

4th International Workshop on Uncertainty in Atmospheric Emissions:

> A Metric for the Prognostic Outreach of Scenarios

> Learning from the Past to Establish a Standard in Applied Systems Analysis

M. JONAS, E. ROVENSKAYA and P. Żebrowski

Krakow, Poland; 07–09 October 2015

This talk covers

- 1. Motivation
- 2. Framing conditions and definitions
- 3. Why diagnostic and prognostic uncertainty are different and independent
- 4. Learning in a prognostic context
- 5. Toward application: an accurate and precise system
- 6. Insights and outlook

1. Motivation

Our motivation is two-fold:

- to expand Jonas *et al.* (2014) *Uncertainty in an emissions-constrained world* emerging from the 3rd (2010) Uncertainty Workshop;
- 2. and to contribute to the unresolved question of *How limited are prognostic scenarios?*

We are still moving at a theoretical level but we already encounter important insights and windfall profits!

1. Motivation (2)

An easy-to-apply metric or indicator is needed that informs non-experts about the time in the future at which a prognostic scenario ceases to be (for whatever reasons) in accordance with the system's past.

This indicator should be applicable in treating a system / model coherently (from beginning to end)!

1. Motivation (2)

An easy-to-apply metric or indicator is needed that

1. Motivation (1)

Jonas *et al.* (2014):

The mode of bridging diagnostic and prognostic uncertainty across temporal scales relies on two discrete points in time: 'today' and 2050.

Now we want to become continuous ...

1. Motivation (1)

Globe or Group of Countries or individual Country

Jonas and Nilsson (2007: Fig. 4); modified

Diagnostic uncertainty

→ can increase or decrease depending on whether or not our knowledge of accounting emissions becomes more accurate and precise!

Prognostic uncertainty

 \rightarrow under a prognostic scenario always increases with time!

Meinshausen *et al.* (2009: Fig. 2)

Probability of exceeding 2 °C:

Indicator	Emissions	Probability of exceeding 2 °C [±]	
	r.	Range	Illustrative default case [±]
Cumulative total CO2 emission 2000-49	886 Gt CO2	8-37%	20%
	1,000 Gt CO2	10-42%	25%
	1,158 Gt CO2	16-51%	33%
	1,437 Gt CO2	29-70%	50%
Cumulative Kyoto-gas emissions 2000-49	1,356 Gt CO2 equiv.	8-37%	20%
	1,500 Gt CO2 equiv.	10-43%	26%
	1,678 Gt CO2 equiv.	15-51%	33%
	2,000 Gt CO ₂ equiv.	29-70%	50%
2050 Kyoto-gas emissions	10 Gt CO2 equiv. yr ⁻¹	6-32%	16%
	(Halved 1990) 18 Gt CO2 equiv. yr ⁻¹	12-45%	29%
	(Halved 2000) 20 Gt CO2 equiv. yr ⁻¹	15-49%	32%
	36 Gt CO ₂ equiv. yr ⁻¹	39-82%	64%
2020 Kyoto-gas emissions	30 Gt CO ₂ equiv. yr ⁻¹	(8-38%) [±]	(21%) [†]
	35 Gt CO ₂ equiv. yr ⁻¹	(13-46%) [±]	(29%) [†]
	40 Gt CO2 equiv. yr ⁻¹	(19-56%) [±]	(37%) [±]
	50 Gt CO2 equiv. yr ⁻¹	(53-87%) [±]	(74%) [±]

Assume that we have learned from a RL exercise

- that each historical data record has a memory and exhibits (but not necessarily) a linear dynamics;
- that each data record's uncertainty (learning) wedge unfolds linearly into the future (until when?);
- and that our data records exhibit linear interdependencies [eg: T = T(C); C = C(E); E = E(t)]

Assume that we have learned from a RL exercise

- that each historical data record has a memory and exhibits (b vnamics;
- that each of unfolds line
- and that or dependent

rning) wedge en?); inter-; E = E(t)]

$$E(t) \rightarrow C(t) \rightarrow T(t)$$

$$\mathbf{E} = \mathbf{m}_{\mathrm{Et}}\mathbf{t} ; \quad \mathbf{C} = \mathbf{m}_{\mathrm{Ct}}\mathbf{t} ; \quad \mathbf{T} = \mathbf{m}_{\mathrm{Tt}}\mathbf{t}$$

$$E_{u} = f_{u}m_{Et}t$$

 $\mathbf{E}_{l}=f_{l}\mathbf{m}_{\mathrm{Et}}t$

$$\Delta \mathbf{E} = \Delta \mathbf{f}_{\mathrm{Et}} \mathbf{m}_{\mathrm{Et}} \mathbf{t} = \Delta \mathbf{f}_{\mathrm{Et}} \mathbf{E}$$

$$\sigma_{\rm E}^2 = \left(\frac{\partial E}{\partial m_{\rm Et}}\right)^2 \sigma_{\rm m_{\rm Et}}^2 + \left(\frac{\partial E}{\partial t}\right)^2 \sigma_{\rm t}^2 \Longrightarrow \quad \sigma_{\rm E}^2 = \sigma_{\rm m_{\rm Et}}^2 t^2$$

$$\Delta\!E=\!2\sigma_{\!_{E}}=\!2\sigma_{\!_{m_{Et}}}t=\!\Delta\!f_{\!_{Et}}m_{\!_{Et}}t=\!\Delta\!f_{\!_{Et}}E$$

$$\Delta f_{Et} = \frac{\Delta E}{E} = 2\frac{\sigma_E}{E} = 2\frac{\sigma_{mEt}}{m_{Et}}$$

We merge an accurate-precise system with classical statistics!

∆f_{Et} combines Unc (learn) + Dyn (mem) knowledge!

Similarly for C = C(t):

 $C = m_{Ct}t$

 $T = m_{\pi}t$

The linearly interdependent cases C = C(E) and T = T(C) = T(C(E)):

 $\mathbf{C} = \mathbf{m}_{\mathrm{CE}} \mathbf{E} = \mathbf{m}_{\mathrm{CE}} \mathbf{m}_{\mathrm{Et}} \mathbf{t} = \mathbf{m}_{\mathrm{Ct}} \mathbf{t};$

$$\mathbf{T} = \mathbf{m}_{\mathrm{TC}} \mathbf{C} = \mathbf{m}_{\mathrm{TC}} \mathbf{m}_{\mathrm{CE}} \mathbf{E} = \mathbf{m}_{\mathrm{TC}} \mathbf{m}_{\mathrm{CE}} \mathbf{m}_{\mathrm{Et}} \mathbf{t} = \mathbf{m}_{\mathrm{Tt}} \mathbf{t}$$

Find:

 $\Delta E = \Delta f_{_{Et}} m_{_{Et}} t = \Delta f_{_{Et}} E$

$$\Delta \mathbf{C} = \Delta \mathbf{f}_{Ct} \mathbf{m}_{Ct} \mathbf{t} = \Delta \mathbf{f}_{CT} \mathbf{C} = \sqrt{\Delta \mathbf{f}_{CE}^2 + \Delta \mathbf{f}_{Et}^2 \mathbf{C}}$$
$$\Delta \mathbf{T} = \Delta \mathbf{f}_{Tt} \mathbf{m}_{Tt} \mathbf{t} = \Delta \mathbf{f}_{Tt} \mathbf{T} = \sqrt{\Delta \mathbf{f}_{TC}^2 + \Delta \mathbf{f}_{Et}^2 + \Delta \mathbf{f}_{Et}^2 \mathbf{T}}$$

•••

That is:

$$\begin{split} \Delta \mathbf{f}_{\mathrm{Ct}} &= \sqrt{\Delta \mathbf{f}_{\mathrm{CE}}^2 + \Delta \mathbf{f}_{\mathrm{Et}}^2} \;, \\ \Delta \mathbf{f}_{\mathrm{Tt}} &= \sqrt{\Delta \mathbf{f}_{\mathrm{TC}}^2 + \Delta \mathbf{f}_{\mathrm{CE}}^2 + \Delta \mathbf{f}_{\mathrm{Et}}^2} \end{split}$$

Similarly for C = C(t):

Function	Variance	Standard Deviation
f = aA	$\sigma_f^2 = a^2 \sigma_A^2$	$\sigma_f = a\sigma_A$
f = aA + bB	$\sigma_f^2 = a^2 \sigma_A^2 + b^2 \sigma_B^2 + 2ab \sigma_{AB}$	$\sigma_f = \sqrt{a^2 \sigma_A^2 + b^2 \sigma_B^2 + 2ab \sigma_{AB}}$
f = aA - bB	$\sigma_f^2 = a^2 \sigma_A^2 + b^2 \sigma_B^2 - 2ab \sigma_{AB}$	$\sigma_f = \sqrt{a^2 \sigma_A^2 + b^2 \sigma_B^2 - 2ab \sigma_{AB}}$
f = AB	$\sigma_{f}^{2} \approx f^{2} \left[\left(\frac{\sigma_{A}}{A} \right)^{2} + \left(\frac{\sigma_{B}}{B} \right)^{2} + 2 \frac{\sigma_{AB}}{AB} \right]$	$\sigma_f \approx f \sqrt{\left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_B}{B}\right)^2 + 2\frac{\sigma_{AB}}{AB}}$
$f = \frac{A}{B}$	$\sigma_f^2 \approx f^2 \left[\left(\frac{\sigma_A}{A} \right)^2 + \left(\frac{\sigma_B}{B} \right)^2 - 2 \frac{\sigma_{AB}}{AB} \right]^{(1)}$	$\sigma_f \approx f \sqrt{\left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_B}{B}\right)^2 - 2\frac{\sigma_{AB}}{AB}}$
$f = aA^b$	$\sigma_f^2 \approx \left(abA^{b-1}\sigma_A\right)^2 = \left(\frac{fb\sigma_A}{A}\right)^2$	$\sigma_f \approx abA^{b-1}\sigma_A = \left \frac{fb\sigma_A}{A}\right $
$f = a \ln(bA)$	$\sigma_f^2 \approx \left(a \frac{\sigma_A}{A}\right)^2 [12]$	$\sigma_f \approx \left a \frac{\sigma_A}{A} \right $
$f = a \log_{10}(A)$	$\sigma_f^2 \approx \left(a \frac{\sigma_A}{A \ln(10)}\right)^2$ [12]	$\sigma_f \approx \left a \frac{\sigma_A}{A \ln(10)} \right $
$f = ae^{bA}$	$\sigma_f^2 \approx f^2 (b\sigma_A)^2$ [13]	$\sigma_f \approx f (b\sigma_A) $
$f = a^{bA}$	$\sigma_f^2 \approx f^2 (b \ln(a)\sigma_A)^2$	$\sigma_f \approx f (b \ln(a)\sigma_A) $
$f = A^B$	$\sigma_f^2 \approx f^2 \left[\left(\frac{B}{A} \sigma_A \right)^2 + (\ln(A) \sigma_B)^2 + 2 \frac{B \ln(A)}{A} \sigma_{AB} \right]$	$\sigma_f \approx f \sqrt{\left(\frac{B}{A}\sigma_A\right)^2 + (\ln(A)\sigma_B)^2 + 2\frac{B\ln(A)}{A}\sigma_{AB}}$
	$\Delta t_{Ct} = \sqrt{\Delta t_{CE}^2 + \Delta t_{Et}^2} , \qquad \qquad \text{Source}$: http://en.wikipedia.org/wiki/Propagation_of_uncertainty
	$\Delta f_{Tt} = \sqrt{\Delta f_{TC}^2 + \Delta f_{CE}^2 + \Delta f_{Ft}^2}$	

To understand this result, look at C = C(E), for which we found:

$$\Delta \mathbf{f}_{\rm Ct} = \sqrt{\Delta \mathbf{f}_{\rm CE}^2 + \Delta \mathbf{f}_{\rm Et}^2}$$

Rewrite as

$$\Delta f_{CE}^{2} + \Delta f_{Et}^{2} - \Delta f_{Ct}^{2} = 0 \quad \iff \quad \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} - \frac{z^{2}}{c^{2}} = 0$$

which describes a second-order cone:

To understand this result, look at C = C(E), for which we found:

Serial-parallel interdependence:

$$\begin{array}{ccc} E_1 & \rightarrow & C_1 \\ E_2 & \rightarrow & C_2 \end{array} \rightarrow T$$

Deriving Δf_{π} is easy and straightforward (particularly in the case of uncorrelated variables)!

The analytical expression for Δf_{Tt} also holds for a system, where the second emissions source (E₂) is replaced by a sink (R: removal):

$$\begin{array}{ccc} E & \rightarrow & C_1 \\ R & \rightarrow & C_2 \end{array} \rightarrow T$$

This is a game changer that has not so far been considered!

meaning that the learning does not change while the two systems differ:

$$\mathbf{C} = \mathbf{C}_1 + \mathbf{C}_2$$
 versus $\mathbf{C} = \mathbf{C}_1 - \mathbf{C}_2$.

That is, a sink reduces a source but their uncertainties still add up!

6. Insights and outlook

1. The risk of exceeding a 2050 global temperature target (eg, 2 °C) appears to be greater than assessed by the IPCC!

The correct approach would have been to deal with cumulated emissions and removals <u>individually</u> to determine their combined risk of exceeding the agreed temperature target.

<u>RL allows exactly this to be done:</u> RL overcomes this shortfall and allows the effect of learning about emissions and removals individually to be grasped.

6. Insights and outlook

6. Insights and outlook

2. We anticipate that, in the case of success, the way of constructing prognostic models and conducting systems analysis will have to meet certain quality standards:

- Better diagnostic data handling (retrospective learning)!
- Specifying the models' outreach limits!
- Safe-guarding complex models by means of meta-models which fulfill the above!

References

- Andriana, D., 2015: Neural networks to analyze uncertainty in prognostic model runs. Young Scientists Summer Program Late Summer Workshop, International Institute for Applied Systems Analysis, Laxenburg, Austria, 40; Proceedings: <u>http://www.iiasa.ac.at/web/home/education/yssp/PreviousSummerYSSP/2015_YS</u> <u>SP_Proceedings_Final_Colloquium.pdf</u>.
- Fuss, S., J.G. Canadell, G.P. Peters, M. Tavoni, R.M. Andrew, P. Ciais, R.B. Jackson, C.D. Jones, F. Kraxner, N. Nakicenovic, C. Le Quéré, M. Raupach, A. Sharifi, P. Smith, Y. Yamagata, 2014: Betting on negative emissions. *Nature Clim. Change*, 4, 850–853; doi:10.1038/nclimate2392.
- GCP, 2014: Global Carbon Budget 2014. PDF presentation file made available by the Global Carbon Project, Canberra, Australia; <u>http://www.globalcarbon project.org/carbonbudget/14/files/GCP_budget_2014_lowres_v1.02.pdf</u> (accessed 25 September 2015).
- Giles, J., 2002: Scientific uncertainty: When doubt is a sure thing. *Nature*, **418**, 476–478; doi: 10.1038/418476a.
- IPCC, 2006: 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Vol. 1: General Guidance and Reporting [H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara and K. Tanabe (eds.)]. Prepared by the National Greenhouse Gas Inventories Programme, Institute for Global Environmental Strategies, Hayama, Japan.
- Jonas, M. and S. Nilsson, 2007: Prior to economic treatment of emissions and their uncertainties under the Kyoto Protocol: Scientific uncertainties that must be kept in mind. *Water Air Soil Pollut.: Focus*, 7(4–5), 495–511; doi: 10.1007/s11267-006-9113-7.
- Massari Coelho, G., J.P. Ometto and M. Jonas, 2012: Report on the panel land-use change and biomass production: Brazil's carbon emissions today and in the future. In: *Parcerias Estratégicas: Edição Especial*, **17**(35), 29–54, <u>http://www.cgee.org.br/atividades/redirect/8051</u>.
- Meinshausen, M., N. Meinshausen, W. Hare, S.C.B. Raper, K. Frieler, R. Knutti, D.J. Frame and M.R. Allen, 2009: Greengouse-gas emission targets for limiting global warming to 2 °C. *Nature*, **458** (30 April 2009), 1158–1162, doi: 10.1038/nature08017.
- Moss, R.H. and S.H. Schneider, 2000: Uncertainties in the IPCC TAR: Recommendations to Lead Authors for More Consistent Assessment and Reporting. In *Guidance Papers on the Cross Cutting Issues of the Third Assessment Report of the IPCC* [R. Pachauri, T. Taniguchi and K. Tanaka (eds.)]. Global Industrial and Social Progress Research Institute, Tokyo, Japan, 33–51. Available at: <u>www.ipcc.ch/pdf/supporting-material/guidance-papers-3rd-</u> assessment.pdf.