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PREFACE

This paper has its origins in a set of lecture notes pre-
pared for a course entitled "Modeling and Control of River Qual-
ity" which was jointly sponsored by the Politecnico di Milano
and IIASA and held in Florence during June, 1978. The initial
justification for converting lecture notes into a paper lav with
the observation that many people who might potentially be inter-
ested in applying technicues of system identification were dis-
couraged from doing so by the apparent sophistication of the
associated theory. There is no doubt that some of the techniques
are elegant, but the purpose of this paper is certainly not one
of seeking sophistication in its theoretical development. The
paper originally had two objectives: to present some of the the-
oretical background of system identification from the starting
point of basic least squares regression analysis; and then to
demonstrate this theory at work by means of illustrative case
studies.

However, while writing what is here Part 1 of the paper it
became evident that the complete manuscript would take a long
time to complete. Hence for reasons of time-constraints there
is an undesirable division of the paper into a Part 1 (theory)

and a Part 2 (applications). Moreover, other interests within
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Resources and Environment's Task on "Models for Environmental
Quality Control and Management" make it seem incomplete to dis-
cuss merely theory and its application. It ought to be possible
to provide a synthesis of the major problems and future directions
in identification, estimation, and forecasting of water quality;
perhaps even to provide an overall framework for modeling such
badly defined environmental systems. Thus when Part 2 has
materialized it may well be that a Part 3, dealing with these

broader issues, will have come more clearly into view.
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SUMMARY

This paper presents some background theory for algorithms
of system identification, estimation, and forecasting. Special
attention is given to the application of these algorithms in
the field of water quality modeling.

The paper starts with some qualitative definitions of the
problems to be addressed, for example, problems of model structure
identification, parameter estimation, state estimation, state
reconstruction, and combined state-parameter estimation. The
central theme of the paper, however, is the idea of an on-line,
or recursive estimation algorithm. In particular a derivation
of the linear Kalman filter is given; this is achieved by ex-
tending the principle of linear least squares regression analysis.
Having derived the filtering algorithms, which refer to the prob-
lem of state estimation, the paper turns to the subject of recur-
sive parameter estimation algorithms in the context of conven-
tional time-series analysis. Finally, the algorithms of an ex-
tended Kalman filter are developed in order to treat the problem
of combined state-parameter estimation.

The primary objective of the paper is to present the methods
of system identification, estimation, and forecasting in a fashion
which will be understandable for those more familiar with the

subject of water quality modeling.
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SYSTEM IDENTIFICATION, ESTIMATION, AND FORECASTING
OF WATER QUALITY - PART 1l: THEORY

1. INTRODUCTION

Whether one disagrees or agrees with it, mathematical model-
ing of water quality is a well-established field of study and
research. The literature on the subject is indeed vast and the
effort expended on model development and verification must be
equally large. There are many ways in which to approach the prob-
lem of mathematical model construction, and probably each person
involved in such an activity has his own unique collection of
procedures. A major proportion of these procedures, as applied
to water quality modeling, might be counted as essentially pro-

cedures of "trial and error" deterministic simulation. In other

words, this is the type of informal modeling procedure whereby

(see Figure 1), starting with some initial model structure and

set of associated parameter (coefficient) values, the simulated
performance or response of the model is compared with the actually
observed behavior of the system under investigation. Then, if the
model is found to be inadequate in its characterization of reality,
the analyst may decide simply to adjust some of the parameter
values on an ad hoc basis until the desired performance is ob-
tained. On the other hand, the model may be so much in error

that the analyst is required to alter the structure of the

relationships between the variables accounted for in the model.



Reality is, of course, somewhat subject to randomness in

its observed behavior, and rather strongly so in the field of en-
vironmental and water quality systems. Thus an essentially
deterministic approach to modeling is incomplete in its recogni-
tion of the real system's properties. The aim of this paper is
to be partly tutorial and partly review in character. In being

tutorial it seeks to present a number of techniques of estimation

which should permit a more formal and adequate treatment of model

development by reference to noise-corrupted field data. 1In part-

icular, we should like these techniques to be capable of admitting
the existence of both random disturbances of process behavior and
random measurement error. At the same time formal methods of est-
imation should be able to discriminate effectively against such
ever-present noise and chance error in the field data. It is not
in practice a matter of the analyst being unaware of the sto-
chastic aspects of the modeling problems nor of the informal
deterministic simulation method being wholly inadequate. For
whether one models a system's behavior along the lines of Figure
1l or Figure 2, a large part of the modeling exercise is devoted
precisely to the activity of filtering out the uncertainty (noise)
in the observed patterns of behavior.

Yet the paper by the nature of its title deals with more than
just the subject of estimation methods: it treats also the topics

of system identification and forecasting. This 1is because the

techniques of estimation that we shall introduce derive in part
from the broader field of system identification, which incorpor-
ates estimation with other problems of specialized experimental
design, model structure identification, model verification and
model validation. Another reason is that the central theme of

the paper, namely Kalman filtering, is perhaps better known with-

in the context of on-line forecasting and control situations.
All three topics, identification, estimation, and forecasting, are
closely interrelated. We shall exploit these interrelationships
for illustrative purposes wherever appropriate in the paper.

Most of the background technique here necessary for devel-

opment of the estimation algorithms derives from control theory.



Since control theory is frequently understood, and perhaps mis-
understood, to be concerned merely with black box models of input/
output behavior, it is possible that matters such as system iden-
tification and estimation are by association regarded with
suspicion. This suspicion may arise for two reasons. Firstly,
the term "black box model" suggests a lack of desire for under-
standing or acknowledging the true physical mechanisms which
govern process dynamic behavior. And secondly, the association
with statistical features of the modeling problem is all too re-
dolent of sterile curve-fitting exercises. The theoretical
development of this paper is, therefore, especially concerned with
presenting an estimation method suitable for use with what will be
called internélly descriptive models (see section 2.2.2). In fact
both black box and internally descriptive models have important
roles to play in the analysis of field data. Likewise, though an
accurate model would be the ultimate goal of any modeling exer-
cise, curve - fitting is not necessarily very meaningful in itself:
the identification of mathematical models from field data is es-
sentially a learning procedure in which models are working
hypotheses about the nature of reality.

A large section of the paper is occupied by the mathematical
development of the linear Kalman filter (LKF), from which is
finally required a derivation of the extended Kalman filter (EKF).
This particular derivation commences with a well-known and simple

parameter estimation technique, linear least squares regression

analysis, and then builds upwards in complexity towards the linear
Kalman filter. Such an approach has previously been adopted by
Young (1974). It is not necessarily an elegant or an efficient
derivation; our intention is that the analysis should be as trans-
parent as possible and that the reader will thereby obtain a
picture of several other closely related recursive parameter est-
imation algorithms. To aim for clarity at the expense of theor-
etical elegance is justified by the lack of previous application
of these techniques in water quality modeling (as evidenced by

Beck (1978a), Jgrgensen (1979), and Jgrgensen and Harleman (1978)).

This may have been due to the kind of suspicion we have mentioned

earlier. Further, given the belief that much can be learned from



the demonstration of theory applied to practice, Part 2 of the
paper has been designed to complement the theoretical development
of Part 1 with a number of case study results.

The organization of the paper is as follows. Section 2 dis-
cusses the principles and qualitative features of system
identification, estimation, and forecasting in the specific con-
text of wastewater treatment and river water quality modeling.
Section 3 presents the development of the linear Kalman filter
from the starting point of linear least squares regression ana-
lysis; again here emphasis is placed on the qualitative features
of the filtering algorithms. The evident attention to detail in
Section 3 gives way to a more brief treatment in Section 4 of
conventional time-series analysis and recursive parameter esti-
mation technigues closely related to the linear Kalman filter.
Likewise the development of the extended Kalman filter algorithms
for combined state-paraméeter estimation in Section 5 is relatively
brief and relies strongly on the resources of Section 3. Part 2
will then deal with illustrative examples from case studies.
These examples include topics such as: designing experiments to
test the behavior of a full-scale anaerobic digestion unit; esti-
mating the parameters of a model for dissolved oxygen (DO) and
biochemical oxygen demand (BOD) interaction; on-line estimation
of the behavior of nitrifying organisms in an activated sludge
plant; and adaptive forecasting of sewer network flows.

It is not in general the purpose of Part 1 of the paper to
enter any philosophical debate regarding environmental or ecolo-
gical systems modeling, as in, for example, Young (1978a) or
Halfon (1978). We do assume, however, a certain pragmatism in
modeling in that field data of an adequate kind and number are
a priori available or necessary. And in Part 3 we shall assume
the license of discussing future possible foci of attention for
identification, estimation, and forecasting of water quality.
With that our review of current successes and problems of this

subject will be completed.



2. PROBLEMS OF SYSTEM IDENTIFICATION, ESTIMATION, AND PREDICTION
Let us start with some problem definitions. In this section
we first consider a basic abstract characterization of the dynamic
behavior of a system. From here onwards it is assumed that un-~
steady, transient, or dynamic behavior will be of primary interest.
The abstract characterization is then interpreted within the con-
text of modeling interactions in microbiological and ecological
systems. Both the abstraction and the microbiological/ecological
example will hence serve to illustrate the principal qualitative

features of system identification, estimation, and prediction.

2.1 Definitions and Objectives
Figure 3 gives a schematic definition of the dynamic system
model and variables, i.e. the component features of our portrayal
of reality. To give a more immediate appreciation of this dia-
gram let us suppose the following, that:

(i) The group of variables denoted by u, measured input

disturbances, might comprise the recorded day-to-day

variations of total BOD, suspended solids (SS), and
ammonia-N concentrations in the settled sewage in-
fluent to an activated sludge plant.

(ii) The group of variables denoted by £ represent un-

measured (unknown) input disturbances. These might

include items such as random variations in the rate
of dissolved BOD and organic phosphorus addition

to a river by local surface runoff. Other unde-
tected disturbances, which in concept can be
equated with input disturbances, would include
random fluctuations in the mixing regime of the

liguors in an activated sludge aerator unit.

(iii) The process state variables, both Xn and Xy’ are
guantities that characterize the essential prop-
erties and behavior of a process with the passage
of time. There are two types of state variable:
those that can be measured (easily), x,, such as
the pH level and temperature of the sludge con-

tained in an anaerobic digester; and those that



are extremely awkward, if not impossible,
to measure, X, for example, mixed liquor

nitrosomonas bacterial concentration, or

the viable fraction of a biological floc.
(iv) The group of variables y are termed mea-

sured output variables. In fact,

frequently these variables are merely
measurements of the (measurable) state
variables, Xy, and the labels state and
output are therefore loosely interchange-
able in some cases. However, in order to
emphasize the idea of an output response
of the process to an input disturbance,
we can visualize the time-variations of
downstream DO concentration in a stretch
of a river as an output response to
changes in the upstream (input) BOD
concentration.

(v) The last group of variables, n, repre-
sents the respective random and

systematic measurement errors which

derive from process instrumentation
and laboratory analysis; such errors
are inherent in all measurements y thus
precluding the possibility of y being
an absolutely exact measure of xp.
One further group of quantitites in Figure 3 remains to be dis-

cussed -- these are the model parameters, @, for instance, the

reaeration rate coefficient or chemical kinetic rate constants
which appear in the equations of the syster model. In general,
the desirable property of the parameters is that they be invari-
ant with time, i.e. truly constant. In the following, this
desirable property is seen to be an extremely important feature
of certain aspects of model development and analysis. The other
five groups of variables, as indicated in Figure 3, are assumed
to be functions of time t; they are also implicitly functions of

space.



A common theme of identification, estimation, and predic-
tion is that they are all concerned with the retrieval,

manipulation, and restructuring of measured information about a

system's dynamic behavior. Figure 3 indicates, therefore, that
in order to compute values for x and o, or statistical properties
of ¢ and n, the information available to the analyst is represented
by the measured input and output data for u and y respectively.
Given that restricted measurement facilities and considerable
complexity are the dominant characteristics of microbiological/
ecological systems, what is the likelihood of success in the ap-
plication of the algorithms we are about to develop?

To answer this it is instructive to recast Figure 3 as the
representation of Figure 4. Let us start with Block 1 of Figure
4 in which we have the fundamental microbiology and biochemistry
of the system, such as phytoplankton production, or microorganism/
substrate interaction. At this level a high degree of literally

microscopic detail would be required to characterize (i.e. model)

all the phenomena present in the process under study. Yet the
structure of these relationships, arid the changing patterns of
dominant species in the ecological community, though microscopic
in detail, cannot necessarily be ignored, for they may have gross
macroscopic impacts on overall process conditions, as for exam-
ple in algal blooms with the consequences of severe oxygen
depletion and so forth.

For Block 2 the more macroscopic features of the process
state dynamics, e.g. variations in pH and temperature, will re-
ciprocally influence what happens at the microscopic biochemical
level. In general, however, most of the microscopic detail of
Block 1 falls under the category of variables which are not easily
measured, Xy and hence this fine detail is "lost," as it were,
to the process environment (Block 3). That is to say, direct
measurement of the variables characteristic of Block 1 is ex-
tremely difficult unless specialized experimental and analytical
facilities are available to the investigator. The relatively
small number of variables in Block 2 which are easily measured,

that is Xn’ amount only to the more macroscopic, sometimes



crude, measurements of quantities like chemical oxygen demand
(COD), suspended solids, and dissolved oxygen concentrations.

Block 3 of Figure 4 represents in part the system environ-

ment, from which all manner of unobserved disturbances and
unpredictable mechanisms of behavior (£) will interact with the
more deterministic features of the phenomena accounted for in
Blocks 1 and 2. Block 3 also represents the instrumentation and
analytical procedures from which arise unavoidable components of
measurement error (n). Thus Block 3 is intended to introduce ele-

ments of uncertainty into the picture of a system's behavior.

So finally the following can be stated in answer to our
earlier question about the likelihood of success in the applica-
tion of "sophisticated" algorithms to modeling and forecasting
water quality. Clearly, if only measurements of some of the pro-

cess inputs, u, and of some of the process outputs, y, can be

obtained, then relatively very little information is available
concerning the basic biochemical/ecological nature of Block 1 in
Figure 4. Moreover, the relationships between u, X, and y are
significantly obscured by the uncertainty originating from the
process environment and instrumentation. In fact it will become
evident that irrespective of whether the primary objective is model
development or forecasting, the application of the algorithms has
two major functions: (i) during analysis, to discriminate against
the effects of the stochastic components £ and n; (ii) to assist
in making inferences about the behavior of the inaccessible®
"microscopic"”" portion of the state variables from information on
the more accessible "macroscopic" sector of the process dynamics.
If the algorithms can fulfill these functions, even in some small
measure, then we might consider their application to have been
successful. It is always important to bear in mind that the con-
struction of large,apparently comprehensive, and detailed models
does not necessarily imply that these models are either accurate
or that the model-builder has a good understanding of observed

process behavior.

*intended here as not easily measurable.



2.2 System Identification
The term system identification is meant here as the complete
process of deriving mathematical models from, and by reference to
experimental field data. One can now perhaps call it a subject in
its own right after the rapid developments of the past ten to fif-
teen years, see for example Eykhoff (1974) and Mehra and Lainiotis
(1976); it has its roots in statistical and control theory with

strong branches of application in econometrics and biometrics.

2.2.1 Experimental Design

Several separate stages can be distinguished along more or
less formal lines within the procedure of system identification.
The first of these stages is that of experimental design, since a
prerequisite for model development is an appropriate record of the
observed process dynamics. Unless otherwise stated this field
data base will be required to comprise regularly and discretely
sampled values of several input/output variables over a given
period of time, i.e. a group of time-series.

The success of any modeling exercise which sets itself the
objective of demonstrating how well, or how badly, the model sim-
‘ulates reality is strongly dependent upon the quality of the field
data available. The ideal would be the ability to make certain
specialized and deliberate experiments. Experiments of ‘this kind
are usually designed for the observation of process dynamic be-
havior as a response to well-defined input disturbances (forcing
functions). For instance, in the case of an activated sludge
unit it might be desirable to measure how the mixed liquor sus-
pended solids concentration and the clarifier effluent BOD and
SS concentrations change with time in response to a sudden step
increase in the volumetric feed-rate of settled sewage to the
aerator. A good experimental design involves the assessment and
determination of several factors (Gustavsson (1975)), some of
which -~ in a circular fashion -- depend upon a reasonable knowl-
edge of the model before the modeling exercise begins! Two
factors of special importance are the rate at which sampled mea-

surements of the system behavior should be taken, and the length
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of time over which to conduct the experiment. Two very rough
rules of thumb state that:
(i) The sampling interval should be at most as long

as the minimum time-constant of interest; or
alternatively the sampling interval should be
one-sixth of the period of the fastest sinusoidal-
type variation expected in the behavior of the
system.

(ii) The length of the experiment would ideally cover

a period with magnitude of at least ten times

the magnitude of the largest time-constant of

interest; to some extent this kind of deter-

mination is related to the observation that

the degree of subsequent parameter estima-

tion error is inversely proportional to the

length, i.e. number of samples, of the

experiment.
Both points have to do with the speeds of response of the output
variables to changes in the input variables. For example, DO
concentration in the mixed liquor of an activated sludge unit
would be expected to respond quickly, of the order of minutes,
to changes in the air blower speed; gas production in an anaer-
obic digester varies over a period of hours after batch feeding
has been completed; and the growth of nitrifying bacteria in
activated sludge flocs can be measured within the time-scale of
days and weeks. So if we wished to determine a dynamic relation-
ship between air blower speed and DO concentration, it would be
necessary to take measurements of these variables at very fre-
quent intervals, but the experiment could be completed in a few
hours. On the other hand, to determine the behavior of nitrification
in biological wastewater treatment, much less frequent measure-
ments are required but the experiment would probably have to
continue for several months. Thus, if the idea of a time-
constant” is approximately interpreted as, say, the detention

time for water in a reach of river, and assuming that the same

* . . . .
Strictly speaking, for complex nonlinear systems it would be
more appropriate to use the term response time.
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idea roughly translates into the time-scales for biological
growth of a species and rates at which nutrients are cycled in
an ecological system, one has the beginnings of an experimental
design.
The opportunities offered for specialized experimentation
in environmental systems are, however, rare. This is because two
major practical problems must be overcome:
(1) While experimenting with, for example, a unit
process of wastewater treatment, satisfactory
operation of the plant still has to be assured.
(ii) The manipulation of input disturbances may demand
qguite extraordinary facilities for implementation
of the given experimental design, as for example
the manipulation of variations in upstream BOD
concentration of a reach of river.
These problems are not always insurmountable; but they are, never-
theless, factors contributing to the slow progress in mathematical
modeling of water quality and wastewater treatment processes. On
the whole, current experimental work in this area reduces simply

to a matter of observing behavior under normal operating conditions,

a term used by Eykhoff (1974); there are few exceptions to this
rule where there has been significant intervention by the experi-

menter, see for example Olsson and Hansson (1976).

2.2.2 Choice of Model Type

Choosing the type of model to be used is relevant primarily
in as much as the problem at hand may dictate the outcome of this
choice; and once the_choice: is made the nature of any parameter
estimation algorithm for subsequent application to the model is
also thereby broadly defined. To state the choice as one between

an internally descriptive model or a black box model is merely to

define the two polar extremes of a spectrum of models. An inter-
nally descriptive (or mechanistic) model exploits all the available
a priori information on the physical, chemical, biological, and

ecological phenomena thought to govern process dynamics. This
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lends to the internally descriptive model -- thus called because
it characterizes how u, x, and y are related to each other (Figure
3) -- the potential for universal applicability and the appearance
of being grounded in theory or "the laws of nature."

The black box (or input/output) model, in contrast, while
it can usually command simplicity, reflects only what changes
the input disturbances u will bring about in the output responses
y- A black box model makes no claim to be universally applicable
and the range of its validity is restricted to the sample data
set from which it has been obtained. It has already been mentioned
in the introduction of section 1 that black box models are regarded
with a degree of suspicion for these kinds of reasons. We shall
return again to this subject in greater detail in section 4. 1In
defense of black box models, however, it must be said that they
can prove to be very useful in on-line forecasting applications
and as initial attempts at elucidating any basic cause/effect re-
lationships not immediately apparent in the given field data.

For instance, when the analyst comprehends but a little of the
process behavior under study, the identification of which inputs
affect which outputs, by how much, and how quickly, may yield
important clues about the further development of internally des-
criptive models.

In this paper and elsewhere (Beck (1978b)) the view taken is
that black box and internally descriptive models represent comple-
mentary, conceptual frameworks for system identification; more is
to be gained from their joint application than from the exclusive
use of either model. For much of the time system identification
is confronted with the need to offer plausible hypotheses about
"unexplained" relationships in a set of field data. It seems only
prudent therefore to approach each such problem from a variety of
different angles and to gather together all the available evidence

for synthesis of the next hypothesis.

2.2.3 Model Structure Identification and Parameter Estimation

We come now to two features of system identification which

are central to the subsequent technical development of the paper:
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(i) Model structure identification addresses the problem of

establishing how the measured system input disturbances
u, are related to the system's state variables x, and
how these latter are in turn related both to themselves
and to the measured system outputs y.

(ii) Parameter estimation deals with the computation of

values for the parameters which appear in the model

equations, once the structure of these relationships

has been properly identified.

The distinction between the two concepts is important for an ap-

preciation of the procedure of model development. In practice,

as will be demonstrated later, the application of a parameter

estimation algorithm is frequently implicit in the solution of

the model structure identification problem, see also Beck (1978c).
It may be helpful to visualize model structure identification

as analogous to the choice of whether to fit a straight line or

a curve to a set of experimental data. Or again, within the

above broad definition of this problem, model structure identifi-

cation is also concerned with identifying the correct form of the

mathematical expressions which are contained in the model equations.

A simple example may serve to illustrate this point. Suppose we

are investigating the uptake or removal of a nutrient/substrate

in a batch chemostat reaction, and our first hypothesis is a

linear model,

Model I:  dxj(t) = % (t) = = [a;]x, (¢) (2.1)

=

dt

in which the dot notation refers to differentiation with respect
to time t; Xy the concentration of substrate, is the state vari-
able and ay is a parameter representing a first-order kinetic
decay-rate constant. For our second hypothesis about the observed
system behavior we might propose a Monod-type kinetic expression

and the presence of a mediating micro-organism in the reaction,
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Model II: % (£) = —[aixz(t)/(aé + %y (£))] %, () 0.2
k,(8) = lagx, (£)/(ay + xq (£))] xp (£) = ayx,(t)

where the additional state variable ¥2 i? th? mi?ro—organism
concentration and we have a vector[al, Oy Ogy a4]'of associated
model parameters. WNow recall that there are presumably some noise-
corrupted measurements available from this experiment, but that

we do not know which, if either, of Models I and II best charac-
terizes the nature of the observed behavior. Model structure
identification is then the problem of choosing -- by reference

to the in situ data -- the number of state variables to be ac-
counted for in the model, the problem of defining how these state
variables depend upon each other, and the problem of identifying
the correct form of the expression to go inside the square paren-
theses [ <] of equations (2.1) and (2.2). If both models are
thought a priori to be good approximations of reality, we might
also call this a problem of model discrimination. But if neither
hypothesis is adequate and a more complex pattern of behavior is

- suggested by the analysis of the data, the first definition will be
the most useful interpretation of model structure identification to
be borne in mind for the following.

For parameter estimation, an important distinction can be
made between algorithms which are off-line (or block data pro-
cessing schemes) and algorithms which are on-line (or recursive).
Figure 5 provides a pictorial representation of the essential dif-
ferences between the two types of algorithm. An off-line procedure,
Figure 5(a), holds the parameter estimates constant at their a
priori values, @0, while the complete block of time-series field
data -- from time t0 -+ tN of the experimental period -- is
processed by the algorithm. Usually all the data are processed
together at one computation. A loss function, almost certainly
based on the errors between observed and model responses, is
calculated at the end of each iteration; the algorithm attempts
then to minimize the loss function over the parameter space and
computes an updated set of parameter values, @1, for substitution

into the next iteration through the data (from t0 > tN). A
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recursive algorithm, in contrast, computes updated parameter

estimates, go(tk), at each sampling instant t, o0f the field data;

the minimization of the error loss function ii implicitly, rather
than explicitly, included in the algorithms. At the end of the
block of data the estimates go(tN) are substituted for the a
priori parameter values @l(to) of the next iteration through the
data. Because of their potential for estimating time-varying
parameter values, upon which certain very useful interpretations
will be placed shortly, and because of a more general interest

in on-line, ergo real-time,estimation and forecasting applications,
the paper will focus attention solely upon recursive algorithm
development.

Equipped now with more knowledge of parameter estimation
algorithms, let us return to the problem of model structure iden-
tification. Imagine that the state variables X in a model may
be represented conceptually by the nodes of Figure 6(a) and that
the parameter values are visualized as the "elastic" connections
between the state variables. If the assumption has been made
that all the parameters have values which are constant with time
and yet a recursive algorithm yields an estimate of one or more
of the parameters, a4 say, which is significantly time-varying,
one may question the correctness of the chosen model structure.
The reason for this is as follows. The general nature of an
estimation procedure is to fit the model (i.e. state variable)
predictions to the field observations. Hence, when any persist-

ent structural discrepancy is detected between the model and

reality this will manifest itself as an attempt by the estimation
procedure to adapt the model, i.e. the parameter values, towards
reality. Such time-variations of the parameter values can, of
course, occur for different reasons, for instance, the parameter
may be truly time-varying in accordance with some seasonal fluc-
tuation. But for the purposes of our example in Figure 6(a) we might
suppose that the actual structure of the relationships underlying
the observed system behavior is better represented by the intro-
duction of a new state variable and two new parameters, Figure

6(b). If this were indeed the correct model structure,
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recomputation of the parameter values should give recursive
estimates which are essentially constant.

Our example here has two objectives. Firstly, it should
emphasize the earlier statement that model structure identifica-
tion and parameter estimation are closely interrelated and that
the former problem can sometimes be solved by recourse to a par-
ameter estimation routine. Secondly, it should be apparent that
an exercise in accurate parameter estimation is of dubious signi-
ficance if the problem of model structure identification has not

been satisfactorily resolved.

2.2.4 Verification and Validation

Model verification may be defined as, among other definitions,
the determination of whether the "correct" model has been obtained
from a given single set of experimental data. It can thus be said
that model validation, on the other hand, concerns itself with
checking the accuracy with which the same model predicts the be-
havior observed in different independent data sets.

On reflection it must appear that our definition of verifi-
cation is something of a truism. And in fact the arguments for
satisfying oneself that the model is verified are also rather
circular. Let us assume that the model structure has been iden-
tified, the parameters estimated, and thus a sequence of final
model response errors can be computed according to Figure 7. Al-
most inevitably it will have been necessary at some stage in the
model development and data analysis to have made assumptions about
the statistical properties of the noise sequences in Figure 7, i.e.
£ and n in Figure 3. If these assumptions are valid, the model
response errors should also conform to certain statistical prop-

erties, and in particular to those of white noise, i.e. the errors

are not correlated with themselves in time and they are statis-
tically independent of the measured system input disturbances
(forcing functions). Evaluation of the error sequences in this
fashion can therefore provide a check essentially on whether the
final model invalidates some of the assumptions inherent in its

development.




-17-

Should the error sequences not conform to their desired
properties, this suggests that the model does not characterize
adequately all the relatively more deterministic features of the
observed dynamic behavior. A strong correlation between varia-
tions in a given input and the variations in the model response
errors of a given output, for example, would indicate that the
model structure should be modified to accommodate additional sig-
nificant relationships between those two variables. Analysis of the
model performance along these lines, therefore, directs attention
once again back to the model structure identification problem.

We can draw two conclusions from this. First, while not les-
sening the importance of model verification, it may be argued that
model structure identification is the fundamental issue of overall
model development, see also Beck (l978c). Second, it will be evi-
dent that model development is not rigorously constrained to the

sequence of procedures outlined here.

2.3 State Estimation and Prediction

The difference between a quantity which is a state variable
and a quantity which is a parameter becomes almost negligible when
one considers a state variable which does not vary with time, i.e.
part of the system is at steady state, or a parameter which exhib-
its seasonal, and therefore temporal fluctuations. To attempt to
preserve a difference between state and parameter is actually
not particularly useful either in the later mathematical develop-
ment of estimation algorithms or for fully appreciating the
scope for application of these algorithms. Perhaps an ambivalent
attitude towards the distinction is desirable: sometimes the dif-
ference between state and parameter is important, and sometimes

it is not!

2.3.1 A Preview of the Kalman Filter

On occasion it is helpful to have a preview of the end-point

of an analysis and especially so if the analysis is lengthy; this
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is the intention of the present section. In section 2.2.3 and
Figure 5(b), we gave the basic ideas behind recursive parameter
estimators. From Figure 5(b) it is possible to write down in
skeletal form the mechanism of updating the parameter estimate,
i.e. in scalar terms*,

o~

=a(

o

a(t )+ k(tk)e(tk) (2.3)

k) te1

in which e(tk) is the error between a model prediction of the
system response at time tk and the noise-corrupted measurement
y(tk) of that output response. The gain factor k(tk) is a factor
which weights the importance of the error in providing a correction
of the old estimate &(tk_l) obtained at the previous sampling in-

stant tk—l'

eventually be seen to be of great importance, but it will not con-

The manner in which the gain factor is computed will

cern us at this point. It is not difficult to see that a recursive
state estimator could be constructed along exactly analogous

lines, namely
2(ty) = R(t) + k' (t e’ (g)) (2.4)

where again e'(tk) and k'(tk) are response error and gain factor
respectively (the prime notation merely indicates that they may
be different from the error and gain of (2.3)). ﬁ(t;) denotes
the newly updated (a posteriori) state estimate immediately after

the receipt of the output measurement y(tk) at time t whereas

kl
g(tk) represents a "best" forward extrapolated (a priori) estimate

of the state x immediately before the instant of time t, -
A subtle but very significant distinction between (2.3) and

(2.4) lies in the arguments of & and &. As one would expect, the

state of a system will change between the measurement sampling

instants t and t

k-1 ki it is therefore sensible to use a dynamic

*This is for simplicity; in general, we shall be dealing with
vectors and matrices for systems with many state variables and

multiple parameters.




-19-

model to make an extrapolated prediction over this interval for
comparison with the measurement at time t - In contrast the as-
sumed model of parameter dynamics (time-variations) is that in
fact the parameter remains constant. Hence the best prediction
of the value of a parameter at a later instant of time is that
it has the same value as its most recent estimate.

We are now in a position to introduce a conceptual picture
of the Kalman filter. This is given in Figure 8 as an extension
of Figure 2. The original results of Kalman (Kalman (1960),
Kalman and Bucy (1961)) refer to the problem of state estimation;
they were intended for purposes of stochastic control. 1In other
words, for a feedback controller the desired aim is to match the
performance (behavior) of the measurable state variables x_ with
some desired reference process performance. Such a controller
usually acts upon the perceived error between the measurements y
and the reference performance; but y is error-corrupted and thus
the Kalman filter sets out to permit control on the basis of the
error between the state estimates (gm) and the desired performance.
Figure 8 treats the case of combined state and parameter estima-
tion for which the algorithms of an extended Kalman filter (EKF)
will be required. The important difference between the EKF and
linear Kalman filter (LKF) is that the EKF is an (approximate)
algorithm for a system with nonlinear dynamic behavior while the
LKF is an algorithm for systems with linear behavior. Suffice it
to say here that the combined state and parameter estimation
problem is equivalent to state estimation for a nonlinear systen.

In Figure 8 we see that a model of reality is embedded in
the filter. Predictions of the kind g(t;) in equation (2.4) are
computed by the model and fed forward to the corrector algo-
rithm(s) together with the current observations X(tk) of the
process output response. For the corrector algorithms, equations
(2.3) and/or (2.4), it is apparent that additional computation is
necessary for specification of the weighting factors k(tk) or k'(tk).
This additional computation refers to a parallel set of algorithms
describing the time-evolution of the estimation error magnitudes,
which itself is determined by a balance of the levels of uncertain-

ty (or error) in the model as an approximation of reality, in the
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unmeasﬁred input disturbances, and in the output response obser-
vations. But again, this is almost pre~empting the subsequent
development of the paper; section 3.8 will deal with the full
significance of these statements. The results of the corrector
algorithm are the updated state and parameter estimates gm(t;),
gu(t;), @(tk) as indicated by Figure 8. These in turn are fed
back to the model for revision of the information available for
subsequent predictions.

The essential character of the filtering algorithms is there-
fore one of information restructuring: from the input/output
observations of the real system's behavior, the information is
"translated" into model-related estimates of the state variables
and parameters. The name "filter" suggests also the intuitive
idea that here is an algorithm which attempts to filter out from
the given information the unwanted influences of measurement
noise and uncertain disturbances. If attention is being focused
on the parameter estimates as the product of the filtering oper-
ation, information about significant unexplained parameter
adaptation can clearly be used to assist solution of the model
structure identification problem (see section 2.2.3). Alterna-
tively, if the filter is tracking truly time-varying parameters,
this form of parameter adaptation may be subservient to the goal
of maintaining an adequate state estimation performance. In
both cases, however, since modification of the model is occurring,
then modification of the level of uncertainty in the model is also
implied as shown in Figure 8. Lastly, and of interest also as a matter
of information restructuring, notice that the filter has the poten-
tial to provide estimates of those state variables which are not

measured; this is known as state reconstruction.

With the aid of some concise notation we can add gualifica-
tion to the usage of the term estimation. Suppose the current

time is t then,

kl
(i) estimation of the values g(tk]tk) is also termed

filtering, where the notation signifies an estimate at

time t, based upon all the information available up

k
to and including the measurements X(tk)7
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(ii) estimation of R(t +ﬂtk) is prediction, since the

k

state at time (tk+T) in the future is being estimated

from measurements up to time tk;

(iii) estimation of ﬁ(tk—r|tk) is known as smoothing, with

the provision of state estimates for some time (t, -7)

k
in the past.

Of these, smoothing will be of little interest here.

2.4 Summary

The following then can be stated to summarize the problem
definitions and objectives for the remainder of the paper.

Assume that we are given:

(i) Time-series of information on the measured input disturb-
ances u and output responses y of a dynamic process;

(il) Some knowledge of, or a set of assumptions about the
statistical properties of the unmeasured random process
disturbances, £, and random measurement errors, 1.

We wish to determine, by application of recursive estimation

algorithms to the analysis of the measured information:

(i) The structure of the dynamic relationships between u, the
state variables x, and the outputs y (model structure
identification);

(i1) The values of the parameters a that appear in the iden-
tified model structure (parameter estimation) ;

(iii) The current and future values of the state variables x
(state estimation and prediction);

(iv) The values of the inaccessible state variables that are
not measured X4 (state reconstruction);

(v) Simultaneously the values of X and o (combined state
and parameter estimation or adaptive prediction).

Natural extensions of (iii), (iv), and (v) would be the use of
recursive estimation algorithms in a real-time control context.

This will not be treated in any depth here. However, it is worth
noting that for adaptive control,as an extension of (v), part of the
function of the controller is to choose values for the control sig-
nal input, u, which enhance the possibilities for system identification

and parameter value updating.
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3. STATE ESTIMATION: A DERIVATION OF THE LINEAR KALMAN FILTER

The problem at hand is that ultimately it will be necessary
to have available an algorithm for combined state-parameter esti-
mation, i.e. the EKF. Working backwards from this final objective,
we shall previously have had to derive the linear Kalman filter
(LKF); and in order to make this derivation as transparent as
possible it is advisable first to introducé the basic principle
of linear least squares estimation, with then subsequent spec-
ial reference to a recursive least squares algorithm.

The complete sequence of development of the LKF and EKF is
shown in Figure 9, a key figure to which frequent reference is
made during the course of this section. Inevitably the decision
concerning the degree of "transparency" of the derivation has
been a difficult one. 1In particular, the heavy use of vector-
matrix algebra might have been lightened at the expense of a
longer prescntation. But the reader genuinely interested in
applying the methods will eventually have to invest the time and
effort in acquiring familiarity with this algebra. Some compen-
sation, nevertheless, is provided at regular intervals by reverting
to scalar equivalents for explanation of various points. The
original motivation for this particular route in developing the
LKF derives from Young (1974), although here greater emphasis is
placed on the Kalman filtering technique for its own sake. Ano-
ther useful text, and a source of helpful insights, is thé book
on applied optimal estimation by Gelb (1974). From both of these

authors the following has benefited considerably.

3.1 An Introduction to the Principle of Least Squares Estimation

Let us start with the simple and most familiar problem of
parameter estimation, namely the problem of linear regression
analysis. Suppose we have a substance, concentration C, which
decays with first-order kinetics. We wish to estimate the rate

constant, Bl say, for the decay kinetics from (noise-corrupted)
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observations of the remaining concentration of the substance at
time t, i.e. C(t). Our model of the process is (for a batch,

sealed-vessel reaction),

dc(t) /dt = -Blc(t) (3.1)
or

log, c(t) = logy C(to) - Byt , (3.2)
where C(tO) is the initial concentration of the substance. If we
define

A

loge C(t) = x(t) (3.3a)
and

log_  C(t_p) & B (3.3b)

e 0 o '

then equation (3.2) becomes

x(t) = BO - Blt . (3.4)

If we have N sampled measurements of x(t), denoted y(tk), where
t, is the time of the kth sampling instant (k =1,2,...,N) and
where each observation y(tk) is corrupted by a random measurement

error n(tk),
y(t) = x(t ) + n(t) ' (3.5)
then (3.4) becomes

y(t,) = By - Bt + n(t) . (3.6)

0"

The parameter estimation problem here is defined thus:

Given: the measured information tk and y(tk) for tl' t2,...
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tN (in this exceptional case we shall visualize time
as being a measurement) then,
Determine: values for the unknown parameters 80 and Bl;
that is to say, determine the intercept and slope
respectively of the "best" line that can be drawn
through the observations in Figure 10.

One well-known solution of this parameter estimation problem

is as follows. First, define the two, two-element, vectors
T —
x () = [1.0,¢ ]
(3.7)
_ _ T

where the superscript T denotes the transpose of a vector or ma-

trix, so that (3.6) can be written concisely,
(t,) = x (£ )a + n(t,) (3.8)
y k) _x_ k_ n k . .

We now wish to estimate the unknown parameter values a so that

the loss function defined as the sum of squared errors,

N
38 Ty - X8’ (3.9)
k=1 :

is minimized. The estimates @ of o that minimize J are called the

least squares estimates. (Notice that the model response errors

e(tk) = y(tk) - ET(tk)@ are not in general identical with n(tk) but
converge to n(tk) as 8§ converges to the true values a.) '
We .can obtain the minimum value of J by differentiating J with

respect to § (see Appendix 1) and then setting this vector of

derivatives equal to 0, i.e.

N N
7,0 =33 =[] x()x (518 - | x(e)ylt) = 0 (3.10)
- 3@_ =] k=1

Hence we have the well-known equations for the least squares para-

meter estimates
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_1 N
Zi(tk)y(tk)] (3.11)

N T
& =[] x(t )x"(t)] [
k=1 k=1

K

in which [.]—1 denotes the inverse of a matrix. According to a
standard text (Draper and Smith(1966)) equation (3.11l) is a
"result of great importance and should be memorized" -- a point
which emphasizes the fundamental role of least squares as an in-
troduction to parameter estimation.

If we pause for a short time we may observe in passing that
the estimates 4 will only converge to the true values a of the
parameters provided that the correct model structure has been
identified (of which more below) and provided the following stat-

istical properties hold for the measurement errors n(tk),
(1) the mean value of n(tk) is zero, i.e.
En(t, )} =0 (3.12)
(€{-} is the expectation operator such that the expected value of

a random variable X can be computed as éwxf(x)dx = €{x}

in which f(x) is the probability density function of X).

(ii) n(tk) is not correlated with itself in time, i.e.
= ; 3.13
€{n(tk)n(tj)} oy ( )
where
0 for k # J
§, . =
k3 1 for k = j

in which r is the variance of n(tk).
(iii) n(tk) is not correlated with the variables E(tk)' i.e.

€{§(tk)n(tj)} = 0 for all k, jJ. (3.14)
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These three conditions may be recognized from the earlier discus-
sion of section 2.2.4 as those which define the error sequence
n(tk) as a zero-mean white noise sequence. For the present such
statistical assumptions are important only insomuch as they at-
tribute the desirable property of unbiased convergence to the
least squares algorithm, i.e. the estimates converge to the true
values of the parameters. 1In fact when the assumption of white
noise is not valid for n(tk), which is usually the case, the least
squares parameter estimates will in general be biased -- hence
the origin of many other parameter estimation routines as attempts
to overcome the problem of bias. However, at this stage and for
the next two steps in our development of the LKF, it is not

essential to have any statistical assumptions since the inter-

mediate algorithms of these sections are derived using determin-
istic arguments alone.

We may also observe that had we wished to fit a higher order
polynomial to the experimental data, so that in place of equation

(3.6) we have

_ _ 2 n "
y(tk) = BO Bltk + B2tk + ... F Bntk + n(HJ , (3.15)

it would have been possible to redefine the vectors x and o of
(3.7) as,

T

X (t 2 n

= [1.0, t K e

k) k't
(3.16)

o = [80, _Bl' 82, ey Bh]

and thus to arrive at an identical formulation for the least squares

estimates of (3.11). This is one benefit of employing the concise

vector-matrix notation for its easy accommodation of problems

with different and high dimensions. Further, recalling section

2.2.3 and the discussion of model structure identification, it

is possible to see how (3.15), as a model of the same data set,

has a different structure from the model of (3.6). For the two

structures, an estimation algorithm would almost certainly yield
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different values for the parameters BO and Bl depending upon the

particular model to which they may belong.

3.2 Extending the Principle of Least Squares Estimation

Instead of having a single scalar observation, as in equa-
tions (3.5) or (3.6), consider the situation where we have I such
noise-corrupted measurements of I different variables, relation-
ships for which are to be regressed upon a number of other

gualities, i.e.

yi(6) = x] (g )a; + ny(g)
o
Yo () = x5(t)a, + ny(t) (3.17)

T
y, (&) = §Z(tk)gz + n, ()
so that along the lines of (3.8) we can write concisely,
yt,) = X(t)a + n(t) (3.18)

The vectors X(tk) and ﬂ(tk) are of dimension 7, a is an n-element
vector of parameters Aqr Ooy eeep Aoy and X(tk) is an 7 x n matrix
containing elements of the vectors 51, 52, ey EZ' An example
will serve to illustrate the construction of equation (3.18).

Suppose,
yp(t) = xp (o + x (g )ay + ny(t))
(3.19)

vy (t) = (g )ay + x3(t da, + n,(t) '

then,
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yq(t,) x) () %, (8 ) 0 0 (al“ n, ()] (3.20)
= +
Yo (£ ) 0 0 x, () x3(t )l o, n, ()
o3
(y) (x) 0y | (n)
(o)

Thus for (3.18) we can set up the least squares loss- function

(which is a scalar quantity),

Il &>
7ITMZ

Uy (t) = X(£)8) T (y(t) - X(£,)8)]} (3.21)
1

and once again setting 9J/98 = 0, obtain (see Appendix 1) the

least squares estimates

Noor -1 N oo
8= X (e )X(e )] T X (e )y (e )] . (3.22)
k=1 k=1
Now let us assume that in (3.17) we know the parameters o,
but we wish to estimate values for the quantities §(tk), which

are assumed constant but unknown. Taking the illustrative exam-

ple of (3.19), equation (3.20) can be restated as,

vyt )] Jag ay 0] [xy] [nge) . (3.23)
= +
[Yaltd | [0 a3 og 30 ()
(y) (A) X4 (n)

where the argument t, has deliberately been omitted from X since

by assumption §(tk) E X, a vector of constant, time-invariant
quantities. For the problem of (3.23) three guantities, Xy X2,
x3, are to be estimated, whereas previously in (3.20) there were
four quantities, Qpr Ogy gy O,y to be estimated. By analogy with

the derivation of (3.22) we obtain from (3.23),
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) (3.24)

in which A is a matrix with the known parameters<ﬁ-as some of its

elements, such that the least squares estimates of X are given by,

N -1 N
&= [JaTal 17 aTy(e
k=1 k=1

W (3.25)

As an aside we may note that (3.25) can be simplified since

A is a constant matrix and therefore independent of tk; hence,

-1 N
% = [NaTa] (AT ] y ()]
k=1
-1, 7. -1.7 %
= (1/N)A “(A") "A [EX(tk)] , (3.26)
k=1
so that
_l N
=270 (/M) ]yl . (3.27)
k=1

Notice that now the quantity {-} in (3.27) is nothing more than the

sample mean value of the vector y(t,). This means that in the

k
simplest scalar equivalent where X is linearly proportional to vy,

that is y(t = ax + n(t the least squares estimate of x ac-

) )
k k'’
cording to (3.27) is simply the mean value of y divided by a, in

other words

N
& = (1/Na) ) y(t,)
k=1

Let us summarize then the development thus far so that in the
following section the endpoint of the analysis can be restated in
more detail. We refer to Figure 9. Here, having passed through
the stage of multiple regression analysis, we are in a convenient

position to observe in (3.22) and (3.25) an important duality be-

tween problems of parameter estimation and state estimation. The

same correspondence is evident in the discussion of section 2.3.
It is possible to see that (3.25) provides least squares estimates
of the states of a system which is time-invariant, or at steady

state, if we anticipate the future interpretation of x as a vector
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of state variables. However, we are now at the transition be-
tween the limits of usefulness of the illustrative example of
section 3.1 and a return to the notational and conceptual con-
ventions of section 2.1. The remainder of section 3 focuses upon
the problem of state estimation. We shall therefore depart from

the problem of parameter estimation until later in sections 4 and 5.

3.3 ¢ The Desired Nature of the Kalman Filter

In order to define the desired nature of the LKF algorithms,
it is first necessary to introduce briefly two versions of the
internally descriptive process model discussed earlier in section
2.2.2--for more detailed presentations of these topics the reader
is referred to, for example, Rinaldi et al (1979), and Szsllési-
Nagy (1976). Let us suppose, therefore, that the dynamic behavior
of the state of a system can be described by the following linear

vector differential eqguation,

x(t) = Fx(t) + Gu(t) + LE(t) (3.28)

where from section 2.1 and Figure 3 x is an n-dimensional state
vector, u is an m-dimensional vector of measured input disturbances ,
£ is a p-dimensional vector of stochastic, unmeasured disturbances

(system noise) and F, G, L are respectively n x n, n x m, and n X P

time-invariant matrices. Equation (3.28) is often referred to as

a continuous-time description of process dynamics because of the

argument t of the variable quantities. If equation (3.28) is in-
tegrated over the interval tk—l > tk we may obtain the corresponding

discrete-time model,

x(t ) = ox(t, ) + Fu(t, 1) + Ag(t (3.29)

k—l)

in which

o
il

A
exp (F[tk -t )

2
=I+Fl-t ] +’%T[tkﬁi—1]2 + .. (3.30)
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where I is the identity matrix, and

Aot

Tu(t, _;) = / o(t, 1) G(t)u(r)dr (3.31)
tr-1

ME(ty ) = fﬁ{é(tk, TL(t)g(t)dr . (3.32)

Y1

Strictly speaking, ¢ in (3.29) is not time-invariant if the samp-

ling interval (t ) 1s not constant; unless otherwise stated,

k - k-1
however, the sampling interval is assumed to be constant in the
following.

To complete our characterization of the input and output
behavior of the process we require a representation of the noise-

corrupted output observations of the state variables, i.e.
(3.33)

where y(t is an (-dimensional vector of output observations,

k)
ﬂ(tk) is an Z-dimensional vector of random measurement errors

(measurement noise) and H is an 7 x n observations matrix. This

discrete-time form of the output measurement process 1s preferred,
since generally it is possible to obtain only discrete-time, digi-
tal measurements of X(tk) and not continuous-time, analog records
of system behavior.

Two points are worth noting in connection with the discrete-

time representation of (3.29) and the state transition matrix ¢

of (3.30), since these may be unfamiliar to the reader. First,
suppose for simplicity in (3.28) that u(t) = £(t) = 0 and then
take the scalar equivalent of an unforced system dynamic response,

i.e.,
x(t) = £x(t) (3.34)

so that an analytical solution for x(t as a function of x(

k) tk—l)

is given by
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x(t) = e®(flt, - £, Dx(t,_ ;) = ¢x(t,_;) (3.35)

The analogy between the scalar ¢ of (3.35) and its matrix equiva-
lent & of (3.30) should now be more evident. Thus we may remark
that the solution (3.29) of the differential equation (3.28) is
the vector-matrix equivalent of solving the general linear first-
order differential equation with the aid of an integrating factor
(see Dorf, 1965, Stephenson, 1966). Second, had we chosen to
solve (3.34) by the following first-order finite difference ap-

proximation, for small time-intervals,

x(t,) = %% = X(Ti) : :(tk;l) = fx(t, ;) e
k k-1 '
then we could have obtained,
x(ty) = x(ty 1) + [tk - tk_l]fx(tk_l)
= (1 + f[tk -t Dx(t ) (3.37)
= ¢' x(t, _4)

Hence the analogy between ¢' as a first-order approximation of ¢
and as an equivalent of the first two terms in the Taylor series
expansion of the matrix ¢ should also be apparent.

But let us return to specification of the desired nature of
the LKF; it is as follows. Given the two system characterizatidns
(3.28) and (3.33), or (3.29) and (3.33), determine an "optimal,"
in our case least squares, estimate X(t) for the state variables

X(t) together with the variance-covariance matrix P(t) of the

estimation errors, .that is

2(t) = Ex(t)} (3.38)

and

T
ER(t) - x(t)) (R(t) - x(t)) } . (3.39)

P(t)
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In other words the filter is to provide a picture of the time
evolution of the estimated mean, or most probable, values of the
state variables; and it also attaches a measure of confidence
(or uncertainty bounds) to these estimated values, as provided
by the estimation error covariance matrix.

We have already noted this desired parallel development
of estimates and estimation errors in Figure 8 and section 2.3.
0f course, what we seek is a recursive (on-line, real-time)
estimation algorithm of the type given by equation (2.4). The
next step is therefore the derivation of a recursive version of
the least squares algorithm of (3.25) in the preceding section.
In this a crucial connecting link is that equation (3.33) above

looks remarkably similar to (3.24), as indeed it is meant to.

3.4 A Recursive Version of Least Squares Estimation

All three versions of the least squares algorithms of (3.11),
(3.22), and (3.25) yield estimates from one computation when all
the N sampled observations are available. Clearly, in the con-
text of Figure 5(b), a recursive algorithm should be capable of
computing an updated (a posteriori) estimate at time tk given a
forward prediction (a priori estimate) based on the information
available at the previous sampling instant te_1- Such a capa-
bility can be translated either into an equation of the structure
of (2.4),

) = &(t,

K)o Kt ele)) (3.40a)

k
where E(tk) is some form of model prediction response error, or
into an equatiocn oi the type,

L+
%(t

W)= Mpe ) R(E) F My (e )y (e (3.40Db)

Both of equations (3.40) will represent the essence of the re-

cursive estimation algorithms for our purposes. In (3.40b) the
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the matrices Ml(tk) and M2(tk) determine how the a posteriori
estimate is constructed from an intelligent combination of pre-
diction and actual observation. From Figure 8 it should be
evident that 3(t;) and z(tk) are implicit in the computation of
g(tk) in (3.40a).

Let us consider (3.33),
y(t) = Hx(t) + n(t))

so that if the system displayed no dynamic behavior, estimates for
§(tk) are given by direct analogy with (3.25) as,
k T -1 k T
2(ty) = EZH H ] [zg yepl . (3.41)
j=1 j=1
A comparison of (3.41l) with (3.25) shows an important difference:
in (3.41) we have inserted the argument tk for the estimates g(tk).
We are still assuming that the vector of quantities x does not
vary with time but that the estimates g(tk) of those guantities
will be functions of time, since as each new piece of information
is serially processed by the recursive algorithm, the new value
of g(tk) will change as it converges to the true value of x. One
may view this as tantamount to minimizing a loss function J(tk)
which varies with time, i.e. in line with (3.21),
k T
J(t,) =j;,jl{<1(tj) - HR(t)) 7 (v(t)) - HR(E)))  (3.42)

The loss function varies with time because new pieces of informa-
tion are continually becoming available for analysis; the estimates
g(tk) therefore represent the new estimates which result from a
recomputation and minimization of J(tk) over all the currently
available observations. The significance of estimates that vary
with time will become apparent, not surprisingly, when the system
under consideration exhibits dynamic behavior and thus requires
the estimation of time-varying quantities.

For the derivation of a recursive least squares algorithm,

we first define,
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(3.43)

so that upon substituting equations (3.43) into (3.41) we obtain,
*
% = 3.44
x(t,) P (£, )b(ty) . _ ( )

Now observe that the following recursive relationships can be set

up, for P* and b,

k k-1
[P*(tk)]—l = [JE'H] = [ JHH] +H'H
3=1 3=
= [P*(tk_l)]'l + HUH (3.45a)
K k-1
ble,) = [) Bly(e) 1 = [] Hyk)) + Hy(t)
j=1 J j=1 J
T
= b(t,_q) + Hy(t) (3.45b)

and thus the matrix P*(tk) and vector g(tk) may be computed as
functions of their previous values P*(tk_l) and g(tk_l) at time
tk—l' The application of some matrix manipulation (see Appendix

2) yields eventually the recursive least squares algorithms,

R(t,_) + PF(t_HTITHP* (g _)HT] {y()-BR(5 )}
(3.46)

| >

(t,)

1

PH(t,) = PH(t,_)-P*(t_H [THP¥ (6 _)H'T HPF (g ) .

There are a number of features to observe in the nature of the
algorithms (3.46): '
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(1) Let us put

T,-1

YHT 1 , (3.47)

T
= *
K*(t,) = P*(t, J)H [I + HP*(t,

then we have in the first of equations (3.46),

8(tk) = 3(tk_l) + K*(tk){z(tk) - Hg(tk_l)} (3.48)
for comparison with (3.40a). Since by inspection of
the measurement equation, (3.33), Hg(tk_l) in (3.48)
is equivalent, as it were, to a prediction &(tk) of
the actual observations y(tk), it is possible to see
explicitly how the correction applied to the old
estimate g(tk_l) is a function of the weighting (gain)
matrix K*(tk) and predicted observation errors.

(ii) Alternatively, by rearrangement of (3.48) we have

R(t,) = [T - K*(LIHIR(E, ) + [K*(e)]y(t,) (3.49)

for comparison with (3.40b), where g(tk_l) has been
substituted as the best a priori estimate g(t;) of

the value of x at time t This accords with our

current model of the system as one of steady-state
behavior, see also section 2.3.
(iii) Finally, a point to which we shall return later, notice
'~ that the algorithms of (3.46) require the specification
of initial conditions for the estimates g(to) and the

matrix P*(to) at the starting time tk = to.

3.5 Incorporation of Some Statistical Information

Although occasional reference has been made to some desirable
statistical properties required of the various random processes in
our system characterization, we have not yet indicated how such
information might be incorporated in the estimation routine. The

algorithms of (3.46), for instance, have been derived by deterministic
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arguments alone. This section, therefore, will modify equation
(3.46) to include some statistical assumptions about the measure-
ment errors H(tk) which appear in equation (3.33) of the system
model. A comparison of the algorithms (3.46) with the desired
objectives of the LKF, that is equations (3.38) and (3.39), sug-
gests that we should seek a statistical equivalent of the matrix
P* for substitution into (3.46). The intention is that the
interpretation of estimation error variance-covariance can be at-
tached to such a matrix.

First, however, it is necessary to demonstrate the conditions
under which the estimates of g(tk) from (3.46) are unbiased.
These conditions will turn out to be equivalent to those quoted
earlier in equations (3.12), (3.13), and (3.14) of section 3.1.

From (3.41) we have,

k k
2(t,) = (] BRI TH) ETy (e (3.50)
=1 j=1 J

which, providing H is a matrix of constant valued elements which

are not correlated with X(tj)' gives (compare with (3.26)),

k
2(t,) = [kHTH]-l[HT } oy (t.)] (3.51)
-1, 1. -1.TK
= (1l/k)H “(H") “H ) {Hx(t.) + n(t.)} (3.52)
j=l - ] = ]
where we have substituted X(tj) = H§(tj) + H(tj) from (3.33).

Rearranging (3.52),

k

= -1 k

g(tk) = (1/kfH H[Zlﬁ(tj)‘l + (l/k)H_l[z ﬂ(tj)] (3.53)
J= ' j=1

so that taking expectations,

K Lk
St} = (1/k) J&{x(t) ) + (/WE I} . (3.54)
=k =1 = 3 j=1" -3J
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Hence, under the assumptions that since we are dealing with a

system which does not exhibit dynamic behavior, i.e.

) =x

such that

i
T
X

= X ’

g{i(tj)}

and that n(tj) is a zero-mean vector random process, i.e.

€Tﬂ(tj)} =0 ’ (3.55)
then (3.54) becomes,
6Tg(tk)} = X . (3.56)

Equation (3.56) implies that the estimates g(tk) are unbiased for
the given conditions.

For ease of illustration perhaps we might briefly remove some
sophistication from (3.54) above. If we had not applied the
expectation operator to (3.53), then we should have, with the as-

sumption concerning the time-invariance of x,

k k

2(t,) = (1/K) Ix+H T (/K ] n(t)] . (3.57)
3=1 =1
Thus
_l k
R(t,) = x + H T[(1/k) } n(t.)] . (3.58)

Suppose now that we had available an infinite number of samples,

k » », and that the population of random variables from which
ﬂ(tj) are drawn has a mean value of zero, equation (3.58) then
states that g(tk) converges to X in the limit as k tends to
infinity. Equation (3.54) with the assumption of (3.55) also
states this but in a rather different fashion. In practice, how-
ever, one 1is very unlikely to have even a large number of measure-

ments available in the kind of environmental engineering systems
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under study here. The implication of this is that with a finite
and small number of k samples it is improbable that the mean
values of those sample realizations of n(tj) are precisely zero;
g(tk) will be accordingly inaccurate as an estimate of x. The
point of imposing the more rigorous statistical assumptions 1is
therefore to acquire the comfort of knowing that the algorithm
should "behave nicely" under certain limiting conditions.
Continuing the analysis, we can set up from (3.53) an ex-

pression for the variance-covariance matrix of estimation errors.

We have
k _lk
() = (1/k) ] x(t) + (L/KH ~]n(ty) (3.59)
3= =17
which providing E(tl) = §(tj) = E(tk) for all j, gives
_lk
2(t,) = x(£) + (L/KE "] nlt) . (3.69)
=

We wish now to compute the covariance matrix of the estimation

errors g(tk), namely the matrix P of (3.39),

P(t,) = coviit(t)} = &l&(L )X (£)}

= BL(R(E) - x(5)) (R(e) - x(6,0TF (3.61)

in which the errors are defined by,

From (3.60) we can substitute for these errors giving
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cov {&(t,)} = & 1(/0HET zn<t N (/kH 1zn(t)1T

j=1 j=1
k k
=6l E N T a1 I el @ hHT)
j=1 ] j=1
2 k k T -1
= & /x)H [2 L nity " (kg yEh ™. (3.62)
1=1F1 g

We now make a second assumption about the statistics of thk) by

stating that the vector sequence of ﬂ(tk) is not correlated with
itself in time, i.e.,

T -
Eln(tn ()} =R &5 . (3.63)
Thus in (3.62), again making the assumption that ﬂ(tj) is uncorre-
lated with the elements of H so that the expectation operator can

be taken inside the summation procedure,

Ry = (L/kHE [Z ZéTn(;Qn (£} @ i
i=lj=1
k k
= (/x%)E"t () I R§ ](H) -1
i=1 j=1
Hence, finally
P(t,) = (1/k)E TruT) "L . (3.64)

Equation (3.64) gives a concise expression for the estima-
tion error variance associated with g(tk) as an estimate of x.
It is worth noting an important characteristic of this relation-

ship by reverting once more to the scalar example. Assume we have
a measurement equation from (3.33) as,

y(t) = hx(t) + n(t) (3.65)
which would give for (3.64),

plt,) = (1/k) (xr/h?) (3.66)
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where r is the variance of the random variable n(tk), compare
with equation (3.13). It is now possible to see from (3.66) that
as we increase the number of measurements, i.e. k increases, the
estimation error p(tk) decreases and thus our estimates g(tk)
become progressively more accurate -- recall the discussion,
therefore, of section 2.2.1.

The clue to establishing a relationship between P(tk) of
(3.64) and the matrix P*(tk) in the algorithms (3.46) is given
by the definition of P*(tk) in (3.43), i.e.

k

A - - T, -
pr(t,) = 1] wHl Tt = (ummE ) : (3.67)
J=1
So if we post-multiply (3.64) first by HT and then by R-l, we
obtain
T -1 -1
P(tk)H R = (1/k)H
and post-multiplying this equation by (HT)_l yields
P(tk)HlR_l(HT)_l = (a/xE t@h ™ = (kuTH1 L
k
= [ mTH] !
j=1
Therefore,
P(e )R THD T = (e (3.68)

The relationship (3.68) permits us to substitute for P*(tk)
*
and P (tk_l)
dix 3) gives the following recursive least squares algorithms for

in (3.46), which after some manipulation (see Appen-

the state estimate and error covariance matrix updates of a sys-

tem at steady state,

R(t,_)) + P _H [R(t,_DH + Ry (t) - HR(g_))
(3.69)

1%
A
I

P(t, ) - P(tk_l)HT[HP(tk_l)HT + R]—lHP(tk_l)

o
~
i
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Reference to Figure 9 indicates that one step remains in
the derivation of the LKF: that of introducing a process dyna-
mical description and thereby relaxing the constraint of assuming
time-invariance of the state of the process. Taking stock of the

developments thus far we can summarize as follows.

3.5.1 Summary

For the measurements (observations) relationship of equation
(3.33),

y(t,) = Hx(t, ) + n(ty)
where the state variables E(tk) do not change with time, i.e. in

terms of the discrete-time model description of (3.29),
x(t) = x(t, ) (3.70)

we have that, on receipt of the measurements Z(tk) we can correct
the previous (a priori) estimates g(tk_l) of i(tk) and the asso-
ciated matrix P(t,_y) of (a priori) estimation error covariances
according to the algorithms of (3.69). If we draw together the
earlier discussion of sections 2.3.1 and 3.4, and in particular

if the notation introduced in section 2.3.1 is recalled, a useful
modification of (3.69) can be suggested. Henceforth in (3.69)

(t 1ty _y) and P(ty |t ;)
respectively so that this signifies that R(t, [t,_;) and P(t [t _;) are

let us denote g(tk_l) and P(t, ,) by %

the state estimates and error covariance matrix predicted at time t, on the

k
basis of all measured information up to and including that avail-

able at the last sampling instant t Likewise g(tk) and P(tk)

in (3.69) may be denoted by g(tk‘tk§ ;nd P(tkltk) respectively
which thus represent the updated (a posteriori) estimates and
covariance matrix at time tk given Z(tk)' A schematic interpre-
tation of this procedure and the associated notation is provided
by Figure 11.

The algorithms (3.69) actually characterize the LKF for the

rather special system behavior of (3.70) with the measurements
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of (3.33); this will become evident in the next section. The
problem now, of course, is one of determining how to extrapolate,
or predict, the evolution of the state estimates and covariance
matrix over the interval tk—l > tk when (3.70) is no longer valid
because the system displays unsteady-state behavior.

3.6 The Discrete-time Linear Kalman Filter

The "discrete-time" qualification in the title of this sec-
tion derives from the fact that the algorithms are associated with

a discrete-time representation of the system state variable dyna-

mics, i.e. from (3.29),

§(tk) = ¢§(tk_l) + FE(tk—l) + Aé(tk—l) (3.71a)
and with a discrete-time observations equation
X\tk) = Hi(tk) + ﬂ(tk) . (3.71b)

Given this model of the system dynamics we must consider how a

forward prediction, or estimate g(tk]tk_l), can be made on the

basis of (3.71). Suppose we have available the most recent up-
dated estimate, g(tk—l'tk—l)’ we have measured E(tk—l)’ and under
the assumption that

€{§(tk)} =0 (3.72)
then a "best" estimate g(tk|tk_l) is provided by

el ) = 0R(ty It ) +Tuly ) . (3.73)

This is simply (3.71) with the state estimates substituted for

i(tk_l) and with the stochastic sequence vector §(t ) set equal

to zero; since we cannot know §(tk_l), then for pregiétion it %s
reasonable to assign the most probable, or mean value to this
variable. We are clearly interested to know whether g(tk|tk_l)
from (3.73) will be an unbiased estimate, i.e. €{g(tk|tk_l)} = 0.
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Subtracting (3.7la) from (3.73) gives, where g(tk\t
x(t, |t t) = Rt [t - x(t),

k—l)

k—l) - E(tk) and §(tk

x(t

x(ty Mt ) = 0x(t, [t ) - AE(t, ;) . (3.74)

hence,
Eix(t, [t )} = ¢€{g(tk_l|tk_l)} - AglEt, Y (3.75)

which by assumption (3.72), that £ is a zero-mean stochastic pro-

cess, implies that g(tkltk-l) will be unbiased provided E(tk—lltkrﬁ

is unbiased. This is almost a circular argument and will eventually
require certain assumptions to be made about the initial conditions

of the filter.
Given (3.74) we can also set up a relationship for P(Hth_l),

the estimation error covariance matrix extrapolated across the

interval teoy 7 by

Pyl ) = covix(g [y )Y = &y 14 ;) - Mg 1)
(0%(t |t _,) - Mgl )T

e T T T T

= €kt [t DX (5 _ [t _j)1e" - NEE(E X (1 [t ) Y0

- o8t |t _EN (e, INT + a8l e, T L (3.76)

A ] 5 - 3
Hence, under the following assumptions,
€{§(tk—1)§(tj—1)} = Q8 5 (3.77a)

and

for all k, (3.77b)
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which imply, inter alia, that the system noise £ is uncorrelated

with the estimation errors x, and with

e T
k-1ltgo1) = EE e E (g le 1))

that

P(t T

e, ) = oF(t o + agaT . (3.78)

k
The reader may now be somewhat surprised to learn that e-

guations (3.73) and (3.78) in fact complete the derivation of

the LKF. We can at last summarize thus:

o For the system characterization of (3.71) the linear

discrete-time Kalman filter algorithms are given by,

(i) Prediction: between tk—l and tk from (3.73) and (3.78):
Sttt ) = o%(t, [t ) + Tult, ;) (3.79a)
P(t, |t, ,) = OP(t e, )ol + AQAT (3.79b)
k' k-1 k-1'"k-1 .

(ii) Correction: across tk on receipt of Z(tk)' from (3.69):

2t 1t = R ]t ) + Kg) ly(g) - BR(g It )} (3.79¢)
P(t lt) = [I - K(e JHIP(t, |t ) (3.794)
where, the Kalman gain matrix K(tk) is given by

_ T T -1 (3.79e)
K(t,) = P(tk|tk_l)H [HP(tk|tk_l)H + R]

In (3.79¢), (3.794d) and (3.79e) observe that we have adopted the

notation §(tk|tk_l) and P(tk|tk_l) etc., as suggested for the
algorithms (3.69) of the previous section.
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3.6.1 Some Initial Comments on the Filter

Later in section 3.8 some important qualitative character-
istics of the filter will be discussed in detail; here we merely

note a number of technical details concerning the algorithms (3.79).

(i) Gathering together the statistical assumptions of (3.55),
(3.63), (3.72), and (3.77) we require,

Ele(e )} = &ln(g )} =0

T
Ele(t ) e (£}

il
0
o
.
o

S{Q(tk)gT(tj)} = R 6y

It
o

T
ele(t)n (tj)}

(ii) If é(tk) and ﬂ(tk) are Gaussian normal distributions,
then a least squares, a maximum likelihood, or a Bayesian minimum
variance approach to the filter derivation all yield identical
results. (Indeed, among several other derivations, Gelb (1974)
takes the desired filter structure of (3.40b) and proceeds to
obtain those forms of the matrices Ml(tk) and Mz(tk) which pro-

vide a minimum value for the variance-covariance matrix P(tkltk).)

(1iii) Figure 12 shows an interpretation of the updating and
prediction schedule of the filtering algorithms; when compared with
Figure 11, Figure 12 indicates how the algorithms now permit the

prediction of the time-varying state vector.

(iv) An implementation of the filter is represented by the
block diagram form of Figure 13. If the discussion of section
2.1 is recalled together with Figure 4, Figure 13 re-emphasizes
the crucial role of instrumentation and the measurement process
in facilitating, or degrading, the performance of the filter as
a means of restructuring information about the behavior of real-
ity. Moreover, since the filter must inevitably be constructed
round an imperfect model of reality its matrices ¢ and H are

only approximations to the true matrices ¢' and H'.
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(v) The errors between the response observations and their
predicted values, in (3.79c), deserve special mention, for they
will subsequently become important in assessing the results of

applying the filtering algorithms. They are denoted by,
el e 1) = ylt) - HR(t, [t ) (3.80)

and are frequently referred to as the innovations process residual

errors, or as the one-step ahead prediction errors.

(vi) We may also note that subtracting 5(tk) from both sides
of (3.79c) yields,

gt th ) - xley) = &t 6, ) - wit)

+R(E) ly(t) - BR(E [t 1))

k

which, after substituting for X(tk) from (3.71), gives

x(t, [t ;) + K(giHx(t) + K(t)n(t) - K(tk)Hg(tkltk_l)
x(t it ) - KIQIHER(G [t 1) + K(g In(g)

(I - K(tk)H]g(tk|tk_l) + Kt ) n(y) - (3.81)

x (5 )

Hence,
Eik(t, It ) ) = LTI - K(t, JHIELR(E, |ty 1)
+ R El(e, ) T (3.82)
Equation (3.82) states, therefore, that g(tkltk) will be unbiased

providing g(tk|tk_l) is unbiased, which in turn with (3.75)

implies that the a priori (initial) estimates should be chosen as

unbiased estimates, i.e.
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Rt |t ) = x(t)

with (3.83)

P(t,|t,) = coy{g(t0|to)}

O‘ 0

These represent the desired initial conditions for the filter.

(vii) Using (3.82) an alternative expression for P(tk|tk) may

be derived.
Plt, |t,) = Elx(t, [t )% (£ ]t))
= &[T - K(gIHZ(t [t )T (tkltk PIT = Rt )H]
T T ~ T T
+ R(E)INEINT (1)K () + [T - R IH X [6 )0 (£)K (5)

+ RN ()X (& [, )T - K(e)H " (3.84)
which with the additional assumption that*
ﬁxwk|kl) (t }-&nw)x(t| ﬂ}=g
then,
P(tk|tk) = [I - K(tk)H]P(Hth{ﬂ[I —IqtknﬂT
+ R(E)RKT (£)) (3.85)

(viii) Lastly, notice that if ¢ = I, and E(tk) = g(tk) = 0 in

(3.71), i.e. the state variables are time-invariant, then (3.79a)
and {3.79b) give X(t, |t, ;) = &(t,_;|t, ;) and P(t lt, ;) =
) so that upon substitution of these results in (3.79c),

Pty 11t

it follows from the measurement errors being uncorre-
), being conditioned upon measirements

ime t, _;, will be uncorrelated with n(t,).

* In fact,
lated w1th time that x(t | £
up to and including those a% %
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(3.794), (3.79e), the filter reduces to the algorithms of
(3.69).
3.7 The Continuous-Discrete Linear Kalman Filter

If the discrete-time model of the system state dynamics in

(3.71a) is replaced by the continuous~time, ordinary differential

equation representation of (3.28) the qualification "continuous-
discrete" for the LKF should become self-evident. Since we shall
retain the discrete-time measurement process, in (3.33) or (3.71lb),
and in view of the manner in which we have derived the LKF, it
should also be apparent that for the continuous-discrete version
of the filter we are seeking replacements for the forward extra-
polation algorithms of (3.79a) and (3.79b). In fact the objective
of this section is to modify only algorithm (3.79%a) and we shall
not in any case proceed to the completely continuous version of
the LKF. The reasons for thus restricting the argument are:
(1) that this form of the continuous-discrete filter
provides the best conceptual link with the form of
the extended Kalman filter to be derived in section 5;
(ii) that in practice we shall very rarely require the
analysis of continuous-time observations; observa-
tions are nearly always sampled, as has been
mentioned before;
(iii) that if we do require knowledge of the system be-

havior between t and t then attention will

k-1 k'
almost certainly be focused upon the evolution
of #(t[t,_;) and not on P(t|tk_l);

rather easier to derive an expression for the

it is also

evolution of R(t|t than it is to derive an

k—l)
equivalent expression for P(tItk_l).

Recall that from (3.28)

x(t) = Fx(t) + Gu(t) + Lg(t)
so that for tk—l-it < tk'
g(tk_lltk_l), we have knowledge of u(t), and with €{§(t)} =0,

then a "best" extrapolation of g(t|tk_l) is provided by the

if we have available the estimate
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solution of,

R tlt,_q) = FR(t{t, ;) + Gu(t) (3.86)
for ty.g 2t <t and
for R(t|t, _;) Rty 1t 1) at t = te 1

Therefore, for the continuous-discrete linear Kalman filter we

have the algorithms (3.79) with (3.86) replacing (3.79a). Figure

14 shows this version of the filter in block diagram form.

3.8 Interpretations of the Filter Covariance and Gain Matrices

At the very beginning of this derivation it was observed that
there is no really easy route to an appreciation of the Kalman
filtering algorithms. Prior to that observation the filter was
said in section 2.3.1 to behave so as to eliminate, or filter out,
the random noise effects of the § and n variables. The burden of
compensating for the lengthy derivation, and of fulfilling the
preview of the filter, rests with this section. Not surprisingly
it is to a scalar equivalent of the algorithms to which we return
for purposes of illustration.

In algorithms (3.79b), (3.79d4), and (3.79e) we have,

(3.79b) : p(tk|tk 7 —<I>o(tk lltk 19+ )\q)\
=¢ p(tk )+ \2 q (3.87)

(3.794): plt t) =11 - kit)hlp(t |t ) (3.88)

1

(3.79e): k(t) = plt |t _hin’plt [t _ ) + 1 (3.89)

Upon substltutlng for p(tkitk 1) from (3.87) in (3.88) and (3.89),
and assuming that h = 1, i.e. y(tk) = x(tk) + n(tk), gives after

rearrangement,
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plt, ft) = [ - k(e )10%p(t, 11t )
+ 11 - k(t,)12%g
k
2 2
k(t,) = [¢7p(ty 1t ) + A%q)

Given the relationships (3.90) and (3.91)

2 2
[ p(tk—lltk—l) + A°q + r]

(3.90)

(3.91)

for the estimation error

variance and the gain factor, the key to an appreciation of the

operating characteristics of the filter is to ascribe to the fil-

ter the properties of intelligence.

In other words,

how

"well"

or how "badly" does the filter "believe" it is replicating the

behavior of reality.

Table 1 summarizes various filter operating conditions

which are discussed in the following;

it is important,

however,

to recognize that Table 1 expresses relative and qualitative state-

ments about the expected behavior of the filtering algorithms.

First, we may note that k, the filter gain, is always less than

Table 1: A Summary of Filter Operating Characteristics in
Relation to the Gain and Covariance Matrices (or
Scalar Equivalents).
System noise | Measurement Gain Estimation error Estimate
noise variance corrections
q r k ol ke
large small (-»0.0) small
small large (-+1.0) large
large large
small changes slowly
large changes rapidly

large

large
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unity. Now visualize what this ration means in physical terms,

since,
(i) the numerator of k is a function of
Uncertainty propagated from the initial uncertainty in
the state of the system (p) + Uncertainty contributed
by the system noise (q)
(1i) the denominator of k is a function of

(p) + (g) + Uncertainty in the system output response

observations (r)

The implication is that if r is relatively large (in comparison

with p and q), i.e. relatively inaccurate measurements, k is rela-

tively:-small; and if r is small, k > 1.0. The effect of p being

relatively large, i.e. inaccurate estimates, is to make k large,

as is éhe implied effect of a large g, i.e. large unknown input

disturbances.*

From (3.79c) and (3.80) we may recall that the corrections
applied to the forward apriori estimates g(tkltk_l) are a product of
the gain k and the innovations process residual errors e(tkltk_l),
i.e. the error between actual and predicted output response. Thus
if the measurement errors are known to be small (r is small), the
effect is to make k large -- see Table 1 -- such that the filter
"takes a lot of notice" of the errors between predictions and ob-
servations, i.e. the filter weights the errors quite heavily.
Since the dbservations are accurate, any prediction-errors must
presumably result from a poor prediction which therefore requires
considerable correction. Likewise, when the filter "does not know

the process well,” in other words inaccurate predictions and a

* g may also be interpreted as a measure of the accuracy (uncer-
tainty) of the process model as an approximation to reality,
see Beck (1978c).
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large estimation error variance (p), errors between prediction and
observation are weighted strongly. On the other hand, when r is
large, or p is small -- the case of good predictions and/or poor
measurements -- the filter will tend to ignore the prediction
errors as k becomes small. In other words, the filter will attempt
to "filter out" the spurious fluctuations in € since it assumes
that the measurement noise is the source of these errors.

Table 1 also indicates that ‘for the gain k being small, p
changes slowly. This corresponds to the situation in which the
filter "believes" it has adequate knowledge of process behavior,

p will probably be small, and the magnitude of k will tend to set-
tle at some constant value. When k is large and p is changing
rapidly, the filter is much less certain of its ability to pre-
dict the variations in the output from the process under study.
The fact that p is changing rapidly, indeed decreasing rapidly,
suggests however that the filter is quickly learning the process
behavior and placing more and more confidence in its own
performance.

The reader should perhaps satisfy himself that the statements
of Table 1 are logically consistent. Hopefully it will now be
evident that the filter in theory responds quite intelligently to

the specified uncertainty in its operating environment.
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4. PARAMETER ESTIMATION AND CONVENTIONAL TIME-SERIES ANALYSIS

Let us return to Figure 9. The lergthy development of the
preceding section dealt with the central topic of state estimation
in which an on-line estimate of the state of a system is required
for process control purposes, see also section 2. In this section
attention will be transferred back to the problem of parameter
estimation, principally in connection with the subject of model
development and time-series analysis, but also as it relates to
possible applications in adaptive prediction and adaptive control
contexts. Our starting point, however, will be the introduction
of a rather useful form of black box model. The reasons for so
doing are that this model is regularly encountered in the liter-
ature on time-series analysis and that with suitable transforma-
tions into this form of model, many problems of parameter estima-
tion become amenable to recursive least squares and related tech-
nigques. The remainder of the section will then pick up the devel-
opment of parameter estimation algorithms beginning with a recur-
sive form of the least squares estimator of equation (3.11) in
section (3.1), see Figure 9. More detailed discussion of these
techniques and conventional time-series analysis can be found in,
for example, Box and Jenkins (1970), Eykhoff (1974), Young (1974),
and Soderstrdm et al (1978).

4.1 A Useful Form of Model

Some of the groundwork for introducing the model has already
been covered in section 3.3. We require the discrete-time char-
acterisation of (3.29) and (3.33), namely,

5(tk) = ox(t, ;) + Tult, ;) + Aglt,_4) o (4.1a)

It has already been shown how this discrete-time representation

of an internally descriptive model relates to the more familiar

continuous-time representation of the dynamic behaviour of a sys-

tem. The intention here is to demonstrate that, by means of a
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simple example, one can proceed from the continuous-time inter-
nally descriptive model via the above discrete-time formulation
to a typical input/output time-series analysis model. Perhaps
the origin of much of the scepticism surrounding black box models
lies here with the fact that most papers dealing with such sta-
tistical models assume a priori the form of the model. Any con-
nection back to the continuous-time internally descriptive model,
and hence to "reality", is thus lost and with it also may be

lost the attention and comprehension of the previously unacquain-
ted reader.

Our development will first oblige us to make the general
form of equation (4.1) more specific through a number of assump-
tions. For a simple, physicochemical example we shall then de-
rive a model from a component mass balance which resembles the
specific reduced form of (4.1). Hence from this meeting point
of particular example and non-specific model we shall finally

generalise to our proposed useful form of model.

4.1.1 From the General to the Specific

In (4.1) let us assume that the observations matrix H is
equal to the identity matrix I, i.e. all the state variables can

be observed linearly,

S
il

dx(t, 1) + Tult,_4) + Ag(t (4.2a)

k-1

y(t) = x(t) + n(t) - (4.2Db)

The restrictions of this assumption in practice are not great

- since ultimately we seek a model which merely characterises ob-
served input/output relationships without reference to any internal
state variable description of the process being modelled. With
this final objective in mind let us further combine equations
(4.2a) and (4.2b) such that by substituting for f(tk) = Z(tk)

- E(tk) from (4.2b) into 4.2a) we can eliminate f(tk)' i.e.

y(t) = nlty) = ely(ty_ ) = nlt, ] + Tult, ;) + A&t ;)

(4.3)
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which after rearrangement gives,

y(t) =oy(t, 4) + Tulty )+ Mg (t), _4) +n(t) —onle, D . (4.4)

[ lumped noise term ]

If we then assume that the system has only a single output, that

is the scalar y(tk), and define
vit,) = AE(g ;) + nlt) = én(t, ;) (4.5)

to be a corresponding scalar equivalent of the lumped noise term

in (4.4), we have

ylt) = oyt _4) + yult, ) + vit) . (4.6)

Equation (4.6) might thus be called a particular form of Multiple
Input/Single Output (MISO) model representation. It is multiple
input because we have retained the input u as nominally an m-
dimensional vector; the restriction to single output will be

discussed in due course below.

4.1.2 From the Specific to the General

For our physicochemical example we choose once again the
case of a dissolved substance decaying with first-order kinetics
in a continuous flow, continuously stirred tank reactor (CSTR),
see Fiqure 15. Here u1(t), uz(t), and x(t) are respectively the
first influent, second influent, and effluent concentrations of
the substance; V,q1,q2, and qy where do = (q1 + q2), are
respectively the tank liquid volume, first influent flow-rate,
second influent flow-rate, and effluent flow-rate, all of which
are assumed to be time-invariant. As with the example of section
3.1, 31 is the first-order kinetic decay rate constant. A com-

ponent mass balance across the tank reactor yields

dx (t) /dt = (q,/V)uy(t) + (g,/VIu,(t) - B.x(t) - (q,/V)x(t),(4.7)
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with the assumption that the substance concentration in the tank
is identical to the concentration of material in the effluent.

After rearrangement and upon integration over the interval

teo1 7 oty (4.7) becomes
x(t ) = ox(ty, _4) + yquylt ) + yyu (e ) o (4.8)
where ¢ = exp[—(B1 + qO/V)(tk - tk—1)] ’ (4.9a)

t
'Y1 = J k{exp [_(81 + qo/v) (tk - T)] (q,]/V) }dT ’ (4.9b)

Ex-1

it

k

Yo

“lexp (8, + q_/V) (t, - T)] (q,/V) }dr . (4.9¢)

1

To be precise, note that two further assumptions are implied by
(4.9):

(1) that if the sampling interval (tk - tk—1) is assumed
constant for this discrete-time representation, then
¢,Y1 and Y, are also constants;

(ii) that u1(t) and u2(t) for the integration interwval

<t < t, are assumed to be held constant at their

ty1 k

instantaneously sampled values u1(t and u2(t

x-1) x—1)7
this enables u1(t) and u2(t) to be treated outside the
integrals of (4.9)~--compare with the more general forms
of (3.32) in section 3.3.

At present (4.8) is a purely deterministic characterisation
of process dynamic behaviour; clearly, in line with previous
developments, it is necessary to complete the characterisation
by introducing a stochastic component into the model. From the
preceding section let us therefore hypothesise a lumped term
v(tk)——compare with (4.5)--which accounts for all aspects of un-
certainty in the observed behaviour whether they arise from un-
measured input disturbances ({) or from random measurement errors

(n) associated with measurement of the system output response.



-58~

In other words in (4.8)

y(t) = oy (t, 1) + Yjup(t ) + y,u,(t ) +vit) , (4.9

where y(tk) = x(tk) + n(tk) is the error-corrupted effluent con-

centration measurement. Now making the vector definitions,

Y =[Y1:Y2] and g(tk_1) = u1(tk-1) ,
up (Eyq)

we obtain

y(tk) = ¢y(tk_1) + lg(tk_1) + vty (4.10)
which permits a direct comparison with (4.6). Alternatively,
had we defined

o = [0,v1,¥,1F and z T(t,) = [y(t,_4),u,(t,_,),u,(t )]

= ritqrt2 = k k=1"7"1""k=1""7"2""k=-1 !
then y(t,) = alz(t,) + v(ty) = zT(t,)a + v(t,) (4.11)

¥ity 22 %y k 2 h)e k' y

which bears a readily evident correspondence with (3.8) of sec-
tion (3.1).

This is the mid-point of our development. The clue to fur-
ther development depends on the interpretation of (4.9) as a kind
of regression equation relationship. Notice first, therefore,
that (4.9) states essentially that the current value of the out-
put, y(tk), is a function of the previous output observation
y(tk_1)——hence the term autoregressive--and past observations
u1(tk_1),u2(tk_1) of the two inputs, together with the current
unknown realisation of the noise process v(tk). Equation (4.9)
is based securely, of course, on a prior knowledge of the various
physical and chemical phenomena which are thought to govern pro-
cess dynamic behaviour, i.e. it can be said to be an internally

descriptive model. Yet what if we suppose the converse? Imag-
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ine that we have time-series data Y(tk)’u1(tk)’u2(tk)’ with
k=1,2,...,N, but that we make no assumptions about the internal
nature of the system and simply view it as a black box. It may
then occur that analysis of the time-series suggests that the
current value of the output is more probably-a function of the
two immediately previous output observations y(tk_1),y(tk_2)
together with, say, u1(tk_1),u2(tk_1) and u2(tk_2). We could

in that event try to fit a relationship which "regresses" y(tk)

upon Y(tk-1)’y(tk—2)’u1(tk—1)’u2(tk-1)’u2(tk-2)’ namely

y(t) = v (Geq) + 0¥ o) +vqquy () + Yo (e g) + YU o) +vig),
(4.12)

and provided we define the parameter vector o and data vector z
appropriately, we can still arrive at the general form of rela-
tionship given by (4.11).

There may, or may not, be some plausible explanation of why,
in this particular example of the continuously stirred tank re-
actor, a model of the form (4.12) gives a better fit to the data
than (4.9). One might hypothesise, for instance, that there is
either a dead zone or imperfect mixing in the tank. However,
our particular example has served its purpose in the inductive
argument of deriving the proposed useful form of model. The
requirement now is for a further generalisation to be made. The
natural progression from (4.9) and (4.12) is to reason that for
an (m) multiple input/single output system description the cur-
rent value of the output can in general be a function of the n
previous multiple input and output observations,

m

n n
y(ty) = Z o,v(t, ;) + z Z YUt _g) + vt @.13)
i=1 j=1 i=1

This is one form in which the MISO time-series model is often
quoted. The determination of n is a problem in itself and is
known as model order determination; it is equivalent to the prob-

lem of model structure identification as we have already noted
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in section 3.1. Alternatively, if we introduce the backward

shift operator q~', defined by
q y(g)} = yit_y) (4.14)
(4.13) transforms to

n . m n .
y(t,) = [_Z1¢iq_{]y(tk) + '2 [ ) yjiq_l]uj(tk) + v(tk) . (4.15)

i= j=1Li=1

Hence, after rearranging, and with the following definitions of

polynomials in the backward shift operator

-1 -1 - -

Alq ') = 1-¢49 =059 2oL - ¢nd "’ (4.16)
6

-1, _ -1 -2 -n o, . :

Bj(q ) = Y399 Y52 T tygd i J=1,...m
we obtain

aa Sy = 3 @ Dusle) + vie) (4.17)

a syt ) i 3%k k ’ .

J=1

which also represents a popular starting point for papers on time-
series analysis.

There are a number of remarks to be made in conclusion of

this development. For instance:

(i) .The interpretations placed on equation (4.9) should
emphasise the sometimes thin line of distinction be-
tween the notions of black box and internally descrip-
tive models; the analyst could have arrived at the
given model either from theory or from empirical data
analysis. It is these opposite, yet complementary,
approaches which would define the character of the
model.

(ii) The MISO description has been chosen because it reflects
current usage in the large majority of time-series anal-

ysis applications. When dealing with the more complex
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multiple input/multiple output (MIMO) case, Young and
Whitehead (1977), for example, employ the model formu-
lation of (4.4). 1In this event it is customary to make

a prior definition of the zero and non-zero elements
P

mation routine. This definition of non-zero ¢ij ele-

ments specifies the causal relationships between process

of the matrix ¢ before applying any parameter esti-

output responses; it is in practice dictated largely

by theoretical considerations of the nature of the sys-
tem under study.

Any relationship which can be expressed according to
(4.11),(4.13) or (4.17) becomes amenable to the param-
eter estimation routines which will be presented in

the next section. This "useful form of model"” is indeed
quite flexible for it requires only that the equations

be linear-in-the-parameters (Eykhoff, 1974). To appre-

ciate this point, suppose we wish to estimate the param-

eters of the nonlinear relationship,

The problem can still be treated with ease since by

defining
T T
g = [¢11Y1] and _Z_ (tk) = [y(tk_1)l {1/u(tk_1)}] ’
h t,) =z
we have y(t,) = z (t )a + v(t)) ,

and the model remains linear in the parameters.
Lastly, we may observe that the lumped noise sequence
v(tk) has carefully been left undefined. Generally
v(tk) will be a non-white (or correlated, coloured)
random process; the manner in which one chooses to
describe it is closely tied to the particular choice
of parameter estimation scheme, see, for example,
séderstrdm et al (1978), Beck (1978c).
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4.2 Recursive Parameter Estimation Algorithms
Thus armed with three forms of our useful model, (4.11),
(4.13),(4.17), we shall in fact choose (4.11) as the most appro-

priate for the present, i.e.
y(t) = zT(t)a + vit,) (4.18)

with the vector definitions

ET(HJ=[Y“qu"”Y“kmLuﬂﬁqu"”uﬂH¢ﬁ'"”%ﬂHvﬂ'm“ﬁ“ti]'
T (4.19)
a = [¢1l--- l¢nlY11l--- IY1nl---l ml’ lYmn] ’

such that ET(tk) and o are vectors of dimension n(m + 1).

4.2.1 Recursive Least Squares
A comparison of (4.18) with (3.33) shows that we can sum-

marily quote the recursive least squares algorithm for the esti-

o

mates & of the parameters o by direct analogy with the arguments

of section 3.4 and specifically with (3.46). Hence

8t =&t _p) +P* (b2l 1+2T () Pr () z()] Ty (t) - 27 (5t _,h(4.20a)

-1_T

W&Q=W¢bp—W&bpy%HHE%EWH&4EWQ]3(%Wﬂ%4), (4.20b)

in which for this case,

>

k
[ ] g(tj)gT(tj)]_1 : (4.21)

%
P (tk) Ly
An important feature of the algorithms (4.20), which is not appar-
ent in the earlier discussion of section 3.4, is that these algo-
rithms do not require matrix inversion since the term [...] is a
scalar. If nothing else, this then is one of the benefits of
working with a single output system representation. (Likewise
also the LKF algorithms do not require matrix inversion for sys-

tems with a single output, see (3.79e).)
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4.2.2 The Problem of Bias

The fundamental role of least squares algorithms for param-
eter estimation can clearly not be denied. Yet neither can it be
denied that these algorithms suffer from a major restric-

tion, namely the problem of bias in the parameter estimates.

The many variants on the theme of least squares estimation have
their origins in the desire to overcome this problem of bias.

To see how the estimates 4 may be biased we can once again follow
an argument developed previously in section 3.5. 1In line with
equation (3.50) we have the non-recursive formulation of least

squares estimates,

k _1 k |
alty) = [j;;(tj)ET(tj)] [j£1§(tj)y(tj)] . (4.22)
Upon substitution of y(tj) = ETktj)g + v(tj) and after rearrange-
ment,
k T, -1 K T k v -1 K
a(t) = [j£15(tj)g (t)] [j£1g_(tj)§ ()] + [j;g(tj)g (t5)] [j;g(tj)v(tj)]
(4.23)
so that
k T 4 k
G(t) =a + [-£ z(ty) 2" (t5)] [-E zlevie)] . (4.24)

j=1 =1

For @(tk) to be unbiased, therefore, the following conditions
must hold,

€{E(tj)v(tj)} =0 , for all k, (4.25)

or, more specifically, recalling the definition of E(tk) in (4.19),
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Ely(e, _pvie)) =0 ,

I
o

€{y(tk_2)v(tk)}

Ely (e, _ vt}

|
o

(4.26)

E{u1(tk_1)v(tk)}==0 /

€lu (t,_Ivit )} =0 .

Of these the most probable conditions to be violated are those
requiring no correlation between the current noise process reali-
sations and past output observations y(tk—1)""’y(tk-n)' Only

if v(tk) = e(tk), where e(tk) is a white noise sequence, i.e.
€Tv(tk)v(tj)} = €Te(tk)e(tj)} =0, for k # 3, (4.27)

will the estimates be unbiased. Otherwise if v(tk) is auto-
correlated, say, this implies that v(tk) is correlated with
V(tk-1) which in turn implies through (4.18) that v(tk) is cor-
related with y(tk_1)—-since y(tk_1) is a function of v (t
and thus

k-1~

Elylt, vt} # o .

When the conditions of (4.25) are satisfied, and with the further
assumption that the noise sequence is normally distributed with
variance éTv(tk)v(tk)} = 02, it can be easily shown by arguments

similar to those of section 3.5 that




-65-

I

. - 2 T
P(t,) = covia(t )} =&lalty) - a) (Glty) - a)7}

’

k
L k)

k
P*(tk)[g{[_£1g(tj)v(tj)l[j

v(t.)gT(t.)]}]P*T(t
i J J

1

02P*(tk) : (4.28)

The covariance matrix of least squares parameter estimation is
therefore found conveniently to be proportional (under the limit-
ing conditions of large k) to the matrix P*(tk) computed from

the recursive algorithms (4.20)%*.

4.2.3. Unbiased Recursive Estimators

The conditions under which the least squares estimates are
unbiased will rarely be satisfied in practice. The outcome of
such a limitation on the applicability of the method has been
the generatibn of many other algorithms which strive to guarantee
convergence of the parameter estimates to their true values. 1In
a recent article S6derstrdm et al (1978) report on a comparative
study of four of the more commonly used variants of recursive
parameter estimation algorithms. Here we shall discuss a parti-
cular form of one of these variants, as indicated in Figqure 9,
namely the recursive Instrumental Variable (IV) algorithm due
to Young, e.g. Young (1974). Most pragmatists would probably
agree that there is little difference between the performance
of the various algorithms; our choice is dictated by the fact
that we shall subsequently demonstrate the use of an IV algorithm
in Part 2. Our choice is also influenced by current indica-
tions that the principle of the IV approach may well offer a
unified and comprehensive approach to the subject of system
identification itself (Young, 1976, Young and Jakeman 1978a,
1978b, Jakeman and Young, 1978, Young et al, 1978).

As we have already stated with respect to (4.26), the most
likely source of biased estimates is an autocorrelated noise pro-
cess giving rise to a significant correlation between the noise

sequence and past values of the output y. Suppose now that from

*In practice ¢g? would not be known but can be estimated as the
variance of the residual error sequence e (ty) = y(ty) - ET(tk)§
after the estimates & have achieved satisfactory convergence.
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the model characterisation of (4.17), and given suitable estimates
of the parameters in the A(q—1) and Bj(q—1) polynomials, denoted
ﬁ(q—1) and §j(q—1) respectively, a (deterministic) time-series

%(tk) can be computed by
A= T -1
R(t)) = [1 - Alg )]R(tk) + j£1Bj(q )uj(tk) . (4.29)

Viewed from the perspective of Figure 16 R(tk) clearly corresponds
to an estimate--since probably it is not generated from the true

process characterisation--of the hypothetical noise-free output

response of the system. And since we are in general discussing
systems in which the single state variable is linearly observed,
R(tk) here bears a strong notational and physical resemblance

to the notion of state estimates from the Kalman filter. Some
structural similarities should therefore be evident from a com-
parison of Figures 16 and 8. Inspection of (4.29) and (4.17)
shows further that : (i) variations in R(tk) should be strongly

correlated with variations in the noise-corrupted output obser-

vation y(tk); but (ii) these variations in R(tk) should be uncor-
related with v(tk) providing v(tk) is not correlated with the

measured input sequences uj(tk), i.e.
g{uj(tk)v(tz) } = 0 for all j,k, 7 . (4.30)

In fact the above two properties are precisely what is required
of the instrumental variables, though it is not necessary that
they be computed according to (4.29). Let us therefore call

&(tk) from (4.29) the sequence of instrumental variables and

denote (4.29) by the term auxiliary model (Young,1974).

The next step in deriving the IV algorithm is one of re-
placing y by & in the least squares algorithms so that the con-

ditions for unbiased estimates of (4.26) are modified to give
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E{&(t,_vity}l =0

gt vt} =0 ,

é’{fc(tk_n)v(tk)} =0 , r (4.31)
Eluy (g vt} =0

Elu (t,_ vt} =0 , |

which we have argued should indeed be fulfilled by the instru-
mental variables of (4.29). With the definition

2Te) = (R _)seee RIG_ )0 (G_) seee g () peet (6 4) et (51

(4.32)

and replacing z(t,) by g(tk), but not ET(tk) by QH%HJ, in (4.24),

i.e.

a(t,) = o + I

k .
J

e~ =
Il 1 %

T -1
g(tj)g (tj)] [

2(t. . p
1 ; _(tj)V(t])]

1
we can work backwards with this heuristic reasoning to the de-
sired algorithm.

In summary then, the recursive instrumental variable algo-

rithm is given by

8t =alt_p) + Pt 2 1+ 2N )Pt 2] {y(e) - 2T (e a1} ,

(4.33a)

Prig) = B¥E 1) - PHE_2I1+ Ze P (b _naw)] 2 e e )

(4.33b)
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with

R(t) =11 - Aqg Hlg(t,) + If?a (@ DL (t,) (4.33c)
k k j=1 3 4 i kb ! )

where

B*(t,) & }f%(t)zT(t)]‘1 (4.34)
k L 2REGIZY .

j=1
It should not, however, have escaped attention that we have
appealed to a circular argument in order to obtain the IV algo-
rithms: for calculation of the parameter values in (4.33a) these
same values are assumed to be available for computation of X in
(4.33c). Reference to Figure 16 should clarify the true intent
of the argument. For any given iteration through the block of
N data samples--recall Figure 5--the estimated parameters of the
k,k =1,
2,...,N. At the end of each iteration they are set equal to the

auxiliary model of (4.33c) are kept constant® for all t

new estimates ﬁ(tN) provided by (4.33a) and (4.33b); and if conver-
gence is guaranteed then a "better"auxiliary model yields "better"
estimates of a, and so on. Such a circular behaviour has earned

the title of bootstrap estimator for this kind of IV algorithm.

Of course, one question remains: what values should be assumed
for the first set of parameter estimates in the auxiliary model?
An intelligent and easily determined answer is to use the least
squares estimates, derived from a previous iteration through the
data, even though these values are probably biased.

Perhaps briefly at this point we might review some of the
similarities and differences between the IV, LS, and LKF algo-
rithms.

(i) The LS estimator of (4.20) amounts merely to a manipu-

lation of the observed input/output time-series data.
Whereas the assumed form of the model chosen to charac-
terise the observed behaviour is implicit in the LS
algorithms, through the definitions of the vectors &

and z, it is explicit in the IV estimator (as it like-

*They may also be adaptively updated in a recursive fashion, but
this form of the IV estimator will not be discussed here, see
Young et al (1971).
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wise in the LKF).
The similarities of structure between the LKF and IV
estimator ought to be self-evident from Figures 8 and
16.

The strong suggestion of equivalence between instru-
mental variables and state estimates deserves special
attention in connection with the earlier allusion to

the duality between state and parameter estimation,

see section 3.2. The IV algorithms as quoted are almost
a realisation of a joint state-parameter estimator.

They are, however, not quite complete in this sense
because the instrumental variable computation of (4.33c)
lacks a corrective element based on the perceived error
between X and the actual output observation y. By joint
state-parameter estimator we mean an algorithm which
partitions the problem into two sub-problems: first,
the use of state estimates for computation of the param-
eter estimates, then substitution of the new parameter
estimates for the next computation of the state estimates,
and so on as the recursive algorithm moves serially
through the data. The same idea is actually hidden

in equations (2.3) and (2.4) of section 2.3.1. One
example of such a joint estimator for application to

a hydrological forecasting problem is given by Todini
(1978), which he calls a Mutually Interactive State
Parameter (MISP) estimation algorithm. It will be seen
in section 5 that the use of the term combined state-
parameter estimation has a rather different interpre-
tation.

Finally, for the purposes of completeness we can point
out that the form of V(tk)

case of an IV estimator. Other algorithms assume that

is left unspecified in the

any correlated structure of V(tk) may itself be modelled
by some transformation of a white noise sequence; the
additional parameters of the noise model are accordingly

required to be estimated (S6derstrdm et al, 1978).



-70-

4.3 Time-variable Parameters

There was a proposal in section 2.3 that an ambivalent atti-
tude towards the distinction between the concepts of state and
parameter should be encouraged. For the development of the
linear Kalman filter algorithms considerable use was made of
time-invariant state vectors; in this section we investigate the
converse, that is methods for estimating time-variable parameters.
There are two contexts in which the recursive estimation of time-
variable parameters is of major interest:

(i) For solution of the model structure identification prob-
lem (see also section 2.2.3) whereby the analyst seeks
an understanding of why certain assumed constant model
parameters are not found to have time-invariant estimates.

(ii) In adaptive prediction and control (see also section
2.3.1), in which some parameters may be thought of as
truly time-varying; or else the objective is to allow
sufficient flexibility for the model to be adapted in

accordance with the actual variations in the dynamic
properties of the system under study.

An appreciation of the following time-variable parameter
estimators is intimately linked with the qualitative properties
of the gain matrix in the LKF which were discussed in section 3.8.
We shall exploit this link wherever possible, for it not only
provides us with insight, but also it strengthens the unifying
themes of the paper as a whole. First, however, for the sake
of illustration let us transform the LS algorithms of (4.20) by
making the substitution of (4.28) such that

a(t) = 8t )+ Ply_)z)le®+ 2Tt iy _zt)]  {yig) - 2Te)al, )

(4.35

Plt,) = P(t,_y) - Pl _pz(e)lo®+ z ()R, _pzt)] T2 ()P ) |,

and hence we have at our disposal a set of recursive equations
for the parameter estimates § and their error variance-covariance
matrix P(tk). For (4.35) the equivalent of the gain matrix is the

gain vector defined by
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k(t,) = P(tk_1)5(tk)[o7‘ + ET(tk)P(tk_1)E(tk)]_1 . (4.36)

If the simplest scalar example is taken, i.e. for the pro-

cess model of (4.18),
y(tk) = ¢1y(tk_1) + v(tk) ' (4.37)
(4.36) reduces to
K(t.) = plt, Iyt Ily2(t. Opt. ) + o217 (4.38)
k Pty /¥ G Ly (Y 40Pty 4 ' .

which offers a clear parallel with (3.89) of section 3.8--the
transposition of states and parameters should now be obvious from
(3.89) and (4.38). Thus by analogy with Table 1 it can also be
deduced that when the parameter estimates have achieved conver-
gence p(tk_1) should be relatively small and therefore k(tk) is
small. But in the situation of time-varying parameters, only
small corrections to the estimates would be counter-productive.
Here one would argue that large errors between observed and
predicted output are not so much a consequence of spurious errors
in the measurements but are due primarily to changing values of
the model parameters. We need, therefore, to maintain k(tk),

and by implication p(tk_1), at artificially larger values. In
fact Table 1 suggests that if more information is available on
how the parameters vary with time then less artificial and more
natural methods of achieving our objectives are available; these

are discussed later in section 4.3.2.

4.3.1 Exponential Weighting of Past Data

A continuation of the argument developed so far adopts the
following attitude. If the observed process behaviour is chang-
ing with time then the current estimates of the parameter values
should be based on the current and most recent past observations
and not on the more distant past observations, when the parameters
actually had quite different values. 1In other words, it is dis-

advantageous for the estimator to place equal weight on all the
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data obtained since the initial time t1; what we require is for
the estimator to forget, as it were, the behaviour that was ob-
served in the past. The method of Exponential Weighting of Past

data (EWP), illustrated by the weighting function of Figure 17,

is one method that staisfies the desired objectives. This method

is such that the modified estimator is equivalent to minimising
the loss function (compare with (3.9) and 3.42)),

k

. k-3 T "
J'(ty) = jLu J(y(tj) -z (tj)g(tk))2 i O« pux1, (4.39)

where the current weighted squared error sum and the minimum
value thereof yield the most recent estimate &(t, ). We notice
that the current squared error at tk is weightgd by an amount
1.0, the error at tk_1 by u, that at tk-2 by p=, etc. Since y,
the weighting factor, is normally chosen to be just less than
unity, the most recent errors are weighted preferentially and
they will thus dominate the computation of the estimates §(tk).
This is what we would wish in order to avoid attaching too much
significance to distant past errors calculated using @(tk).
The choice of y and the rate of change of the parameter values
are closely tied together; a lower value of y; permits faster
adaptation of the estimates in conjunction with a more rapid
"forgetting" of past data.

Assuming then the loss function of (4.39) we arrive at the

following recursive EWP algorithms for time-varying parameters

~

(k) = alt, ) + Pt Dzt lu + 2T P (g _zt) ]!

« {y(t) - zT(e)6(g DY,

P'(t,) = (1/m{P' (¢, ) - P'(t_pzt)ln + 2T (£ )P (g, _ )z ()]

T '
x 27 (g )P (g, )},
in which
P'(t

x) (t.)) . (4.41)

r(4.40)
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4.3.2 Dynamic Least Squares

There are two basic limitations on the use of exponential
weighting of past data as a method of allowing for recursive esti-
mation of time-varying parameters. It does not permit any prior
selection between different expected rates of change of the param-
eters and it is really only appropriate for the case of slowly
varying parameters. It is, nevertheless, a minimally more complex
algorithm than the ordinary LS algorithm.

The obvious equivalence of the state and time-variable param-
eter estimation problems prompts thus the question of whether a
model can be postulated for a description of the way in which
the parameters are expected to change. We could, for instance,
assume a model by straightforward analogy with (3.71) in section
3.6, i.e.

a(t

= Oa(t, _4) + ¥Z(t (4.46)

k) k-1

where E(tk-1) is a white-noise disturbance, and hence proceed to
a set of predictor and corrector equations in line with the LKF
of (3.79). This presupposes, however, a far greater knowledge of
parameter variations than would probably be available in practice.
A much simpler model is that in which the paramters are defined

as random walk variables, i.e.

we1) (4.47)
which captures the tendency of the parameters to exhibit behaviour
that is partly autocorrelated and partly random, without demanding
any excessive prior knowledge of these variations. The indivi-
dual rates of parameter variations are governed by the choice of

the matrix D where
D= &zt ) ()} (4.48)
=" "k'= k ’ :
and with D being diagonal in the absence of any more precise

information to the contrary. For parameter estimation we thus
have, first,
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Prediction:

A~

af

&ty ey q) Epq I toy)

| (4.49)
Pty lt,_q) =Pt _qlt,_q) +D

and then by suitable substitution in the LS algorithms of (4.35),

Correction:

8t lt) = 8t |t _q) + B(t )z(t )0 + 28 (£ )P(E | t,_z(e)] ]

)|t

x{y(t gF(tk)g(tklt

K~ k-1

2 -
P(tk]tk) = P(tk|tk_1) - P(tkltk_1)5(tk)[o + ETktk)P(tkltk_1)g(tk)] 1

x 2z (e IR (et ) . |
(4.50)

Equations (4.49) and (4.50)readily combine to give the dynamic
least squares algorithms

2~ A~

G(t) = 8ty _4) + (Pt ) + D}g(tk)[o2 + ET(tk){P(t + D}g(tk)]'1

k-1’
X {y(t) - 2 () a(t,_ 1)} .

P(t,) = {P(t, _p) + D} - P(t, ) + D}z (t,)

1

x [o? + g}%tk){P(tk_1) + D}g(tk)]' ET(tk){p(tk_1) + D},

(4.51)

in which the simpler notation is retained. As with p in the EWP
algorithm, the net effect of inserting D is to reduce the rates

of decrease in the P(tk) matrix and in the gain vector. Of course,
though more sophisticated, the specification of D remains a prob-

lem for practical implementation of this algorithm.
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5. COMBINED STATE AND PARAMETER ESTIMATION: THE EXTENDED
KAILMAN FILTER

In section 3 we derived a set of algorithms for on-line,
recursive state estimation; in section 4 we have now derived a
set of on-line, recursive parameter estimation algorithms. And
we have further shown that a duality exists between state estima-
tion and parameter estimation--the reader has not been spared
the repeated references to this point in sections 2.3,3.2,4.2,
and 4.3. The purpose of the present section is to demonstrate
how the combined state-parameter estimation problem leads to a

nonlinear filtering problem. Since the filtering algorithms of

section 3 can deal only with linear system descriptions it will

be necessary to develop a different filter, the extended Kalman

filter (EKF), which is capable of application to a nonlinear sys-
tem representation. In practice the EKF is actually a first-

order linear approximation to the ideal of a nonlinear filter.

5.1 Problem Formulation
From the foregoing discussion one might anticipate that the

derivation will attempt to make some appropriate combination of
the algorithms already stated in sections 3 and 4. But this would
miss the most useful aspect of erasing the distinction between
states and parameters. Let us therefore return briefly to the
very first preview of the Kalman filter. For the multivariable
situation we have the following equivalent of equation (2.4) in
section 2.3.1,

g(tkltk) = §(tk|tk_1) + Ks(tk)g(tk‘tk_1) , (5.1)
and an equivalent of (2.3),
Bl lty) = alt [ty _q) + Ko(t)ele [t _q) . (5.2)

Here we are suggesting that both equations come from some filter-
ing algorithm formulation and thus the notational conventions
are consistent with those used elsewhere. From previous arguments

K the state estimation gain matrix, is in principle a function

sl
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of the system parameters and the state estimation error covari-
ances--compare with (3.89)--while Kp’ the parameter estimation
gain matrix, is in principle a function of the system observations
(inputs and outputs) and the parameter estimation errors--com-
pare with (4.38).

What is really required conceptually for combined state-
parameter estimation is to begin not by trying to combine equa-
tions (5.1) and (5.2), but to list all those quantities that
one wishes to estimate, say a vector x*, and then to write down
the equations for the dynamic behaviour of these quantities x*.
We can still expect the kernel of the filtering algorithms to
take the form of

Sk = x*
x*(t, [t) = x (tkltk_1) + K¥(r el |t ) (5.3)

in which E(tk]t is preserved as nominally similar to E(tk‘tk—1)

)
in (5.1) and (5%2; because a rearrangement of the internal de-
scription of the system does not alter the "external" observa-
tions against which some appropriate prediction is to be evaluated.

After our brief excursion, however, it is now necessary to
set up the nonlinear system description upon which the problem
of combined state parameter estimation will be constructed. The
complete development of the extended Kalman filtering algorithms
is shown in Figure 18 as an extension of Figure 9. Let us start

by restating the continuous-discrete representation of system

behaviour of equations (3.28) and (3.33) in section 3.3,that is,

the state vector dynamics

x(t) = Fx(t) + Gu(t) + Lg(t) (5.4a)
and the sampled output observations,

Z(tk) = H§(tk) + H(tk) . (5.4Db)

from here onwards we shall assume, with no loss of generality,
that L = I, the identity matrix, in (5.4a).
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Suppose now that some of the unknown, or imprecisely known,
elements of the matrices F,G, and H, that is a vector of param-
eters a, say, are required to be estimated simultaneously with
the estimation of the state vector x. We can infer from the pre-
ceding development of equation (5.3) that one approach to realiz-
ing a simultaneous, combined state-parameter estimator is to aug-
ment the state vector x with the parameter vector o and accordingly
to postulate a set of additional differential equations repre-
senting the parameter dynamics. As a consequence, if the augmented

state vector x*¥ is defined by

>
I

X
E* - ’ (5.5)

the state-parameter dynamics and observation equation are given

in the following nonlinear form

Cx*(8) = £{x*(0),u(6)} + E*(Y) (5.6a)

1l

Z(tk) Q{g*(tk)} + ﬂ(tk) . (5.6Db)
The functions f{-} and h{-} are vector functions; they are non-
linear principally because of the product terms involving elements
of a with elements of x and u. In (5.6a) £* indicates that this
vector of stochastic disturbances is now of a different order to
that defined for £ in (5.4a). Note also that had we begun with
a set of nonlinear state variable dynamics, the estimation prob-
lem to be solved would still be posed according to equations (5.6).
Let us consider the matter of specifying the dynamics of the
parameters a . Of particular importance are two such specifications:
(i) we might naturally assume that the parameters are constant,

i.e. time-invariant
a(t) = 0 , (5.7)

or (ii) it might be proposed that they vary in an unknown random
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walk fashion, as has been suggested earlier in section 4.3.2,
a(t) = ¢c(t) (5.8)

in which z(t) is a white noise process. The vector £* in (5.6a)
is thus nominally composed of disturbances § of the state vari-
ables, and disturbances 7 of some of the parameters. Were there
to be more a priori information on the parameter variations, then
it would be appronriate, for instance, to define the dynamics of
the parameters as oscillatory in accordance with some diurnal or

seasonal fluctuation.

5.2 Major Steps in the Derivation of the Extended Kalman Filter
The customary procedure for dealing with nonlinear system
descriptions is to approximate their behaviour by a set of linear
equations. As we have said before, the EKF is a linear approxi-
mation of the nonlinear filter which would ideally be required to pro-
vide estimates of x* in the system of (5.6). The virtue of this

linearisation is that the problem, whatever it may be, becomes

amenable to the many powerful techniques of analysis available
from linear systems theory. The linear Kalman filter is just
one such technique. Bearing this in mind we can take the first

step in deriving the EKF.

5.2.1 Linearisation of the Nonlinear Augmented state Equations

For small perturbations 4&x*(t) of the state-parameter vector

x*(t) about some nominal deterministic reference trajectory x*(t),

a set of linear dynamic equations in §x*(t) may be obtained by
taking a first-order Taylor series expansion of the nonlinear
function £ in (5.6a). 1In other words, if the perturbations &x* (t)

and du(t) are defined by

(5.9)

the assumption is that dynamic variations of &x*(t) are linear
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in the vicinity of the solution x*(t) of the deterministic ref-

erence dynamic system

dx* (t) /dt = £{x*(t),u(t)} ; Xx*(t) = g*(to) for =t . (5.10)

In (5.10) E(t) is a known function of time describing the vari-
ations in the measured system inputs; Z*(t) is therefore determined
for all t by the specification of u(t) and by the choice of the )
initial conditions g*(to).

A first-order Taylor series expansion of f£{x*(t),u(t)} in

(5.6a) about the reference trajectory is given by

Elx*(t),u(t)} = £{X*(£), W)} + FH{X*(t ), u(t) H x*(t) - X* ()]

+ G*{g*(ﬁ)),g(t)}[g(t) -u(e)] + ... , (5.11)

where the matrices F*{+} and G*{+«} are defined as

of . {x* (t) ,u(t)}
F*{g*(go),g(t)} = [ i= — ]x*(t)=§*(t) , (5.12)
! u(t)=a(t)
c*{x*(t ),u(t)} & [afi{ﬁ*(t)'ﬂ(t)} . (5.13)
- 0 = axj X* (t)=x*(t)
u(t)=u(t)

The argument g*(to) of F¥{+} and G*{+} signifies that these
matrices are dependent on the choice of initial conditions for
the deterministic reference state vector.
Now substituting for x*(t) from (5.9) in (5.6a) we have
SHXH(E) + sx* (1)) = dX*(£) /At + A(8x* (1)) /At = £{x*(t),u(t)} + £¥(t)
(5.14)

so that substitution of dx* (t)/dt from (5.10) gives

d(6x*(t)) /dt = £{x*(t),u(t)} - £{X*()u(t)} + £*(t) . (5.15)
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Hence using (5.11) with the definitions (5.9), we obtain from
(5.15)

d(8x* (t))/dt = F*{X*(t),u(t) }sx*(t) + G¥{X*(t), u(t)}éult) + £*(t) , (5.16)

which is the desired linear dynamic relationship for the small

perturbations &x* (t).

5.2.2 Linearisation of the Nonlinear Observations Equation

Similarly for the nonlinear observations equation (5.6b), i.e.
y(t) = hix* ()} + nlt)

a first-order Taylor series expansion of Q{-} may be taken about

the reference trajectory, giving
* = X x
hix* (£ )} = hix* (£ )} + B {Z* () Fox* () + ... (5.17)

with the definition

_ ah. {x*(ty) }
HE{E* (t,) ) & [ 1= X _ ' (5.18)
* * =x*
va 3 x* (£ )=x*(f)

where again, like F*{.} and G*{-}, the matrix H*¥{+} is ultimately
dependent upon g*(to). If we define also a nominal measurement
sequence §(tk),

- A —,
and an associated small perturbation

sy(t) 2yt - vt (5.20)

Yit) =YY T YY) :

the required linear observations equation for the small perturba-

tions 6x*(t) is obtained

Sy () = H¥{X*(tj) }ox*(t,) + nlt.) . (5.21)




-82-

5.2.3 Application of the Linear Kalman Filter to the Small Per-
turbations Equations

Gathering together equations (5.16),(5.21) and (5.10),(5.19)
our system characterisation comprises
(i) The Linear Small Perturbations Equations:

Sx* (t)

F*6x* (t) + G*u(t) + EX(t) (5.22a)

Sy (ty) H¥Sx* (t,) + n(g) = (5.22b)

(ii) The Deterministic Reference Trajectory and Reference

Observations:

X*(t) = £{x*(£),T(0)} ; X*(t) = X*(t,) for t = tg
(5.23a)

y(t) = hix*(t)} (5.23b)

in which the arguments of F*, G*, and H*¥ have been omitted for
brevity and for ease of comparison of equations (5.22) with equa-
tions (5.4) in section 5.1.

We may observe that equations (5.22) are in principal amenable
to the application of a linear Kalman filtering algorithm. How-
ever, one further step is required before we can complete this
interim stage in the development of the EKF. As with the original
analysis of section 3.3 we need an equivalent discrete-time repre-
sentation of (5.22a), i.e.

K
+ TR{t b qaxe(t ) ult ) deult, o) + Ex(t _4) o
(5.24)

where

Sty b iE ()l )} 2 exp (F*{x* (4, _)ult,_Hy -t 1), (5.25)
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t
- — A k — —
F*{tk,tk_1;§*(tk_1),E(tk_1)} = J ®*{tk,T;x*(tk_1)u(tk_1)}

Ce-1 ~
x GH{x*(t, _pu(t, _q) Tt , (5.26)
t
gx(ty_q) 4 f k e {t, ,Tix* (b, _ult, ;) Ig¥(ndr . (5.27)
t

k-1

A word of explanation is required ifor the cumbersome, yet precise
notation of the above definitions. 1In practice, the evaluation of
®*{-} and T*{+} will be carried out by evaluation of the matrices
F¥{.} and G*{+} given a knowledge of the reference variables g*(tk_1)

and E(tk_1) at the previous sampling instant t It is also

k=1 °
assumed in the definition of T*{+} that u(t) is constant over the

interval t, ; » t, and equal to u(t For conciseness in the

).
k-1
following we shall retain only part of the arguments for ¢*{-} and

T*{+} so that (5.24) may be written more clearly as

Sx* () = o*{ty by }ox=(t, ;) + Tty b, j}éult, ;) + &¥(t, ;) ,

(5.28)

and can thus be compared with equation (3.71a) in section 3.6.

What now are the possikilities for obtaining recursive esti-
mates of the augmented state-parameter vector x*? We know u(t)
and g*(to) such that x*(t) and z(tk) can be generated from (5.23),
and then from (5.9) and (5.20) the measurement deviations 5g(tk)
and &y(t,) may be computed from the actual observations u(t,) and
X(tk)‘ Given 6E(tk) and Gx(tk), and given either of the system
characterisations of equations (5.22) or equations (5.28) and
g§.22b), we could apply an LKF algorithm to obtain estimates
dﬁ*(tk‘tk) of the small perturbations Ggf(tk). Finally, working
backwards through the definition of (5.9) our kgpwledge of g*(tk),
the reference trajectory, can be combined with 65*(tk|tk) to yield
the estimates X*(t, |t,) by

g*(tk|tk) = x*(t,) + Sx*(t, [t) . (5.29)
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A schematic picture of the procedure we have just described is
given in Figure 19. This procedure might be called an indirect
method of nonlinear state estimation since it requires the coupled
computation of a set of reference system deterministic dynamics
and a set of estimates for small perturbations in the vicinity of
the reference state trajectory. It is not yet the procedure of
the extended Kalman filter.

We might also remark that the derivation of (5.28) serves a
second purpose other than demonstrating simply the discrete-time
dynamics of the small perturbations. Recall, therefore, that both
the discrete and continuous-discrete LKF algorithms of sections
3.6 and 3.7 use the state transition matrix, here ¢*{.}, for
computing the evolution of the state estimation error covariance
matrix. Indeed, it is important, since we have not already men-
tioned it, to check that the error covariance matrix for the small
perturbations is identical to the error covariance matrix of the

actual state-parameter vector estimates. Thus

5*(tkltk) = x*¥(t) - 5*(tkltk) = x¥(t ) + Sx*(t,) - x*(t) - 65*(tk|tk)
= * - *
Sx* (t,) - Sx*(ty |t,)
= Sx*
Sx (tk|tk) ,
in other words
% —_ oy A
cov{g*(tk|tk)} = cov{dg*(tkltk)}— P(tk|tk) . (5.30)

5.2.4 The Choice of Nominal Reference Trajectory
Two factors in the arguments leading to the interim solution
of our problem in the preceding section are of crucial significance.
These are:
(1) the specification for u(t) as a known function of time;
(i1) the choice of X(t ), |

both of which strongly influence the ability to obtain accurate
estimates of the augmented state-parameter vector x*. Consider

then the implications of Figure 19. A basic flaw in this coupled
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indirect estimation method is that it operates in an "open loop"
situation; in other words there is no feedback of information,
such as the state estimates, with which to correct for the possi-
bility of the reference model performance being inaccurate. Con-
sequently if the choice of E(t) does not closely resemble the
measured variations E(t), and further if the unknown disturbances
£(t) are amplified as they pass through to the process output
response~--which may well happen in a complex nonlinear system--
then g*(t) may diverge considerably from x* (t). The primary
result of such divergence, other than the persistent mismatch

between actual output, y, and reference output i, is that the per-

turbation §x* (t) can no longer be assumed to be small. Hence the
linearised system of equations, upon which the filtering algorithms
are constructed, are not a valid approximation to the behaviour
of small perturbations in the vicinity of the reference trajectory.
Two eminently sensible modifications can therefore be made.
One of these nodifications, a matter of repeatedly adapting the
reference trajectory, is the principal defining characteristic of
the EKF and leads to the formulation of the algorithms directly
in terms of the vector x* (as opposed to the perturbations §x*).
First, however, since by definition the nature of the input dis-
turbances u is that they can be measured and therefore known, it
makes little sense to specify E(t) differently from u(t). So

let us propose the modification,

(1) that u(t) = u(t) and by definition, i.e. equation (5.9),
Su(t) = 0 in equations (5.22a) and (5.28).
Secondly, instead of making one initial choice g*(t) = g*(Q)) at

tiTe ty for the reference state vector, let us choose g*(to)
= ¥*(t0|to) and subsequ?ntly at each instant t, put x* (£, )
= 5*(tk|tk) as soon as §*(tk|tk) becomes available. Thus we make
the modification
(ii) that the solution of the reference trajectory is given

by

dx* (t) /dt = d%f(tltk_1)/dt = flx*(tlt, _pam} fort , <t<t .
(5.31)
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By this second modification, a procedure known as relinearisation,

it is possible to obtain a set of linearised small perturbations
equations, as (5.22) and (5.28), which are (hopefully) wvalid for

small perturbations in the neighbourhood of the most recently

derived state estimates. The definitions of the matrices F*,G*,

H*,$*, and I'* will be accordingly altered as a consequence of the
above two modifications. Figure 19 indicates by dashed lines the
qualitative features of the modification.

Some inductive reasoning is used to complete the development
of the EKF. If we initially linearise about %*(to|to), i.e.
g*(to) = %*(to|to) for the reference trajectory, then a best
estimate of the small perturbations about the reference trajectory
is that in fact there is initially no such small deviation from

E*(to) y Or
sx* (t [ty) =0

A best forward prediction, namely 65*(t1|to) on the basis of (5.28),
with dg(to) = 0 by definition and with g*(to) = O by assumption
(i.e. g*(tk) is a zero-mean, Gaussian, white-noise sequence), would

therefore be
65*(t1|t0) = ®*{t1,t0}6§*(to|to) =0 .

And since we Wwould relinearise about g*(t1|t]), or in general

about g*(tk|tk), we may state that

0 for t

Sx*(t|t <t <t

K -
Thus by our choice of reference trajectory the small perturbation
estimate equations over the interval tk—1 > tk are equivalent to
an unforced system initially at rest.

Given (5.32), and recalling how previously, for example in
(5.29), the state estimate was intuitively obtained as the sum
of the reference state and the best estimate of the small pertur-

bations, then
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X (el ) = ExRA eIy D u)]) 5 ke ) = x(h It )

for t = t, _4 and teog 2t 2 ty ’ (5.33)

yields the best forward extrapolated state-parameter estimates
g*(tkltk—1) between the sampling instants tk_1 and tk. Here, of
course, we are assuming as before that the nonlinear differential
equation (5.33) can be solved by some appropriate numerical routine.
From (5.6a), (5.23a), and (5.33) one would hope that the relative
variations of the true state, the uncorrected reference state, and
the state estimates with updating of the reference state, respec-
tively, might be @sshown in Figure 20.

To summarise, we have now a procedure for extrapolation of

the augmented state-parameter estimates between sampling instants,

i.e. equation (5.33), but we are still required to examine the
nature of the estimate updating mechanism. Thus, from a linear
filter applied to the small perturbations equations we should

obtain

é\* - ok - g -

x*(t It = Sx*(t It ) + Kt ) [0y (k) - H¥ (£ ) 8x* (¢, |t ] .
(5.34)

Let us consider what is really meant by 65*(tk|tk) in (5.34) in

view of the chosen relinearisation procedure. Since 65*(tklt
= O and after substituting for dy(t,) from (5.19) and (5.20)

x-1)

Sg*(tkltk) = Kt ) [y(t) - hix*(t ) 1] . (5.35)

At time t therefore, before correction of the estimates, but

k' ~
. . et 2 s *

given y(t;), the best estimate of x™(t,) is x (tk|tk—1) so that

in (5.35)

éé*(tk|tk) = Kt ly(e) - g{g*(t ). (5.36)

LA
So providing K(tk) can be suitably computed, and noticing that
(5.36) is precisely the correction that would be applied to the

a priori estimate in order to obtain the a posteriori estimate,
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Sx* (£, 1t,) = x*(t, 1t) - x* (g le, ) (5.37)

then we have the desired estimate updating procedure: combining
(5.36) and (5.37)

x*(t ) = x*(t, [t ) + Keply(e) - hix* (e [t, DI .
(5.38)

Figure 21 attempté to give further explanation of this procedure.
At this point both the prediction and correction algorithms
for the state estimates can be written directly in terms of g*
instead of in terms of dx*. These algorithms were derived under
the assumptions that:
(i) we are still employing a linear filter applied to the
perturbation system representation;
(ii) we have made a prudent substitution for the determin-
istic reference trajectory.
It remains only for us to show that the estimation error covari-
ances for the perturbation system are equivalent to those for the
actual system. We already have that such an equivalence holds for

P(tkltk), by equation (5.30), and now writing

£l ly ) =x7(g) - 27y ) =X + &g) - 25 lh ) - (5.39)

. =k - — % S
Noting that we have chosen x™(ty) = x (t, |t,_;) and that &x (t.|t,_4)
= 0, then
~ % * ~ % _ ~%
Xt _q) = 8x7(t) - &xT(t |t ) = Xyt _q) . (5.40)
Thus

cov{x*(t, |t, 1)} = cov{sx*(t, [t, _;)}= P(t |t, ) . (5.41)
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5.3 The Algorithms

The arguments leading to the EKF algorithms have been as
follows. First, a linear Kalman filter can be applied to a set
of linearised equations which result from the formulation of the
combined state-parameter estimation problem. Second, however, if
we choose alwayg\to relinearise about the most recent augmented
state estimates:g*(tkjtk), the algorithms for the direct predic-
tion and correction of the state-parameter estimates are obtained
which employ the original nonlinear functions of the system charac-
terisation in (5.6), i.e. equations (5.33) and (5.38). Third,
the linearised system dynamics representation will still have to
be used for computation of the evolution of the estimation error
covariance matrix.

In line with the statement of the LKF algorithms of equations
(3.79), the extended Kalman filter algorithms are given by

(i) Prediction: between tk—1 and tk

N A tk A

x#(ty [t _q) = x*x (g, 41t _q) + J Elx* (]t ) ,u(t)dt ,  (5.42a)
tx-1 o

Ptylty_q) = ex{ty, b (3P (t It _)e* {t £, 4} +0r , (5.42b)

(ii) Correction: at time tk on receipt of y(tk)

x¢(t 1) = X* (1t ) + K(e)ly(e) - hik*(e e, )3, (5.42c)

Pt |t) = [T = (g B (£) 1Pt |, _)IT - Kig B ()17 + KR (&), (5.42d)

with K(tk) given by

T T -1
= * * *
K(t,) P(tkltk-1)H (tk)[H (tk)P(tk[tk_1)H (tk) + R] ] (5.42¢)
The notational abbreviations
o*{t, & 4} = ex{ty b _qix*(e _qle _ule D), (5.43a)

Hé(t,) = H¥{X*(t, |, )} (5.43b)
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have been used for purposes of clarity; the more precise arguments
for these matrices of the linearised small perturbation equations
indicate the manner in which the state estimates are substituted
for the nominal reference trajectory--compare with the definitions
of (5.18) and (5.25). The measurement noise covariance matrix is
as previously defined for the LKF, since although we are estimating
both parameters and states we have not altered the external (i.e.
input/output) description of the system. The system noise covari-

ance matrix Q*, however, is defined by
0% = ELE* (£, )EX  (£,))
= k= k !

where Q*(tk) is a zero—-mean, white, Gaussian sequence. As before
for the LKF, the variances of g£*(t;) and n(t,) are assumed to be
constant with time, i.e. stationary. If this assumption is not
valid, the algorithms are not made more complex; one is simply

required to have knowledge of Q*(tk) and R(tk) as functions of tk'

5.3.1 Some Comments

Much of what has been said of the linear filter, for example
in section 3.8, applies equally well to the EKF. But certain
features should be clarified. 1Indeed, throughout sections 3 and
5 we have neatly avoided two awkward questions: one is a matter
of theory and the other is a matter of practice. The notion of
a continuous-time white noise process, say f(t), is a mathematical
fiction since a physical realisation theredE does not exist.
For this reason we have preferred merely to define covariance
matrices for the discrete-time equivalents, say g}tk) or g*(tk),
of such a fictional process. Next, if in practice it is not
possible to observe the system's outputs in the absence of errors,
how can we assume, as we have done, that the measured system
inputs, u, are free of noise? Here again, the assumption is a
device useful for the theoretical development of the filtering
algorithms. Any uncertainty in u could have been made explicit
in the covariance propagation equations, though it is much more
convenient here to state that this category of uncertainty can be

absorbed into the definition of the system noise covariance matrix



-91-

Q, or * . The svystem noise covariance matrix will also, inci-
dentally, accommodate the analyst's specification of the uncer-
tainty (or error) in his model as an approximation to reality.

Figure 22 provides a schematic diagram of the EKF algorithms.
We have chosen this time to represent the filter differently from
the schemes of Figures 13 and 14 for the linear Kalman filter by
including a block diagram of the covariance prediction and correc-
tion computations. The intention is first to show the parallel
nature of the state-parameter estimate propagation and the estima-
tion error covariance propagation and second to emphasise the
interaction that takes place between these two parallel functions.
Notice, therefore, how the predicted and corrected state—-parameter
estimates are fed into the computation of the H*(tk) and @*{tk,tk_1}
matrices respectively, compare with egns (5.43). 1In the reverse
direction it can be seen that the filter gain matrix K(tk) is
fed back from the covariance algorithms to the state-parameter
estimate algorithms. Now let us consider what would be the
equivalent sitvation for the LKF. In this case the elements
of the matrices ¢ and H, see egns (3.79), are completely known,
i.e. the model parameter values are known precisely. Thus the
evaluation of & and H is decoupled from the prediction and correc-
tion algorithms for the state-parameter estimates and hence the
covariance algorithms operate autonomously, although they are
subject, of course, to the analyst's specification of the Q and
R matrices.

The two-way interaction of the EKF is in principle attractive
since it holds out the tempting possibility of adaptive estimation.
That is to say, like the bootstrap estimation characteristics
discussed in section 4.2.3, the adaptation of the parameter
values will improve the state estimation capabilities which in
turn will enhance the likelihood of more accurate parameter
estimation and so on. Unfortunately, there is a great difference
between what is possible in principle and what is attainable in
practice. For the EKF to perform at its most useful it is almost
certainly necessary to have available reasonable estimates of
the paramters a priori,as we shall see in later parts of the

paper.
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6. CONCLUSIONS
In this, Part 1 of a two-part paper, the basic components of
' recursive estimation have been presented. We have shown that a
fundamental feature of the recursive estimator is the way in which
the estimates are corrected by a weighted model response error
function. In other words, the algorithm continually adapts its
estimates on the basis of feedback information about the discrep-
ancy between model prediction and actually observed behaviour.
The principal theoretical development of the paper has been con-
cerned with the linear Kalman filter. For this particular algo-
rithm the weighting factors of the correcting mechanism for the
estimates are computed in part from the estimation error covari-
ance matrix.

Six forms of recursive (state or parameter) estimation algo-
rithms have been discussed. These are: the recursive least
squares algorithm, equations (4.20) or (4.35); a recursive instru-
mental variable estimator, equation (4.33); a recursive algorithm
with exponential weighting of past data, equation (4.40); a dy-
namic least squares algorithm, equation (4.51); the linear Kalman
filter, equations (3.79); and the extended Kalman filter, equation
(5.42). 1In Part 2, which deals with the application of these
algorithms, the specific character of some of the case studies
will require additional, but only minor, modification of these

six basic algorithms.
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Appendix 1: Minimising the Squared-error Loss Function

Analytical derivations are given for minimising a squared-

error loss function. We consider first the case of scalar

observations and then the case of vector okservations.

(i) Scalar Observations
From equation (3.9) we have the loss function

N
T, 22
J = ] (y(t) - x (t )a) '
k=1 K T K=

(A1.1)

so that differentiating J with respect to the parameter

~

vector ¢ gives

o
It

N
2 T A~ T A~ T A
k2=1v@_{y (t,) - 2y(t)x (£ )8 + x° (£,)8 x° (£,)8)

| >

N 2 T T T
k£1v@{y (t,) - 2y(tk)§ (£ )8 + & x(t )x (£, )8} .  (A1.2)
Carrying out the differentiation in (A1.2) on each

term yields:

2
v@{y (¢ )} =0 (A1.3)

T A
VQ{-Zy(tk)i ()8 = -2y (g )x (), (A1.4)
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v {a" [x(t)x" (£,)18}

8 [x(t)xT (£)18 + [x(e)x (£)178

2[x(t)x" (t )18, (A1.5)

where in the last step the matrix [E(tk)i?(tk)] is

symmetric and thus the transpose of this matrix equals
the matrix itself. Gathering together the derivatives
of (A1.3),(A1.4), and (A1.5) and putting the result to

zero gives the conditions for the minimum value of J,
i.e.

Vo J = 2]

k

N
T i A _
1§(tk)§ (£, )18 - 2[k£1§(tk)Y(tk)] =0 , (A1.6)

|2
I ~2Z

which is the result of eugation (3.170) in section 3.1.

(ii) Vector Observations

From equation 3.21 we have the loss function

o]
]
It~ 2

Uyt - x(ep@ Ty () - X(£)@F . (A1.7)

k=1

Differentiating J with respect to & gives,

N

= 1% LY () - X7 (5)) () - X(ea)

. T, T

kLVQ{ (GJy () - a'x" (g )y(t) - y (BIX()E + & X ()X ()8}
T T

k21{0 - X ey () - XT y(g) + X (E)X(E )8 + X ()X (t )8}

N
=kz1{2XT(tk)X(tk)§ - = (e y)) . (A1.8)

Hence when the derivative of (A1.8) is set equal to
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zero, we have

N T N T
J=2[ ] X (£, )X ()18 - 21 ] X (g )y (g )1 (A1.9)
= 1 -

Va
& k=1 k=

which leads to the result quoted in equation (3.22)
of section 3.2.
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Appendix 2: The Recursive Least Squares Algorithm

From section 3.4 the following recursive relationships,
equations (3.45), are given as the starting point for the deri-
vation of the recursive least squares algorithm,

1 1 T

[P*¥ (£ )17 = [P*(t, )] + HH , (32.1)

b(t,) =Db(t, ;) + HTX(tk) . (A2.2)

If (A2.1) is premultiplied by P*(tk) and then post-multiplied

by P*(tk_1), then

P¥(t, ;) = P¥(,) + P*(t )H HP*(t,_,) . (A2.3)

Postmultiplying (A2.3) by HT gives,

* T _ p* T * T
P*(t, _)H = P (t )H [I + HPT (¢, _)H']1 , (A2.4)
so that further post-multiplication by [I + HP*(tk_1)HT]—1HP*(tk_1)
yields
P*(t, ,)H [I + HP*(t, )HT]1 'HP*(t_ .) = P*(t,)H HP*(t,_ .)
k-1 k-1 k-1 k k-1 *

(A2.5)
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T .
Substituting for P*(t,)H HP*(t from (A2.3) gives finally:

k-1)

T T,-1
= - Pp*
P¥(£,) = P*(t, ) = P¥(t, )H [I + HP*(t, _)H 1~ 'HP*(t, ,)
(A2.6)
This is the second of equations (3.46). The recursive algorithm

for g(tk) can now be developed by substituting for g(tk) from
(A2.2) and for P*(tk) from (A2.6) into the equation,

X(t) = P¥(t )b(t) (A2.7)

i.e.

1HP*(tk_1)]{13(tk_1) +Hy(®))

(A2.8)

R(t) = [P*(t,_q) - PH(t_)H [T + HP* (5, _H']

and since g(tk_1) = P*(tk_1)9(tk_1) this expression can be

expanded to give

R(t) = R(_,) - PE(t_H I+ B+ (e, _H17 H (e, )

1

+PH(E,_)Hy(t) - PH(t,_)H [T + HP* (6, )H'] HP*(t, ) H'y ()

1~

= R(t, ;) = PH(,_)H [T + HP*(t,_)H'] BR(t, ;)

T

+ P* (tk_1)HT[I + HP* (tk_1)HT]_1{(I + [P* (ti,_ YH™)

1
- HP* (t, ;) H' }y (t,)

(a2.9)

Hence from (A2.9), we have:
R(y) =Ry _q) + P*(tk_1)HT[I + }lP*(tk_1)HT]—1{¥_(i:k) - Hf_t(tk_1)} . (A2.10)

This is the first of equations (3.46).
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Appendix 3: Recursive Least Squares Algorithms for State
and Covariance Correction in a System at
Steady State

In equation (3.68) of section 3.5 a relationship is given for
the matrix P*(tk) in terms of the estimation error covariance
matrix P(tk), i.e.

Twh~' . (A3.1)

sk — T,-
P*(t,) = P(tk)H R
We wish to substitute this expression for P*(tk) in the recursive
least squares algorithms of (3.46). Thus, in the first of algo-
rithms (3.46),

£(t, ) + Pl _PHR @

) HL e, HTR @D Tyt - R},

(t)

(A3.2)

Rlt,_q) + Pt HR I+ H(g_)HE 1 {y(t) - By )}

£(t,_,) + Pl _HR + B(t,_)H'R R {y(ty) - B D}, (A3.3)
That is,
X(t

Qo= X(g )+ K {y(e) - BR(h DY, (A3.4)
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where

B T T -1
K(ty) = P(t, ()H [HP(t, )H + R] (A3.5)
Now compare (A3.5) with the previous expression for K*(tk)
given by (3.47), i.e. '

K*(t,) = P*(tk_j)HT[HP*(tk_j)HT . (A3.6)

Noting thus that the manipulations (A3.2) + (A3.5) allow, in
effect, the substitution of K(tk) for K*(tk), we have after
substituting for P*(tk) in the second of algorithms (3.46)

T -1, T, -1 _ T -1,.T, -1 T -1,,T, =1

P(t, JH'R " (H") = P(t  _4)H'R (H) - K(t JHP(t, )HR (H")
(A3.7)

. T -1, T -1
All terms in (A3.7) have a common factor of H R (H) : hence,
P(tk) = P(tk_1) - K(tk)HP(tk_1) (A3.8)
Or

P(tk) = [T - K(tk)H]P(tk_1) . (A3.9)

In fact, from (A3.9) and (A3.4) we see that we have transformed
(3.46) into:

fie,_p) + 2(g_pHTIRe_pH + 0Ty e) - BRe_) L |

{ %
~
Il

(A3.10)

1

P(t, ;) - P(t,_)H [EP(t,_pH +RITHR(E, )

d
ol
I

which are the algorithms of equation (3.69) in section 3.5.
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Figure 1. A rudimentary method of model calibration.
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Figure 2. A more formal method of model calibration.
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Figure 3. Definition of the system and variables.
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Figure 4.

A schematic representation of how the input/cutput observations are

related to the biochemical and microbiological aspects of the process

dynamics.
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20 «_and \
PARAMETER ESTIMATE
tO tl t2 tN
Al
O A0 A0
~ - — i, A0
o 1 2 ty

~1
Q—g (to)

Figure 5. Methods of parameter estimation: (a) off-line; (b) recursive.
The notation tk in this example denotes the kth discrete sampling

instant in a time-series with N samples; the superscript i in

&1 denotes the estimate at the beginning of the (i + 1l)th
iteration through the data.
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(a) a ’ a

THE NEXT HYPOTHESIS FOR THE
MODEL STRUCTURE

(b) G-

Figure 6. A conceptual picture of the problem of model structure
identification.
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Figure 7. Model verification:

VARIATIONS ?

time

computing the residual error sequences and checking

their statistical properties.
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an outline of the




-108-
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Figure 10, Linear regression analysis of observations on the decay
of a substance, concentration C, with time t.
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corrections for a system not exhibiting dynamic behavior.
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Figure 12.

Updating and prediction schedule for the linear
discrete~-time Kalman filter.
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Figure 13. Block diagram of the linear discrete-time Kalman filter.
The prime notation indicates that the matrices assumed
for the filter are not necessarily identical with those of
reality.
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Figure 14. Block diagram of the linear continuous-discrete Kalman filter.
The sampling switches S1 and S2 close instantaneously at time
tk.
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Figure 15, Continuously stirred tank reactor in which a substance,
concentration x(t), decays with first-order rate kinetics.
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Figure 16. Block diagramof the recursive Instrumental Variable algorithm
(compare with Figures 2 and 8). The switch S closes at the
end, tN’ of each pass through the block of N data samples.
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Figure 17. Weighting factors for exponential weighting of
past data.
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LINEARIZATION OF NONLINEAR
AUGMENTED STATE EQUATIONS

Section 5.2.1

LINEARIZATION OF NONLINEAR
OBSERVATIONS EQUATIONS

Section 5.2,2

SYSTEM EQUATIONS FOR SMALL
PERTURBATIONS ABOUT A NOMINAL
REFERENCE TRAJECTORY

Section 5.2.3

APPLICATION OF LINEAR KALMAN
FILTER TO SMALL PERTURBATIONS
EQUATIONS

Section 5.2.3

CHOICE OF NOMINAL
REFERENCE TRAJECTORY

Section 5.2.4

Figure 18. Steps in the derivation of the extended Kalman filtering
algorithms. '
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Figure 19. A linear Kalman filter applied to the small perturbation
equations for estimation of state and parameters in a non-
linear system with known reference trajectory (the dashed
lines indicate modifications required for the extended
Kalman filter).
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Figure 2C. An example showing how the relinearization procedure of the

extended Kalman filter is capable of preserving only small
perturbations about the reference trajectory (in the EKF

the current state estimates are substituted for the reference
trajectory).
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Figure 21. The estimate updating procedure at time tk in the extended
Kalman filter.
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Figure 22.

computation of the covariance matrix.

Block diagram of the extended Kalman filter algorithms showing
both the computation of the state-parameter estimates and the
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