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Integrated assessments of how climate policy interacts with energy-economy systems can
be performed by a variety of models with different functional structures. In order to
provide insights into why results differ between models, this article proposes a diagnostic
scheme that can be applied to a wide range of models. Diagnostics can uncover patterns of
model behavior and indicate how results differ between model types. Such insights are
informative since model behavior can have a significant impact on projections of climate
change mitigation costs and other policy-relevant information. The authors propose
diagnostic indicators to characterize model responses to carbon price signals and test
these in a diagnostic study of 11 global models. Indicators describe the magnitude
of emission abatement and the associated costs relative to a harmonized baseline, the
relative changes in carbon intensity and energy intensity, and the extent of transformation
in the energy system. This study shows a correlation among indicators suggesting that
models can be classified into groups based on common patterns of behavior in response to
carbon pricing. Such a classification can help to explain variations among policy-relevant
model results.
© 2014 TheAuthors. Publishedby Elsevier Inc. This is an open access article under the CC-BY license

(http://creativecommons.org/licenses/by/3.0/).
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1. Introduction

This study presents an approach for diagnosing the
behavior of energy-economy and integrated assessment
models (IAMs) of the coupled energy-economy-climate
system. IAMs are commonly used to analyze the costs and
technological implications of long-term climate change
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mitigation policies [1–4].3 Thesemodels candiffer greatly in how
detailed various aspects of the system are represented and in
how the components interact. For instance, some IAMs place
particular focus on energy technology detail whereas others also
represent the land-use sector or macroeconomic feedbacks.
Climate policy analysis often involves comparisons among
results from several IAMs in order to provide more robust cost
estimates and a clearer representation of uncertainties. The
AMPERE project, which generated the findings discussed here, is
a case in point [6,7]. Given the differences inmodel structure and
assumptions, results vary among models. This variation is
informative as it indicates that a range of outcomes is plausible.
The task ofmodel diagnostics is to help the policy and integrated
assessment community to identify model behavior patterns
among this variety of results.

The focus on model behavior differentiates diagnostics from
model intercomparisons for policy analysis [8]. Diagnostic
analyses do not aim to capture policy dimensions in detail but
rather try to characterize the model response to single policy
signals – such as a carbon price – to identify and explain model
differences. Accordingly, the scenarios used in this study were
designed purely for diagnostic purposes and not for policy
analysis. An analogous approach has long been applied by the
climate modeling community, which has compared the re-
sponse of general circulation and earth systemmodels to a single
climate forcing signal in a number of diagnostic experiments [9].

To date, the IAM community has conducted diagnostic
model analyses much more sporadically than the climate
modeling community. Early work on estimating and compar-
ing price elasticities across models was conducted by the
Stanford Energy Modeling Forum (EMF), which has long
included quasi-diagnostic studies of climate policy scenarios
in its scope [10]. To some degree, a number of other model
comparison studies have included diagnostic model runs, often
with pre-defined carbon taxes [11–13]. However, few attempts
have beenmade to introduce a comprehensive set of diagnostic
experiments and indicators aiming to classify models in terms
of key behavioral characteristics which could be used across
different studies. A reasonmight have been the strong focus on
policy applicability of the IAM community. There is renewed
interest in model diagnostics based on the recognition that it
can be as useful in the IAM context as it has been for climate
modeling. Next to AMPERE, it is pursued in the DOE sponsored
“Program on Integrated Assessment Modeling Development,
Diagnostic and Inter-Comparisons (PIAMDDI)” [14], and has
been taken up by the Integrated Assessment Modeling
Consortium (IAMC) [15]. The objective and motivation of the
diagnostic study is given in the next section, followed in
Section 3 by a discussion of the study design that was used to
identify and test diagnostic indicators; the results are present-
ed in Section 4; and a preliminary model classification scheme
based on these indicators and their correlations is introduced in
Section 5. Section 6 concludes.
3 There exists no single definition of integrated assessment models of
climate change. The class of IAMs is sometimes restricted to coupled
economy-climate models that allow for weighing the costs of mitigating
climate change against the damages of unabated climate change (cost-
benefit climate policy analysis). Here, we use the term more broadly to
include energy-economy-climate models that are used to analyze climate
policies [5].
2. Objective and motivation of the diagnostic study

The objective of this study is to establish a characteriza-
tion of energy-economy and integrated assessment models
based on their responses to greenhouse gas pricing scenarios.
The scenarios we employ assume idealized climate policy
setups since their purpose is diagnostics and not policy
analysis. The resulting model characterization aims to
provide a better understanding of model outcomes and
behavior, which would be useful for model applications to
climate policy analysis. Such a characterization should be
straightforward enough to help analysts identify important
model response patterns even if they are not familiar with
the detailed structures of the respective models. For instance,
diagnostic indicators can point out whether or not the
models involved in an analysis are inclined to show strong
energy system or emission responses to a carbon price signal.
Diagnostic indicators may also show whether a model's
inherent behavior pattern tends to produce high or low
mitigation costs for a given emissions reduction target.

Since our objective is to focus on the outcome of model
behavior, we primarily apply a top-down approach to model
characterization by studying model results rather than starting
with a description of model structures and input assumptions. A
bottom-up approach, by contrast, would try to develop a model
classification based on how comprehensively the economy is
represented or based on what assumptions about time prefer-
ences and myopia are made. However, the model taxonomy of
state-of-the-art IAMs has become very complex, making it
harder to perform simple classifications along these lines [16]. In
addition, the devil is often in the details. Model specifics such as
the availability of certain energy technologies and constraints to
the expansion of available technologies can affect model
response as strongly as model type. Some of the challenges of
identifying the various factors impacting model responses are
described in [17]. A bottom-up approach would quickly become
impractical as it requires an analyst to know all models in detail.
We therefore perform only a very limited bottom-up analysis of
the models and primarily focus on the results of a single
diagnostic study that is applicable to a large class ofmodels. A set
of diagnostic indicators helps to identify response patterns from
the model results.

2.1. Criteria for diagnostic indicators

To serve the objective of characterizing policy-relevant
response patterns among a broad range of models, indicators
should at least meet the following criteria:

a) identification of heterogeneity in model responses
b) diagnosis of relevant features for climate policy analysis
c) applicability to diverse models
d) accessibility and ease of use.

Examples of model characteristics with relevance for policy
analysis are model dynamics related to climate change mitiga-
tion, the associated economic costs, and energy system devel-
opments. Since IAMs generally model emissions of at least some
greenhouse gases, model behavior related to climate change
mitigation can be readily captured by focusing on emissions
abatement. Mitigation costs are also reported by most models,
although differences among cost reporting methods have to be
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accounted for. IAMs vary in their coverage of the energy sector
and energy end-use sectors, but generally address important
aspects such as energy intensity, carbon intensity, and changes
in the deployment of energy supply technologies. Thus, we
identify four simple and widely applicable diagnostic indicators
that characterize model response to climate policy regarding

• the size of emissions reductions relative to baseline emissions
without climate policy,

• the reliance on carbon intensity reductions vs. energy intensity
reductions to achieve emissions abatement,

• the scale of the transformation of the energy system, and
• the mitigation costs as a function of the carbon price signal
and the associated emissions abatement.

3. Study design and participating models

To develop and evaluate diagnostic indicators, we compare
results from eleven global models that were runwith a common
set of scenarios to identify model-specific behavior. These
scenarios were constructed for the sole purpose of model
diagnostics. To improve comparability and narrow down the
factors behind model responses to carbon prices, the model
teams harmonized their regional assumptions about population
and economic growth. More information on the harmonization
of underlying population and economic growth assumptions are
given in the Supplementary Online Material (SOM).

3.1. Baseline and diagnostic scenarios

A baseline scenario and four diagnostic scenarios were
run. The baseline does not include any climate mitigation
policies and thus no price on greenhouse gas emissions after
2012. The four diagnostic scenarios use globally-harmonized
carbon taxes starting in 2010. This start date permits a
diagnosis of model responses over several decades even with
models with a time horizon that is limited to 2050. Tax levels
are given in 2005 USD.

• Two scenarios with a constant carbon tax: one low-tax
scenario with a tax of 50 USD per ton CO2 and one high-tax
scenario with a tax of 200 USD per ton CO2

• Two scenarios with an exponentially increasing carbon tax
(growing by 4% per year); one starting at a low carbon price
(12.50 USD per ton CO2 in 2010), the other one at a higher
value (50 USD per ton CO2 in 2010). The carbon prices
quadruple every 35 years, so that by 2045, the low carbon
price reaches 50 USD and the high carbon price reaches 200
USD, whereas by 2080, they reach 200 USD and 800 USD
respectively. Thus, the constant and increasing tax scenarios
cross each other in the year 2045.

In the diagnostic analysis, we focus on the high tax
scenarios that show a stronger model response and thus
allow for identifying model characteristics more easily. Of
primary interest is the scenario with the tax starting at $50
in 2010 and increasing by 4% per year. Taking into account
the model-inherent discounting of future values, it exerts a
steadier price signal in present value terms — depending on
the choice of discount rate in the models. However, the
constant tax case is used for comparison purposes to see if
model behavior is consistent across scenarios.
Each carbon tax scenario covers the period until 2100, but
models with a time horizon shorter than 2100 have adopted
the scenarios until their particular end year. Models with a
time horizon extending beyond 2100 fix the carbon tax at the
value reached by the year 2100 for later periods.

The detailed definition of all scenarios can be found in the
Supplementary Online Material (SOM).

3.2. Participating models

The energy-economy and integrated assessment models
listed in Table 1 participated in the diagnostic study
discussed here.

IAMs differ in numerous ways including their sectoral
coverage, solution algorithm, representation of GHG emis-
sions and GHG sources, energy demand and supply sectors,
population and GDP baselines, and assumptions about
techno-economic parameters [5]. They may be broadly
grouped into partial equilibrium (PE) and general equilibri-
um (GE) models. PE models describe processes and markets
in one or more sectors in detail – such as the energy sector,
including energy demandby economic sectors and technological
specifics – and treat the rest of the economy exogenously. This
includes assumptions of price-elastic demand in goods and
services provided by the represented sectors. PE models
typically maximize consumer and producer surplus orminimize
production costs of sectors over time. They may or may not
include foresight of future supply and demand in the optimiza-
tion process. Policy costs are calculated in terms of sector cost
mark-ups or reduction of consumer and producer surplus,
typically deduced from the area under the marginal abatement
cost curve for greenhouse gas emissions.

GE models cover the full economy with a more or less
detailed representation of specific economic sectors. GEs can
use a dynamic recursive approach or intertemporal optimiza-
tion. Dynamic recursive computable GEs [18] identify market
equilibria for each point in time, with exogenous assumptions
conditioning how production technology and the size of the
economy progress over time. They are inherently myopic and
usually provide a detailed description of the sector composition
of the economy. Intertemporal GEs focus on the intertemporal
dynamics of investment in production capital under foresight
about future production and consumption. They describe a
closed economy but can usually only represent one to three
aggregated economic sectors due to the computational burden
of intertemporal optimization. GEs typically express policy
costs in terms of production losses, consumption losses or
welfare measures.

Both partial and general equilibrium models can include a
great variety of low-carbon technology options on the supply
and demand side that can deliver emission reductions in
response to climate policy. Table 1 includes a measure of the
variety of low-carbon energy supply technology options repre-
sented in the participating models. This measure is based on a
survey of the energy supply technology representation in the
models. It distinguishes three supply sectors: electricity gener-
ation, liquids production, and other non-electric energy supply
(including hydrogen, gases and heat generation). Its derivation
and the numerical results based on the survey of available
technologies in the models are discussed in the SOM. Most
models include a similarly high variety of low-carbon supply



Table 1
Models participating in the AMPERE diagnostics study.

Model name Equilibrium
type

Modeling
approach

Modeled
period

Low-carbon
supply
tech.
variety

AIM-Enduse Partial
equilibrium

Recursive
dynamic

Until
2050

High

DNE21+ Partial
equilibrium

Intertemporal
optimization

Until
2050

High

GCAM Partial
equilibrium

Recursive
dynamic

Until
2100

High

GEM-E3 General
equilibrium

Recursive
dynamic

Until
2050

Low

IMACLIM General
equilibrium

Recursive
dynamic

Until
2100

Medium

IMAGE/TIMER Partial
equilibrium

Recursive
dynamic

Until
2100

High

MERGE-ETL General
equilibrium

Intertemporal
optimization

Until
2100

High

MESSAGE-MACRO General
equilibrium

Intertemporal
optimization

Until
2100

High

POLES Partial
equilibrium

Recursive
dynamic

Until
2100

High

REMIND General
equilibrium

Intertemporal
optimization

Until
2100

High

WITCH General
equilibrium

Intertemporal
optimization

Until
2100

Low
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options, but someGEmodels include a noticeably lower number
of options. For simplicity, this measure focuses purely on energy
supply side technologies and does not cover demand-side
options for emissions reduction and use of low-carbon fuels
(e.g., electricity or hydrogen in transport), even though demand
side options are explicitly represented in some models and are
important determinants of the ability of models to achieve
low-carbon futures. Nonetheless, themeasure illustrates the fact
that by modeling the economy as a whole, GE models may not
always include the same level of technological detail as more
energy-system-focused PE models.

The fact that the models employed in this study represent
different model classes is very important for the identifica-
tion of useful diagnostic indicators. Broad model coverage is
needed to evaluate the robustness of findings about these
indicators such as their correlation and their implications for
model classification.
4. Results from the diagnostic study

The diagnostic analysis investigates model behavior by
comparing results between the baseline and carbon tax
scenarios defined in Section 3.1. We establish indicators
characterizing the following model responses to carbon
taxes:

• Emissions abatement in response to carbon taxes (Section 4.1)
• Reduction of carbon intensity of energy production compared
to the reduction of energy intensity of economic production
(Section 4.2)

• Structural changes to the energy system (Section 4.3)
• Economic implications of carbon pricing (Section 4.4).
4.1. Measuring the emissions response to carbon prices

4.1.1. Emission pathways
The decarbonization of economic activity is central to

climate change mitigation. The top and bottom panels of
Fig. 1 show how, according to the participating models, a
carbon tax starting at $50 in 2010 and increasing by 4% per
year as well as a constant carbon tax of $200 impact global
CO2 emissions from fossil fuel combustion and industry
(FFI) compared to the no-policy baseline scenario. Since
several models have a time horizon ending in 2050
(AIM-Enduse, DNE21+ and GEM-E3), we show the results
for 2005–2050 and for 2005–2100 in separate panels.

Since the carbon tax in either scenario takes effect in
2010, we already see significant reactions to high tax levels
in that year. In the increasing tax case, all models continue to
reduce emissions throughout the time horizon, whereas in
the constant tax case, somemodels show an upward reversal
in the long term after an initial reduction. This is due to the
depreciation of the current value of the carbon tax in a
growing economy. In both tax cases, there are pronounced
model differences. MERGE-ETL shows a particularly high
increase in baseline emissions due to wide-spread adoption
of coal-to-liquids production. GCAM and WITCH show
strong emission reductions in the early years of the constant
carbon tax scenario. This is contrary to current real-world
trends, but it should be noted that the global carbon tax of
$200 far exceeds any climate policy efforts to date both in its
level and in its coverage. In the later years of the increasing
carbon tax case, GCAM shows very high negative emissions,
primarily due to a large potential for bioenergy carbon
capture and sequestration (BECCS), which is exploited in the
case of high carbon prices.

4.1.2. Relative abatement index
To illustrate the model differences, we define a relative

abatement index (RAI) characterizing the emission reduc-
tions in a carbon tax scenario relative to the baseline:

RAI tð Þ ¼ CO2FFI Base tð Þ−CO2FFI Pol tð Þ
CO2FFI Base tð Þ

where CO2FFI Pol(t) indicates the CO2 FFI emissions in the
carbon tax case and CO2FFI Base(t) the emissions in the
baseline at time t. We have focused on CO2 emissions from
fossil fuel combustion and industry in the definition of the
indicator because these emissions are captured by all
energy-economy and integrated assessment models that are
used for climate policy analysis. The choice of a larger collection
of greenhouse gases and sectors would have already excluded
some models from the diagnostic analysis. In addition, the
energy sector is themain venue for emission reductions [19], so
key characteristics of the emissions response are captured by
CO2 FFI emissions.

Fig. 2 shows the emissions abatement relative to the
baseline CO2 FFI emissions over time and across models for
both the exponentially increasing and the constant high
carbon tax cases.
We observe the following:

• In the exponentially increasing tax scenario, the RAI
increases over time. Among most models, this rise slows



Fig. 1. CO2 fossil fuel and industry (FFI) emissions for two scenarios comparing the baseline without any climate policy after 2010 (gray upper funnels) with two
different carbon tax scenarios: in the upper panels, the lower funnels represent a tax starting at $50 in 2010 and increasing by 4% per year; in the lower panels, the
lower funnels represent a constant tax of $200. Results are shown until 2050 (left column) and 2100 (right column). The figures in the right column include only
the subset of models with a time horizon of 2100.
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down in the latter half of the century, as models other than
GCAM find fewer emissions reduction opportunities once
emissions are close to zero or negative.

• In the constant tax scenario, most models increase their RAI
over the first few decades. In the second half of the century,
the depreciation of the current value of the carbon tax leads
to an attenuation and in some cases reversal of the trend in
relative emission reductions among all models. Only POLES
continues to consistently increase its relative emissions
abatement through 2100.

• The ordering of models along their RAI is fairly robust over
time and carbon tax scenarios. We can clearly identify a group
of models with a stronger relative abatement (MERGE-ETL,
IMAGE, MESSAGE, REMIND, and particularly GCAM) and a
group ofmodels exhibiting less abatement (DNE21+, GEM-E3,
IMACLIM,WITCH, andAIM-Enduse). The POLESmodel initially
shows less abatement as it accounts for constraints to new
technologydiffusion in the short andmedium term,while over
time it moves to the high-abatement model group as
low-carbon technologies progress. Although AIM-Enduse is
headed for a similar trajectory as POLES, its model period ends
in 2050, when its abatement response is still comparatively
small.

The relative abatement index can also show whether a
model's abatement at the global level is a good predictor of
its relative abatement at the regional level. In principle,
regional marginal abatement cost curves should vary with
regional differences in technology performance and costs,
energy resource endowments and final energy demand.
Among the participating global models, such regional variations
are generally much less significant than the inter-model



Fig. 2. Relative abatement index over time and across models as deduced from the exponentially increasing carbon tax scenario starting at $50 in 2010 and
increasing by 4% per year (left panel) and the constant $200 carbon tax scenario (right panel).
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differences, as illustrated by Fig. S1 in the SOM. Themodels with
higher RAI values on the global level also have higher RAI across
the regions.

4.1.3. Abatement under different carbon price levels
The RAI as constructed above shows model responses to

particular carbon price levels. We can also characterize the
impact of carbon price levels with marginal abatement cost
(MAC) curves that show emission reductions as a function of
carbon price. Fig. 3 constructs such MAC curves from the
results of both the high and the low exponentially increasing
carbon tax scenarios. The left panel shows the emissions
abatements achieved by two carbon prices levels reaching
$50 and $200 in 2045 after having increased from the initial
Fig. 3.Marginal abatement cost (MAC) curves for CO2 fossil fuel and industry emissi
diagnostic study. Emissions reductions as a fraction of baseline emissions are plotte
panel). The emissions reductions in the carbon tax scenarios and the origin are com
2010 prices of $12.50 and $50 respectively. In the right panel,
these prices have reached $200 and $800 by 2080. The points
on the curves indicate what levels of emission reductions are
achieved at marginal abatement costs up to the level of the
carbon price in the given years. The MAC curves in Fig. 3 have
been extended to the origin reflecting the fact that baseline
emissions are based on a zero carbon price.

A common feature of the MAC curves (in 2045) of all
models except GCAM is that the relative emissions reduction
in the low carbon tax scenario is similar to or larger than the
additional emissions reduction between the low carbon tax
and the four times higher carbon tax. This gives the MAC
curves a convex form with a steepening slope for increasing
carbon price levels and increasing convexity over time. In the
ons as deduced from the exponentially increasing carbon tax scenarios in the
d against carbon price levels for the years 2045 (left panel) and 2080 (right
bined into a MAC curve (dashed lines).
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second half of the century, even the lower carbon tax leads to
an exploitation of most available emissions reduction
opportunities so that the additional abatement opportunities
are diminishing. Among the participating models, GCAM
alone shows high additional reductions from a higher tax
level. This is because GCAM allows for significant expansion
of lands for bioenergy crops in the carbon tax case, facilitated
partly by changes in human diets away from cattle and
resulting in large-scale bioenergy carbon capture and storage
(BECCS) and negative emissions [20].

4.2. Energy use and carbon intensity as CO2 emission drivers

A useful tool for analyzing the differences between
models in terms of CO2 FFI emissions and emission reduc-
tions is the Kaya identity [21] that decomposes the emissions
into four factors: population (Pop), per capita income, final
energy (FE) intensity of economic production (GDP), and
carbon intensity of energy use (after subtraction of carbon
captured and stored via CCS technology).

CO2 ¼ Pop � GDP
Pop

� �
� FE

GDP

� �
� CO2

FE

� �
:

The first two factors, economic activity and population,
were harmonized between the model baselines, and should
therefore not contribute much to model differences. Even
among the carbon tax scenarios in the general equilibrium
models, where GDP responds to carbon pricing, the variation
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in GDP is generally far smaller than the changes in carbon
and energy intensity. Therefore, the harmonization of
economic growth and population assumptions allows us to
focus on carbon and energy intensity as the driving factors of
differences in the model results.

Fig. 4 plots carbon intensity (as a fraction of carbon intensity
in the baseline) against energy intensity (as a fraction of energy
intensity in the baseline) across models and carbon tax
scenarios. Both carbon and energy intensity reductions increase
with the stringency of the carbon tax scenario. In all cases,
carbon intensity is reducedmore strongly than energy intensity.
For high carbon prices, carbon intensity can become negative if
the model produces net-negative CO2 emissions from the large
scale adoption of bioenergy combined with CCS.

Based on the Kaya identity, we can say that if the change
in GDP is small, the residual CO2 FFI emissions (Res(CO2)),
expressed as a fraction of baseline emissions, are approxi-
mately a function of residual carbon intensity (Res(CI)) and
residual energy intensity (Res(EI)) as fractions of baseline
intensities:

Res CO2ð Þ approx:Res CIð Þ � Res EIð Þ:

A reduction of CO2 emissions by, for example, 75% can
therefore be achieved by a multitude of combinations of CI
and EI reductions. For example, reducing one factor by 75%
and leaving the other factor unchanged or reducing both
factors by 50% leads to the same emissions reduction.
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We construct a diagnostic indicator CoEI (carbon intensity
over energy intensity) that captures the proportionality of
carbon and energy intensity reductions in response to carbon
prices:

CoEI ¼ Res CIð Þ
Res EIð Þ :

The CoEI is larger than one if energy intensity is reduced
more strongly than carbon intensity (Res(CI) N Res(EI)) and
smaller than one in the opposite case. Given the strong
reduction in carbon intensity displayed in Fig. 4, we expect
CoEI b 1 across models.

Fig. 5 shows the development of the CoEI over time for the
constant and exponentially increasing high tax scenarios. It can
be seen that all models increasingly rely on carbon intensity
reductions in the increasing tax scenario (CoEI decreasing over
time), while the ratio of energy and carbon intensity reductions
stabilizes in the constant tax scenario. As models go to negative
emissions (=negative carbon intensities) under the increasing
carbon tax, the decrease of the CoEI generally levels off,
indicating a limit on the amount of net negative emissions that
can be achieved (although GCAM reaches this limit at a strongly
negative level). In the constant carbon tax case, all models
except POLES show a leveling off of the CoEI decrease in the
second half of the century, whether negative emissions are
achieved or not. This may be due to the models avoiding the
most expensive decarbonization options without an increase in
the carbon price.

The model differences in the CoEI are fairly robust across
carbon tax scenarios from 2040 on. We can identify different
groups ofmodels— some that reduce CI only slightlymore than
EI: WITCH, GEM-E3, IMACLIM, DNE21+; and some that are
strongly inclined to reduce CI: IMAGE, MERGE-ETL, MESSAGE,
REMINDand particularly GCAM,which again forms a class of its
own due to its large potential for negative emissions.
AIM-Enduse and POLES move from the first group toward the
Fig. 5. Development of the CoEI indicator over time and for two different tax scenar
constant $200 carbon tax (right panel). Markers indicate the model for which the C
second group over time as low-carbon technologies become
more widespread. These model groups are somewhat compa-
rable to the groupings based on the relative abatement index
(see Section 4.1).

4.3. Structural changes to the energy system

A closer look at how the structure of the energy system
responds to carbon taxes can help to better understand the
inherent model differences in the substitutability between
alternative technology options and its influence on differ-
ences in CO2 FFI emissions and carbon intensity.

The left panel of Fig. 6 shows changes in the structure of final
energy use by type of delivered energy. Final energy is
categorized as solids (i.e. coal and biomass used directly by end
users), liquids (primarily oil), and grids and hydrogen. Grids
include electricity, piped gas and district heat. In the no-policy
baseline scenario, models consistently move toward grids in the
long run, indicating an electrification of final energy use. In the
carbon tax case, this trend is accelerated in most models, albeit
to a varying degree.

Changes of the primary energy mix are shown in the
right-hand panel of Fig. 6. All models show that the carbon
tax pushes primary energy away from fossil fuels, though the
extent varies greatly between models. Compared to the other
models, the carbon tax brings only low gains for non-fossil
energy in IMACLIM due to strong deployment of carbon
capture and storage for fossil energy. For most models, the
carbon tax induces a strong shift away from coal, which in
the baseline scenario would gain an increasing share of the
energy mix.

As most models show that the carbon tax shifts final
energy toward grids and primary energy toward non-fossils,
the rate at which these categories are transformed can be
indicative of how flexible the energy mix is in response to a
carbon price. The rate of transformation can be expressed with
transformation indicators that measure the changes in the
ios: an exponentially increasing tax starting at $50 in 2010 (left panel) and a
oEI was deduced.



Fig. 6. Structure of final energy use and primary energy mix. The left panel shows the shares of final energy use by type. Grids & H2 include electricity (including
on-site solar power), gases, district heat, and hydrogen. The right panel shows the shares of primary energy sources grouped into coal, oil and gas, and nuclear &
renewable energy. The lines show the transformation paths, with a baseline (black) and a climate policy path (green) for each model. Model markers (= initial
letters of the model names) indicate the shares reached by the years 2050 and 2100 (for models running until 2050, only one marker is shown). Each point in the
triangle describes a unique combination of shares of the three components. The share of component X can be deduced by allocating the pointin relation to the X
corner (100% of X) and the opposite base of the triangle (0% of X). The dashed lines running in parallel to the base indicate shares of 80%, 60%, 40% and 20% (from
the corner to the base). GEM-E3 is not shown in either panel because it does not report all relevant final and primary energy categories.IMACLIM is not shown in
the left panel because it does not report traditional biomass, which plays a significant role in the solids category reported by the other models.
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energy mix relative to 2005 (see [22,23] for applications of a
similar metric to measure the distance between different
technology portfolios). We apply a transformation indicator
(TI) that ranges between 0 and 2. A TI of 0 indicates no change in
the share among the variables of the category; 2 indicates an
absolute shift with one variable rising from 0% to 100% of the
share and another falling from 100% to 0%. Shifts between these
extremes have a TI between 0 and 2. The TI, relating to the base
year of 2005, can be defined as follows, with S1, S2, etc.
Fig. 7. Development of the transformation index (relative to 2005) over time for t
(bottom right panel).
indicating the shares of the various components of the energy
system or sector:

TI 2005ð Þ ¼ S1−S1 2005ð Þj j þ S2−S2 2005ð Þj j þ…þ Sn−Sn 2005ð Þj j:

The progression of the transformation indices for the energy
mix in the carbon tax scenario is shown in Fig. 7. For primary
energy, the TI is generally higher than for final energy, which
indicates that models find it easier to substitute primary energy
he composition of final energy use (left panel) and the primary energy mix
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carriers and power generation types than to shift final energy
between solids, liquids and grids.

Somemodels show a clear correlation between the TIs for
final energy and primary energy. GCAM, MERGE-ETL,
MESSAGE and REMIND have a high TI for both final and
primary energy, whereas WITCH has a low TI for both and
DNE21+ and POLES have medium values for both indices. No
such clear correlation can be seen for AIM-Enduse and
IMAGE. AIM-Enduse starts with a low primary energy TI that
shows an upward trend after 2040 – partly due to increasing
market maturity of solar power – while its final energy TI
remains low. IMAGE has medium primary energy TI, but its
final energy TI is high indicating that IMAGE relies more on
substitution of energy end use carriers than other models.

4.4. Economic implications of carbon pricing

4.4.1. Mitigation costs
The economic implications of a carbon tax are typically

captured in terms of mitigation costs that are derived from
comparing the policy scenario with the counterfactual
baseline case that does not include climate policy. For general
equilibrium models, the mitigation costs can be expressed as
losses in welfare, consumption or GDP relative to the baseline
case. The first two metrics directly measure the impact on
private income and consumption. GDP is a less satisfactory
indicator because it is a measure of output, which includes
not only consumption, but also investment, imports, exports,
and government spending [24]. Partial equilibrium models do
not include the feedback on economy-wide production and
household consumption but can express mitigation costs in
terms of the change in consumer and producer surplus often
deduced from the area under the marginal abatement cost
curve. An alternative measure is additional energy system
costs compared to the baseline case.
Fig. 8. Intertemporally aggregated mitigation costs (as a percentage of baseline con
(right column). Cost measures differ for general (to the right of the vertical line) a
bottom in the figure legend are shown from left to right bars for each model.
The mitigation costs from general and partial equilibrium
models are not fully comparable. We nonetheless present costs
frombothmodel types next to each other, especially focusing on
the relative changes. Comparisons between the cost measures
shown by GEs and PEs have shown that in relative terms, they
seem to correlate reasonably well across scenarios and regions
[25]. The intertemporally aggregated mitigation costs from the
general equilibrium models in this diagnostics study (GEM-E3,
IMACLIM, MERGE-ETL, MESSAGE, REMIND,WITCH) are given in
terms of the net present value of consumption losses as a
percentage of net present value consumption in the baseline (all
discounted at 4% per year). The intertemporal mitigation costs
from the partial equilibrium models (DNE21+, GCAM, IMAGE,
POLES) are given in terms of the net present value of the area
under the MAC curve (GCAM, IMAGE, POLES) or in terms of
additional energy system costs (DNE21+) as a percentage of net
present valueGDP in the baseline (all discounted at 4% per year).

Fig. 8 shows the aggregate global mitigation costs for the
periods 2010–2050 and 2010–2100 across carbon tax
scenarios. All models show an increase in mitigation
costs until 2050 with the stringency of carbon taxes ($12.50
increasing b $50 constant b $50 increasing b $200 constant).
The picture for 2010–2100 is mixed. Both the low constant and
the low increasing tax scenarios come in at similar costs ($50
constant, $12.50 increasing), as do the high constant and high
increasing tax scenarios ($200 constant, $50 increasing).
Although the carbon price in the increasing tax scenario rises
far higher over the second half of the century, the constant tax
scenario includes the impact of an early price shock. Models
differ onwhich tax scenario leads to the highest costs until 2100.
With the exception of GCAM, the partial equilibrium models
show lower mitigation costs than the general equilibrium
models. This is an indication of the differences in cost metrics.
GCAM is an exception that may be explained by the very high
abatement response to carbon pricing shown by this model.
sumption or GDP) for the periods 2010–2050 (left column) and 2010–2100
nd partial equilibrium models (to the left). The scenarios listed from top to



Fig. 9. Intertemporally aggregated mitigation costs (y-axis) are plotted against cumulated CO2 FFI emissions reductions (fraction of baseline; x-axis). Results for
2050 are shown separately for general equilibrium models (left panel) and for partial equilibrium models (right panel). The dashed lines connect data points
across carbon tax scenarios (shown by marker color) for a given model (shown by the initials of the model names as markers).
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Among all models, IMACLIM stands out by showing the highest
mitigation costs across scenarios. This is due to assumptions of
imperfect foresight combined with market and institutional
imperfections that, under a carbon tax, can result in GDP losses
that are far more significant than in the case of economies with
frictionless markets and non-distortive fiscal systems.

Fig. 9 shows a positive correlation between mitigation
costs and cumulative emissions reductions from different
carbon tax scenarios in 2050. This correlation is still mostly
intact in 2100, although somemodels (IMACLIM, MESSAGE,
WITCH) suggest that the increasing high tax case ($50
increasing) can lead to somewhat lower cost relative to the
amount of emission reductions than the constant high ($200)
tax case. The initial shock from the constant $200 tax can be
very costly in the short term, and the 4% discount rate gives a
large weight to such short-term losses.

4.4.2. Cost per abatement value
As can be seen in Figs. 8 and 9, differences in the cost levels

across models increase with increasing mitigation costs in the
more stringent carbon tax scenarios. We can study the model
differences through a cost per abatement value (CAV) indicator
taking into account the mitigation costs (MitCosts) over the
period from 2010 to year t, discounted at a rate r of 4% per year
relative to the value of reduced emissions, measured in
greenhouse gas emissions reduction (GHG Red) times the
carbon price (CPrice) over the same period 2010 to t, also
discounted at 4%. This measure includes all Kyoto gases
represented in a model since the study setup assumes that
the carbon tax is applied to Kyoto gases aside fromCO2 by using
global warming potentials (GWPs) as conversion factors. The
CAV is defined as follows:

CAV Tð Þ ¼
XT

2010
MitCosts tð Þ � 1þ rð Þ2010−t

XT
2010

GHG Red tð Þ � CPrice tð Þ � 1þ rð Þ2010−t :
The result is a dimensionless number signifying the
economic implications of emissions abatement resulting
from carbon pricing. A high CAV means comparatively
higher mitigation costs for a given emissions reduction and
carbon price trajectory than in the case with a low CAV. For
partial equilibrium models, it essentially describes the ratio
between average and marginal abatement costs. For general
equilibrium models, macro-economic feedbacks are also
factored in. This becomes particularly evident for IMACLIM,
for which the CAV exceeds unity until mid-century.

Fig. 10 shows the development of the cost per abatement
value indicator for the exponentially increasing and constant
high tax scenarios. In the exponential carbon tax case, the
CAV is declining over time for all models. This indicates that
after discounting, the increase in mitigation cost is more
than outweighed by the increase in emission reductions,
taking into account that the present value of the carbon tax
remains constant when assuming a discount rate of 4% per
year. The constant tax scenario results in a relatively
constant CAV.

The ordering of models in terms of CAV is largely preserved
over time and across the increasing and constant tax scenarios.
IMACLIM shows CAV values that are multiple times as high as
those of the other models. DNE21+, GEM-E3, GCAM, REMIND
and WITCH have medium CAV values. IMAGE, MERGE-ETL,
MESSAGE, and POLES come in at the low end.

5. Model characterization based on diagnostic indicators

We have developed a set of diagnostic indicators to
characterize the model response to carbon pricing in various
dimensions:

• Cumulated CO2 FFI emissions reductions (relative abatement
index)

• Carbon intensity vs. energy intensity reductions (CoEI indicator)



Fig. 10. Development of the cost per abatement value (CAV) indicator over time and for two different tax scenarios: an exponentially increasing tax starting at $50
in 2010 (left panel) and a constant $200 carbon tax (right panel). Markers indicate the model for which the CAV was deduced. Solid lines indicate GE models,
whereas dotted lines indicate PE models.
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• Structural changes in energy use (primary energy transforma-
tion index)4

• Mitigation costs (cost per abatement value).

In Section 5.1, we check for correlations among these
indicators to examine the potential to classify models based
on indicator combinations. Section 5.2 presents a preliminary
model classification scheme.

5.1. Correlation of indicators

A large response of the primary energy mix to a carbon
tax will result in a strong reduction of carbon intensity as, in
most models, the primary energy mix shifts away from fossil
fuels due to the tax. We would thus expect that models with
a high primary energy TI are strongly inclined to reduce
carbon intensity and exhibit a relatively low carbon over
energy intensity (CoEI) values. Everything else being equal, a
lower carbon intensity translates to lower emissions and
thus higher emissions abatement. Fig. 11 plots the primary
energy TI results of this study against the CoEI. Fig. 12 plots
the primary energy TI against the relative abatement index
(RAI). While a negative correlation between the TI and the
CoEI and a positive correlation between the TI and the RAI
are clearly confirmed, these correlations are stronger in
2050 than in 2100. This is because even a strong transfor-
mation of the primary energymix toward low carbon energy
sources reaches its limits in further reducing carbon
intensity and emissions — except in GCAM, where the large
4 We use the transformation index for primary energy supply to represent
the structural changes in the energy system since it shows the more
significant changes among the transformation indices discussed in Sec-
tion 4.3 and is also the most broadly applicable to existing modeling
frameworks.
shift to bioenergy with CCS continues to boost negative
emissions as carbon prices increase.

We also investigate the correlation of the CoEI with the
RAI (Fig. 13). There is indeed a negative correlation between
CoEI and RAI. Higher relative abatement (high RAI) tends to
come with a strong inclination to reduce CI (low CoEI). The
negative correlation of RAI and CoEI is strongest in situations
of a significant carbon tax signal that has not yet pushed the
decarbonization to its limits. In the case of a low carbon tax
signal, the model response may not be strong enough to
induce a clear correlation (see Fig. S2 in the SOM).

The correlation between the abatement response to
carbon prices and the inclination to reduce carbon intensity
is an important result of our diagnostic analysis. The RAI and
CoEI are complementary by construction, since the RAI is
related to the residual CO2 FFI emissions, which in principle
can be achieved with a large range of CoEIs. The negative
correlation between the RAI and CoEI (Fig. 13), the positive
correlation between the RAI and the TI (Fig. 12), and the
negative correlation between the TI and CoEI (Fig. 11)
suggest that many models show a high/low/high or a low/
high/low pattern for RAI/CoEI/TI.
5.2. Model classification

Section 5.1 has identified correlations among the diag-
nostic indicators on emissions, energy and carbon intensity,
and energy system response. This means that their combi-
nationmight allow us to characterize not only a single model
but also a larger group of models. Such a classification would
make it easier to identify patterns among the spread of
model results in model intercomparison studies that aim to
inform policy-relevant questions. What follows is only a
preliminary attempt at such a classification that aims to
illustrate one important application of model diagnostics.



Fig. 11. The CoEI indicator (on y-axis), i.e. the ratio of residual carbon intensity over energy intensity (in fraction of baseline intensities), is plotted against the primary
energy transformation index (on x-axis) acrossmodels (indicated by themarker) for the years 2050 (left panel) and 2100 (right panel) for the exponentially increasing tax
scenarios starting at $50 in 2010.
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5.2.1. Classification of participating models
In Table 2, we use simple qualitative characterizations of the

indicator values: low, high, andmedium/mixed categories based
on the results shown in Section4. Themedium/mixed category is
for thosemodels that fall in between the low and high clusters or
that move from one cluster to the other over time. For an
overview of the numerical values on which the diagnostic
indicators for each model are based, view Table S4 in the SOM.

Somemodels show indicator values that are fully in linewith
a low-response vs. high-response classification. A high-response
model would be expected to show higher emission reductions,
Fig. 12. The relative abatement index (y-axis) is plotted against the primary energy t
years 2050 (left panel) and 2100 (right panel), for the exponentially increasing tax
lower carbon intensity relative to energy intensity, and a more
decisive transformation of the primary energy mix — a high/
low/high pattern with regards to RAI/CoEI/TI. Conversely,
low-response models would be expected to show a low/high/
low pattern. This is true for DNE21+, GEM-E3 and WITCH,
which can be classified as a low-response model, and for GCAM,
MERGE-ETL, REMIND and MESSAGE, which can be identified as
high-response models. The indicators of the other four models
do not fit the low, high or medium response patterns fully, as
they includemedium ormixed values. Nevertheless, at least two
indicators of most models match the low-response vs.
ransformation index (x-axis) across models (indicated by the marker) for the
scenarios starting at $50 in 2010.



Fig. 13. The CoEI indicator (y-axis) is plotted over the relative abatement index (x-axis) across models (indicated by the marker) for the years 2050 (left panel)
and 2100 (right panel) for the exponentially increasing tax scenarios starting at $50 in 2010.
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high-response patterns. For this preliminary classification, we
define IMACLIM as a low-response model, IMAGE as a
high-response model and AIM-Enduse and POLES as
medium-response models based on the largest overlap with
the low/medium/high response classes defined in Table 3.

There is no clear correlation between the cost per
abatement value (CAV) indicator and the model classifica-
tion based on RAI, CoEI and TI. This may be due to the fact
that high-response models may exhibit both relatively high
emission reductions and high mitigation costs that boost
both the numerator and the denominator of the CAV. This
would indicate that the CAV provides complementary
information to the high- vs. low-response model character-
istics. Section 4.4 suggests that high CAV values come from
the subset of equilibriummodels that include the full impact
on the economy.

It is worthwhile noting that some of themodels classified
as low response models in Table 2 are also among the
models with a low measure of low-carbon energy supply
technology variety, as shown in Table 1. However, a high
technology variety measure does not automatically lead to
Table 2
Qualitative description of indicator values across individual models and diagnostic i
available to calculate the particular indicator. A preliminary classification of mode
column.

Model Relative abatement index CoEI indicator Transformation inde

AIM-Enduse Low Mixed Mixed
DNE21+ Low High Low
GCAM High Low High
GEM-E3 Low High TBD
IMACLIM Low High Mixed
IMAGE High Low Mixed
MERGE-ETL High Low High
MESSAGE High Low High
POLES Mixed Mixed Low
REMIND High Low High
WITCH Low High Low
the classification as a high-response model. The measure
only covers the supply side, and a high variety of low-carbon
technologies does not automatically translate into their
large-scale use.

5.2.2. Preliminary classification scheme
From our classification of the participating models, we

derive a preliminary classification scheme based on the
indicators RAI, CoEI and TI and the model type (Table 3).

We have added the model type to the classification
scheme rather than the CAV itself because the model type
determines the cost components that can actually be
measured. However, this may be changed in the future, or
the CAV may be added, as our understanding about the
explanatory power of the CAV improves. The CAV definitely
provides useful additional information about the magnitude
of mitigation costs in climate policy analyses with quantita-
tive mitigation targets. In such a setting, the required
emissions reductions are largely fixed, and the low vs. high
responsiveness of models will give a good indication about
the level of carbon prices that is needed in the models to
ndicators. TBD (To be defined) is shown in places where model data was not
ls based on the combination of indicator values is shown in the rightmost

x (primary energy) Cost per abatement value Classification

TBD PE — medium response
Mixed PE — low response
Medium PE — high response
Medium GE — low response
High GE — low response
Low PE — high response
Low GE — high response
Low GE — high response
Low PE — medium response
Medium GE — high response
Medium GE — low response



Table 3
Criteria for a preliminary classification of models based on qualitative
descriptions of indicator values.

Model
type

Model
classification

Relative
abatement
index

CoEI
indicator

Transformation
index (primary
energy)

PE/GE Low response Low High Low
PE/GE Medium

response
Medium/
Mixed

Medium/
Mixed

Medium/
Mixed

PE/GE High response High Low High
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reach the target. Thus, the choice of mitigation target and the
responsiveness of models largely determine the denomina-
tor of the CAV. The indicator itself will then specify to what
extent the abatement value translates into mitigation costs.
Therefore, highest cost estimates can be expected from
general equilibrium models measuring full economic costs
with low responsiveness and high CAV (IMACLIM and to a
lesser extent GEM-E3 and WITCH). In turn, lowest cost
estimates will be expected in partial equilibrium models
with high responsiveness and low CAV (IMAGE).

We note that models that do not match but are close to
the indicator patterns in Table 3 can also be classified based
on this scheme. For instance, a model with a low abatement
index, a high CoEI and a medium or mixed transformation
index can be considered a low-response model.

The derived preliminary classification serves mainly
illustrative purposes. Further research and the integration
of diagnostic results from more models are needed to
establish a robust classification scheme. Ultimately, the
value of such a scheme needs to be judged against its ability
to characterize differences in model outputs and policy
implications in a variety of contexts. As a preliminary test
of the model classification, we present results from the
Fig. 14.Mitigation costs plotted against cumulated CO2 FFI emissions reductions (fra
scenarios (connected by dashed lines for a given model). Models are colored accor
response: Dark Red; PE— high response: Green; GE— low response: Black; GE— hig
of most models' graphs, these panels exclude IMACLIM, which shows NPV policy co
the periods 2010–2050 and 2010–2100.
AMPERE model intercomparison studies on delayed and
fragmented action [6,7] in Fig. 14. These results are from
scenarios for atmospheric greenhouse gas concentration
targets at levels of approx. 450 and 550 ppm CO2e. Fig. 14
shows mitigation costs (in NPV consumption or partial
equilibrium costs, discounted at 4% per year) for the 450 and
550 ppm CO2eq stabilization cases. Models are colored
according to the classification identified above. It can
be seen that costs decrease from low-response to high-
response models and are higher for GE than for PE models.
As expected, IMACLIM exhibits the highest costs (exceeding
the upper boundaries of Fig. 14) and IMAGE the lowest. Thus,
our preliminary classification passes this initial test of its
explanatory power for the differences in cost estimates.
However, the test sample is too small to draw definitive
conclusions at this point.

It should finally be noted that the classification that we used
here relates to specific versions of the respective models.
Updates in model structure or parameters could change the
relative position of different models, for instance through the
inclusion of new mitigation options.

6. Summary and conclusion

We have studied and compared the emissions, energy,
and economic response to a carbon price signal across 11
global energy-economy and integrated assessment models.
The diagnostic study setup consisted of a no-climate-policy
baseline and a series of constant and exponentially rising
carbon tax scenarios with globally harmonized carbon prices.
The study setup can be adopted by global and regional
models alike. We found the increasing tax variant to be most
useful for identifying diagnostic indicators for abatement
response and economic impacts because the present value of
ction of baseline emissions) for 450 and 550 ppm CO2eq climate stabilization
ding to the classification in Table 3 (PE — low response: Red, PE — medium
h response: Yellow). To keep the y-axis at a scale that provides good visibility
sts of 6–7% for the 550 ppm scenario and 9–10% for the 450 ppm scenario for
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a constant carbon tax depreciates over time in the dynamic
setting of a growing economy.

We have developed four diagnostic indicators to charac-
terize the model responses based on the criteria of charac-
terizing model heterogeneity, relevance for climate policy
analysis, applicability to diverse models, and accessibility and
ease of use. These indicators are the relative abatement index
(RAI), measuring the scale of emissions reductions, the
carbon over energy intensity indicator (CoEI) measuring the
reliance on carbon intensity vs. energy intensity reductions,
the transformation index (TI) measuring the scale of trans-
forming the primary energy mix, and the cost per abatement
value (CAV) indicator measuring the mitigation costs as a
function of carbon prices and emissions reductions.

A key result of the diagnostic analysis is the identification of
strong correlations between the different diagnostic indicators.
Models with higher relative abatement (high RAI) tend to also
exhibit a stronger reliance on carbon intensity reductions (low
CoEI) and amore significant transformation of the energy sector
(high transformation indices). At the opposite end, we find
models with lower relative abatement, a smaller reliance on
carbon intensity reductions (high CoEI) and much smaller
changes to the structure of the energy system (low transforma-
tion indices). When compared with each other, most models
that participated in the diagnostic study fell into one of these two
categories. These correlations point to a distinct fingerprint of
model structure that emerges in various dimensions.

We used the correlation between diagnostic indicators to
establish a preliminary classification scheme and to illustrate
potential next steps in the diagnostic work. Establishing and
vetting a robust and useful classification scheme will require
a community effort involving more models and diagnostic
experiments as well as tests in applied contexts. We are
hopeful that the findings and suggestions presented here can
help encourage the next research steps and advance the
discussion about diagnostic standards.
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