a p p r o p r i a t e l y ,  w e  c a n  s t i l l  a r r i v e  a t  t h e  g e n e r a l  f o r m  o f  r e l a -  

t i o n s h i p  g i v e n  by (4 .1  1  ) . 
There  may, or may n o t ,  b e  s o m e  p l a u s i b l e  e x p l a n a t i o n  o f  why, 

i n  t h i s  p a r t i c u l a r  example o f  t h e  c o n t i n u o u s l y  s t i r r e d  t a n k  re- 

a c t o r ,  a model o f  t h e  form (4 .12)  g i v e s  a b e t t e r  f i t  t o  t h e  d a t a  

t h a n  ( 4 . 9 ) .  One m i g h t  h y p o t h e s i s e ,  fo r  i n s t a n c e ,  t h a t  t h e r e  i s  

e i t h e r  a dead  zone or i m p e r f e c t  mixing i n  t h e  t a n k .  However, 

o u r  p a r t i c u l a r  example h a s  s e r v e d  i t s  p u r p o s e  i n  t h e  i n d u c t i v e  

argument o f  d e r i v i n g  t h e  proposed u s e f u l  form o f  model.  The 

r e q u i r e m e n t  now i s  f o r  a  f u r t h e r  g e n e r a l i s a t i o n  t o  b e  made. The 

n a t u r a l  p r o g r e s s i o n  from (4 .9 )  and (4 .12)  i s  t o  r e a s o n  t h a t  f o r  

a n  (m)  m u l t i p l e  i n p u t / s i n g l e  o u t p u t  sys tem d e s c r i p t i o n  t h e  c u r -  

r e n t  v a l u e  o f  t h e  o u t p u t  c a n  i n  g e n e r a l  b e  a  f u n c t i o n  of  t h e  n  

p r e v i o u s  m u l t i p l e  i n p u t  and o u t p u t  o b s e r v a t i o n s ,  

T h i s  i s  one  form i n  which t h e  MIS0 time-series model i s  o f t e n  

quo ted .  The d e t e r m i n a t i o n  o f  n  i s  a problem i n  i t s e l f  and i s  

known as model o r d e r  d e t e r m i n a t i o n ;  it i s  e q u i v a l e n t  t o  t h e  prob-  

l e m  o f  model s t r u c t u r e  i d e n t i f i c a t i o n  a s  w e  have  a l r e a d y  n o t e d  



in section 3.1. Alternatively, if we introduce the backward 

shift operator q-' , defined by 

(4.13) transforms to 

Hence, after rearranging, and with the following definitions of 

polynomials in the backward shift operator 

we obtain 

which also represents a popular starting point for papers on time- 

series analysis. 

There are a number of remarks to be made in conclusion of 

this development. For instance: 

(i) .The interpretations placed on equation (4.9) should 

emphasise the sometimes thin line of distinction be- 

tween the-notions of black box and internally descrip- 

tive models; the analyst could have arrived at the 

given model either from theory or from empirical data 

analysis. It is these opposite, yet complementary, 

approaches which would define the character of the 

model. 

(ii) The MIS0 description has been chosen because it reflects 

current usage in the large majority of time-series anal- 

ysis applications. When dealing with the more complex 



multiple input/multiple output (MIMO) case, Young and 

Whitehead (19771, for example, employ the model formu- 

lation of (4.4). In this event it is customary to make 

a prior definition of the zero and non-zero elements 

mi j of the matrix @ before applying any parameter esti- 

mation routine. This definition of non-zero Oij ele- 
ments specifies the causal relationships between process 

output responses; it is in practice dictated largely 

by theoretical considerations of the nature of the sys- 

tem under study. 

(iii) Any relationship which can be expressed according to 

(4.11),4.13) or (4.17) becomes amenable to the param- 

eter estimation routines which will be presented in 

the next section. This "useful form of model" is indeed 

quite flexible for it requires only that the equations 

be linear-in-the-parameters (Eykhoff, 1974). To appre- 

ciate this point, suppose we wish to estimate the param- 

eters of the nonlinear relationship, 

The problem can still be treated with ease since by 

defining 

T we have y(tk) = 5 ( t k ) ~  f v(tk) r 

and the model remains linear in the parameters. 

(iv) Lastly, we may observe that the lumped noise sequence 

v(tk) has carefully been left undefined. Generally 

v(tk) will be a non-white (or correlated, coloured) 

random process; the manner in which one chooses to 

describe it is closely tied to the particular choice 

of parameter estimation scheme, see, for example, 

Soderstrom et a1 (1978), Beck (1978~). 



4.2 R e c u r s i v e  Pa ramete r  E s t i m a t i o n  A l g o r i t h m s  

Thus armed w i t h  t h r e e  fo rms  of  o u r  u s e f u l  mode l ,  ( 4 . 1 1 ) ,  

(4 .13)  , (4 .17)  , w e  s h a l l  i n  f a c t  choose  (4 .11)  as  t h e  most  appro-  

p r i a t e  f o r  t h e  p r e s e n t ,  i . e .  

w i t h  t h e  v e c t o r  d e f i n i t i o n s  

s u c h  t h a t  - z T(tk) and - a are v e c t o r s  o f  d imens ion  n(m + 1  ) . 

4.2.1 R e c u r s i v e  L e a s t  S q u a r e s  

A compar ison  o f  (4 .18)  w i t h  (3.33)  shows t h a t  w e  c a n  sum- 

m a r i l y  q u o t e  t h e  r e c u r s i v e  l eas t  s q u a r e s  a l g o r i t h m  f o r  t h e  es t i -  

mates - a o f  t h e  p a r a m e t e r s  - a by d i r e c t  a n a l o g y  w i t h  t h e  arguments  

o f  s e c t i o n  3.4 and  s p e c i f i c a l l y  w i t h ( 3 . 4 6 ) .  Hence 

i n  which f o r  t h i s  c a s e ,  

An i m p o r t a n t  f e a t u r e  of t h e  a l g o r i t h m s  ( 4 . 2 0 ) ,  which i s  n o t  a p p a r -  

e n t  i n  t h e  ea r l i e r  d i s c u s s i o n  o f  s e c t i o n  3 . 4 ,  i s  t h a t  t h e s e  a l g o -  

r i t h m s  do  n o t  r e q u i r e  m a t r i x  i n v e r s i o n  s i n c e  t h e  t e r m  [ . . . I  i s  a 

s c a l a r .  I f  n o t h i n g  e lse ,  t h i s  t h e n  i s  o n e  o f  t h e  b e n e f i t s  o f  

working w i t h  a  s i n g l e  o u t p u t  sys tem r e p r e s e n t a t i o n .  ( L i k e w i s e  

a l s o  t h e  LKF a l g o r i t h m s  d o  n o t  r e q u i r e  m a t r i x  i n v e r s i o n  f o r  s y s -  

tems w i t h  a s i n g l e  o u t p u t ,  see (3 .79e)  .) 



4.2 .2  The Problem of  B i a s  

The fundamenta l  role  o f  l e a s t  s q u a r e s  a l g o r i t h m s  f o r  param- 

eter e s t i m a t i o n  c a n  c l e a r l y  n o t  b e  d e n i e d .  Y e t  n e i t h e r  c a n  it b e  

d e n i e d  t h a t  t h e s e  a l g o r i t h m s  s u f f e r  from a  major  res t r ic-  

t i o n ,  namely t h e  problem o f  b i a s  i n  t h e  pa ramete r  e s t i m a t e s .  

The many v a r i a n t s  o n  t h e  theme o f  leas t  s q u a r e s  e s t i m a t i o n  have  

t h e i r  o r i g i n s  i n  t h e  d e s i r e  t o  overcome t h i s  problem o f  b i a s .  

To see how t h e  e s t i m a t e s  - B may b e  b i a s e d  w e  c a n  o n c e  a g a i n  f o l l o w  

a n  argument d e v e l o p e d  p r e v i o u s l y  i n  s e c t i o n  3 .5 .  I n  l i n e  w i t h  

e q u a t i o n  (3 .50)  w e  have  t h e  n o n - r e c u r s i v e  f o r m u l a t i o n  o f  l eas t  

s q u a r e s  estimates, 

T  Upon s u b s t i t u t i o n  of  y  ( t  . )  = z (t  . ) a + v  ( t  . )  and a f t e r  r e a r r a n g e -  
3 - 3 -  3 

ment , 

so t h a t  

For  B ( t  ) t o  b e  u n b i a s e d ,  t h e r e f o r e ,  t h e  f o l l o w i n g  c o n d i t i o n s  k  
must  h o l d ,  

t ? I z ( t . ) v ( t . ) )  3 3 = - o , f o r  a l l  k ,  

o r ,  more s p e c i f i c a l l y ,  r e c a l l i n g  t h e  d e f i n i t i o n  o f  - z ( t k )  i n  ( 4 . 1 9 ) ,  



Of t h e s e  t h e  most p robab l e  c o n d i t i o n s  t o  be  v i o l a t e d  are t h o s e  

r e q u i r i n g  no c o r r e l a t i o n  between t h e  c u r r e n t  n o i s e  p r o c e s s  rea l i -  

s a t i o n s  and p a s t  o u t p u t  o b s e r v a t i o n s  y  (tk - ) , . . . , y  ( tk-,) . Only 

i f  v ( t k )  = e ( t k ) ,  where e ( t k )  i s  a w h i t e  n o i s e  sequence,  i .e .  

A v ( t k ) v ( t - ) }  I = C 1 e ( t k ) e ( t j ) }  = o , f o r  k  + j , (4.27) 

w i l l  t h e  estimates be  unb iased .  Otherwise  i f  v  (tk) i s  au to-  

c o r r e l a t e d ,  s ay ,  t h i s  i m p l i e s  t h a t  v ( t  ) i s  c o r r e l a t e d  w i t h  k  
~ ( t ~ - ~ )  which i n  t u r n  i m p l i e s  th rough  (4.18) t h a t  v ( t k )  i s  co r -  

r e l a t e d  w i t h  y ( t k - l  ) - - s ince  y ( t k - l  ) i s  a  f u n c t i o n  of v  ( tkml) -- 
and t h u s  

When t h e  c o n d i t i o n s  of  (4 .25)  a r e  s a t i s f i e d ,  and w i t h  t h e  f u r t h e r  

assumpt ion t h a t  t h e  n o i s e  sequence i s  normal ly  d i s t r i b u t e d  w i t h  

v a r i a n c e  &{v ( t k ) v  (tk) 1 = 0 2 ,  it can  be e a s i l y  shown by arguments 

s i m i l a r  t o  t h o s e  of  s e c t i o n  3 .5  t h a t  



The cova r i ance  m a t r i x  of l e a s t  s q u a r e s  parameter  e s t i m a t i o n  i s  

t h e r e f o r e  found conven ien t ly  t o  be  p r o p o r t i o n a l  (under t h e  l i m i t -  

i ng  c o n d i t i o n s  of  l a r g e  k)  t o  t h e  m a t r i x  P * ( t k )  computed from 

t h e  r e c u r s i v e  a l g o r i t h m s  ( 4 . 2 0 )  * . 

4.2.3. Unbiased Recurs ive  E s t i m a t o r s  

The c o n d i t i o n s  under which t h e  least  squa re s  estimates a r e  

unbiased w i l l  r a r e l y  be  s a t i s f i e d  i n  p r a c t i c e .  The outcome of 

such a  l i m i t a t i o n  on  t h e  a p p l i c a b i l i t y  of  t h e  method has  been 

t h e  g e n e r a t i o n  of many o t h e r  a lgo r i t hms  which s t r i v e  t o  gua ran t ee  

convergence a f  t h e  parameter  e s t i m a t e s  t o  t h e i r  t r u e  v a l u e s .  I n  

a r e c e n t  a r t i c l e  Soderstrom e t  a1 (1978) r e p o r t  on a comparat ive  

s tudy  of  f o u r  o f  t h e  more commonly used v a r i a n t s  of  r e c u r s i v e  

parameter  e s t i m a t i o n  a lgo r i t hms .  H e r e  w e  s h a l l  d i s c u s s  a  p a r t i -  

c u l a r  form of one of t h e s e  v a r i a n t s ,  a s  i n d i c a t e d  i n  F igu re  9 ,  

namely t h e  r e c u r s i v e  In s t rumen ta l  V a r i a b l e  ( I V )  a l go r i t hm due 

t o  Young, e .g .  Young (1974) . Most p r a g m a t i s t s  would probably  

a g r e e  t h a t  t h e r e  i s  l i t t l e  d i f f e r e n c e  between t h e  performance 

of t h e  v a r i o u s  a l g o r i t h m s ;  o u r  c h o i c e  i s  d i c t a t e d  by t h e  f a c t  

t h a t  w e  s h a l l  subsequen t ly  demons t ra te  t h e  u s e  of  a n  I V  a lgo r i t hm 

i n  P a r t  2 . Our c h o i c e  i s  a l s o  i n f luenced  by c u r r e n t  i nd i ca -  

t i o n s  t h a t  t h e  p r i n c i p l e  of t h e  I V  approach may w e l l  o f f e r  a 

u n i f i e d  and comprehensive approach t o  t h e  s u b j e c t  of  system 

i d e n t i f i c a t i o n  i t s e l f  (Young, 1 976, Young and Jakeman 1378a, 

1978b. Jakeman and Younq, 1978, Younq e t  a l ,  1973) .  

A s  w e  have a l r e a d y  s t a t e d  w i t h  r e s p e c t  t o  ( 4 . 2 6 ) ,  t h e  most 

l i k e l y  sou rce  o f  b i a sed  e s t i m a t e s  i s  a n  a u t o c o r r e l a t e d  n o i s e  pro- 

c e s s  g i v i n g  r ise  t o  a  s i g n i f i c a n t  c o r r e l a t i o n  between t h e  n o i s e  

sequence and p a s t  v a l u e s  of t h e  o u t p u t  y .  Suppose now t h a t  from 

*In p r a c t i c e a 2 w o u l d  n o t  be known b u t  can be  e s t i m a t e d  a s  t h e  
v a r i a n c e  of  t h e  r e s i d u a l  e r r o r  sequence E ( tk) = y  ( tk) - zT (tk) 5 
a f t e r  t h e  estimates - B have achieved s a t i s f a c t o r y  convergence.  



t h e  model c h a r a c t e r i s a t i o n  of ( 4 . 1 7 ) ,  and g iven  s u i t a b l e  e s t i m a t e s  

of t h e  paramete rs  i n  t h e  and B .  (q-' ) polynomials ,  denoted 
1 

and g. (q- l )  r e s p e c t i v e l y ,  a  ( d e t e r m i n i s t i c )  time-series 
3 

j(tk) can be  computed by 

Viewed from t h e  p e r s p e c t i v e  of  F i g u r e  16 A ( t k )  c l e a r l y  cor responds  

t o  a n  e s t ima te - - s ince  probably  it i s  no t  gene ra t ed  from t h e  t r u e  

p roces s  c h a r a c t e r i s a t i o n - - o f  t h e  h y p o t h e t i c a l  n o i s e - f r e e  o u t p u t  

r e sponse  of t h e  system. And s i n c e  w e  are i n  g e n e r a l  d i s c u s s i n g  

systems i n  which t h e  s i n g l e  s ta te  v a r i a b l e  i s  l i n e a r l y  observed ,  

5 1 ( t k )  h e r e  b e a r s  a s t r o n g  n o t a t i o n a l  and p h y s i c a l  resemblance 

t o  t h e  n o t i o n  of s t a t e  estimates from t h e  Kalman f i l t e r .  Some 

s t r u c t u r a l  similarities should  t h e r e f o r e  be  e v i d e n t  from a com- 

p a r i s o n  of F i g u r e s  16 and 8. I n s p e c t i o n  of  (4.29) and (4.17) 

shows f u r t h e r  t h a t  : (i) v a r i a t i o n s  i n  5 1 ( t k )  should  be  s t r o n g l y  

c o r r e l a t e d  w i t h  v a r i a t i o n s  i n  t h e  no ise -cor rup ted  o u t p u t  obser -  

v a t i o n  y ( t k )  ; b u t  (ii) t h e s e  v a r i a t i o n s  i n  A ( t k )  should  be  uncor- 

r e l a t e d  w i t h  v ( t k )  p rov id ing  v ( t k )  i s  n o t  c o r r e l a t e d  w i t h  t h e  

measured i n p u t  sequences  u . (tk) , i. e. 
3 

& { u . ( t k ) v ( t  ) 1 = 0 f o r  a l l  j , k , z  . 
3 Z 

(4.30) 

I n  f a c t  t h e  above ' two p r o p e r t i e s  are p r e c i s e l y  what i s  r e q u i r e d  

of  t h e  i n s t r u m e n t a l  v a r i a b l e s ,  though it i s  n o t  neces sa ry  t h a t  

t h e y  be  computed accord ing  t o  (4 .29 ) .  L e t  u s  t h e r e f o r e  c a l l  

Et(tk) from (4 .29)  t h e  sequence of  i n s t r u m e n t a l  v a r i a b l e s  and 

deno te  (4.29) by t h e  t e r m  a u x i l i a r y  model (Young, 1974) . 
The n e x t  s t e p  i n  d e r i v i n g  t h e  I V  a lgo r i t hm i s  one of re- 

p l a c i n g  y by 5? i n  t h e  l e a s t  s q u a r e s  a l g o r i t h m s  so  t h a t  t h e  con- 

d i t i o n s  f o r  unbiased e s t i m a t e s  of  (4.26) are modif ied  t o  g i v e  



which w e  have a rgued  should  indeed  be  f u l f i l l e d  by t h e  i n s t r u -  

menta l  v a r i a b l e s  of  (4 .29)  . With t h e  d e f i n i t i o n  

T and r e p l a c i n g  - z ( t k )  by - 2 ( t k I r  b u t  - -  n o t  z T ( t k )  by - 2  ( \ I r  i n  (4.241, 

i . e .  

w e  c a n  work backwards w i t h  t h i s  h e u r i s t i c  r e a s o n i n g  t o  t h e  de-  

s i r e d  a l g o r i t h m .  

I n  summary t h e n ,  t h e  r e c u r s i v e  i n s t r u m e n t a l  v a r i a b l e  a l go -  

r i t h m  i s  g iven  by 



with 

where 

It should not, however, have escaped attention that we have 

appealed to a circular argument in order to obtain the IV algo- 

rithms: for calculation of the parameter values in (4.33a) these 

same values are assumed to be available for computation of 2 in 
(4.33~). Reference to Figure 16 should clarify the true intent 

of the argument. For any given iteration through the block of 

N data samples--recall Figure 5--the estimated parameters of the 

auxiliary model of (4.33~) are kept constant" for all tk k = 1 ,  
I 

CI L,...,N. At the end of each iteration they are set equal to the 

new estimates - 6 (tN) provided by (4.33a) and (4.33b) ; and if conver- 

gence is guaranteed then a "better"auxi1iary model yields "better" 

estimates of - a, and so on. Such a circular behaviour has earned 

the title of bootstrap estimator for this kind of IV algorithm. 

Of course, one question remains: what values should be assumed 

for the first set of parameter estimates in the auxiliary model? 

An intelligent and easily determined answer is to use the least 

squares estimates, derived from a previous iteration through the 

data, even though these values are probably biased. 

Perhaps briefly at this point we might review some of the 

similarities and differences between the IV, LS, and LKF algo- 

rithms. 

(i) The LS estimator of (4.20) amounts merely to a manipu- 

lation of the observed input/output time-series data. 

Whereas the assumed form of the model chosen to charac- 

terise the observed behaviour is implicit in the LS 

algorithms, through the definitions of the vectors - a 

and - z, it is explicit in the IV estimator (as it like- 

%hey may also be adaptively updated in a recursive fashion, but 
this form of the IV estimator will not be discussed here, see 
Young et a1 (1971). 



wise in the LKF). 

(ii) The similarities of structure between the LKF and IV 

estimator ought to be self-evident from Figures 8 and 

16. 

(iii) The strong suggestion of equivalence between instru- 

mental variables and state estimates deserves special 

attention in connection with the earlier allusion to 

the duality between state and parameter estimation, 

see section 3.2. The IV algorithms as quoted are almost 

a realisation of a joint state-parameter estimator. 

They are, however, not quite complete in this sense 

because the instrumental variable computation of (4.33~) 

lacks a corrective element based on the perceived error 

between 2 and the actual output observation y. By joint 

state-parameter estimator we mean an algorithm which 

partitions the problem into two sub-problems: first, 

the use of state estimates for computation of the param- 

eter estimates, then substitution of the new parameter 

estimates for the next computation of the state estimates, 

and so on as the recursive algorithm moves serially 

through the data. The same idea is actually hidden 

in equations (2.3) and (2.4) of section 2.3.1. One 

example of such a joint estimator for application to 

a hydrological forecasting problem is given by Todini 

(1978), which he calls a Mutually Interactive State 

Parameter (MISP) estimation algorithm. It will be seen 

in section 5 that the use of the term combined state- 

parameter estimation has a rather different interpre- 

tation. 

(iv) Finally, for the purposes of completeness we can point 

out that the form of v(tk) is left unspecified in the 

case of an IV estimator. Other algorithms assume that 

any correlated structure of v(t ) may itself be modelled 
k 

by some transformation of a white noise sequence; the 

additional parameters of the noise model are accordingly 

required to be estimated (Soderstrom et al, 1978). 



4.3 T ime-var iab le  Paramete r s  

There  was a  p r o p o s a l  i n  s e c t i o n  2.3 t h a t  a n  ambiva len t  a t t i -  

t u d e  towards  t h e  d i s t i n c t i o n  between t h e  c o n c e p t s  o f  s t a t e  and 

parameter  shou ld  b e  encouraged.  For  t h e  development o f  t h e  

l i n e a r  Kalman f i l t e r  a l g o r i t h m s  c o n s i d e r a b l e  u s e  was made of  

t i m e - i n v a r i a n t  s ta te  v e c t o r s ;  i n  t h i s  s e c t i o n  w e  i n v e s t i g a t e  t h e  

conve r se ,  t h a t  i s  methods f o r  e s t i m a t i n g  t i m e - v a r i a b l e  pa r ame te r s .  

There  a r e  two c o n t e x t s  i n  which th ,e  r e c u r s i v e  e s t i m a t i o n  o f  t i m e -  

v a r i a b l e  pa r ame te r s  i s  of major  i n t e r e s t :  

(i) For  s o l u t i o n  o f  t h e  model s t r u c t u r e  i d e n t i f i c a t i o n  prob- 

l e m  (see a l s o  s e c t i o n  2.2.3)  whereby t h e  a n a l y s t  s e e k s  

a n  u n d e r s t a n d i n g  of  why c e r t a i n  assumed c o n s t a n t  model 

pa r ame te r s  are n o t  found t o  have t i m e - i n v a r i a n t  e s t i m a t e s .  

(ii) I n  a d a p t i v e  p r e d i c t i o n  and c o n t r o l  (see a l s o  s e c t i o n  

2.3.1) , i n  which some pa rame te r s  may b e  t hough t  of  as 

t r u l y  t ime-vary ing ;  o r  else t h e  o b j e c t i v e  i s  t o  a l l o w  

s u f f i c i e n t  f l e x i b i l i t y  f o r  t h e  model t o  b e  adap t ed  i n  

accordance  w i t h  t h e  a c t u a l  v a r i a t i o n s  i n  t h e  dynamic 

p r o p e r t i e s  o f  t h e  system under  s t u d y .  

An a p p r e c i a t i o n  o f  t h e  f o l l o w i n g  t i m e - v a r i a b l e  pa ramete r  

e s t i m a t o r s  i s  i n t i m a t e l y  l i n k e d  w i t h  t h e  q u a l i t a t i v e  p r o p e r t i e s  

o f  t h e  g a i n  m a t r i x  i n  t h e  LKF which w e r e  d i s c u s s e d  i n  s e c t i o n  3.8. 

W e  s h a l l  e x p l o i t  t h i s  l i n k  wherever p o s s i b l e ,  f o r  it n o t  o n l y  

p r o v i d e s  u s  w i t h  i n s i g h t ,  b u t  a l s o  it s t r e n g t h e n s  t h e  u n i f y i n g  

themes o f  t h e  paper  as a  whole. F i r s t ,  however, f o r  t h e  s ake  

of  i l l u s t r a t i o n  l e t  u s  t r a n s f o r m  t h e  LS a l g o r i t h m s  of  (4 .20)  by 

making t h e  s u b s t i t u t i o n  o f  (4 .28)  such  t h a t  

and hence w e  have a t  o u r  d i s p o s a l  a set o f  r e c u r s i v e  e q u a t i o n s  

f o r  t h e  pa ramete r  e s t i m a t e s  - d and t h e i r  e r r o r  va r i ance - cova r i ance  

m a t r i x  P (tk) . For (4 .35)  t h e  e q u i v a l e n t  o f  t h e  g a i n  m a t r i x  i s  t h e  

g a i n  v e c t o r  d e f i n e d  by 



I f  t h e  s i m p l e s t  scalar example i s  t a k e n ,  i .e. f o r  t h e  pro-  

cess model of (4.181,  

(4.36) r e d u c e s  t o  

which o f f e r s  a  c l e a r  p a r a l l e l  w i t h  (3.89) o f  s e c t i o n  3.8--the 

t r a n s p o s i t i o n  o f  s tates and pa r ame te r s  shou ld  now b e  obv ious  from 

(3.89) and (4 .38)  . Thus by ana logy  w i t h  Tab l e  1 it can  a l s o  be  

deduced t h a t  when t h e  parameter  e s t i m a t e s  have ach ieved  conver-  

gence  p (tk,, ) shou ld  be  r e l a t i v e l y  s m a l l  and t h e r e f o r e  k ( t k )  i s  

s m a l l .  But i n  t h e  s i t u a t i o n  o f  t ime-varying paramete r s ,  o n l y  

s m a l l  c o r r e c t i o n s  t o  t h e  estimates would be  coun t e r -p roduc t i ve .  

H e r e  one  would a r g u e  t h a t  l a r g e  e r r o r s  between obse rved  and 

p r e d i c t e d  o u t p u t  are n o t  s o  much a consequence  o f  s p u r i o u s  e r r o r s  

i n  t h e  measurements b u t  a r e  due  p r i m a r i l y  t o  changing v a l u e s  of  

t h e  model pa r ame te r s .  W e  need,  t h e r e f o r e ,  t o  m a i n t a i n  k ( t k ) ,  

and by i m p l i c a t i o n  ~ ( t ~ - ~ )  , a t  a r t i f i c i a l l y  l a r g e r  v a l u e s .  I n  

f a c t  T a b l e  1 s u g g e s t s  t h a t  i f  more i n f o r m a t i o n  i s  a v a i l a b l e  on  

how t h e  pa r ame te r s  v a r y  w i t h  t i m e  t h e n  less a r t i f i c i a l  and more 

n a t u r a l  methods o f  a c h i e v i n g  o u r  o b j e c t i v e s  a r e  a v a i l a b l e ;  t h e s e  

a r e  d i s c u s s e d  l a te r  i n  s e c t i o n  4.3.2. 

4.3.1 Exponen t ia l  Weighting o f  P a s t  Data 

A c o n t i n u a t i o n  o f  t h e  argument developed s o  f a r  a d o p t s  t h e  

fo l l owing  a t t i t u d e .  I f  t h e  obse rved  p r o c e s s  behav iour  i s  chang- 

i n g  w i t h  t i m e  t h e n  t h e  c u r r e n t  e s t i m a t e s  o f  t h e  pa ramete r  v a l u e s  

should  be  based on  t h e  c u r r e n t  and most  r e c e n t  p a s t  o b s e r v a t i o n s  

and n o t  on  t h e  more d i s t a n t  p a s t  obse rva t i ons ,  when t h e  pa r ame te r s  

a c t u a l l y  had q u i t e  d i f f e r e n t  v a l u e s .  I n  o t h e r  words ,  it is  d i s -  

advantageous  f o r  t h e  e s t i m a t o r  t o  p l a c e  e q u a l  we igh t  o n  a l l  t h e  



d a t a  o b t a i n e d  s i n c e  t h e  i n i t i a l  t i m e  t l ;  what w e  r e q u i r e  i s  f o r  

t h e  e s t i m a t o r  t o  f o r g e t ,  a s  it w e r e ,  t h e  behav iour  t h a t  was ob- 

s e rved  i n  t h e  p a s t .  The method o f  Exponen t i a l  Weighting of P a s t  

d a t a  (EWP), i l l u s t r a t e d  by t h e  we igh t ing  f u n c t i o n  o f  F i g u r e  17,  

i s  one  method t h a t  s t a i s f i e s  t h e  desired o b j e c t i v e s .  T h i s  method 

i s  such t h a t  t h e  modified e s t i m a t o r  i s  e q u i v a l e n t  t o  min imis ing  

t h e  l o s s  f u n c t i o n  (compare w i t h  (3 .9)  and 3.42) ) , 

where t h e  c u r r e n t  weighted  squared  error sum and t h e  minimum 

v a l u e  t h e r e o f  y i e l d  t h e  m o s t  r e c e n t  e s t i m a t e  - B ( t k )  . W e  n o t i c e  

t h a t  t h e  c u r r e n t  squared  error a t  tk i s  weighted  by a n  amount 
2 1 .0 ,  t h e  error a t  tk-l by P,  t h a t  a t  tk - by p , etc.  S i n c e  p ,  

t h e  we igh t ing  f a c t o r ,  i s  normal ly  chosen t o  be  j u s t  less t h a n  

u n i t y ,  t h e  m o s t  r e c e n t  errors are weighted  p r e f e r e n t i a l l y  and 

t h e y  w i l l  t h u s  dominate  t h e  computa t ion  o f  t h e  e s t i m a t e s  &(tk).  

T h i s  i s  what w e  would wish  i n  o r d e r  t o  avo id  a t t a c h i n g  too much 

s i g n i f i c a n c e  t o  d i s t a n t  p a s t  e r r o r s  c a l c u l a t e d  u s i n g  - h ( t k ) .  

The c h o i c e  of  p and t h e  ra te  of  change o f  t h e  pa ramete r  v a l u e s  

a r e  c l o s e l y  t i e d  t o g e t h e r ;  a lower v a l u e  o f  p p e r m i t s  f a s t e r  

a d a p t a t i o n  of t h e  e s t i m a t e s  i n  c o n j u n c t i o n  w i t h  a more r a p i d  

" f o r g e t t i n g "  o f  p a s t  d a t a .  

Assuming t h e n  t h e  loss f u n c t i o n  of  (4 .39)  w e  a r r i v e  a t  t h e  

fo l l owing  r e c u r s i v e  EWP a l g o r i t h m s  f o r  t ime-varying p a r a m e t e r s  

i n  which 
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4.3 .2  Dynamic L e a s t  Squares  

There a r e  two b a s i c  l i m i t a t i o n s  on t h e  u s e  of exponen t i a l  

we igh t ing  of p a s t  d a t a  a s  a  method of  a l lowing  f o r  r e c u r s i v e  est i-  

mat ion of  t ime-varying paramete rs .  I t  does  n o t  permi t  any p r i o r  

s e l e c t i o n  between d i f f e r e n t  expected r a t e s  of  change of  t h e  param- 

eters and it i s  r e a l l y  o n l y  a p p r o p r i a t e  f o r  t h e  c a s e  of s lowly  

va ry ing  paramete rs .  I t  i s ,  n e v e r t h e l e s s ,  a minimal ly  more complex 

a lgo r i t hm than  t h e  o r d i n a r y  LS a lgo r i t hm.  

The obvious  equ iva l ence  of  t h e  s t a t e  and t ime-va r i ab l e  param- 

eter e s t i m a t i o n  problems prompts t h u s  t h e  q u e s t i o n  of whether a  

model can  be  p o s t u l a t e d  f o r  a  d e s c r i p t i o n  of t h e  way i n  which 

t h e  paramete rs  are expec ted  t o  change. W e  cou ld ,  f o r  i n s t a n c e ,  

assume a model by s t r a i g h t f o r w a r d  analogy w i t h  (3 .71)  i n  s e c t i o n  

3 .6 ,  i . e .  

d tk)  = O a ( t k - l )  + Y g t k - l )  t - - (4.46) 

where C-(tk-l) i s  a  whi te -no ise  d i s t u r b a n c e ,  and hence proceed t o  

a  set  of  p r e d i c t o r  and c o r r e c t o r  e q u a t i o n s  i n  l i n e  w i t h  t h e  LKF 

of ( 3 . 7 9 ) .  Th i s  p resupposes ,  however, a  f a r  g r e a t e r  knowledge of  

parameter  v a r i a t i o n s  t h a n  would probably  be  a v a i l a b l e  i n  p r a c t i c e .  

A much s impler  model i s  t h a t  i n  which t h e  pa ramte r s  are d e f i n e d  

a s  random walk v a r i a b l e s ,  i . e .  

which c a p t u r e s  t h e  tendency of  t h e  paramete rs  t o  e x h i b i t  behaviour  

t h a t  i s  p a r t l y  a u t o c o r r e l a t e d  and p a r t l y  random, w i thou t  demanding 

any e x c e s s i v e  p r i o r  knowledge of t h e s e  v a r i a t i o n s .  The i n d i v i -  

d u a l  rates  of p a r m t e r  v a r i a t i o n s  are governed by t h e  cho ice  of 

t h e  m a t r i x  D where 

and w i t h  D being d i a g o n a l  i n  t h e  absence of  any more p r e c i s e  

i n fo rma t ion  t o  t h e  c o n t r a r y .  For parameter  e s t i m a t i o n  w e  t h u s  

have, f i r s t ,  



P r e d i c t i o n :  

and then  by s u i t a b l e  s u b s t i t u t i o n  i n  t h e  LS a lgo r i t hms  o f  ( 4 . 3 5 ) ,  

Cor rec t ion :  

Equat ions  (4 .49)  and (4.50) r e a d i l y  combine t o  g i v e  t h e  dynamic 

l e a s t  squa re s  a lgo r i t hms  

i n  which t h e  s impler  n o t a t i o n  i s  r e t a i n e d .  A s  w i th  p i n  t h e  EWP 

a lgor i thm,  t h e  n e t  e f f e c t  of i n s e r t i n g  D i s  t o  reduce  t h e  r a t e s  

of  dec rease  i n  t h e  P ( t k )  ma t r ix  and i n  t h e  ga in  v e c t o r .  Of cou r se ,  

though more s o p h i s t i c a t e d ,  t h e  s p e c i f i c a t i o n  of D remains a prob- 

lem f o r  p r a c t i c a l  implementation of t h i s  a lgor i thm.  



5. COMBINED STATE AND PARAMETER ESTIMATION: THE EXTENDED 
KALMAN FILTER 

I n  s e c t i o n  3  w e  d e r i v e d  a  se t  of a l g o r i t h m s  f o r  o n - l i n e ,  

r e c u r s i v e  s t a t e  e s t i m a t i o n ;  i n  s e c t i o n  4  w e  have now d e r i v e d  a  

se t  o f  o n - l i n e ,  r e c u r s i v e  param'eter  e s t i m a t i o n  a l g o r i t h m s .  And 

w e  have f u r t h e r  shown t h a t  a d u a l i t y  e x i s t s  between s ta te  es t ima-  

t i o n  and paramete r  e s t ima t i on - - t he  r e a d e r  h a s  n o t  been spa r ed  

t h e  r e p e a t e d  r e f e r e n c e s  t o  t h i s  p o i n t  i n  s e c t i o n s  2 .3 ,3 .2 ,4 .2 ,  

and 4.3.  The purpose  o f  t h e  p r e s e n t  s e c t i o n  i s  t o  demons t r a t e  

how t h e  combined s t a t e - p a r a m e t e r  e s t i m a t i o n  problem l e a d s  t o  a 

n o n l i n e a r  f i l t e r i n g  problem. S i n c e  t h e  f i l t e r i n g  a l g o r i t h m s  o f  

s e c t i o n  3  can  d e a l  o n l y  w i t h  l i n e a r  sys tem d e s c r i p t i o n s  it w i l l  

be n e c e s s a r y  t o  deve lop  a  d i f f e r e n t  f i l t e r ,  t h e  ex tended  Kalman 

f i l t e r  (EKF), which i s  c a p a b l e  o f  a p p l i c a t i o n  t o  a n o n l i n e a r  sys-  

t e m  r e p r e s e n t a t i o n .  I n  p r a c t i c e  t h e  EKF i s  a c t u a l l y  a f i r s t -  

o r d e r  l i n e a r  approx imat ion  t o  t h e  i d e a l  of a n o n l i n e a r  f i l t e r .  

5.1 Problem Formulat ion  

From t h e  f o r e g o i n g  d i s c u s s i o n  one might  a n t i c i p a t e  t h a t  t h e  

d e r i v a t i o n  w i l l  a t t e m p t  t o  make some a p p r o p r i a t e  combinat ion  of  

t h e  a l g o r i t h m s  a l r e a d y  s t a t e d  i n  s e c t i o n s  3  and 4 .  But t h i s  would 

m i s s  t h e  m o s t  u s e f u l  a s p e c t  of e r a s i n g  t h e  d i s t i n c t i o n  between 

states and pa r ame te r s .  L e t  u s  t h e r e f o r e  r e t u r n  b r i e f l y  t o  t h e  

v e r y  f i r s t  preview of t h e  Kalman f i l t e r .  For  t h e  m u l t i v a r i a b l e  

s i t u a t i o n  w e  have t h e  f o l l o w i n g  e q u i v a l e n t  o f  e q u a t i o n  (2 .4 )  i n  

s e c t i o n  2.3.1,  

and a n  e q u i v a l e n t  o f  ( 2 . 3 )  , 

Here w e  are s u g g e s t i n g  t h a t  bo th  e q u a t i o n s  come from some f i l t e r -  

i n g  a l g o r i t h m  f o r m u l a t i o n  and t h u s  t h e  n o t a t i o n a l  conven t i ons  

are c o n s i s t e n t  w i t h  t h o s e  used e l sewhere .  From p r e v i o u s  arguments  

K s ,  t h e  s t a te  e s t i m a t i o n  g a i n  m a t r i x ,  i s  i n  p r i n c i p l e  a f u n c t i o n  



of  t h e  sys tem p a r a m e t e r s  and t h e  s t a t e  e s t i m a t i o n  e r r o r  c o v a r i -  

ances--compare w i t h  (3 .89)  --while K t h e  pa ramete r  e s t i m a t i o n  
P'  

g a i n  m a t r i x ,  i s  i n  p r i n c i p l e  a f u n c t i o n  o f  t h e  sys tem o b s e r v a t i o n s  

( i n p u t s  and o u t p u t s )  and t h e  p a r a m e t e r  e s t i m a t i o n  errors--con?- 

p a r e  w i t h  ( 4 . 3 8 )  . 
What i s  r e a l l y  r e q u i r e d  c o n c e p t u a l l y  f o r  combined s ta te-  

pa ramete r  e s t i m a t i o n  i s  t o  b e g i n  n o t  by t r y i n g  t o  combine equa-  

t i o n s  (5.1 ) and ( 5 . 2 )  , b u t  t o  l i s t  a l l  t h o s e  q u a n t i t i e s  t h a t  

one  w i s h e s  t o  estimate, s a y  a v e c t o r  - x*,  and t h e n  t o  w r i t e  down 

t h e  e q u a t i o n s  f o r  t h e  dynamic behav iour  o f  t h e s e  q u a n t i t i e s  - x*.  

W e  c a n  s t i l l  e x p e c t  t h e  k e r n e l  o f  t h e  f i l t e r i n g  a l g o r i t h m s  t o  

t a k e  t h e  form o f  

i n  which - E (tk ( tk-l ) i s  p r e s e r v e d  as  nomina l ly  s imi la r  t o  - E (tk 1 tkml ) 

i n  (5 .1 )  and ( 5 . 2 )  because  a r e a r r a n g e m e n t  of  t h e  i n t e r n a l  de-  

s c r i p t i o n  o f  t h z  sys tem d o e s  n o t  a l t e r  t h e  " e x t e r n a l "  o b s e r v a -  

t i o n s  a g a i n s t  which some a p p r o p r i a t e  p r e d i c t i o n  i s  t o  be  e v a l u a t e d .  

A f t e r  o u r  b r i e f  e x c u r s i o n ,  however, it i s  now n e c e s s a r y  t o  

set  up  t h e  n o n l i n e a r  sys tem d e s c r i p t i o n  upon which t h e  problem 

of  combined s t a t e  p a r a m e t e r  e s t i m a t i o n  w i l l  be  c o n s t r u c t e d .  The 

comple te  development  o f  t h e  ex tended  Kalman f i l t e r i n g  a l g o r i t h m s  

i s  shown i n  F i g u r e  18 a s  a n  e x t e n s i o n  o f  F i g u r e  9.  L e t  u s  s ta r t  

by r e s t a t i n g  t h e  c o n t i n u o u s - d i s c r e t e  r e p r e s e n t a t i o n  o f  sys tem 

behav iour  o f  e q u a t i o n s  (3 .28)  and (3 .33)  i n  s e c t i o n  3.3 , t h a t  i s ,  

t h e  s t a t e  v e c t o r  dynamics 

and t h e  sampled o u t p u t  o b s e r v a t i o n s ,  

From h e r e  onwards w e  s h a l l  assume, w i t h  no l o s s  o f  g e n e r a l i t y ,  

t h a t  L = I ,  t h e  i d e n t i t y  m a t r i x ,  i n  ( 5 . 4 a )  . 



Suppose now t h a t  some o f  t h e  unknown, o r  i m p r e c i s e l y  known, 

e l emen t s  o f  t h e  matrices F I G ,  and H ,  t h a t  i s  a v e c t o r  of  param- 

eters  - a ,  s a y ,  are r e q u i r e d  t o  be e s t i m a t e d  s imu l t aneous ly  w i t h  

t h e  e s t i m a t i o n  of  t h e  s ta te  v e c t o r  - x .  W e  c a n  i n f e r  from t h e  p re -  

c ed ing  development o f  e q u a t i o n  (5 .3 )  t h a t  one  approach  t o  r e a l i z -  

i n g  a s imul taneous ,  combined s t a t e -pa r ame te r  e s t i m a t o r  i s  t o  aug- 

ment t h e  s ta te  v e c t o r  x  - w i t h  t h e  pa ramete r  v e c t o r  - a  and a c c o r d i n g l y  

t o  p o s t u l a t e  a  set  of  a d d i t i o n a l  d i f f e r e n t i a l  e q u a t i o n s  r e p r e -  

s e n t i n g  t h e  pa ramete r  dynamics. A s  a consequence ,  i f  t h e  augmented 

s t a t e  v e c t o r  - x* i s  d e f i n e d  by 

t h e  s t a t e - p a r a m e t e r  dynamics and o b s e r v a t i o n  e q u a t i o n  are g i v e n  

i n  t h e  f o l l o w i n g  n o n l i n e a r  form 

x* (t) = f  Ix':' ( t)  ,u  (t) 1 + 5" ( t)  , - - - - - 

The f u n c t i o n s  - £ I e )  and - h I * )  - are v e c t o r  f u n c t i o n s ;  t h e y  a r e  non- 

l i n e a r  p r i n c i p a l l y  because  of  t h e  p roduc t  t e r m s  i n v o l v i n g  e l emen t s  

o f  - a  w i t h  e l emen t s  o f  x - and - u.  I n  (5 .6a)  5* i n d i c a t e s  t h a t  t h i s  

v e c t o r  of s t o c h a s t i c  d i s t u r b a n c e s  i s  now of a d i f f e r e n t  o r d e r  t o  

t h a t  d e f i n e d  f o r  - 5 i n  ( 5 . 4 a ) .  Note a l s o  t h a t  had w e  begun w i t h  

a  set o f  n o n l i n e a r  s t a t e  v a r i a b l e  dynamics,  t h e  e s t i m a t i o n  prob- 

l e m  t o  be  so lved  would s t i l l  be  posed acco rd ing  t o  e q u a t i o n s  ( 5 . 6 ) .  

L e t  u s  c o n s i d e r  t h e  m a t t e r  of s p e c i f y i n g  t h e  dynamics of  t h e  

parameters - a .  Of p a r t i c u l a r  impor tance  a r e  two such s p e c i f i c a t i o n s :  

(i) w e  migh t  n a t u r a l l y  assume t h a t  t h e  pa r ame te r s  are c o n s t a n t ,  

i . e .  t i m e - i n v a r i a n t  

o r  (ii) it might  be  proposed t h a t  t h e y  v a r y  i n  a n  unknown random 



walk f a s h i o n ,  as h a s  been s u g g e s t e d  ear l ier  i n  s e c t i o n  4 . 3 . 2 ,  

i n  which ~ ( t )  i s  a w h i t e  n o i s e  p r o c e s s .  The v e c t o r  - C *  i n  ( 5 . 6 a )  

i s  t h u s  n o m i n a l l y  composed of d i s t u r b a n c e s  - 5 o f  t h e  s t a te  v a r i -  

a b l e s ,  and d i s t u r b a n c e s  - o f  some o f  t h e  p a r a m e t e r s .  Were t h e r e  

t o  be  more a p r i o r i  i n f o r m a t i o n  on t h e  p a r a m e t e r  v a r i a t i o n s ,  t h e n  

it would be  a p p r o p r i a t e ,  f o r  i n s t a n c e ,  t o  d e f i n e  t h e  dynamics o f  

t h e  p a r a m e t e r s  as  o s c i l l a t o r y  i n  a c c o r d a n c e  w i t h  some d i u r n a l  or 

s e a s o n a l  f l u c t u a t i o n .  

5.2 Major S t e p s  i n  t h e  D e r i v a t i o n  o f  t h e  Extended Kalman F i l t e r  

The cus tomary  p r o c e d u r e  f o r  d e a l i n g  w i t h  n o n l i n e a r  sys tem 

d e s c r i p t i o n s  i s  t o  a p p r o x i m a t e  t h e i r  behav iour  by a set  o f  l i n e a r  

e q u a t i o n s .  A s  w e  have  s a i d  b e f o r e ,  t h e  EKF i s  a l i n e a r  a p p r o x i -  

ma t ion  o f  t h e  n o n l i n e a r  f i l t e r  which b.lould ideal ly be required to pro- 

v i d e  estimates o f  x* - i n  t h e  sys tem o f  (5 .6 )  . The v i r t u e  o f  t h i s  

l i n e a r i s a t i o n  i s  t h a t  t h e  problem, whatever  it may b e ,  becomes 

amenable t o  t h e  many power fu l  t e c h n i q u e s  o f  a n a l y s i s  a v a i l a b l e  

from l i n e a r  sys tems  t h e o r y .  The l i n e a r  Kalman f i l t e r  i s  j u s t  

one  such  t e c h n i q u e .  B e a r i n g  t h i s  i n  mind w e  c a n  t a k e  t h e  f i r s t  

s t e p  i n  d e r i v i n g  t h e  EKF. 

5.2.1 L i n e a r i s a t i o n  o f  t h e  N o n l i n e a r  Augmented s t a t e  E q u a t i o n s  

For  s m a l l  p e r t u r b a t i o n s  ISx* - (t) of  t h e  s t a t e - p a r a m e t e r  v e c t o r  

x:: - (t) a b o u t  some nominal  d e t e r m i n i s t i c  r e f e r e n c e  t r a j e c t o r y  x* - (t) , 
a set of  l i n e a r  dynamic e q u a t i o n s  i n  Gx:t( t )  - may be o b t a i n e d  by 

t a k i n g  a f i r s t - o r d e r  T a y l o r  series e x p a n s i o n  o f  t h e  n o n l i n e a r  

f u n c t i o n  - f  i n  ( 5 . 6 a ) .  I n  o t h e r  words,  i f  t h e  p e r t u r b a t i o n s  6 x * ( t )  - 

and 6u - (t) are d e f i n e d  by 

A - 
6x* ( t )  = x  * ( t )  - X* (t)  , - - - 

A - 
6 u ( t )  = ~ ( t )  - u ( t )  I - - - 

t h e  a s sumpt ion  i s  t h a t  dynamic v a r i a t i o n s  o f  cSx*: - (t) are lir,ear 



i n  t h e  v i c i n i t y  o f  t h e  s o l u t i o n  x* - (t) of  t h e  d e t e r m i n i s t i c  r e f -  

e r e n c e  dynamic system 

- 
d x + ( t ) / d t  - = - f { x * ( t ) , u ( t ) )  - - ; - x * ( t )  = x * ( t  - f o r  t = t  . (5 .10)  

0 0 

I n  (5.10) u ( t )  - i s  a  known f u n c t i o n  o f  t i m e  d e s c r i b i n g  t h e  v a r i -  
- 

a t i o n s  i n  t h e  measured sys tem i n p u t s ;  - x * ( t )  i s  t h e r e f o r e  determined 

f o r  a l l  t by t h e  s p e c i f i c a t i o n  of  - u ( t )  and by t h e  c h o i c e  o f  t h e  

i n i t i a l  c o n d i t i o n s  x* - (t  ) . 
0 

A f i r s t - o r d e r  Tay lo r  series expansion o f  - f { x * ( t )  - , u ( t )  1 i n  

(5 .6a)  a b o u t  t h e  r e f e r e n c e  t r a j e c t o r y  i s  g i v e n  by 

where t h e  matrices I?*{*) and G * { = )  a r e  d e f i n e d  a s  

- 
G*{Z*(t  ),:(t)1 = 

afi{x* - (t) ,gt)  1 
- o A [  ax 

j 
x* (t) =z* (t)  1- - 

The argument x* - (to! of F* { and G* { 1 s i g n i f i e s  t h a t  t h e s e  

m a t r i c e s  a r e  dependent  on t h e  c h o i c e  of i n i t i a l  c o n d i t i o n s  f o r  

t h e  d e t e r m i n i s t i c  r e f e r e n c e  s t a t e  v e c t o r .  

Now s u b s t i t u t i n g  f o r  - x ' ( t )  from (5 .9)  i n  (5 .6a)  w e  have 

d ( x *  ( t )  + 6x" ( t ) )  = d x * ( t )  / d t  + d ( 6 x *  ( t ) )  / d t  = f  {x* ( t)  , u ( t )  1 + g* (t)  I 
d t  - - - - - - 

(5.14) 

s o  t h a t  s u b s t i t u t i o n  of dx* - (t) / d t  from (5 .10)  g i v e s  

d (6x*  - (t)) / d t  = f{x* ( t )  ,u  - (t)  1 - - f{E" - ( t ) u ( t )  - 1 + - C* (t)  . (5.15) 



Hence u s i n g  (5 .11)  w i t h  t h e  d e f i n i t i o n s  ( 5 . 9 ) ,  w e  o b t a i n  from 

(5 .15)  

d ( 6 x *  - ( t)  ) / d t  = ~ * ( x *  - (t) , u ( t )  - )6x* - ( t)  + ~ * ( x *  - (t), - u ( t )  1 6 u ( t )  - + . E : b ( t )  - , (5 .16)  

which i s  t h e  d e s i r e d  l i n e a r  dynamic r e l a t i o n s h i p  f o r  t h e  s m a l l  

p e r t u r b a t i o n s  Ax* - (t)  . 
5.2.2 L i n e a r i s a t i o n  of  t h e  N o n l i n e a r  O b s e r v a t i o n s  Equa t ion  

S i m i l a r l y  f o r  t h e  n o n l i n e a r  o b s e r v a t i o n s  e q u a t i o n  ( 5 . 6 b ) ,  i . e .  

a  f i r s t - o r d e r  T a y l o r  series expans ion  of  - h i - )  may b e  t a k e n  a b o u t  

t h e  r e f e r e n c e  t r a j e c t o r y ,  g i v i n g  

w i t h  t h e  d e f i n i t i o n  I 

where a g a i n ,  l i k e  F * ( = )  and G * ( - ) ,  t h e  m a t r i x  H * ( * )  i s  u l t i m a t e l y  

dependent  upon x* - (to).  I f  w e  d e f i n e  a l s o  a  nominal measurement 

sequence  Y ( t k )  , - 

and a n  a s s o c i a t e d  s m a l l  p e r t u r b a t i o n  

t h e  r e q u i r e d  l i n e a r  o b s e r v a t i o n s  e q u a t i o n  f o r  t h e  s m a l l  p e r t u r b a -  

t i o n s  6x* ( t )  i s  o b t a i n e d  - - 



5.2.3 A p p l i c a t i o n  of t h e  L inear  Kalman F i l t e r  t o  t h e  Small  Per-  
t u r b a t i o n s  Equa t ions  

Gather ing t o g e t h e r  e q u a t i o n s  (5.1 6 )  , (5.21 ) and (5.10) , (5.19) 

ou r  system c h a r a c t e r i s a t i o n  comprises  

(i) The Linear  Small  P e r t u r b a t i o n s  Equa t ions  : 

GG* ( t)  = F:kGx*(t) + G*Gu(t) + E *  (t) , - - - - (5.22a) 

(ii) The D e t e r m i n i s t i c  Reference T r a j e c t o r y  and Reference 
Observa t ions :  

A - 
x* (t)  = f t x *  ( t)  ,;i(t) 1 ; i* (t) = x* (to) f o r  t = t - - - - - 0 

(5.23a)  

i n  which t h e  arguments of  F*, G * ,  and H* have been omi t t ed  f o r  

b r e v i t y  and f o r  e a s e  o f  comparison of e q u a t i o n s  (5.22) w i th  equa- 

t i o n s  (5 .4)  i n  s e c t i o n  5.1. 

W e  may obse rve  t h a t  e q u a t i o n s  (5.22)'  a r e  i n  p r i n c i p a l  amenable 

t o  t h e  a p p l i c a t i o n  of  a l i n e a r  Kalman f i l t e r i n g  a lgo r i t hm.  How-. 

e v e r ,  one f u r t h e r  s t e p  i s  r e q u i r e d  b e f o r e  w e  can  complete t h i s  

i n t e r i m  s t a g e  i n  t h e  development of t h e  EKF. A s  w i t h  t h e  o r i g i n a l  

a n a l y s i s  of s e c t i o n  3 .3  w e  need an e q u i v a l e n t  d i s c r e t e - t i m e  r e p r e -  

s e n t a t i o n  of  (5 .22a)  , i .e .  

where 

- - A - 
@'t$t%-l;x*(%-l) ru($ - l )  1 = ~X~(F*{Z*($-~)  ,g(%-l)}[% - , (5.25) 



A word of  e x p l a n a t i o n  i s  r e q u i r e d  Zor t h e  cumbersome, y e t  p r e c i s e  

n o t a t i o n  of t h e  above d e f i n i t i o n s .  I n  p r a c t i c e ,  t h e  e v a l u a t i o n  of 

a * { - )  and r * { * )  w i l l  be  c a r r i e d  o u t  by e v a l u a t i o n  of  t h e  m a t r i c e s  

F* { ) and G*{ } g i v e n  a  knowledge of  t h e  r e f e r e n c e  v a r i a b l e s  z* (tk-l ) 

and U ( t k - l )  - a t  t h e  p r e v i o u s  sampling i n s t a n t  tk-l . I t  i s  a l s o  

assumed i n  t h e  d e f i n i t i o n  of T * { * )  t h a t  u ( t )  - i s  c o n s t a n t  over  t h e  

i n t e r v a l  tk-l - tk and equa l  t o  u ( t k  - - ) . For c o n c i s e n e s s  i n  t h e  

fo l lowing  w e  s h a l l  r e t a i n  o n l y  p a r t  of  t h e  arguments f o r  @ * { * )  and 

r*{m) so  t h a t  (5 .24)  may be w r i t t e n  more c l e a r l y  a s  

and can t h u s  be  compared w i t h  e q u a t i o n  (3 .71a)  i n  s e c t i o n  3.6.  

What now a r e  t h e  pos s ih i l i t i e s  f o r  o b t a i n i n g  r e c u r s i v e  es t i -  

mates  of t h e  augmented s t a t e -pa rame te r  v e c t o r  - x*? W e  know u ( t )  - 

and x* - (to) such t h a t  q': ( t )  and Y ( t k )  can be gene ra t ed  from (5 .23)  , - 
and t h e n  from (5 .9 )  and (5.20) t h e  measurement d e v i a t i o n s  6u - (tk) 

and 6y ( tk )  may be computed from t h e  a c t u a l  o b s e r v a t i o n s  - u  (tk) and 

Y ( t k )  . Given 6 u ( t k )  - and 6 y ( t k ) ,  and g i v e n  e i t h e r  of  t h e  system 

c h a r a c t e r i s a t i o n s  of  e q u a t i o n s  (5.22) o r  equa t i on  s (5 .28)  and ' 

(5 .22b ) ,  w e  cou ld  a p p l y  an  LKF a l g o r i t h m  t o  o b t a i n  e s t i m a t e s  
A * 6x' ( t  / t ) of  t h e  sma l l  p e r t u r b a t i o n s  6~ (tk) . F i n a l l y ,  working - k k  

backwards th rough  t h e  d e f i n i t i o n  of (5 .9 )  ou r  knowledge of  x * ( t k ) ,  
A - 

t h e  r e f e r e n c e  t r a j e c t o r y .  c an  be combined w i t h  6 x t ( t k ( t k )  - t o  y i e l d  

t h e  e s t i m a t e s  - s* ( tk / tk) by 



A schemat ic  p i c t u r e  of t h e  procedure  w e  have j u s t  d e s c r i b e d  i s  

g iven  i n  F i g u r e  19 .  T h i s  p rocedure  might be c a l l e d  a n  i n d i r e c t  

method of n o n l i n e a r  s t a t e  e s t i m a t i o n  s i n c e  it r e q u i r e s  t h e  coupled 

computation o f  a  set of r e f e r e n c e  system d e t e r m i n i s t i c  dynamics 

and a  set of e s t i m a t e s  f o r  smal l  p e r t u r b a t i o n s  i n  t h e  v i c i n i t y  of  

t h e  r e f e r e n c e  s t a t e  t r a j e c t o r y .  I t  i s  n o t  y e t  t h e  p rocedure  of 

t h e  extended Kalman f i l t e r .  

W e  might  a l s o  remark t h a t  t h e  d e r i v a t i o n  of (5.28) s e r v e s  a  

second purpose  o t h e r  t h a n  demons t ra t ing  s imply t h e  d i s c r e t e - t i m e  

dynamics of  t h e  smal l  p e r t u r b a t i o n s .  R e c a l l ,  t h e r e f o r e ,  t h a t  bo th  

t h e  d i s c r e t e  and con t inuous -d i sc r e t e  LKF a lgo r i t hms  of s e c t i o n s  

3 .6  and 3 . 7  u s e  t h e  s ta te  t r a n s i t i o n  m a t r i x ,  h e r e  @ * { - I ,  f o r  

computing t h e  e v o l u t i o n  of  t h e  s t a t e  e s t i m a t i o n  e r r o r  cova r i ance  

ma t r ix .  Indeed,  it i s  impor tan t ,  s i n c e  w e  have n o t  a l r e a d y  men- 

t i o n e d  it, t o  check t h a t  t h e  e r r o r  cova r i ance  m a t r i x  f o r  t h e  smal l  

p e r t u r b a t i o n s  i s  i d e n t i c a l  t o  t h e  e r r o r  cova r i ance  m a t r i x  of t h e  

a c t u a l  s t a t e -pa rame te r  v e c t o r  e s t i m a t e s .  Thus 

i n  o t h e r  words 

5 .2 .4  The Choice of Nominal Reference T r a j e c t o r y  

Two f a c t o r s  i n  t h e  arguments l e a d i n g  t o  t h e  i n t e r i m  s o l u t i o n  

of o u r  problem i n  t h e  p reced ing  s e c t i o n  are of c r u c i a l  s i g n i f i c a n c e .  

These a r e :  

(i) t h e  s p e c i f i c a t i o n  f o r  u  ( t)  as a  known f u n c t i o n  of t i m e ;  - 
(ii) t h e  cho ice  of  x ( t O ) ,  - 

both  of  which s t r o n g l y  i n f l u e n c e  t h e  a b i l i t y  t o  o b t a i n  a c c u r a t e  

e s t i m a t e s  of t h e  augmented s t a t e -pa rame te r  v e c t o r  x*. Consider  - 
t hen  t h e  i m p l i c a t i o n s  of  F i g u r e  1 9 .  A b a s i c  f l aw  i n  t h i s  coupled 



i n d i r e c t  e s t i m a t i o n  method i s  t h a t  it o p e r a t e s  i n  an  "open l oop"  

s i t u a t i o n ;  i n  o t h e r  words t h e r e  i s  no feedback of  i n f o r m a t i o n ,  

such  a s  t h e  s t a t e  e s t i m a t e s ,  w i t h  which t o  c o r r e c t  f o r  t h e  p o s s i -  

b i l i t y  of  t h e  r e f e r e n c e  model performance be ing  i n a c c u r a t e .  Con- 

s e q u e n t l y  i f  t h e  c h o i c e  of  u ( t )  - d o e s  n o t  c l o s e l y  resemble  t h e  

measured v a r i a t i o n s  - u ( t ) ,  and f u r t h e r  i f  t h e  unknown d i s t u r b a n c e s  

5 ( t )  a r e  a m p l i f i e d  a s  t h e y  p a s s  th rough  t o  t h e  p r o c e s s  o u t p u t  

response--which may w e l l  happen i n  a  complex n o n l i n e a r  system-- 

t h e n  - :* (t) may d i v e r g e  c o n s i d e r a b l y  from - x+ (t) . The pr imary 

r e s u l t  o f  such  d i v e r g e n c e ,  o t h e r  t h a n  t h e  p e r s i s t e n t  mismatch 

between a c t u a l  o u t p u t ,  y ,  and r e f e r e n c e  o u t p u t  E l  i s  t h a t  t h e  pe r -  

t u r b a t i o n  d x +  - (t) can  no l o n g e r  be  assumed t o  b e  sma l l .  Hence t h e  

l i n e a r i s e d  system o f  e q u a t i o n s ,  upon which t h e  f i l t e r i n g  a l g o r i t h m s  

a r e  c o n s t r u c t e d ,  a r e  n o t  a v a l i d  approx imat ion  t o  t h e  behav iour  

of  s m a l l  p e r t u r b a t i o n s  i n  t h e  v i c i n i t y  of  t h e  r e f e r e n c e  t r a j e c t o r y .  

Two eminen t ly  s e n s i b l e  m o d i f i c a t i o n s  can  t h e r e f o r e  be  made. 

One of  t h e s e  r ~ ~ o d i f i c a t i o n s ,  a matter of  r e p e a t e d l y  a d a p t i n g  t h e  

r e f e r e n c e  t r a j e c t o r y ,  i s  t h e  p r i n c i p a l  d e f i n i n g  c h a r a c t e r i s t i c  o f  

t h e  EKF and l e a d s  t o  t h e  f o r m u l a t i o n  o f  t h e  a l g o r i t h m s  d i r e c t l y  

i n  t e r m s  of  t h e  v e c t o r  - x* ( a s  opposed t o  t h e  p e r t u r b a t i o n s  dx:?).  - 

F i r s t ,  however, s i n c e  by d e f i n i t i o n  t h e  n a t u r e  o f  t h e  i n p u t  d is -  

t u r b a n c e s  - u  i s  t h a t  t h e y  can  be measured and t h e r e f o r e  known, it 

makes l i t t l e  s e n s e  t o  s p e c i f y  u ( t )  - d i f f e r e n t l y  from - u  ( t )  . So 

l e t  u s  p ropose  t h e  m o d i f i c a t i o n ,  

(i) t h a t  u ( t )  - = - u ( t )  and by d e f i n i t i o n ,  i .e .  e q u a t i o n  ( 5 . 9 ) )  

d u ( t )  - = - 0  i n  e q u a t i o n s  (5 .22a)  and ( 5 . 2 8 ) .  

Secondly ,  i n s t e a d  of making one  i n i t i a l  c h o i c e  x* - ( t)  = - x* (b ) a t  

t i m e  to f o r  t h e  r e f e r e n c e  s t a t e  v e c t o r ,  l e t  u s  choose  - x* (to) 
A 

= - x:; (k 1 to) and subsequen t l y  a t  each  i n s t a n t  tk p u t  - x* (tk) 
A 

= $ '  ( tk 1 tk) a s  soon as x* ( t  1 t ) becomes a v a i l a b l e .  Thus w e  make - k k  
t h e  m o d i f i c a t i o n  

(ii) t h a t  t h e  s o l u t i o n  of t h e  r e f e r e n c e  t r a j e c t o r y  i s  g i v e n  

by 

&*;( t ) /d t  - = &*( tJ t ,  - - l ) / d t  = - f t P ( t l t , - l ) , g ( t ) l  - for  t,-, 5 t 5 t, . 
(5.31) 



By t h i s  second m o d i f i c a t i o n ,  a p rocedure  known as r e l i n e a r i s a t i o n ,  

it i s  p o s s i b l e  t o  o b t a i n  a se t  o f  l i n e a r i s e d  s m a l l  p e r t u r b a t i o n s  

e q u a t i o n s ,  as (5 .22)  and (5 .28)  , which are ( h o p e f u l l y )  v a l i d  f o r  

s m a l l  p e r t u r b a t i o n s  i n  t h e  neighbourhood of  t h e  most  r e c e n t l y  

d e r i v e d  s ta te  estimates. The d e f i n i t i o n s  of  t h e  m a t r i c e s  F*,G':, 

H*,@*, and r* w i l l  be  a c c o r d i n g l y  a l t e r e d  a s  a  consequence of  t h e  

above two m o d i f i c a t i o n s .  F i g u r e  19 i n d i c a t e s  by dashed l i n e s  t h e  

q u a l i t a t i v e  f e a t u r e s  of  t h e  m o d i f i c a t i o n .  

Some i n d u c t i v e  r ea son ing  i s  used t o  complete  t h e  development 

of t h e  EKF. I f  w e  i n i t i a l l y  l i n e a r i s e  abou t  - G* (tO1 to) , i - e .  
- 
x+ (t  ) = G:) ( t  1 t ) f o r  t h e  r e f e r e n c e  t r a j e c t o r y ,  t h e n  a b e s t  - 0 - 0 0  
estimate o f  t h e  s m a l l  p e r t u r b a t i o n s  abou t  t h e  r e f e r e n c e  t r a j e c t o r y  

i s  t h a t  i n  f a c t  t h e r e  i s  i n i t i a l l y  no such smal l  d e v i a t i o n  from 

2(to), o r  

h 

6 x * ( t  - I t )  = 0 . 
0 0 - 

A 

A b e s t  forward p r e d i c t i o n ,  namely 6xt - (tl 1 to) on t h e  b a s i s  o f  (5 .28) ,  

w i t h  6 u ( t 0 )  - = - 0 by d e f i n i t i o n  and w i t h  I* (t ) = 0 by assumption 0 - 
i .  e. * t ) i s  a zero-mean, Gauss ian ,  whi te -no i se  sequence),  would k  
t h e r e f o r e  b e  

And s i n c e  w e  would r e l i n e a r i s e  abou t  ;* - (tl 1 t l )  , o r  i n  g e n e r a l  

abou t  - G* (tk 1 tk) , w e  may s ta te  t h a t  

6x'(t l tk - = O  - f o r  tk-l - < t < t k  - . (5.32) 

Thus by o u r  c h o i c e  of  r e f e r e n c e  t r a j e c t o r y  t h e  sma l l  p e r t u r b a t i o n  

e s t i m a t e  e q u a t i o n s  ove r  t h e  i n t e r v a l  tk-l -t \ a r e  e q u i v a l e n t  t o  

an  unforced  system i n i t i a l l y  a t  res t .  

Given ( 5 . 3 2 ) ,  and r e c a l l i n g  how p r e v i o u s l y ,  f o r  example i n  

( 5 . 2 9 ) ,  t h e  s t a t e  estimate w a s  i n t u i t i v e l y  o b t a i n e d  a s  t h e  sum 

of  t h e  r e f e r e n c e  s t a t e  and t h e  b e s t  estimate of t h e  s m a l l  p e r t u r -  

b a t i o n s ,  t h e n  



A A h 

X*  (tltk_,) = f{:* (tltk-,) I " ( t )  x ( t l t k - l )  = ~ ( ~ ~ - 1  t k - l )  ' - - - - - 

f o r  t = tk-l (5.33)  

y i e l d s  t h e  b e s t  forward e x t r a p o l a t e d  s t a t e -pa rame te r  estimates 
A 

x* (tk 1 tk-, ) between t h e  sampling i n s t a n t s  tk - - and tk. Here, o f  
c o u r s e ,  w e  a r e  assuming a s  b e f o r e  t h a t  t h e  n o n l i n e a r  d i f f e r e n t i a l  

e q u a t i o n  (5 .33)  can  be  so lved  by some a p p r o p r i a t e  numer ica l  r o u t i n e .  

From (5 .6a)  , (5 .23a)  , and (5 .33)  one would hope t h a t  t h e  r e l a t i v e  

v a r i a t i o n s  o f  t h e  t r u e  s ta te ,  t h e  unco r r ec t ed  r e f e r e n c e  s ta te ,  and 

t h e  s t a te  e s t i m a t e s  w i t h  upda t i ng  o f  t h e  r e f e r e n c e  s ta te ,  r e spec -  

t i v e l y ,  might  be  asshown i n  F i g u r e  20. 

To summarise, w e  have now a procedure  f o r  e x t r a p o l a t i o n  of  

t h e  augmented s t a t e - p a r a m e t e r  estimates between sampling i n s t a n t s ,  

i . e .  e q u a t i o n  (5.33) , b u t  w e  are s t i l l  r e q u i r e d  t o  examine t h e  

n a t u r e  o f  t h e  e s t i m a t e  upda t i ng  mechanism. Thus, from a l i n e a r  

f i l t e r  a p p l i e d  t o  t h e  s m a l l  p e r t u r b a t i o n s  e q u a t i o n s  w e  shou ld  

o b t a i n  

h 

L e t  u s  c o n s i d e r  what i s  r e a l l y  meant by G x c ( t k l t k )  - i n  (5.34) i n  
h 

view of t h e  chosen r e l i n e a r i s a t i o n  procedure .  S i n c e  Sx* - (tk 1 tk-,) 

= - 0 and a f t e r  s u b s t i t u t i n g  f o r  6y(tk)  from (5.19) and (5.20) 

A t  t i m e  tk, t h e r e f o r e ,  b e f o r e  c o r r e c t i o n  of  t h e  estimates, - b u t  

g i v e n  y ( t k )  , t h e  b e s t  estimate of z* - (tk) i s  x* ( t  1 t ) s o  t h a t  - k  k-1 
i n  (5.35) 

So p rov id ing  K ( t k )  c an  be s u i t a b l y  computed, and n o t i c i n g  t h a t  

(5.36) i s  p r e c i s e l y  t h e  c o r r e c t i o n  t h a t  would be  a p p l i e d  t o  t h e  

a p r i o r i  e s t i m a t e  i n  o r d e r  t o  o b t a i n  t h e  a p o s t e r i o r i  estimate, - - 



t hen  w e  have t h e  d e s i r e d  e s t i m a t e  upda t ing  procedure:  combining 

(5.36) and (5.37) 

F i g u r e  21 a t t e m p t s  t o  g i v e  f u r t h e r  e x p l a n a t i o n  of t h i s  procedure .  

A t  t h i s  p o i n t  bo th  t h e  p r e d i c t i o n  and c o r r e c t i o n  a lgo r i t hms  

f o r  t h e  s ta te  estimates can be  w r i t t e n  d i r e c t l y  i n  t e r m s  o f  G* 
A 

- 
i n s t e a d  of i n  t e r m s  o f  6x*. - These a lgo r i t hms  w e r e  d e r i v e d  under 

t h e  assumptions  t h a t :  

(i) w e  are s t i l l  employing a l i n e a r  f i l t e r  a p p l i e d  t o  t h e  

p e r t u r b a t i o n  system r e p r e s e n t a t i o n ;  

(ii) we have made a  p rudent  s u b s t i t u t i o n  f o r  t h e  determin-  

i s t i c  r e f e r e n c e  t r a j e c t o r y .  

I t  remains o n l y  f o r  u s  to  show t h a t  t h e  e s t i m a t i o n  e r r o r  cova r i -  

ances  f o r  t h e  p e r t u r b a t i o n  system are e q u i v a l e n t  t o  t h o s e  f o r  t h e  

a c t u a l  system. W e  a l r e a d y  have t h a t  such a n  equ iva lence  ho lds  f o r  

P ( t  ( t  ) ,  by equa t ion  ( 5 . 3 0 ) ,  and now w r i t i n g  k k  

A >> 
Noting t h a t  w e  have chosen x* ( t k )  = x (tk 1 tk-l ) and t h a t  tZc (tkl tk-l 

= 0, t h e n  - 

Thus 



5.3 The Algori thms 

The arguments l e a d i n g  t o  t h e  EKF a l g o r i t h m s  have been a s  

fo l l ows .  F i r s t ,  a  l i n e a r  Kalman f i l t e r  can  be a p p l i e d  t o  a set 

of  l i n e a r i s e d  e q u a t i o n s  which r e s u l t  from t h e  fo rmu la t i on  o f  t h e  

combined s t a t e -pa rame te r  e s t i m a t i o n  problem. Second, however, i f  

w e  choose a lways  t o  r e l i n e a r i s e  about  t h e  most r e c e n t  augmented 
h 

s t a t e  estimates - x *  (tkl tk) , t h e  a lgo r i t hms  f o r  t h e  d i r e c t  p r e d i c -  

t i o n  and c o r r e c t i o n  of t h e  s t a t e -pa rame te r  e s t i m a t e s  a r e  ob t a ined  

which employ t h e  o r i g i n a l  n o n l i n e a r  f u n c t i o n s  of t h e  system charac-  

t e r i s a t i o n  i n  ( 5 . 6 ) ,  i .e .  e q u a t i o n s  (5 .33)  and (5 .38) .  T h i r d ,  

t h e  l i n e a r i s e d  system dynamics r e p r e s e n t a t i o n  w i l l  s t i l l  have t o  

be used f o r  computat ion of t h e  e v o l u t i o n  o f  t h e  e s t i m a t i o n  e r r o r  

cova r i ance  m a t r i x .  

I n  l i n e  w i t h  t h e  s t a t emen t  of t h e  LKF a l g o r i t h m s  of  e q u a t i o n s  

( 3 . 7 9 ) ,  t h e  extended Kalman f i l t e r  a l g o r i t h m s  a r e  g iven  by 

(i) P r e d i c t i o n :  between tk - and tk 

(ii) Cor rec t i on :  a t  t i m e  tk on r e c e i p t  of y ( t  ) k  

w i t h  K ( t k )  g iven  by 

The n o t a t i o n a l  a b b r e v i a t i o n s  



have been used f o r  purposes  of  c l a r i t y ;  t h e  more p r e c i s e  arguments 

f o r  t h e s e  m a t r i c e s  of t h e  l i n e a r i s e d  s m a l l  p e r t u r b a t i o n  e q u a t i o n s  

i n d i c a t e  t h e  manner i n  which t h e  s ta te  e s t i m a t e s  are s u b s t i t u t e d  

f o r  t h e  nominal r e f e r e n c e  t ra jectory--compare  w i t h  t h e  d e f i n i t i o n s  

of (5.18) and (5 .25 ) .  The measurement n o i s e  covar iance  ma t r ix  i s  

as  p rev ious ly  de f ined  f o r  t h e  LKF, s i n c e  a l though  we a r e  e s t i m a t i n g  

bo th  parameters  and s t a t e s  w e  have n o t  a l t e r e d  t h e  e x t e r n a l  ( i . e .  

i npu t /ou tpu t )  d e s c r i p t i o n  of t h e  system. The system n o i s e  cova r i -  

ance ma t r ix  Q*, however, is  de f ined  by 

where 5 * ( t  ) i s  a zero-mean, wh i t e ,  Gaussian sequence. A s  be fo re  k  
f o r  t h e  LKF, t h e  v a r i a n c e s  of - S* (tk) and - n (tk) a r e  assumed t o  be 

c o n s t a n t  w i t h  t ime ,  i . e .  s t a t i o n a r y .  I f  t h i s  assumption i s  n o t  

v a l i d ,  t h e  a l g o r i t h m s  a r e  n o t  made more complex; one i s  simply 

r equ i r ed  t o  have knowledge of Q * ( t k )  and R ( t k )  as  f u n c t i o n s  of tk. 

5.3.1 Some Comments 

Much of  what h a s  been s a i d  of  t h e  l i n e a r  f i l t e r ,  f o r  example 

i n  s e c t i o n  3.8,  a p p l i e s  e q u a l l y  w e l l  t o  t h e  EKF. But c e r t a i n  

f e a t u r e s  should b e  c l a r i f i e d .  Indeed,  throughout  s e c t i o n s  3  and 

5  we have n e a t l y  avoided t w o  awkward ques t ions :  one i s  a  matter 

of t heo ry  and t h e  o t h e r  i s  a m a t t e r  of  p r a c t i c e .  The n o t i o n  of 

a continuous-t ime w h i t e  n o i s e  p r o c e s s ,  say  E ( t j ,  is a  mathematical  - 
f i c t i o n  s i n c e  a  p h y s i c a l  r e a l i s a t i o n  the reo f  does n o t  e x i s t .  

For t h i s  reason  we have p r e f e r r e d  merely t o  d e f i n e  covar iance  

ma t r i ce s  f o r  t h e  d i sc re t e - t ime  e q u i v a l e n t s ,  say 5_(tk) or  J * ( t k ) ,  

of such a  f i c t i o n a l  p roces s .  Next, i f  i n  p r a c t i c e  it is n o t  

p o s s i b l e  t o  observe t h e  sys t em ' s  o u t p u t s  i n  t h e  absence of  e r r o r s ,  

how can we assume, a s  we have done, t h a t  t h e  measured system 

i n p u t s ,  - u ,  a r e  f r e e  of  no i se?  Here a g a i n ,  t h e  assumption i s  a  

dev ice  u s e f u l  f o r  t h e  t h e o r e t i c a l  development of t h e  f i l t e r i n g  

a lgor i thms .  Any u n c e r t a i n t y  i n  - u cou ld  have been made e x p l i c i t  

i n  t h e  covar iance  propaga t ion  equa t ions ,  though it is  much more 

convenient  h e r e  t o  s t a t e  t h a t  t h i s  ca tegory  of  u n c e r t a i n t y  can be 

absorbed i n t o  t h e  d e f i n i t i o n  of t h e  system n o i s e  covar iance  ma t r ix  



Q ,  o r  @ .  The system n o i s e  covar iance  ma t r ix  w i l l  a l s o ,  i n c i -  

d e n t a l i y ,  accommodate t h e  a n a l y s t ' s  s p e c i f i c a t i o n  of  t h e  uncer- 

t a i n t y  ( o r  e r r o r )  i n  h i s  model a s  an approximat ion t o  r e a l i t y .  

F igure  2 2  p rov ides  a schemat ic  diagram of t h e  EKF a lgo r i t hms .  

W e  have chosen t h i s  t i m e  t o  r e p r e s e n t  t h e  f i l t e r  d i f f e r e n t l y  from 

t h e  schemes of F igu res  13 and 1 4  f o r  t h e  l i n e a r  Kalman f i l t e r  by 

i n c l u d i n g  a block diagram of t h e  covar iance  p r e d i c t i o n  and co r r ec -  

t i o n  computations.  The i n t e n t i o n  is  f i r s t  t o  show t h e  p a r a l l e l  

n a t u r e  of t h e  s t a t e -pa rame te r  e s t i m a t e  propaga t ion  and t h e  estima- 

t i o n  e r r o r  covar iance  propaga t ion  and second t o  emphasise t h e  

i n t e r a c t i o n  t h a t  t a k e s  p l a c e  between t h e s e  two p a r a l l e l  f u n c t i o n s .  

Not ice ,  t h e r e f o r e ,  how t h e  predicted and c o r r e c t e d  s ta te -parameter  

e s t i m a t e s  a r e  f ed  i n t o  t h e  computation of  t h e  H * ( t k )  and Q*{tk,$-l l  

ma t r i ce s  r e s p e c t i v e l y ,  compare w i th  eqns ( 5 . 4 3 ) .  I n  t h e  r e v e r s e  

d i r e c t i o n  it can  be  seen  t h a t  t h e  f i l t e r  g a i n  m a t r i x  K ( t k )  i s  

f e d  back from t h e  cova r i ance  a lgo r i t hms  t o  t h e  s t a t e -pa rame te r  

e s t i m a t e  a lgo r i t hms .  Now l e t  us cons ide r  what would be  t h e  

e q u i v a l e n t  s i t i : a t i o n  f o r  t h e  LKF. I n  t h i s  ca se  t h e  e lements  

of  t h e  ma t r i ce s  @ and H ,  see eqns ( 3 . 7 9 ) ,  a r e  complete ly  known, 

i . e .  t h e  model parameter  v a l u e s  a r e  known p r e c i s e l y .  Thus t h e  

e v a l u a t i o n  of  Q and H i s  decoupled from t h e  p r e d i c t i o n  and c o r r e c -  

t i o n  a lgor i thms  f o r  t h e  s t a t e -pa rame te r  e s t i m a t e s  and hence t h e  

covar iance  a lgo r i t hms  o p e r a t e  autonomously, a l t hough  they  a r e  

s u b j e c t ,  of  course ,  t o  t h e  a n a l y s t ' s  s p e c i f i c a t i o n  of  t h e  Q and 

R m a t r i c e s .  

The two-way i n t e r a c t i o n  of t h e  EKF is  i n  p r i n c i p l e  a t t r a c t i v e  

s i n c e  it holds  o u t  t h e  tempting p o s s i b i l i t y  of  adap t ive  e s t i m a t i o n .  

That  i s  t o  s ay ,  l i k e  t h e  b o o t s t r a p  e s t i m a t i o n  c h a r a c t e r i s t i c s  

d i s cus sed  i n  s e c t i o n  4.2.3, t h e  a d a p t a t i o n  of  t h e  parameter  

va lues  w i l l  improve t h e  s t a t e  e s t i m a t i o n  c a p a b i l i t i e s  which i n  

t u r n  w i l l  enhance t h e  l i k e l i h o o d  of more a c c u r a t e  parameter 

e s t i m a t i o n  and s o  on .  Unfor tuna te ly ,  t h e r e  i s  a g r e a t  d i f f e r e n c e  

between what i s  p o s s i b l e  i n  p r i n c i p l e  and what i s  a t t a i n a b l e  i n  

p r a c t i c e .  For t h e  EKF t o  perform a t  i t s  most u s e f u l  it i s  almost  

c e r t a i n l y  neces sa ry  t o  have a v a i l a b l e  r ea sonab le  e s t i m a t e s  of  

t h e  paramters  a p r i o r i , a s  w e  s h a l l  see i n  l a t e r  p a r t s  of  t h e  

paper.  



6. CONCLUSIONS 

In this, Part 1 of a two-part paper, the basic components of 

recursive estimation have been presented. We have shown that a 

fundamental feature of the recursive estimator is the way in which 

the estimates are corrected by a weighted model response error 

function. In other words, the algorithm continually adapts its 

estimates on the basis of feedback information about the discrep- 

ancy between model prediction and actiually observed behaviour. 

The principal theoretical development of the paper has been con- 

cerned with the linear Kalman filter. For this particular algo- 

rithm the weighting factors of the correcting mechanism for the 

estimates are computed in part from the estimation error covari- 

ance matrix. 

Six forms of recursive (state or parameter) estimation algo- 

rithms have been discussed. These are: the recursive least 

squares algorithm, equations (4.20) or (4.35); a recursive instru- 

mental variable estimator, equation (4.33); a recursive algorithm 

with exponential weighting of past data, equation (4.40); a dy- 

namic least squares algorithm, equation (4.51); the linear Kalman 

filter, equations (3.79); and the extended Kalman filter, equation 

(5.42). In Part 2, which deals with the application of these 

algorithms, the specific character of some of the case studies 

will require additional, but only minor, modification of these 

six basic algorithms. 



Appendix 1: Minimising the Squared-error Loss Function 

. 

Analytical derivations are given for minimising a squared- 

error loss function. We consider first the case of scalar 

observations and then the case of vector observations. 

(i) Scalar Observations 

From equation (3.9) we have the loss function 

so that differentiating J with respect to the parameter 

vector - gives 

Carrying out the differentiation in (A1.2) on each 

term yields: 



T 
where in the last step the matrix [x(tk)x - (tk) 1 is 
symmetric and thus the transpose of this matrix equals 

the matrix itself. Gathering together the derivatives 

of (A1 .3) , (A1 . 4 )  , and (A1 .5) and putting the result to 
zero gives the conditions for the minimum value of J, 

i.e. 

which is the result of euqation (3.10) in section 3.1. 

(ii) Vector Observations 

From equation 3.21 we have the loss function 

N T 
J =  1 {(y(tk) - X(tk)&) (y(tk) - - X(tk)c)} . (A1.7) 

k=l - 

~ifferentiating J with respect to - 6 gives, 

Hence when the derivative of (A1.8) is set equal to 



z e r o ,  w e  have 

which l e a d s  t o  t h e  r e s u l t  quo t ed  i n  e q u a t i o n  ( 3 . 2 2 )  

o f  s e c t i o n  3 . 2 .  



Appendix 2: The Recursive Least Squares Algorithm 

From section 3.4 the following recursive relationships, 

equations (3.45), are given as the starting point for the deri- 

vation of the recursive least squares algorithm, 

If (A2.1) is premultiplied by P*(tk) and then post-multiplied 

by P* ( tk- ) , then 

T postmultiplying (A2.3) by H gives, 

so that further post-multiplication by [I + HP* (tk - ) HT] -'HP* (tk-' ) 

yields 



T 
Substituting for P* (tk) H HP* .(tk-l ) from (A2.3) gives finally: 

This is the second of equations (3.46). The recursive algorithm 

for f (t ) can now be developed by substituting for b (tk) from 
k - 

(A2.2) and for P* (tk) from (A2.6) into the equation, 

0 

and since ~ ( t ~ - ~ )  - = P* (tk-l )b(tk-l) this expression can be 

expanded to give 

Hence from (A2.9) , we have: 

T -1 a(\) - = g(s-l +P*(\ - l ) ~ T [ ~  +HP*(\-~)H I {Y(\) - - HK_(~~_~)I . (~2.10) 

This is the first of equations (3.46) . 



Appendix 3: R e c u r s i v e  L e a s t  S q u a r e s  Algor i thms  f o r  S t a t e  

and Covar iance  C o r r e c t i o n  i n  a System a t  

S t e a d y  S t a t e  

I n  e q u a t i o n  (3 .68)  o f  s e c t i o n  3.5 a r e l a t i o n s h i p  i s  g i v e n  f o r  
rk t h e  matrix P (tk) i n  t e r m s  o f  t h e  e s t i m a t i o n  error c o v a r i a n c e  

m a t r i x  P ( t k ) ,  i .e .  

W e  w i sh  t o  s u b s t i t u t e  t h i s  e x p r e s s i o n  f o r  P* (tk) i n  t h e  r e c u r s i v e  

leas t  s q u a r e s  a l g o r i t h m s  of ( 3 . 4 6 ) .  Thus,  i n  t h e  f i r s t  o f  a l g o -  

r i t h m s  (3.46)  , 

T h a t  i s ,  



where 

Now compare (A3.5) with the previous expression for ~'(t~) 

given by (3.47), i.e. 

Noting thus that the manipulations (A3.2) + (A3.5) allow, in 

effect, the substitution of K(tk) for K*(tk), we have after 

substituting for P*(tk) in the second of algorithms (3.46) 

T -1 T - 1  
All terms in (A3.7) have a common factor of H R (H ) ; hence, 

In fact, from (A3.9) and (A3.4) we see that we have transformed 

(3.46) into: 

which are the algorithms of equation (3.63) in section 3.5. 
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Figure 1. A rudimentary method of model calibration. 
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Figure 2. A more formal method of model calibration. 
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Figure 3 .  Definition of the system and variables.  
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Figure 4. A schematic representation of how the input/output observations are 
related to the biochemical and microbiological aspects of the process 
dynamics. 
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------- PARAMETER ESTIMATE 
(a) 

UPDATE 

F i g u r e  5 .  Methods o f  pa ramete r  e s t i m a t i o n :  (a)  o f f - l i n e ;  ( b )  r e c u r s i v e .  
The n o t a t i o n  tk i n  t h i s  example d e n o t e s  t h e  kth  d i s c r e t e  sampl ing 

i n s t a n t  i n  a  t i m e - s e r i e s  w i t h  N samples ;  t h e  s u p e r s c r i p t  i i n  

G~ d e n o t e s  t h e  e s t i m a t e  a t  t h e  beg inn ing  o f  t h e  ( i  + 1 1 t h  - 
i t e r a t i o n  th rough  t h e  d a t a .  



THE NEXT HYPOTHESIS FOR THE 
MODEL STRUCTURE 

Figure 6. A conceptual picture of the problem of model structure 
identification. 
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Figure 7 .  Model ver i f ica t ion :  computing the res idual  e r ro r  sequences and checking 
the i r  s t a t i s t i c a l  properties.  



F i g u r e  8. B a s i c  c o n c e p t u a l  f e a t u r e s  o f  t h e  Kalman f i l t e r .  
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