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About the Workshop 

 

 
The assessment of greenhouse gases and air pollutants (indirect GHGs) emitted to and removed 

from the atmosphere is high on the political and scientific agendas. Building on the UN climate 

process, the international community strives to address the long-term challenge of climate 

change collectively and comprehensively, and to take concrete and timely action that proves 

sustainable and robust in the future. Under the umbrella of the UN Framework Convention on 

Climate Change, mainly developed country parties to the Convention have, since the mid-

1990s, published annual or periodic inventories of emissions and removals, and continued to 

do so after the Kyoto Protocol to the Convention ceased in 2012. Policymakers use these 

inventories to develop strategies and policies for emission reductions and to track the progress 

of those strategies and policies. Where formal commitments to limit emissions exist, regulatory 

agencies and corporations rely on emission inventories to establish compliance records.  

However, as increasing international concern and cooperation aim at policy-oriented solutions 

to the climate change problem, a number of issues circulating around uncertainty have come to 

the fore, which were undervalued or left unmentioned at the time of the Kyoto Protocol but 

require adequate recognition under a workable and legislated successor agreement. Accounting 

and verification of emissions in space and time, compliance with emission reduction 

commitments, risk of exceeding future temperature targets, evaluating effects of mitigation 

versus adaptation versus intensity of induced impacts at home and elsewhere, and accounting 

of traded emission permits are to name but a few.  

The 4th International Workshop on Uncertainty in Atmospheric Emissions is jointly organized 

by the Systems Research Institute of the Polish Academy of Sciences, the Austrian-based 

International Institute for Applied Systems Analysis, and the Lviv Polytechnic National 

University. The 4th Uncertainty Workshop follows up and expands on the scope of the earlier 

Uncertainty Workshops – the 1st Workshop in 2004 in Warsaw, Poland; the 2nd Workshop in 

2007 in Laxenburg, Austria; and the 3rdWorkshop in 2010 in Lviv, Ukraine. 
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Abstract 

Carbon cycling of terrestrial ecosystems is a fuzzy (underspecified) system that imposes 

substantial constrains on possibility to get unbiased estimates of basic intermediate components 

(e.g., Net Primary Production, Heterotrophic Respiration) and final results (e.g., Net Ecosystem 

Carbon Budget) of the account within strictly defined confidential intervals based on any 

individually used carbon cycling method or model. We present a methodology attempting at 

minimizing possible biases and restricting the multivariate uncertainty’s space. The 

methodology follows the principles of applied systems analysis and is based on integration of 

major independent methods of carbon cycling study (landscape-ecosystem approach, process-

based models, eddy covariance and inverse modelling) with following harmonizing and mutual 

constraints of the results. Based on a case study for Russia’s forests, we discuss strengths and 

limitations of the outlined methodology. 

Keywords: Carbon cycle, uncertainty, fuzzy systems, Northern Eurasian forests 

1. Introduction 

Assessment of carbon budget of terrestrial ecosystems (FCA) requires obtaining 

two equally important outputs: 1) an unbiased proxy value, e.g. Net Ecosystem Carbon 

Budget (NECB) in a spatial and temporal explicit way and 2) uncertainties of NECB 

and its major components. A possible bias of the results depends upon the method used 

and completeness of the FCA. The latter is usually estimated based on expert estimates 

and professional judgements. Consideration of numerous interacting processes, which 

control NECB, in many models are often limited by a few such as climate change, 

impact of elevated CO2, sometimes disturbances, nitrogen limitation and deposition [1]. 

Based on previous assessments of uncertainties’ range of major components of the 

FCA, we consider the carbon account as full if the accounting schemes include  ≥ 98% 

of all recognized processes. A verified account of NECB supposes reliable and 

complete assessment of uncertainties, i.e. judgments about “uncertainty of 

uncertainties” would be possible [2]. However, the full carbon account of terrestrial 

ecosystems, particularly at large spatial scales is a typical fuzzy (underspecified) 

system, of which membership function is inherently stochastic, with some typical 

features of full complexity problems [3] and to some extent - wicked problems [e.g., 4]. 

This predetermines a principle impossibility of formally strict assessment of structural 

uncertainties within any method individually used. Thus “within method” uncertainty 

inevitably presents only part of “full” uncertainties. Posterior independent empirical 

validation of NECB is difficult to be realized in practice due to large resources required.  

This necessitates development of a methodology, which would be able to assess the 

“full uncertainties” of a studied system. 

mailto:shvidenk@iiasa.ac.at
mailto:schepd@iiasa.ac.at
mailto:kraxner@iiasa.ac.at
mailto:fritz@iiasa.ac.at
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We attempt to outline such a methodology based on major principles of applied 

systems analysis [2,5], considering combination of major methods of carbon cycling 

understanding: landscape-ecosystem approach (LEA), process-based models, inverse 

modeling, and eddy covariance. Use of remote sensing methods in the FCA is crucial 

and two-faced because those deliver important input data (such as land cover at its 

biophysical parameters like above-ground live biomass) for different methods, but also 

some components of FCA directly (e.g., NPP). The principle of integration is applied 

at all stages and for all modules of the account - from development of the information 

base to uncertainty assessment of final results. Some ideas of the considered approach 

have been presented in previous publications [5,6,7] but the descriptions of methods 

used were lacked a common system basis. The approach was applied to the FCA of 

Russian forests as the most complicated by structure and processes terrestrial ecosystem 

that allows to highlight the methodology’s strengths, weaknesses and potential. We also 

discuss system requirements to different methods of FCA, relevant scales and required 

details, information and research needs, as well as obtained and potential levels of 

uncertainties. 

2. Methods 

Basic methods of studying the carbon cycling of terrestrial ecosystems differ by 

specifics of cognition of biogeochemical processes, amount of information required, 

spatial and temporal details of consideration, and possibility of uncertainties’ 

assessments. In an ideal case, each method should satisfy a minimum of system 

requirements that would allow to reliably assess “within method” uncertainties 

including monosemantic (and potentially consistent) definitions and classification 

schemes; explicit structuring of the account including strict spatial, temporal and 

process boundaries; explicit algorithmic description of the FCA for all steps and 

modules including that of assumptions, expert estimates and other “soft knowledge”; 

matching the temporal dimensions of the FCA with characteristic times of processes 

considered. Effectiveness of potential integration of results obtained by different 

methods depends on compatibility and amount of information comprising by each 

method. Structure of the FCA is outlined in Figure.  

2.1 Landscape-ecosystem approach as empirical background of FCA 

Landscape-ecosystem approach (LEA) plays specific role in the FCA as its empirical 

basis. In essence, it combines two basic backgrounds of any carbon cycling study - 

pool-based and flux-based approaches in a possibly complimentary way. The LEA 

serves for strict designing the studied system, defining the inter- and intra- boundaries, 

and contains spatially distributed accumulated information about ecosystems and 

landscapes (data of measurements in situ, diverse empirical and semi-empirical 

aggregations, data of forest inventory and different surveys, empirical aggregations and 

models etc.). LEA’s information background is presented in form of an Integrated Land 

Information System as multi-layer and multi-scale GIS by polygons of a hybrid land 

cover (HLC). The HLC uses a hierarchical classification of land cover with details, 

needed for carbon cycling assessment. Land cover is developed using diversity of 

relevant remote sensing products, geographically-weighted regression and validation 

by Geo-Wiki tool. For instance, the last version of forest mask for Russia (resolution 

230 m) was based on 12 remote sensing products, 5300 control points for the algorithm 

training and 730 for validation points; this allowed to minimize the possible biases in 

assessment of the forest area and its distribution providing accuracy of the forest 
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mask >95% [8]. By-pixel parametrization of forest cover is provided based on multi-

sensor remote sensing data, data of forest inventory, soil and landscape characteristics 

and other diverse relevant sources using a special optimization algorithm [9].  

 

 
 

Figure 1. Structural scheme of full verified carbon account of forest ecosystems. 

An important requirement is providing a system consistency between resolution 

(spatial scale of land cover and its parametrization) and certainty of attributive data. It 

could be shown that accuracy of major part of input data and empirically based models 

are logically consistent with resolution of 200-500 m at the country’s scale. This 

provides a minimal level of uncertainty which presumably would be available for policy 

makers [10] but requires, e.g. for forests, by-pixel knowledge of dominant tree species, 

age, average height and diameter, site index, relative stocking, growing stock volume, 

and stock of dead wood. At the level of forest enterprises (of the total amount of ~1700 

for Russia) the algorithm provides consistency of aggregated ILIS data with the most 

accurate available information sources (e.g., data of recent forest inventory). The 

assigned by-pixel parameters are presented by the most likely values based on indexes 

Terrestrial Ecosystem Full 

Verified Carbon Account 

proxy: NECB 

Methods 

Landscape-ecosystem 

approach 

NECB 

Process-based models 

(DGVM, LDSM) 

NBP 

Inverse modeling 

CO
2
, CH

4
 

Eddy covariance 

NEE 

Remote sensing 

assessment of parameters 

AGB, NPP, D 

Intermediate and final results 

& “within method” 

uncertainties 

Harmonizing and mutual 

constraints of results 

Assessment of system NECB 

and its uncertainties 



4th International Workshop on Uncertainty in Atmospheric Emissions 

----------------------------------------------------------------------------------------------------------------------------  

4 

 

of suitability which are calculated based on ILIS data aggregating the system 

characteristics of site and growth conditions (such as elevation and exposure in 

mountains, soils, hydrological regimes etc.).  

Pools of organic carbon include live biomass, dead wood, and soil carbon. Live 

biomass is calculated based on regionally distributed multi-dimensional regressions of 

Biomass Extension Factors which include region, aggregated forest type, dominant 

species, age, site index and relative stocking [10]. These regressions are based on ~7000 

sample plots and allow to assess live biomass by 7 components (stem wood, branches, 

foliage, coarse roots, fine roots, understory (undergrowth + shrubs), and green forest 

floor). Coarse woody debris that includes logs, snags, stumps, and dry branches of 

living trees is assessed based on field measurements on sample plots and relevant data 

of forest inventory. Soil carbon is assessed for on-ground organic layer and 1m top layer 

of mineral soil based on soil map at scale at 1:2.5 M and corresponding database of 

typical soil profiles [11].  

Major carbon fluxes that directly describe production process include Net Primary 

Production (NPP), Soil Heterotrophic Respiration (SHR), decomposition of coarse 

woody debris (DEC), fluxes due to disturbances (D), and lateral fluxes. By definition, 

NECB also includes other carbon contained substances like methane (CH4), carbon 

oxide (CO), Volatile Organic Compounds (VOC) and particulates. NPP is assessed by 

a tentatively unbiased semi-empirical method which is based on modelling of full 

production of live biomass by components presented in models of bioproductivity [11]. 

A special empirically based modelling system was used for assessing SHR [11]. 

Decomposition of dead wood is described by kinetic models of the 1st order. Fluxes due 

to disturbances include fire, outbreaks of insects and deceases and impacts of 

unfavorable weather and environmental conditions [2,5]. Harvest and later fluxes of 

wood products (import, export) were assessed following Ciais et al. [13]. Fluxes to the 

hydrosphere are estimated based on measurements of DOC in water reservoirs 

including estimation of outgassing [14,15]. Emissions of methane and VOC were 

estimated based on dataset of field measurements and simplified models of 

dependences of emissions on different classes of forest cover. 

A disputable and not finally solved question is relevance of the account of impacts 

of elevated concentration of CO2 and deposition of nitrogen on vast and to a substantial 

impact unmanaged forests of Russia. The data on this topic for Russian forests are 

scarce and not consistent. At this stage, we used an aggregated approach which 

combined recognized but not accounted impacts on forest health and productivety. 

Observation on permanent sample plots [e.g. 16] and analysis of data of forest inventory 

[17,18] indicated that during the last 4 decades the increase of productivity (expressed 

in terms of growing stock volume) was 0.2-0.4% yr-1. Such corrections were 

implemented when updating forest inventory data for input them in the ILIS was 

provided.  

All fluxes which depend on climatic or environmental conditions and are calculated 

based on databases of measurement in situ are corrected for seasonal weather and 

environment conditions.  

 

2.2 Assessment of uncertainty 

 

    Uncertainties within LEA were calculated in the following way: 1) analysis and 

numerical attribution of accuracy of input data; 2) calculation of precision of 

intermediate and final results; 3) use of error propgation theory (assuming the Gaussian 

distribution) and/or numerical differentiation for assessing the precision of intermediate 
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and final results; 4) expert estimation of completness of the account and 

„transformation” of precision in uncertainty using the sensitivity analysis. Note that in 

practice basically „summarized errors” of input data, i.e. a mixture of random and 

systematic errors are available.Two end points of the assessment were considered: 

assessment of the unknown „fixed true value”and unknown true distribution.  

    The situation with assessment of uncertainties of parameters obtained by other 

methods is more diverse. Such results are usually derived from different studies which 

are not coordinated each other in any way. While process-based models (e.g., DGVMs) 

remain practically a sole method for explanation of processes and prediction, they have 

a number of specific features which should be taken into account: 1) as a proxy, 

DGVMs present only part of NECB (either Net Biome Production or Net Ecosystem 

Production); 2) they use a very simplified land cover classification with a limited 

number of plant functional types; part of these classification do not consider such 

important land classes as wetland or agricultural land; 3) substantial part of DGVMs is 

based on modelling „potential” vegetation and consider in very simplified way (or not 

consider) disturbances; 4) as global models, they are not able to properly describe some 

important regional features, e.g., specifics of impacts of processes on permafrost on 

forests of high latitudes [19]. Eddy covariance method presents a direct „bottom-up” 

estimate the Net Ecosystem Exchange (NEE) is widely used for parametrization of 

different models but at this stage cannot be used for upscaling for forests of the entire 

country due to very small amount of measurements (totally only in 17 different sites of 

which 13 were in forests). Inverse modelling is an inly methods of a „top-down” control 

of NEE. Uncertainty of measurements of some components of the FCA by remote 

sensing (e.g., NPP) substantially depends on completeness of regional validation and 

reliability of the models used at the regional level. Very often, the proper assessment of 

this type of uncertainties requires additional regional validation. 

     Harmonizing and mutual constraints of the results obtained by different methods 

have some specifics. First, the methods estimate different final indicators of carbon 

cyclimg: LEA – NECB, DGVMs – NBP, eddy covariance and inverse modeling -  NEE. 

Second, the estimated uncertainties for DGVMs and inverse modelling differ from 

those of LEA and eddy covariance because they are usually calculated as standard 

deviation between different models of the ensembles used. This impacts the essence of 

the final (system) results constrainted by the Bayesian approach, particularly in the 

judgment about confidential intervals.  

3. Results and discussion 

    Application of the LEA to Russian forests for 2007-2009 gave the following major 

results. NECB was estimated as the net sink of 546±120 Tg C yr-1 with substantial 

spatial variability: significat areas on permafrost and in disturbed forests serve as a 

carbon source. Uncertainties of major carbon pools were estimated (CI is equal 0.9, 

here and below) : live biomss ±5.0% and dead wood ±9.7%. Soil carbon pool could be 

estimated only very approximately  (at level of 7-10%) that – taken into account a high 

size of this pool - limits the potential use of pool-based methods in the FCA. 

Uncertainties of major fluxes were estimated: NPP  ±6%, HSR ±8%, DEC ±12%, fire 

±23%, biotic factors ±25%, forest harvest and use of forest products ±25%, flux to the 

hydrosphere and hydrosphere ±33%. These data were obtained assuming that the 

estimates do not have significant systemstic errors. 
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    Other published results of carbon budget of Russian forests are diverse. Using the 

pool-based method and the FAO definition of forest (the LEA used the Russian national 

definition) Pan et al. [20] defined the sink of Russian forests at 463±116 Tg C yr-1 

during 1990-2007. Transition to the Russian definition of forests gives the forest sink 

at ~530 Tg C yr-1, i.e. very close to the above flux-based estimates by the LEA. 

However, this publication calculated change of soil carbon by usin models based on of 

one-shot measurements of estimated indicators that allows to assume that uncertainty 

of this result is underestimated. There are a number of other „inventory” based estimates 

of the carbon sink for different years. These estimates reported NBP in the range from 

200-800 TgC yr-1. However these studies do not report any uncertainties and often 

contain simplified approaches.  

     Based on inverse modeling, carbon sink estimates for Russia (all land classes) are 

rather consistent. Within the Global Carbon Project Dolman et al. [7] used 12 different 

inversion schemes for different periods between 1992 and 2008  and reported the 

average sink at -690 Tg C yr-1 although the inter-model variation  is high – the standard 

deviation was ±246 Tg C yr-1. Sink for 2000-2004 that was received for vegetative land 

of Russia by four different inversion models on average reported –0.65±0.12 Pg C yr-1 

(P.Ciais, personal communication). These results are in line with a majority of previous 

studies for large Russian regions like Boreal Asia or Central Siberia [21,22,6]. 

    Results presented by DGVMs are less consistent. While NPP estimates by ensembles 

of DGVMs is very close to major part of “semi-empirical” assessments (e.g., about 7% 

of the LEA resuls), the NBP differs for about 50% [5,6,7,23]. The reason of this may 

be found in a balance between NPP and HR that to a significant extent is prescribed by 

DGVM approaches. However, this is not a case for high latitudes with their low 

intensive rates of decomposition of dead organic where fire is an important regulator. 

In addition, some substantial components of the FCA are omitted in current generations 

of DGVMs [1]. 

    Upscaling the direct measurements of NEE by eddy covariance is very uncertain. 

One of a very fea attempts realized in [7] gave the estimate in range from -760 to -1097 

Tg C yr-1. However, the certainty of this conclusion is basically in field of expert 

judgemwnt. 

    Application of the Biasian approach to results received by the LEA, pool-based 

methods from [20] and inverse modelling  from different publications resulted in 

560±117 Tg C yr-1. Note that confidential interval of such an estimate, like and possible 

bias, could be estimated only in a very approximate way. 

     Taking into account the estimates of uncertainties obtained in this study, the 

following overall conclusions could be done: 1) with a high probability Russian forests 

served as a net carbon sink with NECB at 550-650 Tg C yr-1 during the last decade; 

uncertainty of this average is in limits of 15-20%; forests provide at 90-95% of net sink 

of the total land flux; 2) temporal and spatial variability of the carbon sink is high, 

particularly for individual region of the country; this variability is basically explained 

by interannual variability of seasonal weather and connected to this natural disturbances 

like fire and insect outbreaks; 3) in spite of the high average sink, there are vast areas 

(mostly in disturbed forests and in forest on permafrost) which serve as a carbon source 

or are close to the neutral state; 4) the last decade demonstrate a weak trend of 

decreasing the NECB. 

    In spite of substantial decrease of uncertainties of the FCA and increase of formal 

strictness of the results in this study for Russian forests, a number of expert estimates 

and unrecognized biases remain. Evidently, this is inevitably at this stage of cognition 

of impacts of terrestrial ecosystems on global biogeochemical cycles. However, the 
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approach used allows to exclude the clear outliers from intermediate results or to stress 

a need to pay a special attention to questionable results of other studies. At the same 

time, this study highlighted a number of system requirements to major methods of 

studying the carbon cycle. The initial important consideration is a relevance of 

development of an integrated information base which could be used by all the major 

methods developed for understanding emissions to, and removels out, greenhouse gases 

by the terrestrial biosphere. An experience of development of the Integrated Land 

Information System seems very promising for that. Using such a system might 

substantially improve information capacity of process-based models and generate a 

solid basis for upscaling of „point” measurements, e.g. in eddy covariance applications. 

Another lesson is a clear evidence and need of a system improvements of practically all 

methods of study of the biospheric role of terrestrial vegetation if an integrated analysis 

would be used. Finally, an important and unresolved question is a search of relevant 

tools for harmonizing and mutual constraints of indepedently obtained results. In 

curremt applications, the Biasian methods is limited by the normal theory but 

experiences show that empirical distributions, which are usual in the considered system, 

might be very far from any normal regularities. 

References 

[1] Ciais, P. et al. (2015). Observed regional carbon budgets imply reduced soil 

heterotrophic respiration. Science (submitted). 

[2] Nilsson S. et al. (2007). Uncertainties of a regional terrestrial biota full carbon account: 

A systems analysis. Water, Air, and Soil Pollution, 7, 425-441. 

[3] Schellnhuber, H.J. (2015). Integration assessment of adaptation and mitigation. World 

Climate Change Conference, Moscow, pp. 94-95. 

[4] Rittel, H.W. and M.M. Weber (1973). Wicked problems, Management Science 4, 155-

169. 

[5] Shvidenko et al. (2010). Can the uncertainty of full carbon accounting of forest 

ecosystems be made acceptable to policy makers? Climatic Change, 103 (1-2), 137-

157. 

[6] Quegan, S. et al. (2011). Estimating the carbon balance of central Siberia using a 

landscape-ecosystem approach, atmospheric inversion and Dynamic Global 

Vegetation Models. Global Change Biology, 17 (1), pp. 351-365. 

[7] Dolman, A.J. et al. (2012). An estimate of the terrestrial carbon budget of Russia using 

inventory-based, eddy covariance and inversion methods. Biogeosciensienes, 9, 5323-

5340.  

[8] Schepaschenko, D.G. et al. (2015). Area of Russian forests and its dynamics estimated 

at basis of synthesis of remote sensing products. Forest Science, 3, 163-171 [in 

Russian]. 

[9] Schepaschenko, D.G. et al. (2011). A new hybrid land cover dataset for Russia: a 

methodology for integrating statistics, remote sensing and in situ information. Journal 

of Land Use Science, iFirst, doi: 10.1080/1747423X.2010.511681, 1-15. 

[10] Shvidenko, A. et al. (2008). Tables and models of growth and biological productivity 

of forests of major forest forming species of Northern Eurasia (standard and reference 



4th International Workshop on Uncertainty in Atmospheric Emissions 

----------------------------------------------------------------------------------------------------------------------------  

8 

 

data), 2nd edition, supplemented. Federal Forest Service of Russia and International 

Institute for Applied Systems Analysis, Moscow, 886 pp. [in Russian]. 

[11] Mukhortova L. et al. 2015. Soil contribution to carbon budget of Russian forests. 

Agricultural and Forest Meteorology, 200, 97-108. 

[12] Shvidenko, A. et al. 2011. Impacts of wildfire in Russia between 1998-2010 on 

ecosystems and the global carbon budget. Proceedings of the Russian Academy of 

Sciences (Doklady Earth Sciences), Vol. 441, part 2, pp. 1678-1682). 

[13] Ciais P. et al. 2008. The impact of lateral carbon fluxes on the European carbon 

balance. Biogeosciences, 5, 1259-1271. 

[14] Raymond, P.A. et al. (2013). Global carbon dioxide emissions from inland water. 

Nature, 503, 355-359. 

[15] Lauerwald, R. et al. (2015). Spatial patterns in CO2 evasion from the global river 

network. Global Biogeochem. Cycles, 29, 534-554. 

[16] Sennov, S.N. (1999). Results of 60-year observations of natural dynamics of forest. 

Saint-Petersburg Forest Research Institute, 97 pp. [in Russian]. 

[17] Alexseyev, V.A., Markov, M.V. (2003). Statistical data about forest fund and change 

of productivity of Russian forests in the second half of the XX century. Saint-

Petersburg Forest Research Institute, 271 pp. [in Russian]. 

[18] Shvidenko, A. et al. (2007). Materials for understanding of productivity of Russian 

forests. In: Basic Problems of Transition of Sustainable Forest Management in Russia, 

Proceedings of the Int. Workshop, 3-35 [in Russian]. 

[19] Shvidenko, A.Z., Schepaschenko, D.G. (2014). Carbon balance of Russian forests. 

Siberian Forest Journal, 1, 69-92. 

[20] Pan, Y. et al. (2011). 2011. A Large and Persistent Carbon Sink in the World’s 

Forests. Science 19 August 2011: 988-993.Published online 14 July 2011 

[DOI:10.1126/science.1201609] 

 [21] Maksyutov, S. et al. (2003). Effect of recent observation on Asian CO2 flux estimate 

by transport model inversions, Tellus B, 55, 522-529. 

[22] Gurney, K.R. et al. (2003). TransCom3 CO2 inversion intercomparison; 1, Annual 

mean control results and sensitivity to transport and prior flux information,Tellus B, 

55, 555-579. 

[23] Cramer, W. et al. (1999), Comparing global models of terrestrial net production: 

overview and key results. Global Change Biology, 5, 1-15. 

 

 

 
  



4th International Workshop on Uncertainty in Atmospheric Emissions 

----------------------------------------------------------------------------------------------------------------------------  

9 

 

Forest map and its uncertainty as an important input for carbon sink 

estimation for Poland and Ukraine 

Myroslava Lesiv1, Anatoly Shvidenko1, Dmitry Schepaschenko1,2, Linda See1, and 

Steffen Fritz1 

1 International Institute for Applied Systems Analysis, 

 Laxenburg, A-2361, Austria 

lesiv@iiasa.ac.at, shvidenk@iiasa.ac.at; schepd@iiasa.ac.at; see@iiasa.ac.at; fritz@iiasa.ac.at 
2Moscow State Forest University,  

Mytischi, 141005 Moscow, Russia 

Abstract 

Improving knowledge on the land cover and forest ecosystems is of a high importance for 

carrying out spatial inventories of emissions and removals in forestry as the best way to achieve 

reliable results of forest carbon account. The region of the study is the territory of Poland and 

Ukraine, covering a substantial part of European diversity of natural landscapes. In addition, 

Ukraine and Poland have a high potential to sequester carbon through afforestation. The 

accuracy of available forest maps varies considerably over space. We have applied the method 

of geographically weighted regression to generate a hybrid forest map for Poland and Ukraine. 

This method predicts land cover types based on crowdsourced data obtained from the Geo-

Wiki project, and land cover/forest cover products derived from remote sensing. The hybrid 

forest cover was found to be more accurate than the individual forest maps extracted from 

global remote sensing land cover products.  

Keywords: forest cover, carbon sink, remote sensing. 

1. Introduction 

Improving knowledge on the land cover and forest ecosystems is of a high 

importance for carrying out spatial inventories of emissions and removals in forestry as 

the best way to achieve reliable results of forest carbon account. Not every country 

provide a full information on forest area and forest spatial distribution, including 

distribution of tree species and their age [1]. The reasons for this are different, e.g. 

absence of forest inventory in the territories that do not belong to forest enterprises; 

unavailability of data about private forests; obsolete data of forest inventories; existence 

of territories with rapid changes of forest cover, e.g. encroachment of forests in 

abandoned agricultural land. Providing an accurate data on forest spatial distribution is 

one of the steps towards an appropriate estimation of full carbon account [2]. One of 

the ways to complement the forest data is involving remote sensing data in the 

estimation of forest area and forest parameters. In this study, we developed a new forest 

map at a resolution of 60 m by fusing available data derived from remote sensing.  

The region of the study is the territory of Poland and Ukraine, covering a substantial 

part of East-European diversity of natural landscapes. Forest in Poland covers more 

than 30% of the total area of the country while Ukraine is a forest-poor country with 

less than 16%. This provides a contrasting set of countries for analysis. In addition, 

Ukraine and Poland have a high potential to sequester carbon through afforestation [3].  

As input data we used a number of global land cover products as well as global forest 

maps that have become recently available. The accuracy of these maps varies 

considerably over space [4]. We have applied data fusion methods to combine available 

sources of forest allocation in order to produce a hybrid product of higher accuracy than 

mailto:lesiv@iiasa.ac.at
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any of the individual input maps. Particularly, we have applied the method of 

geographically weighted regression (GWR) to generate a hybrid forest (raster) map for 

Poland and Ukraine. This method predicts land cover types based on (1) crowdsourced 

data obtained from the Geo-Wiki project (http://geo-wiki.org/), which are assumed to 

be true, and (2) land cover/forest products derived from remote sensing (e.g., 

LANDSAT-based Hansen’s forest change, Globeland 30m, JAXA forest 

presence/absence). The year of reference of the input data is 2010.  

The paper includes methodology description and analysis of the results. 

2. Methodology 

2.1 Input layers 

Recently a number of remote sensing products has emerged. The overall trend has 

been towards higher spatial resolution such as the 30-meter resolution maps of 

percentage forest cover, forest cover gain and loss by Hansen [5], and the 30m 

Globeland product [6]. These maps were developed from Landsat high resolution 

satellite imagery, which has recently become freely available [7]. Another example is a 

new JAXA forest/non forest map at a resolution of 25m [8]. A resolution of other 

available remote sensing datasets is much higher, e.g. Globcover 2009 with a resolution 

300m [9], MODIS vegetation continuous fields 250m [10], etc. Disaggregation of the 

medium resolution products increases uncertainty of forest distribution in space. 

Therefore Hansen’s tree cover, Globeland 30m and JAXA forest/non-forest products 

have been chosen to develop a hybrid forest map at a resolution of 60m for the year 

2010. The short description of the input products is below. 

Landsat-based tree cover 2000 by Hansen is a global forest cover change product for 

the years 2000–2012 with a spatial resolution of 30 m [5]. The product is based on 

Landsat imagery and has three components: forest cover 2000, forest gain 2000–2012 

and annual forest loss. We created a forest map for 2010 by combining the data from 

three levels: a basis – forest map 2000 – plus forest gain and minus forest loss for the 

time period of 2000-2010.  

The 30m Globeland product 2000/2010 is provided by National Geomatics Center 

of China [11]. It is based on Landsat imagery with the combination of land resource 

information and HJ-1 satellite image. The product is freely available and comprises ten 

land cover classes including forest. We extracted the forest mask from Globeland 30m 

2010 for Poland and Ukraine. 

Japan Aerospace Exploration Agency (JAXA) has produced the 25 m forest/non-

forest map based on imagery from the Phased Array type L-band Synthetic Aperture 

Radar (PALSAR) aboard the Advanced Land Observing Satellite "DAICHI" (ALOS) 

[8]. The product is available also at a resolution of 10 m.  

The three forest maps were aggregated to the resolution of 60m in order to minimize 

the spatial errors while comparing different grids. We then calculated the average 

percentage of forest cover in a 60m pixel for every product.  

2.2 Reference data from Geo-wiki 

Reference data on forest cover were collected through the Geo-Wiki project [12], 

which aims at validating, correcting and enhancing land cover products. Five forestry 

and remote sensing experts collected the data by visually estimating land cover visible 

in cells of a grid overlaid onto high resolution Google Earth imagery. Figure 1 illustrates 

the example of collecting forest data through a customised Geo-wiki application. The 
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60m grid was used as the basis for the output map. Our samples of training data and 

validating data were randomly generated in forest and non-forest areas.  

 

Figure 1. A customised geo-wiki application for collecting forest cover data 

The final training data set contains approximately 14 K and 6 K pixels of land cover 

information (presence/absence of forest) for Ukraine and Poland, respectively. The 

validation datasets include approximately 4 K and 2 K pixels for Ukraine and Poland, 

respectively. 

2.3 Geographically weighted regression  

To combine the three above land cover products and Geo-wiki training data on forest 

presence/absence, geographically weighted regression (GWR) is employed for 

development of forest cover map [13]. GWR estimates model parameters at each 

geographical location by using a kernel. In addition, the observations are weighted by 

distance, so those closer to the studied location have more influence on the parameter 

estimates. 

The probability of forest presence was then estimated using logistic GWR where the 

probabilities of correspondence between the Geo-Wiki training data and the input layers 

were calculated as follows: 

          ),(,),(1,2),(1,1,0 ...)1(log jinvunjivujivuvui xbxbxbbyPit
iiiiiiii

  

where )1( iyP  is the probability of forest at each location i; logit is a logistic 

regression;  ii vu ,  is the two-dimensional vector of location i;  ii vub ,0  is the interception 

term; njb j ,1,   are coefficients of logistic regression model; njx j ,1,   indicate the 

presence of forest cover by global land cover product j; n is a number of input 

datasets.and n is the number of input datasets.  

Maps of forest probabilities were converted to forest presence/absence maps by 

applying a threshold of 50%, following the example of the usage of logistic regression 

models in [14]. The hybrid forest map was developed in the R environment, which is a 

free statistical software with various geographical libraries.  
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3. Results 

We developed a hybrid forest map for the year 2010 for Poland and Ukraine. It is a 

first forest map for those countries at a resolution of 60m. Figure 2 presents the forest 

distribution of Poland and Figure 3 corresponds to the forest distribution of Ukraine. 

 

Figure 2. Forest cover map of Poland, 2010 

 

Figure 3. Forest cover map of Ukraine, 2010 

The accuracy of the resultant map was assessed by using an independent validation 

dataset for Poland and Ukraine. Table 1 includes the estimated uncertainty, sensitivity 

and specificity of the hybrid forest map, and aggregated Hansen’s tree cover, 

Globeland 30m and JAXA forest/non-forest maps. Sensitivity is calculated as the 

proportion of true positives, and specificity is calculated as the proportion of true 

negatives.  

The hybrid forest maps are more accurate that the input layers. Globeland 30m has 

the lowest accuracy and, therefore, cannot be used for identification of forest changes 

during the period 2000-2010. Hansen’s tree cover and JAXA forest/non-forest also need 
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to be improved by the producers as they cannot be used for detection of forest changes 

in space neither. 

Table 1. Accuracy, sensitivity and specificity of the hybrid forest map and the input  

Forest 

maps 

Ukraine Poland 

Accuracy 

% 

Sensitivity 

% 

Specificity 

% 

Accuracy 

% 

Sensitivity 

% 

Specificity 

% 

A hybrid 

map 
90,1 91,0 87,0 91,2 95,6 86,1 

Hansen’

s map 
86,7 95,0 77,6 89,0 87,0 91,3 

Globelan

d 30m 
88,2 92,3 83,1 82,6 85,5 80,5 

JAXA 

map 
84,7 84,0 85,2 83,2 91,6 72,2 

The total forest area from the hybrid maps has been found to be approximately 

9.56 mln ha and 9.7 mln ha for Ukraine and Poland, respectively. In official statistics, 

Ukraine reports to have 9.57 mln ha of forest land [15]. Such a high consistency seems 

surprising taking into account that reliable inventory data is available only for 8.5 mln 

ha of forest. In addition, official Ukrainian reports do not account forest land on 

abandoned agricultural land and contain obsolete data about protective forests and 

shelterbelts on agricultural land, particularly in steppe and forest steppe zones of the 

country. These processes are revealed on regional level providing increase the forest 

area in the northern part and decrease – in the southern one. The simplified calculation 

allows us to conclude that the hybrid map estimates the total forest area in Ukraine with 

uncertainty in limits of 2-3%, while regional estimates are more uncertain and likely 

less biased than forest inventory data.  

According to the official forest reports of Poland, the country has 9.2 mln ha of forest 

land [16]. Taking into account that the hybrid map also covers the settlement areas 

covered by trees (e.g., parks and garden), this also could be a reason of some, relatively 

small discrepancy in our estimates and official data of forest areas in Poland and 

Ukraine.  

4. Conclusions 

The hybrid forest cover for Poland and Ukraine was found to be more accurate than 

the individual forest maps extracted from global remote sensing products. Overall, these 

estimates are rather close to the countries’ official statistics taken into account some 

inconsistency in the forest definitions used by official statistics and by this study. The 

two major current processes of rapid changes of forest area of Ukraine are: 1) 

restoration of forest vegetation on abandoned agricultural land in the forest zone and 2) 

impoverishment of protective forests in the southern part of the country. These 

processes provide different impacts on the change of forest area are not satisfactory 

reflected by the official forest inventory.  

For countries that do not currently have an accurate enough land cover data, the 

presented methodology provides an opportunity to develop forest maps that can be 

further used in different national, regional and global applications, including accounting 

and verification of emissions of greenhouse gases in space and time. This study shows 

that uncertainties of such maps do not exceed uncertainties of other components of 

carbon budget of forest ecosystems. 
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Abstract 

Estimation of uncertainties is an important part of complete inventory of greenhouse gas 

(GHG) emissions. Information on uncertainty is intended not only to question the reliability of 

inventory estimates, but to assist in the identifying priority measures to improve the quality of 

future inventories. This article discusses bottom-up inventory from the agricultural sector in 

Poland. Accordingly to the developed geoinformation approach area-type sources of emission 

(arable lands, rural localities) were investigated. In implemented mathematical models for the 

estimation of GHG emissions from agricultural activity the statistical data on animal and crop 

production, as well as specific emission factors were used. Methods for the spatial inventory of 

GHG emissions from agricultural sources, taking into account the specifics of animal nutrition, 

are described. Monte-Carlo method was applied for a detailed estimation of uncertainty "from 

category to category," because uncertainties of input parameters (CH4 and N2O emission 

factors) are large and non-normally distributed (95% confidence interval). The land use map is 

used to calculate the territorial distribution of GHG emissions. The structure of total GHG 

emissions on different categories of animal sector and agricultural soils sector by type of GHG 

is presented and visualised as digital maps. Analysis of uncertainty of GHG inventory results 

were carried out for voivodeships. Results are presented as sets of numerical values of the 

bounds of confidence intervals for the main GHGs and at different levels of spatial 

disaggregation. The improving of knowledge on territories, where emissions took places, 

enables us to better inventory process and reduce the overall uncertainty. 

Keywords: GHG emission, spatial GHG inventory, agriculture sector, uncertainty analysis, 

Monte-Carlo method.  

1. Introduction 

During the last century the environment has experienced a lot of irreversible 

changes. Equally serious impact of global climate change felt the economies of many 

world countries and humanity in general. Most of scientists in the field of climate 

changes research affirm that climate change is largely, except natural factors, 

influenced by results of anthropogenic action. According to the latest assessment report 

of the IPCC the human activity from 95-100% degree of confidence is the main reason 

of climate changes after 1950. First of all anthropogenic factors include increasing the 

concentration of greenhouse gases (GHG) in the Earth's atmosphere and its pollution 

with the tiniest solid particles. For example, in Ukraine and Poland we are watching 

more frequent droughts and floods, which are the main reason of agriculture 

productivity reduction. Apart from the energy sector, a significant share in terms of 

GHG emissions belongs to agricultural activity. 
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The IPCC has developed a universal traditional methodology of GHG inventory in 

different categories of anthropogenic activity [9]. Using of these methods makes it 

possible to form national reports about GHG emissions and provides emissions 

assessment at the level of the whole country. General methods are ineffective for 

evaluation of emissions at the regional level, because they don’t take into account the 

specifics of emission processes and irregularity of territorial distribution of the emission 

sources. At the same time, it’s more useful to implement the essentially new spatial 

inventory of GHG emissions with the possibility of assessment on small areas of 

territory and building spatial emission inventories in order to plan the strategic 

development of individual regions. It’s also important that GHG inventory loses its 

significance, without the uncertainty analysis of input and output data (statistical 

information about the results of anthropogenic activity, the emission factors, the 

emission estimates) [4].  

Below an approach is presented for spatial inventory of GHG emissions in 

agriculture sector in Poland. For all categories of this sector covered by IPCC 

Guidelines [9], we analyzed the sources of emissions in terms of their spatial 

representation. Such emission sources can be analyzed as area-type (diffused) objects. 

We built the digital maps of the sources using Corine Land Cover vector map [7], and 

analyzed them as polygons without using any regular grid, as it is often made. Such 

elementary objects are split by administrative boundaries regions/voivodeships, 

districts/powiats, and municipalities/gminas. It gives us a possibility to keep 

administrative assignment of each elementary object. Then we created the algorithms 

for calculating GHG emissions from these objects using activity data and emission 

coefficient. For the activity data assessment, we have developed the algorithms for 

disaggregation of available statistical data (at the lowest level as possible) to the level 

of elementary objects. 

Using created digital maps and mathematical models we carried out spatial 

inventory of emissions for each elementary object and got sets of geospatial data on 

GHG emissions caused by enteric fermentation, manure management, agricultural soils 

etc. (according to the agriculture sector structure in the IPCC Guidelines [9]). Maximum 

resolution is determined by the resolution of used digital maps of land use and does not 

exceed 100m. Below, this approach is illustrated on the example of animal sector only. 

2. The specificity of greenhouse gases emissions processes 

Animal sector, as one of the subsectors of agriculture, plays a very important 

ecological, economic and social role in various parts of the world. The emissions of 

GHG from animal sector occur as a result of the animals enteric fermentation (dairy 

and non-dairy cattle, sheep, goats, horses and pigs), and also the decomposition, 

collection, storage and use of animal manure in various storage systems (manure 

reservoir in solid and liquid forms separately). However, the scientific literature has not 

evaluated the long-term trend of GHG emissions from animal sector separately for 

developed and developing countries [4]. 

Except animals, the cultivated lands (arable lands), where agricultural crops grow 

that are manured by various kinds of fertilizers, and thanks to them the processes of 

leaching and runoff of nitrogen take place, and it can be considered polygonal (area-

type) sources of emissions. The changes in agricultural production and, consequently, 

changes in GHG emissions since the mid-1990s were mainly caused by adaptation to 

the demand in the domestic market, priorities of international trade, the prices of 
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agricultural means of production, such as machinery and agricultural prices. Since 

2004, when Poland joined the European Union agricultural subsidies started to 

influence on the development of promising tendencies of agriculture. 

An analysis of statistical information of livestock numbers in Poland in 2010 showed 

that in one municipality/gmina the number of pigs was over 800 thousands [1, 2]. 

Despite strong criticism of environmentalists in this gmina in 2004 it was opened two 

large pig farms. This case and many others show that emission territorial distribution in 

animal subsector is essentially non-uniform. Therefore we need tools for spatial 

analysis of GHG emissions, which will give an opportunity for experts and authorities 

to take effective measures to reduce emissions in areas where they are high [6].  

3. Mathematical models for spatial inventory 

During modeling the emission processes in animal subsector in Poland (in categories 

"Enteric Fermentation" and "Decomposition, collection, storage and use of animal 

manure") the several presumptions were used. Especially, because there is no 

possibility to monitor emissions from individual animals, so we estimate total emissions 

from all animals of one species within each rural locality in general. In proposed 

mathematical models was taken into account the fact that the Polish statistical data on 

livestock and poultry served separately for agricultural enterprises and households 

(population) in gminas/municipalities. It’s assumed that the number of animals in the 

households are distributed geographically between rural settlements in proportion to 

gmina rural population. 

The ratio of the population in the analyzed elementary object to the population in 

gmina can be calculated as: 
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where  
n

V   is the desired share of the population in the n-th elementary object n ; 

N is the total number of such objects in Poland;  np   is the population density in the    

n-th elementary object;  
3,3 nRP  is the number of people in gmina; 

3,3 nR  is the third 

level of administrative unit, which includes the n-th elementary object, that is 
3,3⊂ nn R  

(geographical object n  is within the geographic object 
3,3 nR ), besides that  33 ,1∈ Nn

; 3N  is the number of gminas in Poland; area (x) is the area of object x, ∩ is the 

operation of intersection of the common area of two geographic objects. Further, this 

parameter  nV   is used as an indicator for disaggregation of known statistical data on 

the number of animal livestock within gmina to the level of elementary objects. 

Geographically the farms are located on agricultural lands, that’s why statistical data 

on livestock and poultry within these farms are disaggregated to the level of elementary 

objects in proportion to the area of agricultural land (arable land, grassland, etc.) using 

the formula: 
 

 

 

  ,0≠∩    ,0≠∩∀,
∩

∩

3

3

,3

∈
,3

∈

∑

∑

njni

Ff
nj

Ff
ni

n Rff
Rfarea

farea

S

j

i 



  Nn ,1 ,        (2) 



4th International Workshop on Uncertainty in Atmospheric Emissions 

----------------------------------------------------------------------------------------------------------------------------  

19 

 

where  nS   is the ratio of the sum of areas of agricultural lands Ffi∈ , that are located within 

elementary area n , to the sum of such areas of lands in the gmina 
3,3 nR , which contains this 

elementary object, that is 
3,3⊂ nn R , F is the set of elements of digital map of land use of the 

whole country that are agricultural lands. 

The methane emissions from enteric fermentation of animals, which are owned by population and 

by agricultural enterprises, can be calculated using mathematical model: 

             NnKSRAVRAE
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where ( )nEntFermE 4CH
 is the total annual emissions of methane in the n-th elementary 

object n ;  
3,3 n

ind
t RA  and  

3,3 n
agr
t RA  are the statistical data on the number of the t-th 

animal species (dairy cattle, non-dairy cattle, sheep, goats, horses, pigs, poultry) in 

individual households (rural population) (ind) and agricultural enterprises (agr) for the 

appropriate year in gmina 
3,3 nR , which contains this elementary object n ;  ntV   and 

 ntS   are the coefficients calculated using formulas (1) and (2) for disaggregation of 

statistical data on livestock of the t-th animal species, accordingly, in households and 

agricultural farms, from 
3,3 nR gmina level to the level of elementary object n ; 

 ntK 4CH  is the coefficient of methane emission from enteric fermentation for the t-th 

animal species in the n-th elementary object (in fact, this coefficient depends on the 

climate zone, in which this object is located); EntFerm is the index that means 

emissions from enteric fermentation. 

 

Figure 1. The specific total GHG emissions in animal sector in Poland 

(elementary areas 2 x 2 km; Mg/km2, CO2-equivalent, 2010) 
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Figure 2. Specific N2O emissions from fertilization of arable lands 

in Poland (kg/km2, 2010) 

 

Figure 3. Annual emissions of methane from enteric fermentation of agricultural 

animals in the voivodeships in Poland (tons, 2010) 

4. The results of spatial inventory 

Developed mathematical models gave the opportunity to obtain spatial estimates of 

GHG emissions for each source category in the agricultural sector. The results of 

computational experiments showed that the largest methane emissions in the agricultural 
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sector occurred as a result of enteric fermentation of farm animals, such as dairy and non-

dairy cattle. In such a way, the results of spatial inventory were obtained at the level of 

elementary areas (see an example in Figure 1), at the level of arable lands or rural 

settlements (see an example in Figure 2). The spatial inventory results can be aggregated 

to the larger area-type objects like the voivodeship in Poland (see Figure 3). The total GHG 

emissions in the agriculture sector are presented in Figure 4. 

As we can see in Figure 3, the biggest emissions of methane in the animal subsector are 

in the Mazovian voivodeship (80,694 tons), Greater Poland (60,956 tons), and Podlaskie 

(66,266 tons), but the least is in the Lubusz voivodeship (5,190 tons). The total emissions 

of methane from enteric fermentation of all species in 2010 amounted to 434.7 ths. tons, 

that is 75% of total emissions of this gases in animal sector and the rest of 25% is caused 

by decomposition of manure. 

 

 
Figure 4. The specific total GHG emissions in the agriculture sector in Poland 

(elementary areas 2 x 2 km, kg, CO2-equivalent, 2010) 

5. Uncertainty analysis 

Input data for developed mathematical models of spatial inventory are not known 

exactly, and they can be simulated as random variables. For example, the statistical data on 

livestock population and the specific animal species’ GHG emission factors can be 

attributed to random variables. Currently, one of the main methods of modelling GHG 

emissions taking into account uncertainty, is Monte Carlo method. Its advantage is the 

ability of using the information based on uncertainty of input parameters of mathematical 

models to estimate the level of uncertainty in GHG emissions for different areas, regions 

and the country as a whole. 

The resulting emissions uncertainties in the agricultural sector were analyzed at the level 

of voivodeships/regions, particularly from enteric fermentation of farm animals (cows, 

non-dairy cattle, sheep, goats, horses and pigs). As for the uncertainty of statistical data on 

these animal livestocks, it should be noted that the accuracy of the data depends greatly on 
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the completeness and reliability of the national census methods. In addition, in the census 

there are different rules for accounting of agricultural animals that don’t live during the 

year, such as pigs, so this should be considered during analysis of emissions uncertainty. 

Another source of emissions uncertainty from livestock is the use of various data in the 

formulas to calculate methane emission factor [5]. 

In the implemented mathematical models of GHG emissions evaluation the agriculture 

statistical data are used, which uncertainty range for animals is 5% (symmetrical 

distribution). For modeling GHG emissions in the category "Enteric Fermentation" by 

Monte-Carlo method the methane emissions factor for agricultural animals (IPCC 

Guidelines [9]) and appropriate uncertainty ranges (50%, symmetrical [8]) were used. 

On the basis of implemented geospatial database and developed approach to analysis of 

uncertainties of GHG emissions were realized computational experiments with the using 

Monte Carlo method on the investigation of GHG emissions uncertainty from enteric 

fermentation of agricultural livestock. The results were obtained at the level of 

voivodeships in Poland (according to statistical data of 2010). Results are presented in 

Table 1. 

Table 1. Input data for the uncertainty analysis of methane emissions from enteric 

fermentation in region of Poland (2010) 

 
CH4 emissions, tons 

The limits of uncertainty range, % 

Voivodeship 
Dairy 
cattle 

Non-dairy 
cattle 

Pigs Horses Sheep Goats 

Lower Silesian 
4674,4 
50,3 

3186,1 
50,1 

419,7 
50,2 

203,1 
50,2 

102,6 
50,2 

32,3 
50,3 

Kuyavian-
Pomeranian 

17143,3 
50,3 

14177,9 
50,2 

2684,2 
50,2 

172,1 
50,3 

111,4 
50,2 

15,0 
50,2 

Lublin 
18223,2 
50,4 

14156,3 
50,2 

1510,1 
50,3 

546,6 
50,3 

133,5 
50,3 

62,5 
50,3 

Lubusz 
2879,5 
50,3 

2114,8 
50,4 

300,6 
50,2 

107,2 
50,3 

33,6 
50,2 

9,6 
50,2 

Łódż 
21064,7 
50,3 

11696,9 
50,4 

1959,4 
50,1 

271,5 
50,3 

120,7 
50,2 

25,6 
50,2 

Lesser Poland 
10986,5 
50,3 

4371,4 
50,3 

541,2 
50,2 

385,1 
50,2 

575,4 
50,3 

89,5 
50,2 

Masovian 
52734,1 
50,4 

25303,7 
50,2 

2115,5 
50,1 

856,4 
50,2 

72,9 
50,3 

31,6 
50,2 

Opole 
4698,3 
50,3 

3674,8 
50,2 

901,3 
50,2 

72,9 
50,3 

23,6 
50,2 

14,1 
50,3 

Subcarpathian 
7266,6 
50,3 

2081,6 
50,3 

448,7 
50,2 

318,1 
50,3 

152,8 
50,3 

76,2 
50,3 

Podlaskie 
44430,2 
50,3 

20639,0 
50,3 

827,5 
50,3 

363,2 
50,2 

173,0 
50,2 

15,8 
50,2 

Pomeranian 
7428,6 
50,3 

5941,1 
50,2 

1262,6 
50,1 

257,4 
50,3 

133,6 
50,3 

14,8 
50,2 

Silesian 
5230,6 
50,2 

3670,7 
50,1 

524,8 
50,2 

155,4 
50,3 

110,9 
50,2 

42,6 
50,2 

Świętokrzyskie 
7761,7 
50,4 

5056,4 
50,2 

603,4 
50,2 

213,6 
50,3 

33,1 
50,2 

26,3 
50,3 

Warmian-Masurian 
20538,9 
50,4 

11384,5 
50,3 

1025,1 
50,1 

300,3 
50,2 

84,5 
50,2 

19,6 
50,2 

Greater Poland 
29543,7 
50,3 

26487,1 
50,2 

5879,3 
50,2 

376,8 
50,2 

196,0 
50,2 

92,0 
50,2 

West Pomeranian 
4225,2 
50,4 

3042,0 
50,1 

1815,9 
50,1 

159,5 
50,2 

103,8 
50,2 

15,8 
50,2 
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The Monte Carlo method was also used for estimation of emissions uncertainty from 

applying mineral ammonia fertilizers to soils in Poland (on data of 2010). Based on the 

results of modelling in main categories of animal sector and agricultural soils sector, 

the uncertainty ranges of emissions amounted to 12,7% for CH4 emissions from 

enteric fermentation and -51,2% : + 64,1% for N2O emissions from synthetic fertilizers 

applied to soils (symmetric normal distribution and asymmetric log-normal distribution 

are used). The verification of the correctness of realized mathematical and software 

tools was carried out using Polish national annual reports [10] on GHG emission at the 

country level as a whole. The obtained results show a high uncertainty of inventory 

results in the agricultural sector in 2010. 

This should positively affect the total uncertainty of regional or national emissions 

for all categories of anthropogenic activities and give the authorities the opportunity to 

take into account this factor in the verification of the fulfilment of international 

arrangements on reduction of GHG emissions. 

Thus the problem of determining of the categories of economic activities, which are 

important in terms of sensitive analysis, is very interesting. It means that overall 

uncertainty of inventory results is the most sensitive to the changes in uncertainty of 

input parameters [2]. Figure 5 illustrates graphically a sensitivity of uncertainty of CO2-

equivalent emissions from the agricultural activity. The results show that the relative 

uncertainty for methane emissions is the more dependent on the uncertainty of statistical 

data on livestock numbers than on the uncertainty of CH4 emission factor. The 

uncertainty of total CH4 emissions in animal sector depends on improving the 

knowledge about census results. For example, the reduction of uncertainty ranges of 

animal population into 40% causes the decreasing of CH4 emissions uncertainty in 

a half. 

 
Figure 5. Dependence of uncertainty of CH4 emissions in enteric fermentation 

of livestock during decreasing uncertainty of input data into P 

percent (total as for Table 1; Monte Carlo method)  

6. Conclusions 

The main GHG emission sources in the animal sector in Poland, in particular enteric 

fermentation, are analyzed in this paper. Mathematical models of emission processes 

from these sources at the level of elementary objects of fixed size are useful for spatial 
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inventory of GHG emissions. Using geoinformation system tools, the geospatial 

database of statistical information on the number of livestock in Polish regions is 

formed. As a result of numerical experiments, the estimates of methane emissions by 

type of animals at the level of elementary areas 2 x 2 km and at the level of 

voivodeships are obtained.  

The obtained results of the spatial analysis of GHG emissions have been showed not 

so high uncertainties for emissions from enteric fermentation by respective animal 

species. It has a positive impact on the uncertainty of total regional or national 

emissions from all categories of anthropogenic activity.  
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Abstract 

This report presents a novel approach for allocation of spatially correlated data, such as 

emission inventories, into finer spatial scales conditional on covariate information observable 

in a fine grid. Spatial dependence is modelled with the conditional autoregressive structure 

introduced into a linear model as a random effect. The maximum likelihood approach to 

inference is employed, and the optimal predictors are developed to assess missing values in a 

fine grid. The usefulness of the proposed technique is shown for agricultural sector of GHG 

inventory in Poland. An example of allocation of livestock data (a number of horses) from 

district to municipality level is analysed. The results indicate that the proposed method 

outperforms a naive and commonly used approach of proportional distribution. 

Keywords: GHG inventory, agricultural sector, spatial correlation, disaggregation, conditional 

autoregressive model 

1. Introduction 

Spatially resolved inventories of greenhouse gases (GHG) contribute valuable 

information for an assessment of carbon sources and sinks. Various authors point out 

that a regional or local formulation improves accuracy of the assessment. Quality of 

these inventories is subject to various conditions; particularly, it depends on availability 

of high resolution activity data. 

In case of national GHG inventories, relevant information about low resolution 

activity data needs to be acquired from national/regional totals. A procedure of 

allocation into smaller spatial units (like districts, municipalities, and finally 2x2km 

grid cells) differs among various emission sectors. Basically, all the emission sources 

are categorised as line, area or large point emission sources; further steps differ 

significantly for each group. Area sources comprise e.g. agricultural fields, urban areas 

as well as highly dense urban transportation network. In this case, a procedure of spatial 

allocation depends on methods and technologies of fossil fuel combustion in a 

considered sector [1]. A common approach though, is a spatial allocation made in a 

proportion to some related indicators that are available in a finer grid.  

In this study, the statistical scaling method is developed in order to support the 

procedure of compiling high resolution activity data. We propose the method for 

allocating GHG activity data to finer spatial scales, conditional on covariate 

mailto:Joanna.Horabik@ibspan.waw.pl
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information, such as land use, observable in a fine grid. The proposition is suitable for 

spatially correlated, area emission sources.  

Regarding an assumption on residual covariance, we apply the structure suitable for 

area data, i.e. the conditional autoregressive (CAR) model. Although the CAR 

specification is typically used in epidemiology [2], it was also successfully applied for 

modelling air pollution over space [3]. We demonstrate usefulness of the proposed 

technique for the agricultural sector of GHG national inventory in Poland. The example 

considers an allocation of livestock data (a number of horses) from district to 

municipality level. 

A part of the methododology described in section 3.1 was already presented in [4]. 

This contribution extends the basic model for the case of various regression models in 

each region (here voivodeship); see section 3.2. Performance of the method for 

livestock data in agricultural sector of GHG inventory is presented in section 4.  

2. Inventory livestock dataset  

Considered is a livestock dataset (cattle, pigs, horses, poultry, etc.) for the territory 

of Poland, based on the agricultural census 2010, and available from the Central 

Statistical Office of Poland - Local Data Bank [5]. The goal is to allocate relevant 

livestock amounts from districts (powiaty) to municipalities (gminy). 

In particular, for horses the data are available also in municipalities, and this fact 

enables us to verify the proposed disaggregation method. Therefore, in what follows 

we consider the task of disaggregation of number of horses reported for 314 districts 

into 2171 municipalities, taking advantage of covariate information observable for 

municipalities. Only rural municipalities are considered in the study. 

As explanatory variables we use population density (denoted x1) and land use 

information. For the latter, the CORINE Land Cover map, available from the European 

Environment Agency [6], was employed. For each rural municipality we calculate the 

area of agricultural classes, which may be related to livestock farming. Three CORINE 

classes were considered (the CORINE class numbers are given in brackets):  

- Arable land (2.1); denoted x2 

- Pastures (2.3); denoted x3 

- Heterogeneous agricultural areas (2.4); denoted x4. 

The results of the disaggregation with the proposed procedure are further compared 

with the results of allocation proportional to population of municipalities. This naive 

approach, however, gave rise for a modification of the basic version of the method. 

Namely, we account for the fact that a relationship of farmed livestock with available 

covariates is diversified across the country - we allow for various regression models for 

regions. In this case study, we treat 16 voivodeships (województwa) as regions.  

3. The disaggregation framework 

3.1 The basic model  

First, the model is specified on a level of fine grid. Let Yi denote a random variable 

associated with an unknown value of interest yi defined at each cell i for i=1,...,n of a 

fine grid (n denotes the overall number of cells in a fine grid). The random variables Yi 

are assumed to follow the Gaussian distribution with the mean µi and variance 𝜎𝑌
2  

𝑌𝑖|𝜇𝑖~𝐺𝑎𝑢(𝜇𝑖, 𝜎𝑌
2)  

Given the values µi and 𝜎𝑌
2, the random variables Yi are assumed independent. The mean 

𝝁 = {𝜇𝑖}𝑖=1
𝑛 represents the true process underlying emissions, and the (unknown) 
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observations are related to this process through a measurement error with the variance 

𝜎𝑌
2. The approach to modeling µi expresses an assumption that available covariates 

explain part of the spatial pattern, and the remaining part is captured through a spatial 

dependence. The CAR scheme follows an assumption of similar random effects in 

adjacent cells, and it is given through the specification of full conditional distribution 

functions of µi for i = 1,…,n  

µ𝑖|𝝁−𝑖 ~ 𝐺𝑎𝑢 (𝒙𝑖
𝑇𝜷 + 𝜌 ∑

𝑤𝑖𝑗

𝑤𝑖+
(𝜇𝑗 − 𝒙𝑗

𝑇𝜷),
𝜏2

𝑤𝑖+

𝑛

𝑗=1
𝑗≠𝑖

) 

where 𝝁−𝑖 denotes all elements in 𝝁 but i, 𝑤𝑖𝑗 are the adjacency weights (𝑤𝑖𝑗 = 1 if j 

is a neighbour of i and 0 otherwise, also 𝑤𝑖𝑖 = 0); 𝑤𝑖+ = ∑ 𝑤𝑖𝑗𝑗   is the number of 

neighbours of an area i; 𝒙𝑖
𝑇𝜷 is a regression component with proxy information 

available for area i and a respective vector of regression coefficients; 𝜏2 is a variance 

parameter. Thus, the mean of the conditional distribution µ𝑖|𝝁−𝑖 consists of the 

regression part and the second summand, which is proportional to the average values 

of remainders 𝜇𝑗 − 𝒙𝑗
𝑇𝜷 for neighbouring sites (i.e. when 𝑤𝑖𝑗 = 1). The proportion is 

calibrated with the parameter 𝜌, reflecting strength of a spatial association. 

Furthermore, the variance of the conditional distribution µ𝑖|𝝁−𝑖 is inversely 

proportional to a number of neighbours 𝑤𝑖+. 

The joint distribution of the process 𝝁 is the following (for the derivation see [2]) 

𝝁 ~ 𝐺𝑎𝑢𝑛(𝑿𝜷, 𝜏2(𝑫 − 𝜌𝑾)−1)    (1) 

where D is an 𝑛 × 𝑛 diagonal matrix with 𝑤𝑖+ on the diagonal; and W is an 𝑛 × 𝑛 matrix 

with adjacency weights 𝑤𝑖𝑗. Equivalently, we can write (1) as 

𝝁 = 𝑿𝜷 + 𝜺,      𝜺 ~ 𝐺𝑎𝑢𝑛(𝟎, 𝛀)                 (2) 

with 𝛀 = 𝜏2(𝑫 − 𝜌𝑾)−1. 

The model for a coarse grid of (aggregated) observed data is obtained by 

multiplication of (2) with the 𝑁 × 𝑛 aggregation matrix C, where 𝑁 is a number of 

observations in a coarse grid 

𝑪𝝁 = 𝑪𝑿𝜷 + 𝑪𝜺,      𝑪𝜺 ~ 𝐺𝑎𝑢𝑛(𝟎, 𝑪𝛀𝐂T)     (3) 

The aggregation matrix C consists of 0’s and 1’s, indicating which cells have to be 

aligned together. The random variable 𝝀 = 𝑪𝝁 is treated as the mean process for 

variables 𝒁 = {𝑍𝑖}𝑖=1
𝑁  associated with observations 𝒛 = {𝑧𝑖}𝑖=1

𝑁  of the aggregated model 

(in a coarse grid) 

    𝒁|𝝀 ~ 𝐺𝑎𝑢𝑁(𝝀, 𝜎𝑍
2𝑰𝑁)    

   

Also at this level, the underlying process 𝝀 is related to Z through a measurement error 

with variance 𝜎𝑍
2. 

Model parameters 𝜷, 𝜎𝑍
2, 𝜏2 and 𝜌 are estimated with the maximum likelihood 

method based on the joint unconditional distribution of observed random variables Z  

𝒁~𝐺𝑎𝑢𝑁(𝑪𝑿𝜷, 𝜎𝑍
2𝑰𝑁 + 𝑪𝛀𝐂T)          (4) 

The log likelihood function associated with (4) is formulated, and the analytical 

derivation is limited to the regression coefficients 𝜷; further maximization of the profile 

log likelihood is performed numerically.  

As to the prediction of missing values in a fine grid, the underlying mean process 𝝁 

is of our primary interest. The predictors optimal in terms of the mean squared error are 

given by the conditional expected value 𝐸(𝝁|𝒛). The joint distribution of (𝝁, 𝒁) is 

[
𝝁
𝒁

] ~ 𝐺𝑎𝑢𝑛+𝑁 ([
𝑿𝜷

𝑪𝑿𝜷
] , [

𝛀 𝛀𝑪𝑇

𝑪𝛀 𝜎𝑍
2𝑰𝑁 + 𝑪𝛀𝐂T])      (5) 

The distribution (5) yields both the predictor 𝐸(𝝁|𝒛)̂  and its error 𝑉𝑎𝑟(𝝁|𝒛)̂  
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𝐸(𝝁|𝒛)̂ = 𝑿�̂� +  �̂�𝑪𝑇(𝜎𝑍
2̂𝑰𝑁 + 𝑪�̂�𝐂T)

−1
[𝒛 − 𝑪𝑿�̂�] 

𝑉𝑎𝑟(𝝁|𝒛)̂ = �̂� − �̂�𝑪𝑇(𝜎𝑍
2̂𝑰𝑁 + 𝑪�̂�𝐂T)

−1
𝑪�̂�   

The standard errors of parameter estimators are calculated with the Fisher 

information matrix based on the log likelihood function, see [7].  

3.2 A modification: various regression models in regions 

Next, we adjust the model to reflect possibly diversified regression component 

across regions. In the considered study of national GHG inventory, we will analyse 

various regression models for 16 voivodeships indexed with l = 1,…,L. Then, all n  

municipalities are associated with their corresponding voivodeship l, and let nl denote 

a number of municipalities in a region l. 

To accommodate the modification, consider a block diagonal matrix of covariates 

X*, where each block corresponds to a region l = 1,…,L and contains covariates only 

for municipalities of this region 

                      
Also a vector of regression coefficients has to be modified into β*, comprising separate 

sets of regression coefficients for each region (see above), and the process µ is redefined 

as 𝝁 = 𝑿∗𝜷∗ + 𝜺, 𝜺 ~ 𝐺𝑎𝑢𝑛(𝟎, 𝛀). To complete the setting, variance parameters 𝜎𝑌,𝑙
2  

and 𝜎𝑍,𝑙
2  are introduced for each region l=1,…,L. 

4. Results 

First, Table 1 presents the estimation results (parameters with their standard errors) 

for the models with and without a spatial component, denoted CAR and LM 

respectively. Note that in this setting the variable β2 (land use class Arable land) turned 

out to be statistically insignificant. Introduction of the spatial CAR structure increased 

the standard error of estimated parameters, as compared with LM model. However, for 

an assessment of goodness of fit for these models Table 2 should be referred to.   

Table 1. Maximum likelihood estimates. 

 CAR 

    Estimate            Std. Error 

LM 

    Estimate           Std. Error 

β0 

β1 

β2 

β3 

β4 

𝜎𝑍
2 

𝜏2 

𝜌 

8.525 

3.517 

- 

0.916 

3.912 

0.961 

1.683 

0.9889 

0.1605 

0.0148 

- 

0.0034 

0.0055 

0.4052 

0.1569 

2.62e-06 

-6.981 

1.932 

- 

1.786 

5.032 

1.506 

- 

- 

0.0389 

0.0042 

- 

0.0010 

0.0013 

0.1202 

- 

- 

Table 2 contains the analysis of residuals (di = yi - yi
*, where yi

*- predicted values) 

for the considered models. We report the mean squared error mse, the minimum and 
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maximum values of di as well as the sample correlation coefficient r between the 

predicted and observed values. From here, it is obvious that the spatial CAR structure 

considerably improves the results obtained with the model of independent errors LM. 

For comparison, we also include the results obtained with the allocation proportional to 

population in municipalities; this setting is called NAIVE. It is a straightforward and 

commonly used approach in this area of application. Here we note that the NAIVE 

approach provides reasonable results, but the CAR model outperforms it in terms of all 

the reported criteria. The decrease of the mean squared error is from 3374.4 for NAIVE 

to 3069.4 for CAR, which gives 9% improvement. From the maps of predicted values 

for the models CAR and NAIVE (Figure 1), it is difficult to spot a meaningful 

difference.  

Table 2. Analysis of residuals (di = yi - yi
*). 

 mse min(di) max(di) r 

CAR 

LM 

NAIVE 

3069.4 

5641.2 

3374.4 

-275 

-357 

-475 

469 

522 

403 

0.784 

0.555 

0.766 

CAR* 

LM* 

3437.0 

4876.1 

-258 

-374 

512 

546 

0.763 

0.651 

CAR** 

LM** 

3124.9 

4427.6 

-256 

-352 

446 

472 

0.783 

0.674 
 

Figure 1. Original data in municipalities as well as predicted values for the models 

NAIVE and CAR. 

DATA 

 

Model CAR 

 
Model NAIVE 
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Next, we considered the models with various regression coefficients in regions 

(voivodeships) but having the same set of covariates (β0, β1, β3, β4); the models are 

denoted CAR* and LM*, respectively, for the spatial and non-spatial approaches. Note 

that the model CAR* gives much worse results than the models CAR and NAIVE. 

Further, considered were the models (CAR** and LM**) where, both, the 

coefficients as well as sets of covariates vary across the regions. Only the statistically 

significant covariates were chosen. Due to a lack of space, we do not provide here the 

table with the regression coefficients and their standard errors for all the considered 

regions. We only report that the values of estimated parameters for CAR** and LM** 

showed considerable differences across the voivodeships, not only in terms of the 

estimated values, but also in terms of their significance. From Table 2 we note that this 

setting (CAR**) provides the results comparable to that of CAR.   

5. Concluding remarks 

The study presents the first attempt to apply the spatial scaling model for the GHG 

inventory in Poland. The task was to allocate spatially correlated data to finer spatial 

scales, conditional on covariate information observable in a fine grid. The results of the 

disaggregation with the proposed procedure were compared with the allocation 

proportional to population; an improvement of 9% in terms of the mean squared error 

was reported. The model was extended to allow for various regression covariates in 

regions (here voivodeships). Numerous features of the method require further 

investigation.   

The proposed method provided good results for livestock activity data of agricultural 

sector. Apart from the study reported above, the approach was also applied to a 

residential sector for disaggregation of natural gas consumption in households. In that 

case, with disaggregation featured from voivodeships to municipalities, the results 

turned out to be quite modest. This was partly due to a limited spatial correlation of the 

analysed process, and too large extent of disaggregation. The method is feasible for 

disaggregation from districts to municipalities, but not from voivodeships to 

municipalities. 
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Abstract 

Assessment of NH3 emissions and related uncertainties is required for both the inventory of 

air pollutants as well as the inventory of greenhouse gases, since N deposition leads to formation 

of indirect N2O emissions. In Switzerland, the nitrogen mass-flow model Agrammon provides 

data on farm-specific NH3 emissions and derives the national total by upscaling based on total 

livestock numbers. So far, related uncertainties relied solely on expert judgement.  

We show an approach for assessing model uncertainty by a combination of Monte Carlo 

simulations and Gaussian error propagation. This approach allows accounting for large, 

asymmetric uncertainties and correlations across regional scales and therefore permits a robust 

assessment of aggregated uncertainties. A particular focus lies on aggregation of uncertainties 

in process-specific model parameters to the categories that are reported to UNECE.  

The new approach permits a more detailed analysis of model uncertainties and thus a more 

accurate reporting of NH3 emissions and indirect N2O emissions.  

 

Keywords: Monte Carlo, Ammonia emissions, Nitrogen mass-flow model, Inventory 

uncertainty 

1. Introduction 

Atmospheric nitrogen deposition currently exceeds critical loads in a large part of 

natural ecosystems in Switzerland [1]. Additionally, ammonia (NH3) emissions increase 

the formation of secondary aerosols. Atmospheric nitrogen depositions induce 

substantial indirect gaseous nitrogen losses due to microbial processes in the soil, 

thereby leading to an increase of indirect nitrous oxide (N2O) emissions ([2], [3]). 

Emissions of NH3 and N2O have to be reported annually by Switzerland to Convention 

on Long-range Transboundary Air Pollution (CLRTAP/UNECE) and United Nations 

Framework Convention on Climate Change (UNFCCC) in the respective inventories.  

Thus, climate change mitigation and air pollution control require measures to reduce 

NH3 emissions. Knowledge of related uncertainties is an important prerequisite for 

designing effective abatement measures. 

In Switzerland, NH3 emissions from agriculture amounted to 57.3 kt in 2013. With a 

share of 93.1%, agriculture is by far the largest source of Switzerland’s total NH3-

emissions. Within this source, the category 3B Manure management contributes with 

46% to the agricultural emissions in the year 2013 and the remaining 54% occur in 

category 3D Crop production and agricultural soils [4]. Thus, accurate assessment of 

agricultural NH3 emissions and related uncertainties is of particular importance. 

So far, considerable effort was invested in modelling agricultural ammonia 

emissions in Switzerland by means of the nitrogen mass flow model Agrammon, which 

simulates Switzerland’s national NH3 emission that are reported to UNECE and that 
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provide a basis for calculating N2O emissions reported to UNFCCC. Since NH3 

volatilization is highly dependent on manure management techniques as well as 

environmental parameters (e.g. [5], [6], [7], [8], [9]), it is crucial to take into account 

individual farm characteristics as much as possible. Therefore, the Agrammon model 

applies a detailed bottom-up approach that accounts for technical aspects in the manure 

handling, housing and yard characteristics as well as composition of animal feed ([10], 

[11], [12]). Due to the large number of model parameters, assessment of underlying 

model uncertainties and their aggregation to the national level is not straightforward. 

So far, the uncertainties reported to UNECE relied solely on expert judgement.  

Commissioned by the Swiss Federal Office for the Environment, we developed a 

model that assesses uncertainties of Switzerland’s nitrogen mass-flow model 

Agrammon and aggregates uncertainties in the emissions at the farm level to the 

national scale as required in the annual reporting to UNECE. It addresses the issue of 

correlated model parameters and large uncertainties by Monte Carlo simulations. 

Subsequently, it performs a stepwise aggregation of process specific uncertainties at the 

farm level to the national scale by a combination of Monte Carlo simulations and 

Gaussian error propagation.  

2. Data and Methods 

Agricultural NH3 emissions from livestock production in Switzerland are estimated 

from the nitrogen mass flow model Agrammon (www.agrammon.ch, [10], [12]). In this 

study, we developed a model that assesses related uncertainties as part of the post-

processing of the Agrammon model output. Even though only the model output is used, 

a brief overview of the Agrammon model is provided in section 2.2 for illustrative 

purposes. Subsection 2.3 describes the methodological approach implemented in the 

uncertainty simulation model and subsection 2.4 shows how the process specific 

emission factors are aggregated to the CLRTAP categories. 

2.1 Data  

The Agrammon model simulations are based on data from a regularly conducted 

survey, which covers around 3000 farms, representing around 5% of all farms in 

Switzerland. The survey provides detailed data on farm-specific technical parameters 

that are influencing emission factors, such as timing and method of manure application, 

type of manure storage as well as composition of animal feed. The survey is stratified 

according to three geographical regions (East, Central, West/South), three altitude 

zones (valley, hills, mountains) and five farm types. Detailed information on the survey 

conducted in 2010 is provided in [12]. The present study applies data from this survey. 

The Swiss Federal Statistical Office conducts an annual census on livestock numbers, 

which provides the necessary activity data for the present study. Related uncertainties 

are estimated to be in the order of 6% [13]. 

A previous study performed sensitivity analyses with respect to the technical 

parameters for selected farm classes and livestock categories [14]. In the present study, 

we used the resulting sensitivities of the simulated emissions as input to the uncertainty 

simulation model.  

2.2 NH3 emission modeling 

The NH3 emission model applied in Switzerland simulates emissions from livestock 

farming by partitioning total excretion into different processes that are relevant for 

https://projekte.infras.ch/2174c/Bearbeitung/Bericht/short%20paper/www.agrammon.ch
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simulating emissions. The model distinguishes different 24 livestock categories and 32 

farm classes, which were derived from 3 geographic regions and 3 altitude zones and 5 

farm types. In addition, it accounts for emissions related to use of fertilizers in crop 

production. It calculates farm-specific NH3 emission from nitrogen fluxes along the 

manure management chain (housing, storage, grazing, manure application) based on 

data gathered from stratified surveys on farm and manure management (see subsection 

2.1). For each stage in the manure management chain, specific emission factors are 

defined as a share of total soluble nitrogen (total ammoniacal N – TAN) present at a 

given stage. The model also allows for adjustment of these standard emission factors 

by a set of correction factors that take into account farm-specific manure management 

practices. These parameters account for differences in composition of animal feed (e.g. 

protein contents), manure storage systems (size, type, mixing frequency and coverage), 

manure application (timing, application rate and technique) as well as technical aspects 

of housing and yard that are influencing NH3 emissions.  

 

Figure 1. Model illustration: simulations account for NH3 emissions from different 

stages such as housing and yard, storage of solid and liquid manure, 

application of manure and grazing. 

Based on the survey data, the Agrammon model simulates farm-specific emissions for 

each livestock category (l) and each emission stage (s) in the manure management 

chain. Within a given farm class, a mean emission factor (EFs,l) is derived by a linear 

regression of farm-specific emissions (Emf,s,l) and corresponding activity data (ADf,l), 

which consist of the livestock numbers of the surveyed farms.  

 

Emf,s,l = EFs,l ADf,l,                           (1) 

 

Regression analysis is performed separately for each manure management stage (s) 

and each livestock category (l), resulting in stage specific emission factors for each farm 

class (EFs,l). Total emissions from a specific livestock category and manure 

management stage in a given farm class result from multiplying these mean emission 

factors with the total livestock numbers (ADtot) of this class. The regional total of NH3 
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emissions (Emtot) consists of the sum of the simulated emissions over all livestock 

categories and manure management stages. 

 

Emtot = ∑ ∑ EF𝑠,𝑙 AD𝑡𝑜𝑡 𝑙𝑠 ,                            (2) 

 

While deriving the national total emissions is straightforward, assessment of the 

propagation of related model uncertainties is more challenging. The following section 

presents the simulation model that estimates related model uncertainties for each 

livestock category by means of Monte Carlo simulations. 

2.3 Uncertainty assessment by Monte Carlo simulation 

As described in the previous subsection, the nitrogen mass flow model Agrammon 

provides farm-specific (f) emission data (Emf,s,l) for each livestock category (l) and 

manure management stage (s). Uncertainties in the mean emission factors estimated by 

linear regression of farm-specific emissions and corresponding livestock numbers are 

the result of uncertainties in the simulated emissions at the level of individual farms. 

Previous research shows that uncertainties in the emissions at the farm level are 

dependent on farm types and thus the data set exhibits a non-constant variance [14].  

Linear regression models require that the errors in the data set fulfill certain 

assumptions, which are the statistical independence of the errors, constant variance in 

the errors and normality of the error distribution. Farm-specific emissions simulated by 

Agrammon violate in particular the second assumption since variance in the error terms 

is larger for farms with high emissions. In addition, there are correlations in the error 

terms since some of the underlying technical parameters are identical for all farm 

classes. Thus, confidence intervals estimated by conventional linear regression analysis 

are biased.  

Therefore, we implemented an approach based on Monte Carlo simulations that 

provides a robust estimate of the standard errors and estimates confidence intervals. 

The uncertainty simulation model is implemented in the statistics program R. The 

model allows accounting for correlated error terms and non-constant variance.  

When the assumption of constant variance is violated, conventional estimation of 

standard errors can be biased. Therefore, we adopted an approach for estimating robust 

standard errors in the estimated coefficients that takes into account the 

heteroscedasticity in the data. Instead of using the root mean square error, the standard 

error is estimated based on the squared residual (ei) of each observation [15]. 

 

SE = √∑ 𝑤𝑖
2 𝑒𝑖

2
𝑖  ,                           (3) 

 

Where wi indicates the observation weights. Besides accounting for 

heteroscedasticity in the data set, the uncertainty simulation model addresses the issue 

of correlated error terms. In each simulation run, emission data (Emsim) are generated 

by adding a farm-specific error term (ε), which is uncorrelated, and a correlated error 

term (εcorr), which is identical for all data points in a given model run.   

 

Emsim = Ems,l (1 + ε+ εcorr) ,                           (4) 
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From the distribution of the simulated emission data, we estimate the 95% 

confidence interval, from which we derive relative uncertainties for each emission 

factor provided by the Agrammon model.  

In order to estimate the total uncertainty in NH3 emissions in Switzerland for the 

national inventory, uncertainties are required at the national scale as a total for each 

livestock category. Thus in a next step, uncertainties in the specific emission factors 

have to be aggregated to the national scale and to the categories required for the 

reporting under the CLRTAP. 

2.4 Aggregation of uncertainties 

In analogy to the aggregation of emissions from specific farm classes and emission 

stages to the national level and to the categories required for the informative inventory 

report (see equation (2)), related uncertainties need to be aggregated as well. 

Uncertainties in emission factors of different manure management stages and across 

regions are correlated and therefore Gaussian error propagation is not applicable. 

Instead, the model aggregates uncertainties in a stepwise procedure by means of an 

additional Monte Carlo simulation that allows accounting for correlation in the 

uncertainties at the regional scale. This step results in uncertainties of stage and 

livestock specific emission factors at the national scale. 

Since the Agrammon model distinguishes more livestock categories and manure 

management stages than required for the reporting under CLRTAP, further aggregation 

of manure management stages and livestock categories is required. Thus, in a next step 

the model aggregates uncertainties over all emission stages (s) and livestock categories 

(l) of a given CLRTAP Category (Cat). For example, category 3 B 1 b Cattle non-dairy 

subsumes all manure management stages (except manure application and grazing) and 

several livestock categories such as calves, heifers and beef cattle. At this level, 

uncertainties are assumed to be independent and they are aggregated by means of 

Gaussian error propagation. 
 

𝑈𝐸𝐹,𝐶𝑎𝑡 = √∑ ∑ 𝑈𝐸𝐹,𝑙,𝑠
2

𝑠  𝜖 𝐶𝑎𝑡𝑙  𝜖 𝐶𝑎𝑡                           (5) 

 

In the final step, the uncertainties in the resulting emissions (𝑈𝐸𝑚,𝐶𝑎𝑡) are estimated 

for each CLRTAP category again by means of Gaussian error propagation from the 

uncertainties in the corresponding emission factors (𝑈𝑙,𝐶𝑎𝑡) and in the livestock 

numbers (𝑈𝑙,𝐶𝑎𝑡), which is estimated to be in the order of 6% [13].  
 

U𝐸𝑚,𝐶𝑎𝑡 = √𝑈𝑙,𝐶𝑎𝑡
2 + 𝑈𝑙,𝐶𝑎𝑡

2                                   (6) 

3. Results and Discussion 

The simulations provide model uncertainties according to livestock categories as 

defined in the CLRTAP (see Figure 2). Relative uncertainties range between 20% and 

80%. The results show largest uncertainties for poultry, goats as well as mules and 

asses. Emissions of cattle, swine and horses have considerably lower uncertainties. 

Generally, high uncertainties are observed for those categories that are modelled by 

Agrammon with a low degree of regional differentiation. For example in the category 

turkeys, the Agrammon model does not apply any regional stratification at all, since the 
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number of observations would not allow for a regionalization. This explains the rather 

large uncertainties observed for this livestock category.  
 

 

Figure 2. Upper part: Relative uncertainty in NH3 emissions according to CLRTAP 

categories. Lower part: Annual emissions in kilotonnes (kt NH3-N/a) and 

absolute uncertainty (as error bars). 

Table 1. NH3 emissions (Em) in kilotonnes reported in 2011 and related uncertainties 

in activity data (UAD), emission factors (UEF) and Emissions (UEm) according to 

UNECE/CLRTAP categories. 

Category UNECE/CLRTAP Em in kt UAD UEF UEm 
3B1a Manure management - Dairy cattle   11.3  6% 34% 35% 

3B1b Manure management - Non-dairy cattle   7.6  6% 25% 26% 

3B2 Manure management - Sheep  0.6  6% 52% 53% 

3B3 Manure management - Swine    5.2  6% 36% 36% 

3B4d Manure management - Goats  0.2  6% 57% 57% 

3B4e Manure management - Horses  0.5  6% 34% 35% 

3B4f Manure management - Mules and asses  0.1  6% 47% 47% 

3B4gi Manure mangement -  Laying hens  0.6  6% 82% 82% 

3B4gii Manure mangement -  Broilers  0.5  6% 72% 72% 

3B4giii Manure mangement -  Turkeys  0.0  6% 76% 76% 

3B4giv Manure management -  Other poultry  0.1  6% 55% 56% 

3B4h Manure management - Other animals   0.0  6% 50% 50% 

3Da1 Inorganic N-fertilizers (includes also urea application)  2.0  25% 50% 56% 

3Da2a Animal manure applied to soils  24.1  6% 19% 20% 

3Da2c Other organic fertilisers applied to soils   0.4  6% 50% 50% 

3Da3 Urine and dung deposited by grazing animals   1.4  6% 30% 31% 

3Db Indirect emissions from managed soils   2.8  6% 50% 50% 

Total Uncertainty in agricultural NH3-Emissions 57.3   12% 
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Due to the large share of dairy and non-dairy cattle and swine in the total livestock 

production of Switzerland, the contribution to the overall uncertainty is dominated by 

these categories [4]. The total uncertainty in Switzerland’s ammonia emissions from 

livestock production amounts to about 13%. Uncertainties from dairy cattle account for 

43% of the total variance, other cattle 21%, swine 20%, laying hens and broilers 9% 

and all other animal categories account for the remaining 7%. 

In addition, the emissions from use of synthetic fertilizers and farm-level agricultural 

operations are estimated based on the statistics provided by the Swiss farmer’s 

association and related uncertainties are based on expert judgement [16] (see Table 1). 

This results in a total uncertainty in agricultural NH3-Emissions of around 12%. 

4. Conclusions and Outlook 

The new uncertainty simulation model permits a robust and standardized assessment 

analysis of model uncertainties, as it is able to account for large, asymmetric 

uncertainties and correlations among the technical model parameters and across 

regional scales. Thus, it allows a more accurate monitoring and reporting of NH3 

emissions, which indirectly improves also the assessment of related indirect N2O 

emissions. By identifying the most uncertain sources and their contribution to the total 

uncertainty in NH3 emissions, the new uncertainty simulation model can serve as a basis 

for further improvements in Switzerland’s air pollutant and greenhouse gas inventories. 

Previously reported uncertainties of Switzerland’s NH3 emissions from livestock 

production based on expert judgement were estimated to be in the order of about 50% 

in each category [16]. The results of the present study indicate that uncertainties are 

considerably lower for cattle and swine. Since these livestock categories contribute 

substantially to the total uncertainty of NH3-emissions from livestock production, the 

results indicate that total uncertainty has been overestimated in previous inventories. 

Future research aiming at reducing existing uncertainties should therefore primarily 

address those livestock categories.  

The updated uncertainties of the ammonia emissions were integrated into the 

uncertainty level and trend analyses of Switzerland’s air pollutant inventory in 2013 

[17] in line with the reporting obligations to UNECE under the CLRTAP [18]. For 

submission in 2015 [4], we modified the uncertainty simulation model such that it 

aggregates uncertainties to the new categories in line with the new EMEP/EEA 

Guidelines of 2013 [19]. Future work will focus on a refined assessment of uncertainties 

at the level of process specific parameters and on assessing correlations among 

technical parameters.  
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Abstract 

Greenhouse gases (GHG) inventories at national or regional levels include the total 

emissions and emissions for many categories of economic activity. The aim of our research is 

to analyze the high resolution spatial distributions of emissions for all categories of economic 

activity in Poland. GHG emission sources are classified into point-, line- and area-type sources. 

We created maps of such sources for all categories of economic activities covered by IPCC 

Guidelines, using official information of companies, administrative maps, Corine Land Cover 

maps, and other available data. The worst resolution is for area-type sources (100 m). We used 

statistical data at the lowest level as possible (regions, districts, and municipalities). We created 

the algorithms for these data disaggregation to the level of elementary objects for GHG spatial 

inventory. These algorithms depend on category of economic activity and cover all categories 

under investigation. We analyzed emissions of CO2, CH4, N2O, SO2, NMVOC, and others, and 

we calculated the total emissions in CO2-equivalent. We used a grid to calculate the 

summarizing emissions from the all categories. The grid size depends on the aim of spatial 

inventory, but it can’t be less than 100 m. For uncertainty analysis we used uncertainty of 

statistical data, uncertainty of calorific values, and uncertainty of emission factors, with 

symmetric and asymmetric (lognormal) distributions. On this basis and using Monte-Carlo 

method the 95% confidence intervals of results’ uncertainties were estimated for big point-type 

emission source, the regions, and the subsectors. 

Keywords: GHG emissions, high resolution spatial inventory, uncertainty, Monte Carlo method 

1. Introduction 

Preventing climate changes requires of the humanity to reduce greenhouse gas 

(GHG) emissions. To control the performance of obligations to reduce or limit GHG 

emissions, we need to make inventories of emissions and absorptions of these gases. 

GHG inventories at national or regional levels include the total emissions and emissions 

for many categories of economic activity. But for deeper study of emission processes 

as well as their structure, it is more reasonably to make a spatial inventory of GHG. 

Such an inventory reflects the emissions linked to the territory where they appear. 

Scientists are constantly trying to reduce the spatial resolution of the inventory results 

to better reflect the specifics of territorial emission processes [1, 8, 9, 11]. The aim of 

our research is to analyze the high resolution spatial distributions of emissions for all 

categories of economic activity in Poland. 

2. Spatial inventory approach 

For all sectors and categories of anthropogenic activity covered by IPCC Guidelines 

[7], we analyzed the sources of emissions or sinks in terms of their spatial representation 

for inventory procedures. GHG emission sources are classified into point-, line- and 
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area-type sources [3] (see below). Then we built digital maps of sources / sinks for each 

category. For some categories they are digital maps of point objects, for other categories 

they are digital maps of linear objects or area-type objects (polygons). We further 

analyzed the emission / absorption from these diverse elementary objects (points, lines, 

and areas) without using any regular grid, as it is often made. The line- and area-type 

(diffused) elementary objects are split by administrative boundaries. It gives us a 

possibility to keep administrative assignment of each elementary object to the regions 

(voivodeship in Poland), districts (powiat), and municipalities (gminas). 

The next step was to create algorithms for calculating GHG emissions from these 

elementary objects. Basically, these algorithms reflect the main principles of IPCC 

Guidelines [7], according to which the emission is a product of activity data and 

emission factors. However, a common problem is to obtain data about the activities at 

the level of elementary objects. For this purpose we have developed algorithms for 

disaggregation of available statistical data for regions (or even for municipalities in 

some categories) to the level of elementary objects. These algorithms are different for 

each category. They take into account the available statistics relevant to corresponding 

administrative level, and use other parameters, that can be considered as indicators for 

disaggregation of statistical data. 

The specific feature of the approach is an ability to use different emission factors for 

separate elementary objects (or even part of objects), if such data are available, 

as opposed to using averaged default values. The results of calculating emissions in 

each category of anthropogenic activity for elementary objects can be visualized in the 

form of digital maps using different approaches, depending on the source type. Since 

this approach 'saves' information about administrative assignment of each elementary 

object (emission source), it is possible to aggregate emissions for whole administrative 

units (even for small units like municipalities) without loss of accuracy. 

3. High resolution maps of emission sources 

Examples of the point-type emission sources are electricity or combined electricity 

and heat production plants, cement plants, production of glass, ammonia, iron and steel, 

aluminium, pulp and paper, petroleum refining, mining etc. Using the official 

information on these companies we determined their addresses, and then, using Google 

Earth (TM) we searched for their production facilities treated as point emission sources 

(stacks of power plants, for example), and we fixed their geographical coordinates 

(latitude and longitude). Thus the digital maps of emission sources were built for 

the categories of human activity, in which the emission sources can be presented as 

point-type objects. The spatial resolution of these maps is of the order of several meters, 

that can be considered very accurate for spatial inventory of GHG emissions. 

The roads and railways are examples of the line-type emission sources. To construct 

the maps of these sources, we used the OpenStreetMap. This digital map is created 

using GPS navigators. Therefore its spatial resolution is also high for GHG spatial 

inventory. Information on road category was used as one of the indicators for 

disaggregation of data on fossil fuel combustion by various categories of vehicles in the 

transport sector. 

Area-type (or diffused) sources or sinks are croplands, settlements, industrial areas, 

forests and others. We created digital maps of such sources / sinks for all categories of 

human activities under investigation. Elementary objects for GHG spatial analysis are 

represented as polygons. To build these maps we used Corine Land Cover vector maps 

[4]. These maps are obtained on the basis of processing raster maps with a resolution 
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of 100 m. This resolution determines the resolution of all created digital maps of area-

type (diffused) sources. It further defines the resolution of the summarized results of 

GHG spatial inventory. 

4. Input data and disaggregation algorithms 

As activity data, we used statistical data at the lowest level as possible (levels of 

voivodeships/regions, powiats/districts, and gminas/municipalities, as some statistical 

data are available even at the level of gminas) [2]. The amount of fossil fuel used, data 

on production, the number of animals in agriculture, and any more are examples of such 

activity data in different emission categories. We created the algorithms for these data 

disaggregation to the level of elementary objects for GHG spatial inventory (level of 

point-, line-, and area-type emission sources). These algorithms depend on category of 

anthropogenic activity and cover all categories under investigation. As input data we 

also used the values of certain indicators, which are needed for activity data 

disaggregation to the level of elementary objects. The population density, data on access 

to energy sources, power of electricity generation plants, gross value production, and 

many others are examples of such indicators. 

In cases where it was possible, the emission coefficients and parameters that reflect 

the territorial specifics of emission and absorption processes were applied. 

For example, when calculating accumulated carbon in forests, we used the information 

of Local Data Bank (BDL) [2] on species composition, age structure, etc. at the level 

of districts/powiats and communes/gminas. 

5. Results of spatial inventory 

By using created digital maps of GHG emission sources / sinks in Poland and 

the algorithms for activity data disaggregation, we formed the geospatial database 

needed for the spatial inventory. Then we calculated the GHG emissions using 

appropriate mathematical models. We analyzed emissions of CO2, CH4, N2O, SO2, 

NMVOC, and others, and we calculated the total emissions in CO2-equivalent, using 

Global Warming Coefficients. These results we obtained at the level of elementary 

objects (point-, line- and area-type sources of emissions). 

We used a grid to calculate the sum of emissions from all categories under 

investigation. But the cells of this grid are split by administrative map. The grid size 

depends on the aim of spatial inventory, but it cannot be less than 100 m. This is due to 

the fact that the worst spatial resolution of the digital maps is for the area-type sources 

of emissions and it is 100 m. For visualization of results on the maps we calculated also 

a specific emission, i.e. emissions divided by area, because areas of these objects are 

not equal. 

As an example, the map of total specific GHG emissions in Poland and the Silesian 

voivodeship, which is the most industrialized region, is presented in Figure 1. 

As a rule, the emission from point sources are significant, therefore it causes 

problems when we visualize the spatial inventory results. Figure 2 presents the results 

using the square root scale for visualization of spatial inventory results for the Silesian 

region in Poland. For the purpose of this figure the results of spatial inventory at 

the level of point-, line-, and area-type elementary sources are aggregated to the regular 

grid 2 km in size. 

Based on the results of GHG spatial inventory at the level of elementary objects or 

regular grid we can calculate the total emissions in the administrative units like 

gmina/municipality, powiat/district or voivodeship/region. These results reflect 
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a structure of emissions by sectors or certain categories of activity, by types of fossil 

fuel used, and the structure of certain emissions of greenhouse gases. In Figure 3 we 

can see the structure of total GHG emissions from all sectors in Poland at the regional 

level, and Figure 4 presents the structure of emissions in the Energy sector, which is the 

most influential one. 

 

Figure 1. The total specific GHG emissions in Poland and the Silesian 

region (the all categories without LULUCF, 2010, Gg/cell, 

CO2-equivalent, 2 km grid size) 

 

Figure 2. Prism-map of specific GHG emissions from all anthropogenic sectors 

without LULUCF in the Silesia region at the level of elementary objects 

(CO2-equivalent, Gg/km2, square root scale, 2 x 2 km, 2010)  
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Figure 3. The total GHG emissions structure by sector 

(Poland, CO2-equivalent, 2010) 

 

Figure 4. The total GHG emissions in the Energy Sector by 

sub-sectors (Poland, Gg, CO2-equivalent, 2010)  
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6. Uncertainty analysis 

The variables and parameters, used in the GHG inventory, are characterized by some 

uncertainties. These uncertainties are associated with lack of our knowledge on 

emission processes, inaccurate measuring instruments, etc. Uncertainties of the spatial 

inventory results, using the above described approach, include three components: (1) 

the uncertainty of spatial localization of emission sources and sinks; (2) the uncertainty 

of the used input statistical data, calorific values of fuels, and emission factors; and (3) 

the uncertainty of spatial disaggregation of activity data to the level of elementary 

objects. The uncertainty is characterized by the lower and upper limits of 95% 

confidence intervals of analyzed variables. 

The first of these uncertainty components is not taken into account in this study. This 

is because of the above-described approach to building digital maps of emission sources 

and sinks, where the uncertainty of localization of point- and line-type elementary 

objects is kept to the minimum. The uncertainty of localization of area-type (diffused) 

emission sources / sinks is defined by the uncertainty of the Corine Land Cover maps. 

As to the second component, the uncertainty of input statistical data, the uncertainty 

of calorific values, and the uncertainty of emission factors, we used the appropriate data 

from [5, 10], and other estimations (e.g., [6] and others). For these variables we used 

the symmetric and asymmetric (lognormal) distributions. 

As described above, the algorithms for disaggregation of activity data are based on 

certain indicators, that are mostly statistical data. Therefore, for the analysis of the total 

uncertainty, it was assumed that these uncertainties are described as for statistical data. 

For some categories of human activities, such as the residential sector, the uncertainty 

of disaggregated data was evaluated by comparison with similar data from other known 

sources [2]. 

Based on these input uncertainties we estimated the distributions using the Monte-

Carlo method. The uncertainties of results, as 95% confidence intervals, were 

calculated, i.e. the expectation, as well as the lower and upper limits. For the point-type 

sources we estimated the uncertainty of the results separately for each source, and for 

the total emissions in the category to which they belong. We also analyzed 

the sensitivity of the total uncertainty to changes of the uncertainties of separate 

components, as the uncertainties of input statistical data, the uncertainty of calorific 

values, and the uncertainty of emission factors. 

As the number of elementary objects for line- and area-type sources of emissions are 

large (typically tens of thousands, as in the residential sector or the agriculture sector), 

we also evaluated the uncertainty of results using the Monte-Carlo method, but at the 

regional level. We also investigated the sensitivity of the total uncertainty to changes 

of uncertainties of separate components, including the uncertainties of input activity 

data, the uncertainty of calorific values, and the uncertainty of emission factors. 

7. Conclusions 

The presented approach provides the high resolution of GHG spatial inventory in 

Poland with the use of point-, line-, and area-type emission sources / sinks. The spatial 

analysis is carried out at the level of these sources without using any additional grid. 

Consequently, the information on administrative assignment of corresponding emission 

sources (plants, settlements, etc.) is retained, and this, in turn, makes it possible to 

aggregate the final results even to the level of sub-municipalities without decreasing 

accuracy of results. 
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In principle, according to this approach an inventory is carried out by 'bottom-up' 

method, but also an element of 'top-down' assessment exists, since we disaggregate 

available statistical data to the level of elementary objects as point-, line-, or area 

sources. However, this approach makes it possible to fully use the available even partial 

information about the specific territorial emission or absorption processes. 

The results of spatial inventory of GHG emissions / absorption demonstrate 

an unevenness of these processes in Poland. Such an unevenness is specific to each 

category of anthropogenic activity. The positive aspect is that the spatial inventory 

enables to display a real contribution of each even very small territory to the overall 

emission processes. What is more, the results presented in such a form show 

the emissions values, as well as their structural features. It is of interest to authorities to 

support well-grounded decision making. 

Since the spatial analysis takes into account the territorial specificity of many 

parameters that affect emissions or removals of greenhouse gases (e.g. the differentiated 

characteristics of the fossil fuel used in the energy sector, the climatic conditions and 

the energy sources availability in the residential sector, the species and age composition 

of forests and many others), the total inventory results for the region/country as a whole 

is more precise comparing with the national inventories without spatial components and 

regional specifics. 

The results were achieved under GESAPU project financed by EU. 
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Abstract 

Spatial inventory of greenhouse gas (GHG) emissions allows to identify emission 

changes in space. In this study we have analyzed the specificity of territorial distribution 

of GHG emission sources for Poland and Ukraine. Mathematical models and 

geoinformation technology for spatial analysis of GHG emissions from fuel consumption 

by power and combined heat and power plants have been improved by taking into account 

uncertainty of input parameters and specific factors for every separate electricity/heat 

generating companies. We have updated the input digital maps of emission point sources. 

Based on it, we have developed a spatial GHG emission distribution for 2012. The 

uncertainties of GHG emissions in CO2-equivalent for the power plants which we consider 

in our study are asymmetric and the upper bounds of 95% confidence intervals do not 

exceed 20,3%. 

Keywords: mathematical modeling, GHG emission inventory, electricity/heat production, 

uncertainty  

1. Introduction 

In the last decades, rapid technological progress has caused considerable impact on 

the environment, in particular on the climatic condition of the planet [16]. Therefore, 

the problem of global warming caused by the increase of greenhouse gas (GHG) 

concentration in atmosphere is very relevant. Inventory of GHGs is an essential tool for 

monitoring the practical implementation of commitments to reduce or stabilize 

emissions. Emission inventories are often provided with spatial distributions. Some 

examples of such inventories are published in [1, 5]. 

Electricity generation, is often the most prominent GHG emission category that is 

closely related to our economic activities. It corresponds to the subsector “1.A.1.a 

Public Electricity and Heat Production” in the IPCC methodology [15]. According to 

the IPCC methodology, enterprises producing electricity and heat (rather – their 

funnels) are emission point sources.  

The high-resolution spatial GHG inventory provides localization of point sources 

not only for electricity generation, but also for many other categories of human 

activity. In most cases GHG emissions are calculated in a determinative way. GHG 

emissions from electricity generation are the largest emitters on the analyzed territory 

[5, 6]. The uncertainties of results of GHG inventories from electricity production 

have significant impact on the uncertainty of the inventory results not only for this 

category but also on the summary results of all categories of human activities [4].  
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The first results of spatial analysis of GHGs emissions caused by fossil fuel fired 

power and/or heat plants in a few Polish regions were presented in [13]. The study 

described the mathematical model for spatial analysis of GHGs, and the experiments 

that were carried out for all Poland. A similar study for Ukraine has been presented in 

[11]. It should be noted that those studies [11, 13] didn’t take into account the 

uncertainties of the input data (activity data and emission factors). Uncertainty of 

inventory results must be estimated. The first results of uncertainty analysis of GHG 

emission inventory have been presented in [12], but the authors did not consider 

specific parameters for a single company in their estimations (e.g., limits of uncertainty 

of emission coefficients). 

This paper focuses on analysis of uncertainty of GHG emissions in Poland and 

Ukraine from heat/power plants. We have recalculated facility level CO2 emissions 

from national fuel consumption data [8, 10, 14] and carried out the spatial analysis of 

GHG emissions from electricity generation for Poland and Ukraine for 2012. We have 

updated the maps of point source emissions for the year 2012 [11, 13]. These maps 

include geolocation of all enterprises that produce electricity or combined electricity 

and heat, with maximal power more than 20 MW.  

2. Electricity and heat generation in Poland and Ukraine 

Electricity generation is one of the strategical categories in Poland and Ukraine, 

accounting more than 40% of total GHG emissions. Particularly, the percentage of coal 

in overall fuel consumption is very high. During burning, coal is characterized by the 

largest emission coefficients (emissions per ton of fuel). Below we specify the 

differences and similarities of electricity and heat generation in Poland and Ukraine. 

2.1 Poland  

Electricity or combined electricity and heat producing plants in Poland are 

categorized into two types: (1) public power/heat plants and (2) autoproducing 

power/heat plants. Power/heat plants of first type produce electricity for general 

purposes. Autoproducing power/heat plants, according to the source classification by 

IPCC [15], are included in another category of energy sector: “1.A.2.Manufacturing 

Industries and Construction”. However, most of these autoproducing plants 

produce energy/heat not only for their own use but for residential consumers as well. 

So, it is difficult to identify to which category this plant should be included. 

Such division of plants is a part of the statistical reports about amount of burned fossil 

fuel. 

Despite the development of renewable energy sources, almost 90% of electricity in 

Poland is produced by power/heat plants that are located close to the miners of fuel raw 

materials in Silesia, in the central regions and in Pomoria. The production of electricity 

based on coal is about 62% of the total energy production. Another important energy 

resource is brown coal that covers 30% of the energy production [3, 5, 7, 14]. Plants that 

use brown coal for electricity production are located close to the miners of that fuel [5, 

6]. 

2.2 Ukraine 

The specificity of the location of electricity generation plants in Ukraine is similar 

to Poland. Most power plants are concentrated in the industrial regions of the country 

and in the places of fuel mining – it is the eastern part of Ukraine. Some power plants 

are located in the strategic places, for example, Burshtyn power plant is located at 
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the intersection of the power lines that connect Ukraine with Hungary, Romania and 

Slovakia. Another power plant Dobrotvir is located not far from Poland and is 

connected to Polish electrical network. 

Outdated equipment (boilers, generators, filters etc.) that is still utilized in many 

power plants increases the amount of GHG emission. It should be noted that statistical 

data of fossil fuel used for electricity generation by private companies is not available. 

Instead, there is available information about amount of generated power, fuel type and 

fuel consumption per unit of energy produced. 

For spatial GHG inventory it is required to have information about amount of fuel 

consumption or amount of energy output for each individual plant, appropriate emission 

factors, technical power characteristics, fuel chemical composition, etc. It is difficult to 

fulfill these requirements due to the lack of available data. For example, in Ukraine the 

information about the activities of power plants in most cases is not available. In this 

study, a detailed research of technical parameters of power/heat plants activity 

(emission factors, technical power characteristics, fuel chemical composition) are done 

only for a small amount of enterprises.  

3. Maps of electricity and heat generating companies 

Unlike emissions from diffused sources (e.g. residential and commercial), it is often 

difficult to model emission spatial distributions for the intense point sources such as 

electricity and heat plants. Thus, those emissions need to be mapped using the specific 

location information (geographical coordinates of smoke stacks). We developed a map 

of point sources for the year 2012 [11,13]. The map for the year 2012 was developed in 

following steps: (1) collect and compile information about companies that produce 

electricity (we used all available data about electricity generation branch in Poland and 

Ukraine), (2) identify geographical coordinates (latitude and longitude) of power/heat 

companies by using Google Earth high resolution imagery (TM)) and (3) create digital 

maps using the MapInfo GIS environment. As a result, we developed a database of 

electricity generating plants that includes the next information: unique identification 

number; name of electricity generation plant, city, region;geographical coordinates 

(latitude and longitude);power of plant, MW. 

4. Spatial GHG inventory for Poland and Ukraine  

Using the point source map we developed, we developed a spatial GHG inventory 

for the category of electricity and heat production for Poland and Ukraine. We used the 

models for spatial GHG inventories presented in [11] and [13] for Poland and Ukraine, 

respectively. These models use specific emission factors for individual power plants 

and calorific values of fuel, the information about location of plant and its 

characteristics (if it is available). 

The results of GHG emissions estimation are in the form of sets of numerical values 

of GHG emissions (carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O),) for 

certain year and for every point source. The thematic maps have been then created 

based on the results of GHG emission estimates by sources. Figures 1 and Figure 2 

illustrate these thematic maps for Poland and Ukraine, respectively. The emission 

leaders are industrialized regions, where the main production facilities of the country 

take place. For example, in Ukraine it is Donetsk region, Luhansk region, 
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Dnipropetrovsk region and Kharkiv region; and in Poland it is Silesia voivodeship, 

Lodz voivodeship, Mazovia voivodeship and Wielkopolska voivodeship.  

The results of spatial GHG inventory of Ukraine and Poland enable to adequately 

assess the current situation of the industry in terms of GHG emissions and to accept the 

relevant decisions for GHG emissions reduction.  

 
Figure 1. Map of GHG emissions from electricity production in Ukraine, 

CO2 equivalent (2012, 103 t) 

 
Figure 2. Map of GHG emissions from electricity production in Poland, 

CO2 equivalent (2012, 103 t) 
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6. Uncertainty analysis of the results of GHG emission inventories 

The mathematical models of spatial inventory of GHG emissions include a number 

of parameters, which are characterized by uncertainty that has to be considered during 

the estimation of GHG emissions, e.g. uncertainty of emission factors and uncertainty 

of statistical data on consumption of fossil fuel. Uncertainties of the spatial inventory 

results depend on uncertainty of activity data, calorific values, emission factors etc. We 

are estimated such uncertainties by applying the Monte-Carlo method that is suitable 

for detailed evaluation of uncertainty "from category to category", particularly, if there 

are parameters with large uncertainties with distribution different from the normal. 

The density distribution is described by the complex functions and there are correlations 

between some input data, emission factors, etc.  

The uncertainty of emission factors of major greenhouse gases for 1.A.1.a “Public 

electricity and heat production” category are characterized by normal (CO2) distribution 

and log-normal (CH4, N2O) distribution [2]. In Poland’s National Inventory Report [8] 

it is published that emission factors of the major GHGs are characterized by the normal 

distribution. Uncertainty of emission factors in Poland’s energy sector for carbon 

dioxide (CO2) is 3,4%, methane (CH4) – 15,5%, nitrous oxide (N2O) – 11,3% (upper 

and lower limits of 95% confidence interval, which is approximately equal to two-

sigma). 

 

Table 1.  Results of uncertainty estimation for ten the most powerful electricity plants 

in Poland (2012) 

Power/heat 
plant 

СО2, th. t 
(uncertainty, %) 

CH4, th. t 
(uncertainty, %) 

N2O, th. t 
(uncertainty, %) 

Total 
emissions, th. t 
(uncertainty, %) 

BOT Elektrownia 
Bełchatów SA 

17535,9 
(-13,8: +15,3) 

0,16 
(-18,1: +20,8) 

0,24 
(-17,1: +19,5) 

17611,5 
(-13,8: +15,3) 

Elektrownia 
Patnów II 

28624,0 
(-13,8: +15,3) 

0,26 
(-18,0: +20,8) 

0,39 
(-17,1: +19,5) 

28747,4 
(-13,8: +15,3) 

Elektrownia 
Rybnik SA 

7862,2 
(-17,6: +20,2) 

0,08 
(-21,0: +24,8) 

0,12 
(-20,1: +23,7) 

7901,8 
(-17,6: +20,2) 

BOT Elektrownia 
Turów SA 

8317,4 
(-13,8: +15,3) 

0,07 
(-18,0: +20,8) 

0,11 
(-17,1: +19,5) 

8353,3 
(-13,8: +15,3) 

BOT Elektrownia 
Opole SA 

6012,1 
(-17,6: +20,2) 

0,06 
(-21,0: +24,8) 

0,10 
(-20,1: +23,7) 

6042,4 
(-17,6: +20,2) 

Elektrownia 
Polaniec 

5271,9 
(-17,6: +20,2) 

0,06 
(-21,0: +24,8) 

0,08 
(-20,1: +23,7) 

5298,5 
(-17,6: +20,2) 

Elektrownia 
Kozienice SA 

3501,3 
(-17,6: +20,3) 

0,04 
(-21,0: +24,9) 

0,06 
(-20,1: +23,7) 

3519,0 
(-17,6: +20,3) 

Elektrociepłownia 
Siekierki SA 

6511,1 
(-17,6: +20,3) 

0,07 
(-21,0: +24,9) 

0,10 
(-20,1: +23,7) 

6543,9 
(-17,6: +20,3) 

Elektrownia 
Dolna Odra SA 

3117,5 
(-17,6: +20,3) 

0,03 
(-21,0: +24,9) 

0,05 
(-20,2: +23,7) 

3133,2 
(-17,6: +20,3) 

Elektrociepłownia 
Żerań SA 

4746,0 
(-17,6: +20,3) 

0,05 
(-21,0: +24,8) 

0,08 
(-20,2: +23,7) 

4769,9 
(-17,6: +20,3) 

 

As an example, the results of uncertainty estimations for the 10 most powerful 

plants of Poland are shown in Table 1. The uncertainty range (calculated using the 
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Monte Carlo method) of emissions of Elektrownia Patnów II that uses brown coal for 

electricity production is from -13,8 to 15,3. These numbers are lower that the 

uncertainty range of GHG emission of Elektrownia Rybnik SA that consumes coal.  

National Inventory Reports of GHG are published in Ukraine and in Poland. They 

include the information about results of GHG inventory of different sectors of human 

activity in accordance with IPCC methodology. Also, there are reports that present 

the detailed information about protection of environment for particular regions, e.g. the 

report on the state of the environment in the Lower Silesia. These reports potentially 

can be used for validation of the results presented in this study. We will carry out the 

comparison of the presented GHG emissions and the independent GHG emissions 

estimates in the nearest future.   

Elektrownia Patnów II is the biggest plant in Poland, therefore we analyze sensitivity 

of the uncertainty of GHG emissions for this power plant to the uncertainty of input 

parameters (Figure 3). These results were calculated using the Monte Carlo method, 

and relative uncertainties of activity data, net calorific value, and CO2 emission factor 

as input data. The results show that decreasing of the uncertainty of the net calorific 

value by 50% can decrease the total uncertainty for this plant from -13,8%:+15,3% to 

around 9%. As uncertainties of other parameters are rather low, the relative change of 

uncertainty of these parameters will not change overall uncertainty for this power plant 

significantly. 

 
Figure 3. Dependence of total uncertainty of emission estimates for Elektrownia 

Patnów II to changes of uncertainty (on P %) of input parameters of 

inventory (the upper and lower limits of 95% confidence interval)   

7. Conclusions 

In this paper, we presented the results of spatial inventory of GHG emissions and 

their uncertainty analysis. The study of GHG emissions is based on the official statistics 

about fossil fuel consumption in Poland and Ukraine 

The results of spatial inventory allow to identificate power plants that produce the 

biggest quantity of GHG emissions and investigation of uncertainty of emission 

inventory results gives policymakers an effective tool for supporting decisions on 

strategic baselines of economic development and environmental policy. In Poland 

the leader in GHG emissions is Silesia voivodeship. It is the biggest industrial region 
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of country. The electricity and heat generating plants from the eastern part of Ukraine 

emit the most of GHGs in the country.  
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Abstract 

Taking into account the global climate change problem, an urgent task is greenhouse gas 

(GHG) emissions reduction, and associated with this problem the uncertainty analysis of input 

data and results of GHG inventory. The main purpose of this investigation is the assessment of 

inventory uncertainty at the level of separate company, region and even country in the industrial 

sector (including emission processes caused by chemical and physical transformation of 

materials, as well as by burning of fuels). We discuss the obtained results of spatial GHG 

inventory in the Industry sector in Poland, by usage of the bottom-up approach, based on IPCC 

guidelines, official statistics and digital maps of territories investigated. Monte-Carlo method 

was applied for estimation of inventory uncertainty in main categories of analyzed sector, 

taking into account the small and large variation of parameters in cases of symmetric and 

asymmetric distributions. We determined emission sources that have the greatest impact on 

overall uncertainty in the industrial sector, and evaluated the relative uncertainty depending on 

uncertainty in activity data and emission factors. The additional knowledge on spatial 

distribution of emissions and their structure, supports the processes of decisions making on 

emission reduction. 

Keywords: GHG emission, spatial GHG inventory, uncertainty analysis, Monte-Carlo 

method. 

1. Introduction 

Nowadays climate change is one of the most urgent ecological problem. Systematic 

atmospheric measurements show that the concentration of carbon dioxide (CO2), as the 

most important anthropogenic greenhouse gas (GHG), has increased more than 20% 

compared to 1958 year. Apart from the energy sector, a significant share in terms of 

greenhouse gas emissions belongs to industrial production.  

The national inventories of GHG emissions are the key element of the global system 

of monitoring and control of climate change. For enhancement of the assessment 

accuracy of GHG emissions inventory it is necessary to improve the inventories by 

developing new mathematical and software tools. The development of mathematical 

models of emission processes for GHG inventory is an important task in estimation of 

emissions, since only for a small number of emission sources experts may make direct 

measurements. 

The assessment of the uncertainty of GHG inventory at the country level as well as 

individual emission sources is an extremely important problem due to the fact that 

incorrect estimates may have a significant impact on the process of GHG trading. The 

results of GHG inventory have a special value only with estimates of uncertainties of 

the input data (activity data, and emission factors) and the output data (emissions) [5]. 
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2. High resolution spatial GHG inventory 

Traditional inventory at country level does not answer the question, where the 

biggest emitters are located. For this purpose we have developed a geoinformation 

approach to high resolution spatial inventory of GHG on the example of Poland. In the 

categories of spatial GHG inventory every large plant for the production of industrial 

materials is presented as a major point-type source of GHG emissions.  

The case study covers all categories of industrial sector: cement, lime, ammonia, 

nitric acid, iron and sinter production etc. (categories within sectors 1A2, 2A, 2B, 2C 

according to IPCC Guidelines [1]). This approach basically includes the stages of 

creation the maps of emission sources, and emission calculation for each source. On the 

basis of official information on industrial companies localization it is possible to set 

locations of their production facilities using Google Earth (TM). Also using a digital 

map of land use (Corine Land Cover [4]) the map of industrial zones as area-type 

emission sources was created. Thus digital maps of point- and area-type sources of 

emissions in each category of economic activity were built. 

We have developed special models of disaggregation of official statistical data 

(activity data) from the national level (or where possible from the regional level) to the 

level of separate plants or industrial areas, that we consider as the elementary objects 

of study. These models use a set of parameters as disaggregation indicators, including 

production capacity of companies, data on gross value added in the subregions, 

available data on the specific of technological processes, fuel used and many others. 

Then, using created digital maps and mathematical models we carried out spatial 

inventory of emissions for each elementary object and got sets of geospatial data on 

CO2, CH4, N2O emissions, and total emissions in CO2 equivalent. Below, this approach 

is illustrated on the example of cement industry only. 

The specificity of the main sources of GHG emissions in the industrial sector in 

Poland is their uneven territorial distributions. The spatial inventory reflects this 

peculiarity. Also the special feature of our spatial inventory is the high resolution of the 

obtained results. Maximum resolution is determined by the resolution of used digital 

maps of land use and does not exceed 100m. 

3. Mathematical models and results 

Cement industry suffered a significant development before and during the two 

periods of commitments under the EU ETS. In 2009-2011, the absolute CO2 emissions 

from European cement industry decreased by 20-22% compared to the 2000-2005 

years. Most emissions from the cement industry are caused by clinker production as an 

intermediate mineral in the cement production process [2]. 

Polish cement industry is widely developed in 7 of 16 voivodeships. The cement 

industry is presented by 11 cement production plants with full production cycle, 

1 cement grinding plant, and 1 alumina cement production plant. The full production 

cycle means all stages of the cement production, in particular the processes of the 

clinker calcination and cement grinding [6]. The largest cement producers are Górażdże 

Cement S.A. (concern Heidelberg), Lafarge Cement S.A. (concern Lafarge), and Grupa 

Ożarów S.A. (concern CRH). The shares of these groups in total cement production are 

26%, 21% and 17%, respectively [3]. 

The main three ways to reduce GHG emissions from the cement industry are the 

reduction of emissions caused by fuel combustion, the reduction of emissions due 

technological processes modernisation, and reduction of indirect emissions from 
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electricity consumption by improving the electric energy efficiency during the clinker 

and cement production. The reduction of emissions due technological processes 

modernisation is primarily connected with substitution of clinker by other minerals (a); 

with decreasing of carbon content in cement (b); with capture and storage / capture and 

disposal of carbon (c). The analysis showed that about 40-60% of the total emission 

reductions should be the option of carbon capture and storage of CO2 [2].  

We adapted the mathematical description of carbon dioxide emissions from cement 

production at the level of separate plant, as a single point source of emission [3], for 

GHG spatial inventory. According to this mathematical model the carbon dioxide 

emissions from a single point source is calculated as a product of the quantity of clinker 

produced, CaO content in clinker, and cement kiln dust losses by the formula: 
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where  2CO

CementE  is the amount of annual carbon oxide emissions from the cement plant; 

clinkerstatF is the activity data on clinker production for the cement plant n ; 2CO

clinkerK  is the 

emission factor for clinker for the cement plant n ; 
CKDK  is the correction factor for 

losses of cement kiln dust (it was assumed that 
CKDK = 1.02); cement  is the set of 

cement production plants; cementN  is the number of these plants. 

 

Figure 1. Results of the analysis: main sources of carbon dioxide emissions from cement 

production in Poland at production plants level, and region level (103 tons; in 2010) 

Data on industrial production were disaggregated from the country level 

(administrative regions level if possible) to the level of production companies by using 

specific indicators of disaggregation, for instance, the capacities of large plants as point-

type sources of emissions. The above-described mathematical model of emission 
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processes from cement production (1) is implemented with the usage of geographic 

information systems (GIS) and developed software in MapBasic. 

We formed a set of input geospatial data, and executed computations on GHG spatial 

inventory in cement production category in Poland (the results are presented in Figure 

1). The similar spatial inventories are performed for other categories of economic 

activity of the Industrial sector, which are characterized by a significant level of 

emissions. 

4. Input data for uncertainty analysis 

Input data, which are used in our mathematical models for GHG spatial inventory, 

are associated with some uncertainties. These uncertainties reflect the lack of our 

knowledge about emission processes in each category of the industrial sector. 

Therefore, the statistical data on the output of major industrial goods, which are 

produced by corresponding plants, and the specific plant's GHG emission factors can 

be presented as random variables. One of the main methods for modelling GHG 

emissions taking into account the uncertainty of input data, is Monte Carlo method. Its 

advantage is the ability of using the information based on uncertainty of input 

parameters of mathematical models to estimate the level of uncertainty in GHG 

emissions for different companies, regions and the country as a whole. Today, there are 

good well-founded price incentives and financial requirements for the accurate 

accounting of the economic activity (production volumes) [7]. 

In this regard, the statistics on the results of economic activity tend to reduce 

uncertainties and decrease the correlation coefficient of data over time. Uncertainty 

analysis of the activity data in the industrial sector in Poland is carried within 

preparation of the national inventory reports on GHG emissions. According to estimates 

of the Polish experts in statistics, the uncertainty of statistical data for various categories 

of emission sources at the country level is in the range of 2-5% [8]. The national 

inventory reports show that the most accurate evaluations of emission factors for carbon 

dioxide together with their uncertainty ranges were obtained for the category "Cement 

production" (15%) and the category "Metal production" (10%). The uncertainty of 

methane emission factor for most sources in the industrial processes sector is 20% 

(normal distribution). In the analysis of uncertainties of GHG emissions from cement 

production at Polish factories, the following input data were used (see. Table 1): the 

uncertainty of volumes of clinker produced (symmetric, 2%), the uncertainty range for 

emission factors for carbon dioxide (symmetric, 15%) for all sources. 

5. Results of uncertainty analysis 

According to the study of the traditional inventory (not-spatial) the total uncertainty 

of GHG emission estimates in the industrial sector in Poland in general is 5.2% for 

carbon dioxide, 13.5% for methane, and 29.7% for nitrous oxide.  

On the basis of the created set of geospatial data and the developed approach to the 

uncertainty analysis of GHG emissions the computing experiments were performed 

using Monte Carlo method for production of cement, lime, nitric acid, ammonia, iron 

and agglomerates in Poland (using activity data for 2010). The algorithm of realization 

of Monte Carlo method consists of 4 steps: setting probability distribution functions of 

each parameter of mathematical model separately for each cement production plant (1); 

generating pseudo-random data samples of statistical data and emission factor 
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accordingly to the density of the probability distribution (2); calculation with 

mathematical model (1) of the emission estimate using modeled at previous step the 

random values (one random values of emission is calculated for each emission source) 

(3); calculation of the total GHG emissions from all sources (4). 

Based on the results of modelling in main categories, the uncertainty ranges 

mentioned above amounted to 7,4% for СО2 emissions, 16,8% for CH4 emissions, 

35.5% for N2O emissions (symmetric normal distribution is used). The verification of 

the correctness of realized mathematical and software tools was carried out using Polish 

national annual reports on greenhouse gases emission at the country level as a whole. 

The obtained results show a small overall uncertainty of inventory results of greenhouse 

gases in the production of basic metals, minerals and chemicals in 2010. 

This should positively affect the total uncertainty regional or national total emissions 

for the all sectors, and give the authorities the opportunity to take into account this 

factor in the verification of the fulfilment of arrangements on reduction of GHG 

emissions. 

Table 1. Input data for the uncertainty analysis for GHG emissions from cement 

production (Poland, 2010) 

№  Name of plant 

Volumes 

of clinker 

produced, 

103 tons/ 

year 

CO2 

emission 

factor, 

tCO2/t 

CO2 

emission, 

103 tons 

Uncertainty 

range 

(lower), % 

Uncertain

ty range 

(upper), 

% 

1 Cementownia Górażdże 2400 0,512 1228,82 -15,569 15,979 

2 
Cementownia 

Małogoszcz 
1215 0,52 631,78 -15,655 15,981 

3 Cementownia  Kujawy 1215 0,52 631,82 -15,646 15,985 

4 Grupa Ozarów 1144,4 0,529 605,38 -15,663 15,993 

5 Cementownia Rejowiec 1065,6 0,529 563,72 -15,655 15,986 

6 Cementownia Chełm 1137,5 0,529 601,73 -15,650 15,981 

7 Cementownia Rudniki 682,5 0,529 361,02 -15,643 15,982 

8 Dyckerhoff Polska  1050 0,529 555,43 -15,643 15,975 

9 Cementownia Warta 1320 0,529 698,25 -15,659 15,989 

10 Cementownia Odra 350 0,529 185,15 -15,653 15,982 

11 Górka Cement 50 0,529 26,43 -15,654 15,986 

12 
Cementownia Nowa 

Huta 
80 0,529 42,36 -15,652 15,978 

 

The authorities should be interested in the reduction of uncertainty of inventory 

results, and thus in the reduction of uncertainty of its individual components. However, 

the reduction of uncertainty of emission estimates from certain human activities is an 

extremely complicated, lengthy and expensive process, it requires the significant 

investment in the research, measurement and refinement administrative measures. Of 

course, with gradually increasing of our knowledge about the nature of emissions the 
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respective uncertainties of individual components of the inventory process are reduced, 

but to solve this problem in global scale by a short time and with limited funds it is 

impossible. 

Thus the problem of determining of the categories of economic activities, which are 

the most important in terms of sensitivity analysis, is quite interesting. It means that 

overall uncertainty of inventory results is the most sensitive to the changes in 

uncertainty of some input parameters. As an example, Figure 2 illustrates graphically a 

sensitivity of uncertainty of CO2 emission estimates from cement production. 

The results show that the relative uncertainty for carbon dioxide emissions is the most 

dependent on the uncertainty of CO2 emission factor. The uncertainty of total emissions 

little depends on improving knowledge about the activity data in cement industry. For 

example, the reduction of uncertainty ranges of CO2 emission factor into 50% causes 

the decreasing of CO2 emission uncertainty from 15,6% to 7,8%. 

 

 
Figure 2. Dependence of total uncertainty of GHG inventory in cement 

production in Poland from decreasing uncertainty of input data into P percents  
 

6. Conclusions 

The obtained results of the mathematical modeling and the spatial analysis of GHG 

emissions in categories of the industry sector demonstrated the basically low 

uncertainties of emissions, especially emissions caused by production of cement by 

respective companies. It has a positive impact on the uncertainty of total regional or 

national emissions from all categories of economic activity. Thus it gives a possibility 

to authorities to take into account this factor in the verification of the performance of 

agreements on the reduction of GHG emissions. The relative uncertainty of carbon 

dioxide emissions highly depend on the uncertainty of CO2 emission factor. 
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Abstract 

This article discusses bottom-up inventory analysis for greenhouse gas (GHG) emissions from 

fossil fuels extraction and processing in Poland. The approaches to modelling geo-referenced cadastres 

of emissions from fossil fuels extraction and processing are described as well as methods of uncertainty 

reduction using the knowledge on spatial greenhouse gas emissions distribution. The results of GHG 

emissions spatial inventory contain the information on geographical coordinates of emission sources. 

This information is useful for indication the largest emission sources. In this article we present the 

obtained results on spatial GHG inventory from fossil fuels extraction and processing in Poland, based 

on IPCC guidelines taking into account locations of emissions sources, official statistics and digital 

maps of territories investigated. Monte-Carlo method was applied for a detailed estimation of GHG 

emissions and results uncertainty in the main categories of analyzed sector.  

 

Keywords: spatial GHG inventory, extraction and processing of fuels, fugitive greenhouse gas 

emissions, uncertainty 

1. Introduction 

Mankind has faced the most critical global environmental problem – climate 

changes. These changes are very likely due to increase of the concentration of 

anthropogenic greenhouse gases (GHG) in the atmosphere, especially for fossil fuel 

using in the energy sector and emissions in many other categories of anthropogenic 

activity. Spatial inventory allows us to determine the largest sources of emissions, and 

it is useful for planning the environmental protection measures on the regional level. 

Inventory of GHG emissions from fossil fuels extraction and processing in Poland was 

carried out only at the national level without identification of emissions sources location 

[3,11]. In this paper we present the mathematical models of emission processes of GHG 

emissions from fossil fuels extraction and processing at the level of separate emission 

sources.  

The value of emissions we cann`t measure, only evaluate, that is why we talk about 

uncertainty of the results [5]. The assessment of the uncertainty of GHG inventory at 

the country level and level of individual emission sources is an important task. It play 

very big role in the trading of GHG. 

2. Spatial GHG inventory 

The spatial inventory includes determination of location emission sources and 

assessment emissions from these sources. Unlike the traditional inventory at the country 

level, the spatial one takes into account the location and specifics of each source of 

emission, which makes it possible to build more detailed emission inventories [4, 6 ,10].  
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According to the IPCC Guidelines [9] we indicated emissions from extraction and 

processing oil and gas, and extraction and processing of sold fuels. Figure 1 presents 

the classification of emission categoriesin this sector. Here take place two types of 

emissions: the fugitive emissions, and emissions from fuel combustion [7-9].  

  

a)      b) 

Figure 1. The classification of GHG emissions, which arise from extraction and 

processing: a) gas and oil; b) coal [8, 9] 

For cerrying out the GHG spatial inventory from fossil fuels extraction and 

processing industry, all places with extraction of coal, gas, and oil, coke plants  and 

refineries are presented as point emission sources (their sizes are small in comparison 

to the size of the country and we can ignore area of them). The digital maps of point 

sources for emission categories under investogation were built. 

We have developed the special models for disaggregation of official statistical data 

(activity data) from the national level (data at the level of mine or plant are confidential) 

to the level of separate sources. Then, using created digital maps and mathematical 

models we calculated emissions for each elementary object.  

3. Mathematical model 

For GHG spatial inventory we adapted the mathematical description of emission 

process in investigated area. As write before, we estimate separately fugitive GHG 

emissions and emissions from burning fuels. As an example, we present below the 

mathematical model of emissions from coal industry (the models for oil and gas 

industry are similar and depend on available of statistical data at corresponding level). 

According to this mathematical model the methane fugitive emissions we can calculate 

using formula: 

)()()( ,,, n
g

pcoaln
g

mcoaln
g
coal

lll EEE  
,    (1) 

,coaln  Nn ,1 ,      

where )(, n
g
coal

lE   is the amount of annual fugitive emissions from n  coal mine, 

),( 42 CHCOgl  ; )(, n
g

mcoal
lE   is the amount of fugitive emissions from mining process; 

)(, n
g

pcoal
lE   is the fugitive emissions which appear after mining process (keeping, 

transportation and other); coal  is the set of coal mines; N  is the number of coal mines 

from coal  set.  

Emissions from burning fuels at separate coke plant we calculate by formula: 
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is the amount of annual emissions from burning fuels at k  coke plant, 

 422 ,,∈ CHONCOg , f is the type of fuel, which are used at k  coke plant; 
f

cokestatD ,  is 

the national data about using fuels in all coke plants; )( k
f

cokeK 
 
is the disaggregation 

factor, which depends on available of statistical data for k  coke plant; )(,
, k
fg
cokeemK  is 

the emission factor for the f-th type of fuel, and different GHG; coal is the set of coke 

plants; K is the number of coke plants. 

4. Results of spatial inventory 

Coal is the main source of energy in Polish industry. That is why in the energy sector 

dominates the production of solid fuels, mostly coal. Poland ranks 8th place on the 

extraction of coal in the world (176 mln. t. in 2010). All coal mines are disposed in 

Silesian and Lublin voivodeships. There are 9 coke plants in Poland. They are located 

in Silesian (Śląskie) and Lesser Poland (Malopolskie) voivodeships. The largest 

metallurgical plants are in these voiwodeships and coke is a main fuel in this industry. 

Using a geographic information system the geoinformation technology has been 

developed, in which the above mentioned models (1) and (2) are used to estimate the 

emissions of GHG emissions from fossil fuels extraction and processing. 

Statistical data have been collected, and an input geospatial database has been 

formed (separately for each source category) [1]. The database contains information on 

names and locations of emission sources, their production capacities, and the specific 

emission factors. 

 
Figure 2. Fugitive emissions of CH4 from coal mining for separate coal 

mines (th. t, Poland, 2010) 

The results of inventory are obtained on the level of separate emission sources. 

In this paper we present the assessment of emissions in coal industry (see Figure 2 and 
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Figure 3). The similar spatial inventories are performed for oil and gas extraction and 

processing in Poland. 

5. Uncertainty analysis 

In the Polish national report on GHG emissions [11] the total uncertainty of GHG 

emission estimates is only in the energy industries sector (fuel combustion) without 

division by the types of anthropogenic activity. The simplified approach is used, which 

is based on the assumptions that every value is independent and probability distribution 

is symmetric. In general the uncertainty in the energy industries is 3,4% for carbon 

dioxide, 18,4% for methane, and 11,6% for nitrous oxide, uncertainty of fugitive 

emissions from fuels is 48,8% for methane (extraction of coal), and 5,4% for methane 

(extraction of gas and oil) [11]. 

 
Figure 3. Result of GHG emissions spatial inventory from burning coal, oil, 

natural gas and biomass by type of fuel for separate coke plants 

(th. t.,CO2-equivalent, Poland, 2010) 

Uncertainty of emission factors for fuel combustion is low for carbon dioxide (or 

rather is considered a small) compared with other greenhouse gases, as the emission of 

this gas is mainly dependent on the carbon content in the fuel, which is very easy to 

identify. The uncertainty of CO2 emissions is symmetric. The high level of uncertainty 

for methane and nitrous oxide can be explained by a lack of studies to establish national 

emission factors that take into account the specifics of individual processes and the lack 

of understanding of the formation of these emissions reductions [2,6].  

Based on the results of modelling GHG emissions from burning coal in coke plants, 

the uncertainty is 3,76% for total emissions in СО2 equivalent (symmetric normal 

distribution for CO2 emission coefficient and lognormal for CH4 and N2O  emission 

coefficient are used). The results of modelling of GHG emissions from burning coal 

and their uncertainties for separate coke plants are presented in Table 1. We also 

estimate uncertainties for separate coal mines. Table 2 presents results of modelling 

fugitive GHG emissions for ten the biggest coal mines (on data of 2010).  
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Table 1 The results of modelling GHG emissions and their uncertainties for separate 

coke plants 

Name of coke 

plant 

CO2 

emissions,t; 

uncertainty, % 

CH4  

emissions, t; 

uncertainty, % 

N2O  

emissions, t; 

uncertainty, % 

Total  

emissions, t; 

uncertainty, % 

Coke plant 

Przyjaźń  

464,408.5 2,756.6 603.8 466,722.0 

±3.687 -37.335..+49.308 -45.438..+68.080 -3.689..+3.767 

Coke plant 

Jadwiga 

50,018.4 968.5 65.0 50,154.675 

±3.689 -37.334..+49.308 -45.438..+68.080 -3.689..+3.767 

Coke plant 

Dębieńsko 

53,585.6 1,037.7 69.8 54,731.6 

±3,686 -37.335..+49.308 -45.438..+68.080 -3.687..+3.767 

Coke plant 

Radlin 

133,964.0 2,594.2 174.2 136,328.9 

±3.687 -37.335..+49.309 -45.439..+68.080 -3.689..+3.767 

Coke plant 

Przyjaźń 

133,964.0 2,594.2 174.2 136,328.9 

±3.687 -37.335..+49.309 -45.438..+68.081 -3.687..+3.768 

Coke plant 

Częstochowa 

Nowa  

232,204.2 4,496.6 301.9 236,936.8 

±3.687 -37.335..+49.308 -45.438..+68.080 -3.687..+3.767 

Coke plant 

Makoszowy  

206,434.0 4,150.7 268.4 210,996.3 

±3.689 -37.335..+49.308 -45.439..+68.080 -3.689..+3.767 

S.A. Oddział w 

Zdzieszowicach 

722,518.0 1,4527.5 939.5 724,486.3 

±3.689 -37.335..+49.308 -45.439..+68.080 -3.689..+3.768 

Ironworks 

im. Sendzimira 

137,623.0 2,767.1 178.9 139,997.9 

±3.689 -37.335..+49.308 -45.438..+68.080 -3.689..+3.767 

Table 2 The results of modelling GHG emissions and their uncertainties for the main 

coal mines  

Name of coal mine 

Volumes of coal 

extraction; 

103 tons/year 

CH4 

emission 

factor; 

tCO2/t 

CH4 

fugitive 

emissions, 

Gg 

Uncertainty, 

% 

KWK Murcki Staszic 3.875 4.90 18.977 48.49 

KWK Mysłowice-Wesoła 3.229 4.91 19.029 48.49 

KWK Wujek 4.982 4.91 24.466 48.49 

Oddział KWK Jankowice 2.759 4.91 13.547 48.49 

Oddział KWK Knurów-

Szczygłowice 
3.792 4.91 18.622 48.49 

Oddział KWK Sośnica-

Makoszowy  
3.285 4.91 16.13 48.49 

Oddział KWK Ziemowit 4.097 4.91 19.912 48.49 

Oddział KWK Piast 4.613 4.87 22.423 48.49 

KWK Wieczorek 3.405 4.9 16.548 48.49 

KWK Bogdanka 5.351 4.91 26.011 48.49 

The total uncertainty of emissions depends on uncertainties of all input parameters 

of emission model, such as uncertainty of statistical data, uncertainty of  CO2, CH4 and 

N2O emission coefficients. Figure 4 graphically shows results of sensitivity analysis of 
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the total uncertainty of emissions estimates to improvement of uncertainty of input 

parameters on P percent. Results demonstrate that relative uncertainty of total emissions 

in CO2-eqv. largely depends on uncertainty of statistical data and uncertainty of  CO2 

emission coefficient. Uncertainty of total emissions stays almost unchangeable with the 

change of uncertainty of N2O and CH4 emission coefficients. For example, the 

reduction of uncertainty ranges of CO2 emission factor into 50% causes the decreasing 

of total emission uncertainty from 3.76% to 2.63%. 

 

Figure 4. Dependence of total uncertainty of GHG inventory from burning coal in the 

coke plants of Poland (U) from decreasing uncertainty of input data into P 

percent (Monte Carlo simulations). 

6. Conclusions  

The mathematical models of GHG emissions resulting from fossil fuels extraction 

and processing were adapted to spatial inventory. The specialized geoinformation 

technology for spatial assessment of GHG emissions, which is based on elaborated 

mathematical models and uses the created geospatial database of input data was 

developed. The fugitive GHG emissions, that arise from extraction coal, gas and oil, as 

well as emissions from burning coal, oil, natural gas and biomass in the coke plants and 

refineries, and the fugitive emissions that arise during coking coal and processing oil, 

were examined. 

The digital maps of the locations of extraction coal, gas and oil, the locations of coke 

plants and refineries in Poland were created, the layers with geospatial data about the 

structure of GHG emissions in the fossil fuels extraction and processing industry in 

Poland, taking into account specific emission factors for these objects, were formed. 

Based on performed numerical experiments the geospatial database and digital map of 

GHG emissions in Poland were obtained. The results of the inventory of greenhouse 

gas emissions were visualized by digital maps.  

Spatial inventory of GHG emissions is useful to the authorities for making informed 

decisions to reduce GHG emissions. Estimation of uncertainty of GHG inventories can 

be helpful to comply the obligations on emission reduction. The sensitivity analysis 

demonstrates, that relative uncertainty of total emissions in CO2-equivalent largely 

depends on uncertainty of statistical data and uncertainty of  CO2 emission coefficient. 

At the same time the uncertainty of total emissions stays almost unchangeable with the 

change of uncertainty of N2O and CH4 emission coefficients. 
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Abstract 

Coal is the main source of GHG emission in China. To systematic and comprehensive estimate the GHG 

emission of coal lifecycle, according to the intergovernmental panel on climate change (IPCC) method, the 

paper using Monte Carlo simulation, calculates carbon emission in each stage of coal lifecycle, and quantifies 

the uncertainties in results. The results show that GHG emission in coal mining, transportation and consuming 

is 8526.67 million tons, 3328.35 million tons and 1356723.59 million tons respectively in 2011, and the whole 

GHG emission in coal lifecycle is 1367186.72 million tons. The uncertainty analysis shows that coal mining 

contains the greatest uncertainties, the uncertainty of GHG emission from the coal lifecycle in 2011 is (-5.09%, 

4.85%). 

Keywords: Carbon emission inventory, Monte Carlo, Uncertainty  

1. Introduction 

Coal has been the dominant source of energy used to fuel the rapid economic 

development of China in the past two decades. In 2011, China relies on coal for 

approximately 70% of its energy. However, during the production and consumption 

process of coal, it has also producd significant impact on its physical environment, of 

which, the GHG emissions are well known.  

Currently many researches have done on GHG emission inventories, but most of these 

researches have done on city level, and seldom researches have done on GHG emission 

according to different industries. Shi Huading etc., put forward the basic principles of 

GHG inventory methods of power sector, and established GHG inventory methods 

framework on power sector according to national conditions in China. Zheng Shuang 

proposed methodology about coalbed methane GHG emissions inventories. To our best 

knowledge, the studies on on GHG emission inventory of coal lifecycle is is rarely 

found in the  literature.  

2. Research Method 

To calculate the emission inventory, the method is comes from “2006 IPCC 

Guidelines for National Greenhouse Gas Inventories” which is a relatively complete 

theory of GHG emissions and emission estimation methods and processes. It has been 

adopted by many countries now and “IPCC National Greenhouse Gas Inventory Good 

Practice and Uncertainty Management”. As to perform quantitative uncertainty 

analysis, the paper adopted the Monte Carlo simulation. 
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3. Greenhouse gas inventories of China’s coal industry 

The coal lifecycle consists of mining, washing, transportation, conversion and 

utilization. The GHG emission from each stage will be introduced in this section. 

3.1 GHG emission from coal mining 

Methane will dissipation during the geological process of coal formation, until some 

residual methane in coal is released from coal mining. In 2011, the total production of 

the coal in China is 3.888 billon tons, of which, 2.545 billion tons was produced through 

underground mining and 1.343 billion tons was through open pit. According to the 

provision in ”Good Practice”, there is 5% error in coal production register production, 

therefor we set the mining production through underground and open pit as triangular 

distribution. For simplicity, we set the production increase 5% over the register 

production as the maximum production, and the production decrease 5% as the 

minimum production, and the register production find in publication is the most 

possible values. The low, average and high CH4 emission factors for underground 

mining are 16.75kg/t,12.06kg/t and 6.7 kg/t respectively using global average value. 

The low, average and high CH4 emission factors for surface mining are 2.0kg/t,1.2kg/t 

and 0.3kg/t respectively using global average value. Related parameters are shown in 

Table 1. 

Equation for estimating CH4 emissions from coal mining is as follows: 

CH4 emissions =∑ Ai × EF𝑖𝑖 ∗ GWP                        (1) 

Ai is the activity level of mining way i, EFi is emission factor of transportation mode i. 

GWP is global warning potential, and the GWP of CO2 is 1，the GWP of CH4 is 21, 

the GWP of N2O is 275. Using Crystal Ball software, through 4000 times Monte Carlo 

simulation calculation, the total CH4 emission in coal mining is 85.2667 million tons 

CO2 equivalent, 95% confidence interval is (4783.05, 12502.50). 

Table 1 Coal mining methane emissions related parameters 

 
Underground 

mining 
Surface mining 

Activity level probable value (10 thousand tons) 254502.74 134321.23 

Activity level maximum value (10 thousand tons) 267227.88 141037.29 

Activity level minimum value (10 thousand tons) 241777.60 127605.17 

Emission factor probably value (kg/t) 12.06 8.04 

Emission factor maximum value (kg/t) 16.75 13.40 

Emission factor minimum value (kg/t) 6.70 2.01 

3.2 GHG emission from coal transportation 

The coal transportation in China mainly relies on railway, highway and waterway. 

In China’s coal railway transportation, there are two kinds of locomotive, diesel 

locomotive and electric locomotive, which consumption oil and electricity respectively. 

Electricity is secondary energy, so we only take diesel locomotive into consideration, 

which use diesel as the main fuel. Coal transportation through highway usually uses 

medium-duty truck or heavy trucks which can load more than 20 tons, and most of them 

use diesel. Waterway transportation also uses ships mainly driven by diesel locomotive, 

from barge to large-scale ocean cargo ship. 
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In China, 2270.26 million tons coal was transported by railway in 2011. Its average 

haul distance was 645 km. Thus the volume of the coal circular flow was 1464.33177 

billion tons kilometer, and 53.6% was transported by diesel locomotive and 46.4% by 

electric locomotive. The circular flow volume of diesel locomotive was 784.874 billion 

tons kilometer. In the railway transportation, the diesel locomotive consume 26.8 kg 

diesel each ten thousand tons kilometer, and railway transportation totally consumed 

2103463.10 tons diesel. In China 0.35 billion tons coal was transported by highway, 

2011. Its average haul distance was 250 km. Thus the volume of the coal circular flow 

through highway transportation was 87.5 billion tons kilometer. The diesel consumed 

by highway transportation is 6 kg each hundred tons kilometer, and highway 

transportation totally consumed 5250000 tons diesel. In China 0.65 billion tons coal 

was transported by waterway, 2011. Its average haul distance was 1768.75 km. Thus 

the volume of the coal circular flow through waterway transportation was 1149.688 
billion tons kilometer. The diesel consumed by waterway transportation is 21.5 kg each 

ten thousand tons kilometer, and waterway transportation totally consumed 2471828.13 

tons diesel. All kinds of GHG emission factor using the default values in IPCC 2006. 

Coal transportation parameters of activity level and emission factor are shown in Table 

2. 

Table 2 Coal transportation parameters of activity level and emission factor 

Item 
Railway 

transportation 

Highway 

transportation 

Waterway 

transportation 

Diesel activity level probable value (t) 2103463.09 5250000.00 2471828.13 

Diesel activity level minimum value (t) 1998289.94 4987500.00 2348236.72 

Diesel activity level maximum value (t) 2208636.24 5512500.00 2595419.53 

CO2 emission factor default value (kg/t) 3211.92 3211.92 3211.92 

CO2 emission factor minimum value (kg/t) 3146.90 3146.90 3146.90 

CO2 emission factor maximum value (kg/t) 3242.26 3242.26 3242.26 

CH4 emission factor default value (kg/t) 0.18 0.17 0.30 

CH4 emission factor minimum value (kg/t) 0.07 0.07 0.15 

CH4 emission factor maximum value (kg/t) 0.45 0.41 0.46 

NO emission factor default value (kg/t) 1.24 0.17 0.09 

NO emission factor minimum value (kg/t) 0.62 0.06 0.05 

NO emission factor maximum value (kg/t) 3.72 0.52 0.21 

Table 3 GHG emission from coal transport (10 thousand CO2 equivalent) 

 Calculated value Minimum value Maximum value 

Total CO2 

emission 
3142.88 2989.98 3300.89 

Total CH4 

emission 
5.28 2.55 8.09 

Total NO 

emission 
168.25 69.17 297.38 

Total emission 3328.35 3096.73 3574.06 

According to IPCC (2007) recommendation, the equation for estimating CH4 emissions 

from coal transportation is as follows: 

E=∑ ∑ Ai ji *EFij*GWPij                                                                      (2) 
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In the equation，E is GHG emission of coal，Ai is activity level of fuel i (t); EFij is 

emission factor of GHG j from fuel i (t/t fuel), GWPij is global warning potential of 

GHG j from fuel i. Using Crystal Ball software, the total GHG emission in coal 

transportation is calculated through 4000 times Monte Carlo simulation. The results are 

shown in Table 3. 

3.3 Carbon emission inventory from the coal consumption 

In the carbon emission inventory, Coal combustion is the main source of greenhouse 

gases .According to the availability of emission factors, we adopted the reference 

method recommended in the "Guide" and the latest emission factors announced by the 

National Bureau of Statistics. Set the data provided by the Statistical Yearbook as the 

most probable value in the triangular distribution. Set the date increase 5% over the 

probable value as maximum and -5% as minimum. The coal activity data is shown in 

Table 4. 

Table 4 Coal consumption data in triangle distribution of 2011(10,000 tons) 

Source category Probable value Minimum Maximum 

Raw coal 346799.81 329459.82 364139.80 

Washed coal 49101.65 46646.57 51556.73 

Briquette 1019.20 968.24 1070.16 

Coke 38163.29 36255.13 40071.45 

Other washed coal 11962.94 11364.79 12561.09 

According to the recommendation of IPCC (2006), we use the emission factors in Table 

5 provided by Chinese Academy of Engineering as the basis of calculation. 

Table 5 Coal emission factors 

Source category Raw coal Washed coal 
Other washed 

coal 
Briquette Coke 

CO2 emission 

factor defaults

（kg CO2/t） 

2.009 2.531 1.004 1.689 3.044 

minimum 1.9086 2.4045 0.9538 1.6046 2.8918 

maximum 2.10945 2.65755 1.0542 1.77345 3.1962 

CH4 emission 

factor defaults

（kg CH4/t） 

20.908 26.344 10.454 17.584 28.435 

minimum 19.86 25.03 9.93 16.7 27.01 

maximum 21.953 27.661 10.977 18.463 29.857 

N2O emission 

factor defaults

（kgN2O/t） 

31.362 39.516 15.681 26.376 42.653 

minimum 29.794 37.54 14.897 25.057 40.52 

maximum 32.93 41.492 16.465 27.695 44.786 

The formula of total greenhouse gas emissions from coal transportation is as follows: 

E=∑ ∑ 𝐴𝑖 𝑗𝑖 *𝐸𝐹ij*𝐺𝑊𝑃ij
                                                                 (3) 

In the formula, E is greenhouse gases emissions of coal, 𝐴𝑖 is the activity level of i-th 

coal (t)；𝐸𝐹ij is the I-th coal’s emission factor of i-th greenhouse gas(t/t); 𝐺𝑊𝑃ij is the 

I-th coal’s global warming potential of i-th greenhouse gas(t/t). 
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Table 6 The greenhouse gas emissions from the coal consumption（10000t𝐶𝑂2） 

 Calculation Minimum Maximum 

CO2 emissions 951467.08 884349.76 1023140.33 

CH4 emissions 205.24 190.65 220.12 

N2O emissions 403022.78 375227.33 434125.40 

Total emissions 1356723.59 1266139.84 1442211.43 

Simulating 4000 times by using Crystal Ball software, we could get the greenhouse 

gases emissions from the coal consumption. The results are shown in Table 6. 

3.4 Total carbon emissions of the coal industry  

Total GHG emission of coal lifecycle is equivalent with the sum emissions of coal 

mining, transportation and consumption as shown in Figure 1. 

 

Figure. 1 Analog frequency view of total greenhouse gases emissions 

It can be seen from Figure 2, total emissions of greenhouse gases from the coal 

industry in China is 13,671,867,200 tons in the year 2011, the 95% confidence interval 

is (1,297,537.98, 1,433,468.58). 

4. Uncertainty analysis 

Uncertainty estimate is an essential element of a complete emissions inventory. In 

the compile process, there are many uncertain factors in the estimation factors and 

activity levels, it can help to determine the direction of future efforts and guide 

decisions on methodological choice by uncertainty analysis. The “National Greenhouse 

Gas Inventories Good Practice Guidance and Uncertainty Management” formulated 

by the IPCC had united the methods of uncertainty quantification for each country. This 

section will analyze the uncertainty of China's coal emissions inventory in 2011. 
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Figure 2 Simulation statistics of total greenhouse gases emissions 

In this paper, we analyze the carbon emissions uncertainty for each source by the 

method of Bootstrap. When sampling from each group of model, sample distribution 

representing probability distribution model of the input of source category. We pick out 

4000 random sample every time and calculate the average value. Therefore, by 

repeating 4000 times, we obtain 4000 average value on behalf of the input of model. 

The averages describe the distribution of uncertainty of the model input (emission 

factors and activity levels). Table 7 is the average of model input and the uncertainty of 

95% confidence interval. 

Table 7 Uncertainty Analysis of carbon emissions 

Stages Type 

Averages（10

,000 

t CO𝟐） 

2.5% 

Quantile（10,

000 

t𝐂𝐎𝟐） 

97.5% 

Quantile（10,0

00 

tCO𝟐） 

Uncertainty（%） 

Coal 

mining 

   CH4 8526.67 4783.05 12502.50 （-43.90，46.63） 

Total 8526.67 4783.05 12502.50 （-43.90，46.63） 

Coal 

transport-

ation 

 CO2 3142.88 2989.98 3300.88 （-4.87,5.03） 

 CH4 5.28 2.55 8.10 （-51.72,53.18） 

 N2O 168.25 69.17 297.38 （-58.89,76.75） 

Total 3328.35 3096.73 3574.06 （-6.96,7.38） 

Coal 

consum-

ption 

CO2 951467.08 899598.69 1007308.23 （-5.45,5.87） 

CH4 205.24 193.92 216.80 （-5.52,5.63） 

N2O 403022.78 381611.06 427324.76 （-5.31,6.03） 

Total 1356723.59 1286040.00 1422731.59 （-5.21,4.87） 

Total emissions 1367186.72 1297537.98 1433468.58 （-5.09,4.85) 

From the Table 7, we can see that the greenhouse gases inventory of coal mining has 

large uncertainty, Its’ absolute value is greater than 40%,the main reason is the emission 

factor entered and activity emissions have large uncertainty, which spread to the total 

emissions of mining areas, it leads to the uncertainty of greenhouse emission is too 

large. 



4th International Workshop on Uncertainty in Atmospheric Emissions 

----------------------------------------------------------------------------------------------------------------------------  

77 

 

The uncertainty of CH4 and N2O from coal transportation is large, however the 

emissions uncertainty of greenhouse gases from coal transportation is low, it mainly 

due to the emission of  CH4 and N2O is small, which has less impact on total uncertainty. 

From the calculation, the total uncertainty of GHG emission inventory form coal 

lifecycle in China is (-5.09%, 4.85%) in 2011, which indicates the inventory can reflect 

GHG emissions from coal lifecycle accurately in 2011. 

5. Conclusions 

In the paper, we calculate the GHG emission inventory from coal lifecycle which 

includes coal mining, transportation and consumption in 2011 by using technique of 

Monte Carlo. The main conclusions are as follows: 

1) The total GHG emission from the coal lifecycle in 2011is 1367186.72 ten thousand 

tons CO2, of which, coal mining, transportation and consumption is 8526.67, 3328.35 

and 1356723.59 ten thousand tons CO2 respectively. 

2) The range of GHG emission uncertainty from coal lifecycle (-5.09%, 4.85%) in 2011. 

The coal mining, transportation and consumption is (-43.90%,46.63%), 

(-6.96%,7.38%) and (-5.21%,4.87%) respectively. 
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Abstract 

Our study concerns retrospective learning, the characteristic feature of which is that 

prognostic uncertainty increases the more the further we look into the future. RL seeks to 

establish a metric for the outreach of prognostic scenarios. The purpose behind RL is to 

provide an easy-to-apply indicator, which informs non-experts about the time in the future 

at which a prognostic scenario ceases to be in accordance (for whatever reasons) with the 

system’s past. Ideally, this indicator should be derived concomitantly with building a 

prognostic model. RL concerns the limitations of predictions and prognostic scenarios. 

Keywords: Greenhouse gas emissions, emission inventories, emission scenarios, diagnostic 

uncertainty, prognostic uncertainty, learning 

1. Introduction 

Evaluating the performance of climate forecasts is becoming increasingly relevant 

[1]. At its heart this evaluation aims at judging the credibility of climate projections and 

quantifying the uncertainty in these projections [2–3]. In our study, which builds on 

(what we term) retrospective learning [RL], we take the opposite view.  

RL seeks to establish a metric for the outreach of prognostic scenarios. The 

purpose behind RL is to provide an easy-to-apply indicator, which informs non-experts 

about the time in the future at which a prognostic scenario ceases to be in accordance 

(for whatever reasons) with the system’s past. Ideally, this indicator should be derived 

concomitantly with building a prognostic model. In brief, RL concerns the limitations 

of predictions and prognostic scenarios. 

 

Figure 1. Historical and projected global fossil-fuel (CO2) emissions, including 

emissions from cement production [4]. 
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Figure 1 is a classical illustration of how quickly and strongly prognostic 

scenarios deviate from historical records. The figure shows historical and projected 

global CO2 emissions resulting from fossil-fuel burning and cement production. From 

a purely intuitive perspective, only the highest emission scenarios appear to be in 

accordance with the historical record (until when?), but not the lower ones. 

2. Motivation 

From a theoretical point of view, we argue that the mathematical tools and 

techniques needed to quantify the outreach of prognostic scenarios based on learning 

from the past (that is, to apply RL) are available. However, the necessary 

epistemological insights to apply these tools and techniques properly, including outside 

their traditional context, are missing. The first statement (tools and techniques are 

available) is bold; while the second (knowledge to apply tools and techniques outside 

their traditional context is missing) is not new. Developing the first statement is subject 

to this paper. The second statement is at the core of empirical inference science, which 

is a maturing paradigm. Empirical inference science aims at complementing classical 

statistics in Estimating dependencies on the basis of empirical data ... a central problem 

in applied analysis [5: vii]. 

From a practical point of view, we argue that deriving the aforementioned 

indicator exhibits most interesting windfall profits: 1) We anticipate that generating the 

indicator while building a model will lead us onto new paths of constructing models 

and conducting systems analysis (i.e., towards a new standard of ‘good modeling’). 2) 

Our insights in RL will allow the chance of complying with—or the risk of exceeding—

agreed global warming targets to be corrected. We conjecture that the risk of exceeding 

2050 global warming targets ranging between 2 to 4 ºC and greater is underestimated. 

We will return to these two issues at the end of our paper. 

3. Terminology 

We explain the difference between diagnostic and prognostic uncertainty, the two 

terms at the core of our paper, in Section 5.1 below. Their definitions will provide the 

basis for understanding the difference between learning in a diagnostic and prognostic 

context and the other terms (e.g., ‘prediction’ and ‘forecast’) that we use. 

4. Status quo 

Since their inception, climate treaty negotiations have set out to stabilize Earth’s 

climate by implementing mechanisms that reduce global greenhouse gas [GHG] 

emissions and lead to sustainable management of the atmosphere at a ‘safe’ steady-state 

level (assumed to hold for an increase in global average temperature of below  

2 °C above preindustrial levels). In recent years, international climate policy has taken 

a step beyond achieving GHG concentration-related objectives by increasingly focusing 

on limiting temperature rise [6]. The idea of limiting cumulative global GHG emissions 

by adhering to a long-term global warming target was first discussed broadly and 

publicly by policymakers at the 2009 United Nations climate change conference in 

Copenhagen. It appears to be a promising and robust methodology [7–12] (cf. also Box 

1). To comply with it, the emission reductions required from the fossil-fuel and land 

use/land-use change sector are daunting: 50%–85% below the 1990 global annual 
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emissions, with even greater reductions for industrialized countries [13–15]. The 

underlying assumptions are equally daunting: terrestrial or oceanic sinks continuing to 

offset fossil-fuel and LUC emissions before achieving an emissions balance that goes 

beyond CO2-C (i.e., CO2-equivalents also including CH4, N2O, etc.), with no systemic 

surprises occurring during the transition process. In particular, the imperative followed 

for net emissions from LUC activities is that these will be reduced linearly to zero until 

2050. That is, it is assumed that deforestation and other LU mismanagement will cease 

and that net emissions balance. 

Box 1. Relationship between GHG emissions and global surface temperature [16: 

Fig. 3.2; 17]. 

 

In their study [15] Jonas et al. discuss diagnostic (retrospective: looking back in 

time) and prognostic (prospective: looking forward in time) uncertainty in an 

emissions-temperature-uncertainty [ETU] framework that allows any country to 

understand its national and near-term mitigation and adaptation efforts in a globally 

consistent and long-term context (worldwide coverage; warming range of 2–4 °C). To 

achieve this understanding, national linear emission target paths were established (from 

1990 to 2050 or, alternatively, from 2000 to 2050) that are consistently embedded 

globally. In this systems context, cumulative emissions until 2050 are constrained and 

globally binding but are uncertain (i.e., they can be estimated only imprecisely); and 

whether or not compliance with an agreed temperature target in 2050 and beyond will 

be achieved is also uncertain. In a nutshell, the ETU framework can be used to monitor 
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a country’s performance—past as well as prospective achievements—in complying 

with a future warming target in a quantified uncertainty-risk context (cf. Box 2). The 

authors’ objective, in particular, was to understand the relevance of diagnostic and 

prognostic uncertainty in this global emissions-temperature setting and across temporal 

scales. Although the mode of bridging uncertainty across temporal scales still relies on 

discrete points in time (‘today’ and 2050) and is not yet continuous, the authors’ study 

provides a valuable first step toward that objective. 

Box 2. Output features of the ETU framework [15; adapted]. 

 

5. Diagnostic versus prognostic uncertainty and learning in a diagnostic 

versus prognostic context 

5.1 What is the difference between diagnostic and prognostic uncertainty and 

why do we consider them independent? 

Jonas et al. [15] explain the difference between diagnostic and prognostic 

uncertainty in a temporal (‘today’-versus-future) GHG emissions context: 

Diagnostic uncertainty, our ability to estimate current emissions, stays with us 

also in the future. Assuming that compliance with an agreed emissions target is met in 

a target year allows prognostic uncertainty to be eliminated entirely. How this target 

was reached is irrelevant; only our real diagnostic capabilities of estimating emissions 

in the target year matter. This is how experts proceeded, e.g., when they evaluated ex 

ante the impact of uncertainty in the case of compliance with the Kyoto Protocol … in 

2008–2012, the Protocol’s commitment period ... 

Emissions accounting in a target year can involve constant, increased or 

decreased uncertainty compared with the start (reference) year, depending on whether 

or not our knowledge of emission-generating activities and emission factors becomes 
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more precise. The typical approach to date has been to assume that, in relative terms, 

our knowledge of uncertainty in the target year will be the same as it was in the start 

year. 

However, uncertainty under a prognostic scenario always increases with time 

[conservative systems view]. The further we look into the future, the greater the 

uncertainty. This important difference suggests that diagnostic and prognostic 

uncertainty are independent. This differs from how prognostic modelers usually argue. 

A prevalent approach is to realize a number of scenarios and grasp prognostic 

uncertainty by means of the spread in these scenarios over time—which increases with 

increasing uncertainty in the starting conditions built into their models. However, this 

approach nullifies diagnostic uncertainty once a target (future) is reached. 

The notion of a conservative systems view is central to RL, meaning that a system 

cannot exhibit surprises in the future that it has not experienced during its ‘one-reality’ 

past. 

This difference between diagnostic and prognostic uncertainty is not only 

theoretical. It becomes relevant in the next section. 

5.2 What do we understand by learning in a diagnostic and prognostic context? 

Learning under diagnostic conditions requires the ‘measuring’ of differences or 

deviations. Here we follow Marland et al. [18], who discuss this issue in the context of 

emissions accounting and uncertainty: 

Estimates of uncertainty have traditionally been expert judgments based on the 

data input to the calculations. But for CO2 emissions from fossil fuels, there are actually 

at least four approaches that one can take to gain some insight into the full uncertainty 

of emissions estimates: comparison of estimates made by independent methods, 

comparison of estimates from multiple sources, evolution over time of estimates from a 

single source, and, soon (we hope), modeling against remotely sensed data. 

With respect to the evolution of estimates over time (3rd approach), the authors 

state: 

Many of the countries and organizations that make estimates of CO2 emissions 

provide annual updates in which they add another year of data to the time series and 

revise the estimates for earlier years. Revisions may reflect revised or more complete 

energy data and more complete and detailed understanding of the emissions processes 

and emissions coefficients. In short, we expect revisions to reflect learning and a 

convergence toward more complete and accurate estimates. 

Retrospective learning, in turn, is about the limitations of looking (projecting) 

into the future and may be best explained in contrast to retrospective forecasting. 

Retrospective forecasting strives for the most appropriate (best) forecast by minimizing 

the difference between forecast (prediction) and actual outcome, while the 

characteristics of the data record—here quantified by its dynamics and diagnostic 

uncertainty (random error)—are assumed not to change when inter- or extrapolating 

the historical data record. By way of contrast, retrospective learning seeks to capture 

the characteristic feature of prognostic uncertainty, namely, that prognostic 

uncertainty increases the more the further we look into the future,1 while it is 

                                                           
1 As a matter of fact, the confidence band of an (e.g.) linear regression also increases, but for mathematical rather 

than physical reasons, and it does so backward and forward in time. 
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assumed in the context of this proposal that the data record’s memory is contained (as 

above) in its dynamics, not in its uncertainty. 

Figure 2 attempts to visualize the fundamental difference between prediction and 

an advanced mode of learning from the past, the latter allowing the increase in 

prognostic uncertainty with time to be grasped. The mode of RL that we intend to 

explore builds on representation of the available data by way of two components: i) a 

Taylor (or equivalent) polynomial which captures the signal’s predominant (lower-

order) dynamics (learning phase 1); and ii) a linearly increasing ‘uncertainty (learning) 

wedge’,2 which comprises the signal’s higher-order dynamics and the uncertainty 

underlying the signal—or only the data record’s higher-order dynamics if the data 

record is accurate and precise (learning phase 2). We expect this two-component split 

into lower-order dynamics and uncertainty wedge to be systems-dependent and 

unsharp, the latter resulting from uncertainty. In a nutshell, Figure 2 indicates that we 

seek to balance three things: the ‘right’ order of the dynamics and both the ‘right’ 

extension and the ‘right’ opening of the uncertainty wedge. It is this balance that must 

hold during the testing phase. The historical data held back for this phase have not been 

used before, that is, during learning phases 1 and 2, which is why we refer to this part 

of the data record as “historical future”. 

 

Figure 2. Illustrating the different steps of RL with the help of a simple (periodic, 

increasing, and periodically increasing) function. 

6. Methodology—just one approach 

Assume the following situation, namely, that we have more than one historical 

data record available, each accurate and precise (which can be easily relaxed to 

‘accurate and imprecise’), and that we have learned from the past (i.e., from an RL 

exercise): 

 that each historical data record exhibits (but not necessarily) a linear dynamics; 

                                                           
2 “Linear” meaning linear relative to the dynamics, which is why we also speak of linear RL (sufficient in the 

context of this study). 
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 that each data record’s uncertainty (learning) wedge unfolds linearly into the 

future (up to what time in the future, however, is  still unknown); and 

 that our historical data records exhibit linear interdependencies. That is, in the 

case of an emissions-concentration-temperature [E-C-T] system, we mean linear 

interdependencies of a serial sort (fully sufficient in the context of this study): 

 T T C ,  C C E , and  E E t ; with T denoting global surface temperature, 

C atmospheric CO2 concentration, E CO2 emissions into the atmosphere, and t 

time. As a matter of fact, as individual time series these are exponential (posing 

no difficulties to treating their interdependencies in a similar way). 

To facilitate understanding the philosophy behind the methodology, we consider 

two cases: 

6.1 Serial interdependence E C T   

Starting from  E E t , i.e. 

EtE m t   
Pg C

E
y

 ;  Et 2

Pg C
m

y
 ;  t y  

with m denoting the signal’s (here) linear dynamics and Et indicating that we are in the 

E-t plane; and 

u Et,u EtE f m t  Et,uf 1     

l Et,l EtE f m t  Et,lf 1     

with the constants Et,uf  and Et,lf  indicating the upper [u] and lower [l] borders of the 

uncertainty wedge. The difference between upper and lower border at any time is given 

by 
Et EtE f m t  . 

On the other hand, the difference between upper and lower border can be 

perceived as error in E, which suggests that use is made of the law of error propagation: 

2 2

2 2 2
E m tEt

Et

E E

m t

   
       

   
 . 

Assuming time to be known exactly (i.e., t 0  ): 

E mEt
t    ;  E

Pg C

y
  ; m 2Et

Pg C

y
   

 

that is, the error in E is given by the error in the slope
Etm , the signal’s dynamics. 

Alternatively: 

mEtE

EtE m


  . 

Requesting E
2:E  , one finds via comparison 
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Et Et mEt
f m t 2 t      or   

mEtE
Et

Et

E
f 2 2

E E m


     . 

In a nutshell, an accurate-precise system has been merged with classical statistics, 

meaning (here) that we grasp the historical future of our data record with the help of a 

straight line, the slope of which is uncertain. Another point warranting attention is that 

the law of error propagation is approximate and can only be applied under conditions 

that guarantee the validity of partial derivatives. In particular, if  Et Etf f t  , these 

conditions could be violated quickly with increasing t. 

One can proceed similarly for  C C t , i.e., 

CtC m t    ppmvC  ;  
y

ppmv
m

Ct
  

... (here not repeated). Alternatively, instead of analyzing  E E t  and  C C t  

individually, one can also look at the linearly interdependent case  C C E , i.e., 

CE CE Et CtC m E m m t m t    ; 
Ct CE Etm m m ;  CE

y
m ppmv

Pg C
  

or, to generalize further, at the linearly interdependent case     T T C T C E  , i.e., 

TC TC CE

TC CE Et Tt

T m C m m E

m m m t m t

 

 
 . Tt TC CE Etm m m m ;  

o

TC

C
m

ppmv
 ;  

o

Tt

C
m

y
  

 

Figure 3. Graphical illustration of learning in the C-E space: independent versus 

linearly interdependent case. In the latter case, learning does not happen in 

a space which is spanned by a 2-dimensional square  E x C  , but along 

a 1-dimensional space (red curve) belonging to a curved uncertainty wedge. 

The above cases can be conveniently summarized: 

Et Et EtE f m t f E     

2 2
Ct Ct CT CE EtC f m t f C f f C         
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2 2 2
Tt Tt Tt TC CE EtT f m t f T f f f T         

... and so on. The interpretation is as follows: From analyzing (e.g.) the second equation, 

which allows 2 2
Ct CE Etf f f     to be extracted, it becomes obvious that the learning 

on the left side  Ctf  is determined by the learning on the right side  2 2
CE Etf f  . 

The resulting equation describes a second-order cone: 

2 2 2
CE Et Ctf f f 0          

2 2 2

2 2 2

x y z
0

a b c
    (cf. also Fig. 3). 

The basic idea behind the above procedure is to grasp the learning ( f -terms) 

with the help of the error-propagation approach, the mathematics of which is well-

established and easy to apply (even concomitantly with building a prognostic model). 

In the case of linearly interdependent variables (here  C C E ), the learning does not 

happen in a space which is spanned by a (here) 2-dimensional square  E x C  , but 

along a 1-dimensional curve belonging to a curved uncertainty wedge. It appears that 

this reduction to the 1-dimensional space is also preserved in the case of more than two 

linearly interdependent variables. But it would be premature to praise this as a major 

step forward in reducing uncertainty. We still do not have any knowledge on the 

outreach of the curved uncertainty wedge (which needs to be determined as indicated 

in Fig. 2). 

6.2 Serial-parallel interdependence 
1 1

2 2

E C
T

E C





 

Here, we do not derive the analytical expression for 
Ttf  which describes the 

learning. Deriving this expression is easy and straightforward. In contrast, another 

insight is much more important, namely, the analytical expression for Tt
f  also holds 

for a system, where the second emissions source (
2E ) has been replaced by a sink (R: 

removal): 
1

2

E C
T

R C





; meaning that the learning does not change while the two 

systems differ: 1 2C C C   versus  1 2C C C  . That is, a sink reduces a source but 

their uncertainties still add up. 

It is this game changer that has not so far been considered by prognostic modelers: 

a shortfall with far-reaching consequences, notably, when determining the risk of 

exceeding an agreed global temperature target in the future. 

7. Summary and preliminary outlook 

The purpose of our paper is to present a particular methodology to tackle 

retrospective learning, the characteristic feature of which is that prognostic uncertainty 

increases the more the further we look into the future. Alternative methodologies are 

conceivable. We currently consider the discussion of necessary assumptions and, if 
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need be, simplifying assumptions (still) more important than immersing ourselves in 

numerical exercises. 

So far, we see two important consequences emerging: 

 The objective (i) to generate a metric / indicator to inform non-experts about the 

limitations of the predictive outreach of a prognostic scenario; and (ii) to 

demonstrate that this metric / indicator can be generated even concomitantly with 

building a prognostic model is within reach. We conjecture that the latter, in 

particular, will lead us, in the case of success, onto new paths of constructing 

models and conducting systems analysis—that is, towards a new standard of 

‘good modeling’. 

 RL informs us that, from an uncertainty perspective, emission sources and sinks 

need to be separated—which is not done in estimating the risk of exceeding an 

agreed global warming target in 2050. This very risk can be determined by using 

multi-model emission scenarios like those in Figure 1 in connection with 

emission-climate change models (where “climate change” is quantified by 

changes in global surface temperature). The cumulative emissions of these 

scenarios are used as a predictor for the expected global temperature increase in 

the future (cf. Box 1). However, the crux of this exercise is that it starts—

erroneously—from net emissions. (Take Fig. 1 above, for example: removals 

eventually outpace emissions and net emissions even become negative.) From an 

uncertainty perspective, preferring net emissions to emissions minus removals 

runs counter to the law of error propagation which informs us that a sink reduces 

a source but their uncertainties still add up. This shortfall has far-reaching 

consequences. The correct approach would have been to deal with cumulated 

emissions and removals individually to determine their combined risk of 

exceeding the agreed temperature target. RL allows exactly this to be done: RL 

overcomes this shortfall and allows the effect of learning about emissions and 

removals individually to be grasped. 

This is why we argue that understanding and grasping RL is of fundamental and global 

relevance. 
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Abstract 

Our study aims at modelling the diagnostic learning understood as a gradual improvement 

of the quality of greenhouse inventories. We quantify this improvement by the speed of 

convergence of consecutive revisions of emissions estimates to the most recently published 

ones, which we assume to be close to the true emissions values. On the example of Austria’s 

National Inventory Reports we show that the diagnostic learning process exhibits exponential 

dynamics.   

Keywords: Greenhouse gas emissions, revisions of emissions inventories, learning, 

uncertainty of emissions estimates 

1. Introduction 

Signatories to the United Nations Framework Convention on Climate Change 

(UNFCCC) are obliged to submit annual inventories of their greenhouse gas (GHG) 

emissions, together with revisions of historical emission estimates. Previous estimates 

are recalculated whenever errors in inventories were identified and corrected, new data 

sources were taken into account or new accounting methodologies were employed. 

Therefore, consecutive revisions of emissions estimates from previous years are 

thought to reflect the advancement of knowledge in constructing GHG inventories, 

while the most recent estimates are considered to be accurate. But can we detect this 

learning process in the historical data of GHG emissions reported to the UNFCCC? 

In this work we show on the example of Austria’s GHG inventories that indeed we 

can observe and model the improvement of GHG emission inventories. 

2. Diagnostic learning 

By diagnostic learning we call the process of gradual improvements in the quality of 

GHG emissions inventories. This “improvement of quality” we understand as the 

advancement of knowledge, which is reflected by the increase of accuracy (reduction 

of bias) and/or precision (reduction of standard deviation) of emissions estimates.  

Several attempts have been made to grasp the diagnostic learning in a quantitative 

way. In Hamal’s work [1] the notion of total uncertainty was used. The total uncertainty 

combines inaccuracy (in relative terms) between the most recent and the most initial 

estimates of emissions, with the imprecisions of these estimates (lack of precision). 

Another approach is to analyze the convergence of sequences of estimates reported in 

the consecutive National Inventory Reports as has been done in Nahorski et. al. [2]. 

In Marland et. al. [3] learning was understood as a convergence of revised estimates 

of emissions towards the more accurate ones. In our work we follow this line of thinking 

and investigate whether the consecutive revisions of estimates stabilize around certain 
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level (presumed to represent the accurate estimate), and if so, how fast this stabilization 

level is reached.  

A common feature of the approaches presented in [1] and [2] is that is that both 

methods strived to capture the learning process from one report to another in the 

uniform way (ensemble approach). However, if one do not consider revised estimates 

of emissions occurred in different years separately, then the learning process one tries 

to describe is “contaminated” by structural changes in emissions in different years.    

In contrast, our method grasp “pure” learning (unaffected by structural changes) 

because we model learning process in consecutive revisions of emissions estimates for 

only one fixed year of emissions at a time. But before we explain our approach to 

diagnostic learning in detail we first describe the data set we are analysing. 

3. The data 

We chose to present our method on the case example of Austria as for this country 

the temporal evolution of revised CO2 emissions estimates is well pronounced. The data 

set we are working on has been compiled from the Austria’s National Inventory Reports 

(NIRs) submitted to the UNFCCC in the years 2003-2014.  

 

Figure 1. Revisions of the Austria’s CO2 emissions estimates (top panel) and time 

evolution of ranges of Austria’s CO2 emissions estimates (bottom panel). 

It is important to note that our data set may be naturally divided into two parts. Part 

I contains revised estimates of emissions in the period 1990-2001. It may be organized 

into 11 sequences, with firs one containing revised estimates of emissions occurred in 

1990, second one contains estimates of emissions for 1991 and so on. Each of these 

sequences consists of estimates published in the years 2003-2014 and thus all of them 

have the equal length of 12. As a consequence, all most initial estimates in this part 

comes from the NIR published in 2003 (see Figure 2.). Part II containing the rest of the 

data (estimates of emissions occurred in the period 2002-2012) can be organized into 
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another 11 sequences in the same way as the part I. The only difference is that all these 

sequences are of different lengths. The first one, containing estimates of emissions in 

year 2002, is of the length 11 and the last one has only one element , that is the only 

available estimate of emissions in year 2012 published in the year 2014.  

Figure 1. shows that revised emissions estimates differ slightly revision-wise but 

clearly follow the emissions path published most recently. However, for each year of 

emission the revised estimates may behave erratic and in general do not approach the 

most recent one (assumed to be correct) in the strictly monotonic way. It is also difficult 

to compare in absolute terms the changes in estimates of emissions that occurred in 

different years. Thus, in order to see a clearer picture, we assume the most recent 

estimates as a reference level and work with relative differences of estimates 

normalized estimates (i.e., values of estimates divided by the most recent ones).  

 

 

Figure 2. Austria’s CO2 emissions estimates normalized by the most recent estimates. 

For the most initial estimates line the year of estimate’s publications is 

marked. 

 

Figure 3. Time evolution of revised estimates of Austria’s CO2 emissions in the year 

1990 (left panel) and 1999 (right panel). 

Figure 2. presents the data after normalization transformation and should be 

interpreted as follows: for example, initial estimate of the emissions in 1999 were lower 
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than the most recent one by 0.5% of the most recent estimate, and the range of all 

revisions spans from 98.5% to 100.3%. How these estimates change from revision to 

revision is shown on the Figure 3. (left). 

After normalization of estimates we clearly see that typically the most initial 

estimates tend to underestimate emissions, but their subsequent corrections are not 

always in the direction of the most recent estimate. The range of revised estimates of 

emissions in a given year carries more information about the variability of these 

estimates and is a good proxy for the uncertainty of these estimates. Hence, we argue 

that analysis of the ranges of emissions estimates suits well the purpose of grasping 

diagnostic learning. Our methodology, which we describe in the following section, is 

based on this observation. 

4. Model of diagnostic learning 

4.1. Notation 

Let En,y denotes estimate of emissions in year n revised in year y, with n = {1990,…, 

2012} and y ={n+2,…, Y}, where Y = 2014 is the year of the last revision ( y ≥ n+2 

reflects the fact that inventories are published with 2-year delay). We define 

𝑚𝑛,𝑦 = 𝑚𝑖𝑛{𝐸𝑛,𝑦 , … , 𝐸𝑛,𝑌}  and  𝑀𝑛,𝑦 = 𝑚𝑎𝑥{𝐸𝑛,𝑦 , … , 𝐸𝑛,𝑌}.           (1) 

Then mn,y denotes the smallest of the estimates of emissions in year n that were 

published in years between y and Y. Similarly Mn,y denotes the biggest of these 

estimates. How mn,y and Mn,y (normalized by En,Y) change as y →Y can be seen on the 

Figure 3. (The lower and upper red lines on the left panel represents evolution of  

m1990, y / E1990, 2014  and M1990, y / E1990, 2014 for y changing from 2003 to 2014. Similarly, 

the lower and upper red lines on the right panel correspond to m1999, y / E1999, 2014  and   

M1999, y / E1999, 2014, accordingly.)  

4.2. Formal approach to diagnostic learning 

As mentioned in section 2. we understand diagnostic learning as a convergence  

𝐸𝑛,𝑦 → 𝐸𝑛  𝑎𝑠 𝑦 →  ∞,                                            (2) 

where En is a true but unknown value of emissions that occurred in the year n. In 

practice, for each year of emissions n we observe only a few initial elements of sequence 

En,y (at most 12 for the Part I of the data). However, if convergence (2) holds and the 

most recent estimate En,Y is close to the true value En then we observe that revisions En,y 

stabilize around level En,Y. Ten necessarily also mn,y → En,Y and  Mn,y → En,Y as y → Y. 

Both these effects can be seen of Figure 3. 

Let us fix a year of emissions n. As revised estimates En,y may oscillate around level 

En,Y, the learning process is more apparent in the evolution of mn,y and Mn,y since they 

converge monotonically to En,Y. The speed of this convergence may be interpreted as 

the rate of suppression of oscillations of estimates En,y and the decrease of the difference 

Mn,y - mn,y may be regarded as the decrease of uncertainty. 

Figure 2. reveals that the upper ranges of emission estimates Mn,y do not vary much 

between different years of emissions n and in general are only slightly higher (typically 

by less than 0.5%) than the most recent estimates. Therefore it is the evolution of lower 

ends of the estimates ranges that reflects the diagnostic learning.  
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4.3. Modeling diagnostic learning in revisions of emission estimates for each 

year of emissions separately. 

Figure 3. suggests that for each fixed year of emissions n lower end of estimate’s 

range mn,y approaches level En,Y more rapidly at the beginning and gradually slows 

down and stabilizes as y → Y. Therefore, for each fixed n, it is natural to choose the 

exponential dynamics as a model of time evolution of mn,y as y → Y, namely 
 𝑚𝑛,𝑦

𝐸𝑛,𝑌
= 1 − 𝑐𝑛𝑒−𝜆𝑛 ( 𝑦−𝑛−2)                                 (3) 

for y = {y0, … , Y}, where y0 ≥ n + 2 is the year of publication of the most initial available 

estimate of emissions in the year n. The parameter λn is the interpreted as the learning 

rate in the period between y0 and Y. 

 

Figure 4. Exponential trends of evolution of lower ends of emissions estimates 

ranges. 

 

Table 1. Values of learning obtained via formula (3)  

Year of 

emissions n 

1990 1991 1992 1993 1994 1995 

Learning 

rate λn 

0.6251 0.6210 0.5954 0.5043 0.4722 0.4425 

Year of 

emissions n 

1996 1997 1998 1999 2000 2001 

Learning 

rate λn 

0.4815 0.5405 0.5147 0.4786 0.3761 0.4497 

 

We apply the model (3) to each sequence in the Part I of the data (that is to revisions 

of emissions for years n = 1990, … , 2001, that were published between years y0=2003 

and Y = 2014). The reason for this choice is two-fold. Firstly, all sequences in Part I are 

of equal length which ensures that the of the trend fit is comparable for all considered 
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samples. Second reason is that all these sequences reflects learning process in the same 

period, namely the years 2003-2014. On Figure 4. we present the trends in learning 

obtained from model (3) for the years of emissions covered by the Part I of the data, 

while Table 1. contains the corresponding learning rates.   

4.4. Modeling diagnostic learning revision-wise 

In the previous section we applied model (3) to grasp learning in the revised 

emissions estimates for each one year of emissions covered by the Part I of the data at 

a time. However, if our model of diagnostic learning is a correct one, we should be able 

to observe exponential trend in overall improvement of inventories from one revision 

to another. We perform such consistency check using the Part II of the data. 

We suspect that the structural changes in emissions cause only minor differences 

between learning rates λn for different years of emissions n (see Hamal [1]). Therefore 

it is reasonable to assume that the learning process from revision to revision is uniform 

for estimates of emissions across all covered years of emissions n.  

We calculate the average ̅λ = 0.5085 of all learning rates λn given in the Table 1. and 

interpret it as the approximate uniform learning rate of this overall improvement of all 

CO2 inventories published in the period 2003-2014. 

Provided this hypothesis is true we should then be able to use our model (3) to grasp 

diagnostic learning in the Part II of the data. Observe that the lower red line in the Part 

II of the Figure 2. corresponds to normalized lower ends of the ranges of emissions 

estimates mn,n+2 / En,Y for the years of emission covered by Part II of the data (n = 

2002,…, 2012). Now, if all mn,y / En,Y behave uniformly for all n as y → Y, then model 

(3) and our assumptions yield that 
𝑚𝑛,𝑛+2

𝐸𝑛,𝑌
= 1 −  𝑐̅ 𝑒−�̅� (𝑛−𝑛0)                                         (4) 

for all n = {n0 = 2002, …, 2014}, where parameter  ̅λ is the uniform learning rate 

describing overall improvement of emissions inventories revision-wise. Thus, if our 

model is a correct one, value of  ̅λ calculated as the average of learning rates λn given in 

the Table 1. and the value of  ̅λ obtained directly from the Part II of the data via model 

(4) should match. As Table 2. shows, this indeed is the case. 

 

Table 2. Two independent estimates of the uniform learning rate ̅λ 

̅λ as the average of λn from Table 1. 0.5085 

̅λ derived from equation (4) 0.4948 

 

This close agreement of independent estimates of uniform learning rate ̅λ strongly 

indicates that the model of diagnostic learning presented above is correct.   

5. Further research plans. 

When deriving equation (4) we assumed that the structural changes have negligible 

influence on how the learning rates λn changes with n. In reality averaging the learning 

rates over the years of emissions n both explicitly or implicitly (as we have done in case 

of estimation of ̅λ with use of equation (4)) is susceptible to structural changes. In future 

we plan to factor structural changes into the methodology presented above. 
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Abstract 

In the paper a statistical method for estimating the evolution of GHG inventories is 

proposed. For estimation the revisions of inventories published in consecutive years are 

used. Data from the National Inventory Reports up to 2007, and then up to 2014 are 

analyzed. A parametric model and a procedure for estimating parameters are described, 

and examples of their applications are presented. As a result, statistically significant 

trajectories of standard deviations are obtained and clear improvement of inventory 

accuracy in time is observed. 

 

Keywords: greenhouse gases inventories, uncertainty, modeling 

1. Introduction 

According to the United Nations Framework Convention on Climate Change 

(UNFCCC) and its Kyoto Protocol, each of the cosignatories is obliged to provide 

annual data on greenhouse gas inventory. Each report contains data from a given year 

and revisions of past data, whenever required, but it also has to deal with uncertainties.  

Data for previous years are revised when more precise information is obtained. This 

means that revisions made in different years use different knowledge, and hence 

uncertainties in different revisions are incomparable. The question therefore arises, 

whether it is possible to compare and organize data on GHG emission, to get as much 

information  about the unknown uncertainty as possible. Disscussion on that problem 

can be found e.g. in [1], [2], [3], and many others. 

The goal of that paper is an attempt to find an answer to that question, by proposing 

an alternative method of uncertainty assessment. This is done by analyzing how the 

uncertainty of the inventory reports changes over the consecutive yearly revisions. 

Based on the data from the National Inventory Reports up to 2007 and then the data up 

to 2014, in view of revisions of inventories published in consecutive years, we observed 

significant improvement of inventory accuracies in time. The results obtained indicate 

a clear learning effect in inventory calculation. 

In Section 2 we present the idea of interpreting the data and propose a parametric 

model, that describes the uncertainty structure in the inventory reports. Section 3 

contains the results of fitting the model to data from the National Inventory Reports for 

Austria. Conclusions are given in Section 4. 

2. Presentation of the model 

We analyze data from the national inventory reports. Let En – denote the inventory 

data for the country i, in the year n revised in the year y, and let Y – denote the last year, 

when the revision is made. For a given country i all the inventory data form a table, in 

which each row contains consecutive revisions of the data for a given year (Table 1). 
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Table 1. Indexing the data 

 

 

 

 

 

We use the fact that, each revision data, for a given country, forms a realization of a 

stochastic process. These stochastic processes for a fixed country are different, but 

related. They form a bunch of stochastic processes. An example is given in Figure 1, 

presenting data from the National Inventory Reports for Austria.  The data refers to  

CO2 emissions in the years 1990-2005 (i.e. reported up to 2007), and revisions  

performed every year, from 1999-2005. 

 

 

 

 

 

 

 

 

 

Figure 1. Revisions of the National Inventory Reports data on CO2 emissions,  

1999-2005,   Austria. 

For a given country i, we model any revision data to be composed of the “real” 
emission, which we call the “deterministic” fraction and a “stochastic” fraction, related 

to our lack of knowledge and imprecision of observation of the real emission. We 

assume that the uncertainty is related to the stochastic part of the model. 

 

 

 

where E – stands for the emission inventory, D – for its deterministic fraction, S – for 

the stochastic fraction, and n – is the year, for which the revised data were recalculated.  

Similarly, if yj < Y, 
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where the mean values  and standard deviations are of the form  

 

 
 

and  f  is a function, such that 

 

 
 

The parameters ai and bi, for a country i, associated with the stochastic fraction 𝑆𝑦𝑗,𝑖

𝑛  

can be estimated from the data, together with 𝜎𝑌,𝑖. Parameter ai describes a shift in the 

accuracy of the inventory gathering, and bi – a shift of the precision level. They both 

depend on the difference between the revision year yj , and the most recent revision year 

Y, due to the learning. To find the deterministic fraction𝐷𝑌,𝑖
𝑛 , the smoothing splines can 

be used, as presented in [4]. This approach, when applied to the most recently revised 

data 𝐸𝑌,𝑖
𝑛 will give not only the estimate of the deterministic fraction, but also an estimate 

of the variance 𝜎𝑌,𝑖
2 . 

Algorithm for a fixed country i 
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3. Case study - NIR data for Austria 

The data analyzed refers to CO2 emissions in the years 1990 – 2005, and 

recalculations (revisions), performed every year, from 1999 to 2005. We start with 

building a smoothing spline SpY for the most recently revised data  –  from the year  

Y = 2005 (Figure 2). 

 

 

 

 

 

 

 

 

 

Figure 2. Smoothing spline and data on CO2 emissions from Austrian NIR, Y = 2005 

 

Then, we calculate the differences vj, between real emissions data, and the spline 

obtained, and estimate parameters a, b, and c in the model (1) - (2). Having obtained 

estimates for a, b, and c, we can find sequences of means and standard deviations. The 

results are presented in  Figure 3 and Table 2. 
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Table 2. Estimates of parameters in the model (1) - (2). 

 

 

Figure 3. Estimates of mj and σj, j=1999..2004, Austria. 

 

The analysis conducted gives the information about the data considered. The mean 

values tend to zero and we may take into account the speed of that convergence. The 

sequence of standard deviations is strictly decreasing, indicating a reduction in the 

emissions.  

The main result – the uncertainty assessment is the sequence of relative values of the 

form 

 

 
 

depicted in Figure 4a), together with the relative uncertainties provided in the National 

Inventory Report. One can observe that the relative values are significantly smaller than 

the uncertainties published in the reports, which means that the assessment proposed is 

more accurate. 

For comparison, in Figure 4b) we present the analysis, conducted for the  Austrian 

National Inventory Reports data available up to the year 2014 (i.e. for Y = 2012). Also 

in this case, one can notice that uncertainty assessment obtained using the method 

proposed is significantly better than those published in the official reports. 
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Figure 4. Comparison of relative uncertainty and relative values 
𝜎𝑗

𝑆𝑝𝑗
, NIR data on CO2 

emissions, Austria, a) 𝑗 = 1999 … 2004, 𝑌 = 2005 b) 𝑗 = 1999 … 2011, 𝑌 = 2012 

4. Conclusions 

The method proposed, proved to be a good tool for the uncertainty assessment. It is 

worth noting that it is based solely on the data, and works without any additional 

assumptions. It works well in practice (applied to the NIR data for EU countries). 

However, it is necessary to test larger data sets (as they become available), and other 

databases. 
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Abstract 

Emission inventories are compiled at national and regional levels and used without taking 

uncertainty into account. We attempt to check whether and to what extent uncertainty related 

to emission inventories affect quantitative analysis used by policy makers to set strategies and 

implement actions at regional and sub-regional levels. We consider the regional air emission 

inventory of the Piedmont region in Italy. Uncertainty is calculated by adapting the insurance-

based method. A hybrid accounting matrix is built and a Shift-Share analysis is undertaken for 

manufacturing and construction activities, and for the transport sector at regional and provincial 

levels. The procedure is repeated for data without uncertainty and data with uncertainty. 

Although in absolute terms total emissions are remarkably different, the outcomes of the Shift-

Share Analysis vary among provinces: sometimes the messages are misleading when 

uncertainties are not included in the calculation; sometimes the differences are negligible. Some 

general conclusion can be drawn. 

Keywords: air emission inventory, uncertainty, Shift-Share Analysis, hybrid environmental 

accounts 

1. Introduction 

Air emission inventories, and in particular Green-House Gas emissions, have always 

been though as the primary source of information for the international Climate Change 

agreements and trading [1] and are usually compiled at national level. However, 

especially when developed at sub-national level, these datasets can be a precious source 

of information for policy makers at different administrative in accounting terms for 

descriptive analysis and for policy analysis [2]. Although few examples of air emission 

inventories used in policy analysis at subnational level already occur, uncertainty is 

never considered. In some cases uncertainty coefficients are not even available from 

the agencies and institutes responsible for the delivery of air emission inventories. 

In this paper we are going to combine one particular technique to quantify 

uncertainty together with a hybrid environmental accounting framework and we are 

going to use a decomposition analysis tool to assess whether and to what extent 

estimates with and without uncertainty do affect the final message that policy makers 

use when planning strategy and actions for the territory they administer. 

The case study we used to apply the methodology, accounting framework and the 

decomposition analysis is the Piedmont region and its provinces. Their air emission 

regional inventory is one of the best example existing in Italy. Their datasets are 

publicly available and the uncertainty coefficient are efficiently compiled by the 

functionaries in charge for the inventory. 

After a brief description of the data, methodology and tool used (Section 2), the 

results are presented (Section 3) and some points for discussion raised (Section4). In 
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the conclusion (Section 5) we summarise the main findings of this first application 

through key messages. 

2. Materials and methods 

The Piedmont region is located in the North-Western part of Italy. In Piedmont 

automotive (the FIAT group and its induced activities) is the dominating compartment, 

followed by chemical, food, textile, clothing, electronics and editorial compartments. 

The tools at the basis of this application are the hybrid environmental accounts and the 

shift-share analysis that will be described in the following paragraphs.  

2.1 Calculation of uncertainty and hybrid environmental accounts 

The CORe INventory AIR emissions (CORINAIR) method is the framework 

supported by the European Environment Agency. It was adopted by the national 

environmental protection agency in compiling the national inventory. At regional level 

and specifically in Piedmont, the EMEP-CorinAIR inventory is compiled since the 

beginning of 2000s and the procedure has been greatly improved and updated since the 

first release. The regional inventory records data according to the SNAP (Selected 

Nomenclature for Air Pollution) classification. The inventory is composed by 11 macro 

sectors, 75 sectors and 430 activities for the following pollutants: methane (CH4), 

carbon monoxide (CO), carbon dioxide (CO2), nitrogen dioxide (N2O), ammonia 

(NH3), Volatile Organic Compounds (VOC), oxides of nitrogen (NOX), sulphur dioxide 

(SO2) and particulate matters (PM10 and PM2.5). 

Uncertainty is compiled according to inventory guidelines. For each pollutant at the 

activity level it is possible to calculate uncertainty according to the following formula: 

UNCijk = UnEFijk * UnADi,k      (1) 

where 

UNCijk = total uncertainty coefficient for the activity i, pollutant j, fuel k; UnEF = 

uncertainty coefficient assigned to Emission Factor for the activity i, pollutant j, fuel k; 

UnAD = uncertainty coefficient assigned to Activity Data for the activity i, fuel k 

 

Marland et al. [3] borrow their approach to estimate uncertainty from the insurance 

industry by adding a charge called risk charge that represents the insurance for the 

insurer. Uncertainty is calculated using the approach suggested in EMEP Guidelines 

and this value is used as risk charge. The formula to calculate the uncertainty maximum 

limit becomes thus: 

EUncijk=(Eijk*(1- UNCijk))+Eijk     (2) 

where 

EUncijk = total emissions and uncertainty for the activity i, pollutant j, fuel k; E ijk = 

emissions for the activity i, pollutant j, fuel k 

It is possible to connect air emissions to their generating activity. The NAMEA-type 

accounting module allows to frame together economic data and emissions and can be 

compiled at local level [4]. The first step to undertake is to harmonize the SNAP 

classification system that is based on production processes with the NACE 

(Nomenclature générale des Activités économiques dans les Communautés 

Européennes) classification system that is based on economic sectors. For this 

application we choose to focus on the whole secondary sector (that includes all 

manufacturing activities and construction) and on the transport sector. We thus do not 

consider the primary sector (agriculture and forestry) the tertiary (services) and 



4th International Workshop on Uncertainty in Atmospheric Emissions 

----------------------------------------------------------------------------------------------------------------------------  

105 

 

households. Economic Data (local units and number of employees) are withdrawn from 

ASIA (register of active enterprises), and air emission data are withdrawn from EMEP-

CorinAIR (in tonnes for all pollutants except CO2 that is in 1,000 tonnes). 

2.2 The Shift-Share Analysis 

We apply decomposition analysis in order to investigate the mechanism that affects 

air emissions: the rationale for structural decomposition analysis is splitting an identity 

into its components. Changes in some variables are decomposed in changes in its 

determinants. The methodologies commonly used to decompose emissions trends are 

index decomposition analyses, input-output structural decomposition analysis and shift-

share analysis [5].  

The purpose of this application is to measure the role of the productive structure at 

the lower hierarchical level considered (in our case the provincial level) in explaining 

the emissions efficiency gap between this level (i.e. provincial) and the higher 

hierarchical level (in our case the regional level). Shift-share analysis in fact 

decomposes the source of change of the specified ‘dependent variable’ into provincial 

specific components (that constitutes the shift) and the portion that follows regional 

growth trends (that constitutes the share). 

The question we aim to address is whether the gap between the considered province 

and the regional benchmark average depends on (lack of) environmental friendly 

technologies in the included economic sectors, and/or on a provincial specialization in 

sectors with higher/lower eco-efficiency. 

We firstly calculate the intensity of emissions by considering the emission of each 

pollutant referred to the number of workers employed in each sector. This variable 

provides insights into the socio-environmental efficiency of the productive sectors, 

which is useful in order to plan a strategy to support environmental innovation at sector 

level. We then analyse the relative environmental efficiency of the provincial economic 

system with respect to the regional average, referring to the GHG pollutants and to the 

economic sectors included in the hybrid accounts. 

The aggregate indicator of emission intensity is represented by ‘total emissions [E] 

on number of employees[Empl]’. The benchmark is represented by the regional value. 

We define the index of emissions intensity as X for the regional average (X=E/Empl), 

as XPr for the province (XPr=EPr/EmplPr) and as Xs for each sector for the province and 

Xs
Pr=Es

Pr/Empls
Pr for the region Xs=Es/Empls). We then define the share of sector value 

added as Ps=Empls/Empl for the region and Ps
Pr=Empls

Pr/EmplPr for the province. 

 𝑋 = ∑ 𝑃𝑠
𝑠 𝑋𝑠        (3) 

 𝑋𝑃𝑟 = ∑ 𝑃𝑃𝑟
𝑠

𝑠 𝑋𝑃𝑟
𝑠        (4) 

The shift-share decomposition allows to identify three effects that explain the gaps 

in terms of aggregate emissions efficiency between the province and the region. 

The first effect (‘structural’ or industry mix) is given by: 

𝑚𝑃𝑟 = ∑ (𝑃𝑃𝑟
𝑠 −  𝑃𝑠

𝑠 )𝑋𝑠      (5) 

mPr assumes a positive (negative) value if the region is ‘specialized’ in sectors 

associated with lower (higher) environmental efficiency, given that the gap in value 

added sector shares is multiplied by the value of X of regional average (‘as if’ the 

province were characterized by average regional efficiency). The factor mPr assumes 

lower values if the province is specialized in (on average) more efficient sectors. 

The second factor (‘differential’ or ‘efficiency’) is given by: 
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𝑝𝑃𝑟 = ∑ (𝑋𝑃𝑟
𝑠

𝑠 −  𝑋𝑠)       (6) 

PPr assumes a positive (negative) value if the region is less (more) efficient in terms 

of emissions (the shift between provincial and regional efficiency), under the 

assumption that (‘as if’) number of employees sector share were the same for the region 

and the province. 

The third effect (‘allocative component’) is given by: 

𝑎𝑃𝑟 = ∑ (𝑋𝑃𝑟
𝑠

𝑠 − 𝑋𝑠)(𝑃𝑃𝑟
𝑠 −  𝑃𝑠)     (7) 

The aPr factor is positive (negative) if the province is specialized, relative to the 

regional benchmark, in sectors characterized by higher (lower) emission intensity. 

Table 1. Data with and without uncertainty at regional and provincial level. 

  CH4 CO CO2 COV N20 NH3 NOx PM10 PM2.5 SO2 

Secondary sector Piedmont         

REG (W/O) 
107.657,1
7  

   
6.089,22  

15.564,0
2  

27.109,2
0  2.276,79  1.209,42  

21.830,4
6  

   
785,44  

   
558,87   8.281,56  

REG (W) 
203.505,1
7  

   
9.375,98  

23.672,2
1  

46.169,0
5  3.001,98  2.103,48  

30.070,7
1  

1.129,7
2  

   
832,51  11.996,8  

∆_Reg 
           
0,89  

          
0,54  

         
0,52  

         
0,70         0,32         0,74  

         
0,38  

       
0,44  

       
0,49          0,45  

Transport sector Piedmont         

REG (W/O)     288,00  
 
11.215,42   3.902,60   2.518,18     121,09       31,99  

29.859,3
6  

4.692,4
0  

1.460,8
7        48,97  

REG (W)     488,11  
 
19.219,08   6.628,90   4.302,59     207,52       54,28  

50.369,4
2  

8.155,4
0  

2.485,6
3        86,29  

∆_Reg        0,69           0,71         0,70         0,71         0,71         0,70  
         
0,69  

       
0,74  

       
0,70         0,76  

Secondary sector Biella          

Prov (W/O) 
    
2.959,16  

        
73,29  

     
177,06  

     
255,45         6,29       81,35  

     
364,90  

     
32,50  

     
21,31      232,42  

Prov (W) 
    
5.652,81  

      
115,20  

     
301,58  

     
471,16       11,10     134,85  

     
565,19  

     
56,71  

     
35,70      416,51  

∆_Prov 
           
0,91  

          
0,57  

         
0,70  

         
0,84         0,77         0,66  

         
0,55  

       
0,75  

       
0,68          0,79  

Transport sector Biella          

Prov (W/O) 7,56799 
363,9551

4 121,4479 77,90136 3,38207 1,08423 846,3386 169,552 45,2134 0,771662 

Prov (W)       12,86  
      
626,26      207,63      133,04         5,79         1,85  

  
1.437,20  

   
295,62  

     
77,29         1,32  

∆_Prov        0,70           0,72         0,71         0,71         0,71         0,71  
         
0,70  

       
0,74  

       
0,71         0,71  

Secondary sector Torino         

Pro(W/O) 
  
61.832,97  

   
2.262,16  

  
6.590,38  

  
9.204,56     218,08     270,97  

  
7.304,90      183,44  

   
146,92      718,78  

Prov (W) 
116.244,1
0  

   
3.190,53  

  
9.921,59  

15.437,0
8     396,09     474,77  

10.138,7
7      258,35  

   
209,00   1.143,14  

∆_Prov 
           
0,88  

          
0,41  

         
0,51  

         
0,68         0,82         0,75  

         
0,39         0,41  

       
0,42          0,59  

Transport sector Torino          

Pro(W/O) 143,9462 
5323,606

6 1744,264 1220,169 55,0616 14,043 12821,56 1894,426 655,133 30,51204 

Prov (W)     246,21  
   
9.192,52   2.984,92   2.103,96       94,97       23,97  

21.785,4
7   3.295,82  

1.121,5
7        54,56  

∆_Prov        0,71           0,73         0,71         0,72         0,72         0,71  
         
0,70         0,74  

       
0,71         0,79  

Secondary sector Vercelli         

Pro(W/O) 
    
2.412,86  

      
386,22  

  
1.116,74  

     
680,91       69,64     109,75  

     
861,74       44,59  

     
28,72      102,88  

Prov (W)    4.475,64  
      
694,15  

  
1.593,49  

  
1.048,54     120,05     197,48  

  
1.154,17        53,10  

     
37,14      167,17  

∆_Prov           0,85  
          
0,80  

         
0,43  

         
0,54         0,72         0,80  

         
0,34         0,19  

       
0,29          0,63  

Transport sector Vercelli         

Prov (W/O) 16,7377 641,8716 250,0528 140,6166 6,68947 2,03567 2071 326,973 89,5194 1,633588 

Prov (W)      27,86  
   
1.081,32      418,30      235,82       11,22         3,42  

  
3.444,82     566,43  

   
149,92         2,74  

∆_Prov        0,66           0,68         0,67         0,68         0,68         0,68  
         
0,66         0,73  

       
0,67         0,68  
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3. Results 

The Piedmont region contains important industrial centers: from automobile to 

electronics, to mechanical, to food and beverage industries. Hybrid flow accounts have 

been compiled for all provinces of Piedmont and Shift-Share Analysis has been 

performed for regional-provincial cases. Results have been compared for estimates with 

and without uncertainties. Differences stand out in three cases that will be presented in 

details. The three provinces are Biella, Torino and Vercelli. Table 1 shows the estimates 

with (W) and without (W/O) uncertainties of these provinces compared with the 

regional level. It is important to consider the transport sector separately from the 

secondary sector. In the first case there are no remarkable differences between the 

regional and provincial deltas, while in the second case for some pollutants at provincial 

level shows remarkably higher differences.  

In the province of Biella there are many factories working on spinning and weaving 

of wool and on other tissues. Table 1 shows that the difference in considering data with 

and without uncertainty for secondary sector diverges from the regional trend for the 

pollutants CO2, N2O, PM and SO2. The shift-share analysis for Biella shows that when 

we consider uncertainty the productivity differential changes for two pollutants: NOX 

and SO2.  

The second province we report is Torino: the most important province in the region 

from historical, economic and demographic points of view. The industrial sectors 

mostly developed in this province are the automobile industry and all its related 

industrial sectors, and electronics. Table 1 shows the estimates with (W) and without 

(W/O) uncertainties of this province compared to the regional level. Differently from 

the Biella province in Torino CO2 and PM with and without uncertainty follow the 

regional trend. It is important to check on Table 1 that the only province of Torino 

generates almost half of CO2 emissions due to traffic for the whole region. Clearly the 

province of Torino has a remarkable impact at regional level for some of the main 

pollutants due to traffic (i.e. CO2 and PM). The shift-share analysis for Torino shows 

that the allocative component changes when data are computed with uncertainty: the 

main differences are recorder for the pollutants NH3 and PM2.5. 

The last province we present is Vercelli, whose main economic activities are linked 

with the production of rice. Table 1 shows the estimates with (W) and without (W/O) 

uncertainties of this province compared with the regional level. This province shows 

different trends for many pollutants: in some cases the differences between data with 

and without uncertainties between the provincial and the regional levels are much 

higher (CO, N2O, SO2) and in some other cases are much lower (COV, PM10, PM2.5). 

The shift-share analysis for Vercelli shows that there are a lot of differences when data 

are computed with and without uncertainty. The structural component has a single 

critical pollutant: without uncertainty is NH3 but with uncertainty is COV. The eco-

efficiency component without uncertainty is favorable only for CH4, COV and SO2 

while with uncertainty becomes favorable for all pollutants. The allocative component 

presents a more favorable condition without uncertainties where the only critical 

pollutants are CH4, NH3 and SO2; with uncertainties in fact all pollutants become 

critical except CO2 and COV. 

4. Discussion and final remarks 

Looking at the numbers, when considering the differences in absolute terms in most 

cases estimates with uncertainties double the initial estimates. However when using a 
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tool such as Shift-Share Analysis, doubled estimates do not dramatically affect the 

outcomes. In some cases differences can be found but not as striking as initially 

expected. As source of air emissions we consider all secondary sector and from the 

tertiary sector only transport. For all provinces we consider separately the secondary 

sector and transport when comparing the difference of estimates with and without 

uncertainty between the regional trend and the provincial trend (ref. Table 1). For all 

provinces the regional and provincial levels in secondary sectors show important 

differences for N2O, PM and SO2 (the one exception is the province of Torino). When 

the two sectors are summed some of these difference disappear: e.g. the difference 

(higher or lower) in PM between the regional ad provincial trends disappear. Moreover, 

the territorial aggregation is impacted by some provinces which determine the weights 

of some pollutants (of course due to their generating activities) rather than others: Table 

1 shows that it also applies in terms of uncertainties. For example the province of Turin 

has a considerable impact because it collects the major economic activities and host 

most of the population. In fact when comparing the regional and the provincial levels, 

for many pollutants that in other provinces shows important differences if considered 

with and without uncertainty, in the province of Torino the difference only emerge in 

two cases (N2O and SO2). In the province of Vercelli the economic activities and the 

number of inhabitants are less. This province records many differences in data with and 

without uncertainty compared to the regional level (ref. Table 1) and thus such a reality 

could not be represented by the regional level: it should be analyzed individually. If this 

difference shows up within a region like Piedmont, we can imagine the huge differences 

that would show at national level. In Italy for example the national level would never 

represent equally the Northern and the Southern parts: territorial policies, development 

and environmental policies not only must consider uncertainty but must also identify 

for the appropriate territories the appropriate administrative level. 

However, the method we used to estimates uncertainty was applied in a very 

elementary way. In fact we did not make any difference among pollutants: we assumed 

that all measured data are underestimates. Some studies, e.g. [6], shows that some 

pollutants are prone to over estimates rather than underestimates and some other 

pollutants’ estimates are fine. Moreover, we did not apply any refinement to the 

coefficient interval: we consider the worse hypothesis, i.e. the maximum possible 

applicable percentage of error. 

Having set few statements in the previous section, we would like to conclude this 

paper with few remarks. Firstly, the calculation of uncertainty varies according to the 

administrative level considered. In our example we started from a sub-national level 

(the region) and further looked into a local context (the provinces). The message does 

thus amplify when the initial level is a nation or a macro-region. Secondly, by adding 

uncertainty to estimates can affect the message to policy makers, even if in some case 

less than expected when looking at the differences in absolute terms. Finally, a raw 

methodology, like the one we have applied in this paper, can help to identify which are 

the pollutants that require a deeper analysis. Considering the limits of time, budget and 

data, this kind of methodologies can work as sieve. To the identified pollutants and to 

the critical territorial contexts a more sophisticated approach should be applied in order 

to provide the policy maker with a correct and robust message. 
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Recent assessments indicate that short-lived climate pollutants, especially black carbon 

(BC) play a major role in the climate of the Arctic (AMAP, 2015). However, uncertainties 

remain in the impact assessments. One source of the uncertainties are the emission 

estimates of black carbon. Bond et al. (2004) presented a quantitative uncertainty estimation 

of emission inventories of carbonaceous aerosol. They found that major uncertainties are 

caused by insufficient information on emission parameters and major emitting sector 

activities. Global emission uncertainties for anthropogenic BC emissions were identified as 

3.1 to 10 Tg/y (-30% to 120%) expressed as 95% confidence intervals. Sectors contributing 

most to the uncertainties were found to be Chinese coke making, residential wood 

combustion, industrial coal combustion, and on-road diesel. Regionally the largest 

uncertainties were estimated in Asian emissions.  

While global BC emissions have an impact on the Arctic, pollutants emitted closer to 

the Arctic might have higher impact per emitted mass. Furthermore, BC is removed 

relatively quickly from the atmosphere, therefore having higher concentrations close to 

their sources. Thus, the spatial allocation of the emission estimates has an important effect 

on the climate impacts. However, this spatial dimension has previously been neglected in 

uncertainty assessments. An initial study, presented in AMAP 2015, showed that 

differences between global BC emission inventories were relatively large in higher 

latitudes. The differences were further analysed in this study.  

We compared available spatially-distributed global BC emission datasets available from 

the ECCAD-GEIA website (http://eccad.sedoo.fr) and analysed differences in both 

emissions and their locations. 

Some of the variation between the inventories was found to be due to different 

treatment of Arctic relevant source sectors. For example only some inventories included 

emissions from flaring in full extent, although the emissions are significant in the Arctic 

region. Notably the spatial representation of flaring in the oil and gas production areas 

close to and within the Arctic area was missing in most of the datasets. Another sector 

omitted in some inventories was international maritime transport. Inclusion of relevant 

emission sectors is a common improvement suggestion for all models. 

There were significant differences between the spatial distributions of the different 

BC emission inventories and often the agreement between the spatial distributions was 

completely lacking. These differences also varied between source sectors. The 

differences indicated that the inventories use different spatial proxies for the emissions. 

We recommend that spatial proxies should be harmonized and important regions and 

source sectors for the Arctic area should be addressed as accurately as possible.  
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Abstract 

Aerosol particle number concentrations and size distributions affect our climate by 

determining the formation of cloud droplets and thus altering the cloud reflective properties. 

The aerosol-cloud interactions are one of the main uncertainties in estimating the future climate 

change. One of the weaknesses in current climate modelling is the description of number 

emissions and size distributions of particles. Here, we present the first global results of 

implementing particle number emission factors to GAINS emission scenario model and discuss 

the related uncertainties. The uncertainties for different source sectors vary significantly, 

causing a steep difference in total uncertainties in different parts of the world. The reason for 

these uncertainties is the scarcity of data on particle number size distributions for certain 

sources. The implemented particle number emission factors, however, are expected to be a 

significant improvement over  previously applied particle number emissions estimates in 

climate modelling. 

Keywords: particle number emissions, number size distribution, emission scenario model, 

aerosol-cloud interactions 

1. Introduction 

One of the main uncertainties in our understanding of the future climate change 

arises from the aerosol-cloud interactions [1]. One factor to these uncertainties is the 

inadequate description of aerosol number emissions from anthropogenic sources. The 

number of cloud droplets, which reflect solar radiation back to space, depends on the 

number concentrations of particles in cloud condensation nuclei -size range (CCN, 

diameters dP close to or over 0.1 µm). These particles are emitted to the atmosphere 

directly from anthropogenic sources or formed in atmosphere due to the growth of 

ultrafine particles (UFP, with diameters below 0.1 µm), which may be of either biogenic 

or anthropogenic origin. As a source of CCN, the biogenic growth of UFP is roughly 

as significant a source of CCN as direct anthropogenic emissions [2]. On the other hand, 

UFP have severe adverse health effects, which are different to those of particulate mass 

[3]. Also the main anthropogenic sources of UFP, which typically dominate particle 

number concentrations (PN), are different to the main sources of particulate mass [4].  

Here, we present the first results of the implementation of aerosol number emission 

factors (EFPN) in the global emission scenario model GAINS (Greenhouse gas - Air 

pollutant Interactions and Synergies [5]) and discuss the related uncertainties. 

2. Methods 

The GAINS model (Greenhouse gas – Air pollutant Interactions and Synergies [5]) 

is an integrated assessment model, which brings together information on the sources 
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and impacts of air pollutant and greenhouse gas emissions and their interactions. 

GAINS combines data on economic development, the structure, control potential and 

costs of emission sources, the formation and dispersion of pollutants in the atmosphere 

and an assessment of environmental impacts of pollution. The political scenarios in 

GAINS allow for researchers and modellers to study the future global emissions and 

their spatial distribution and for decision makers to compare the costs and outcomes of 

regulations and investments on new technologies. GAINS describes the inter-relations 

between the effects and emissions of various pollutants (SO2, NOx, PM, NMVOC, NH3, 

CO2, CH4, N2O, F-gases) that contribute to these effects. GAINS assesses more than 

1000 measures to control the emissions to the atmosphere for each of its 168 regions 

(mainly countries, of which some divided in regions, e.g. China consists of 32 regions, 

and some grouped, e.g. Middle East). In its optimization mode, GAINS identifies the 

least-cost balance of emission control measures across pollutants, economic sectors and 

countries that meet user-specified air quality and climate targets. 

The annual emissions E in a country or a region i are calculated with  

 
jkm ijkmijkmijkmjkm ijkmi XAEE EF ,   (1) 

where the indices and symbols refer to  

 

j Source sector (e.g. domestic single house heating boilers) 

k Fuel (e.g. firewood, coal) 

m Abatement technology (e.g. pellet boilers, boilers with electrostatic 

precipitator) 

A Volume of annual activity (typically annual energy consumption in sector j 

with fuel k)  

X Share of abatement technology of the activity m (so that ∑mXm=1) 

EF Emission factors for each sector-fuel-technology –combination (emissions per 

activity unit) 

 

We have recently introduced aerosol particle number emission factors (EFPN) with 

corresponding particle (number) size distributions (PSD) to GAINS [4]. For road 

transport PNEF:s and PSDs are based on the latest version of TRANSPHORM database 

[6]. For the global analysis these were extended with separate PNEF:s and PSDs for 

different fuel sulphur contents. For other sources, emission factors are obtained from 

the literature and from the emission inventory by TNO [7,8]. The implemented emission 

factors and size distributions represent the emissions of both primary and secondary 

particles immediately after cooling and dilution to the surrounding air. Particle size 

distributions in size range 3-1000 nm are described with 8 size bins, facilitating their 

application in air quality and climate modelling. 

3. Results 

Global PN emissions are dominated by emissions of UFP, which form close to 80% 

of the total global emissions (lower panel of Fig. 1).  

Figure 1 shows, for year 2010, the shares of different sources in global continental 

total particle number emissions (PNtot), in number emissions of ultrafine particles (UFP) 

and non-UFP (dP >100 nm), as well as in mass emissions of particles with dP < 1µm 

(PM1). The main source of UFP is road transport, representing 40 % of the total UFP 

emissions and thus being the largest contributor to total aerosol particle number 

emissions. Power production contributes to the UFP emissions with a 20 % share, while 
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residential combustion has a 17 % share. The shares of residential combustion and road 

transport in non-UFP number emissions are quite similar, roughly 30 % each, whereas 

the PM1 mass emissions are clearly dominated by residential combustion (> 50 %). The 

vast differences between the number and mass emission shares, especially from road 

transport and residential combustion, indicate the need for assessing the size segregated 

number emissions of aerosols in addition to mass emissions.  

 

Figure 1. Upper panel: shares of different source sectors in aerosol number 

emissions of all (PNtot), ultrafine (PNUFP) and non-ultrafine (PNnonUFP) particles and 

aerosol mass emissions of particles with diameters below 1 µm (PM) on 2010. Lower 

panel: shares of ultrafine and non-ultrafine particle in PN emissions for each SNAP-

sector (see legend for clarification of SNAP sector codes). 

The annual PN emissions and their estimated future trend in each source sector on 

different continents, with Eurasian continent divided to major countries and the rest of 

Europe and rest of Asia, are depicted in Figure 2. The future trend is based on the current 

legislation baseline scenario (ETP_CLE_v5) compiled in the ECLIPSE project [9]. In 

2010, China emitted clearly the most aerosol particles due to high emissions from power 

production (especially from coke production), residential coal combustion and 

industrial combustion, followed by Asia (excl. China, India and Russia) and Europe 

(excl. Russia). In most parts of the world road transportation is the major source of 

particles.  

The actions determined in current legislation are foreseen to decrease the PN 

emissions in China substantially due to decreases in emissions from coke production 

and residential coal combustion. This is partly related to the increase in the electricity 

network, replacing the coal fired cooking stoves. In Europe, North- and South-America 

and Australia due to the drastic decrease foreseen in traffic emissions due to improving 

particle emission abatement technologies, especially particle filters. On the contrary, 

especially in India and Russia, the increase in activities in industrial processes and 

combustion (the latter mainly in India) and combustion in gas pipeline compressors (in 

Russia) causes increases in total emissions. In Asia and Africa, the increase in road 
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transportation seems to overrule the benefits of improving emission abatement 

technologies, but also the emissions from other source sectors are estimated to increase. 

The global sum of continental anthropogenic emissions is predicted to decrease roughly 

by 15 % from 2010 to 2020 (from 1.5x1028 to 1.3x1028 particles/year), but expected to 

remain quite constant from 2020 to 2030. 

 

Figure 2. Contributions of different source sectors to particle number emissions in 

different parts of the world, from 2010 to 2030. 

4. Uncertainties in the PN emissions 

The uncertainties in the emissions arise from uncertainties specific for the different 

factors in Equation (1). Here we concentrate, however, only on the uncertainties related 

to the particle number emission factors EFPN, because they can be estimated to be the 

main source of uncertainties in PN emissions due to the following reasons. The 

variation in particle numbers behaves typically in logarithmic scales and thus their 

concentrations and emissions can vary in orders of magnitude. Furthermore, e.g. Wang 

et al. [12] have shown that the emissions of the traditional pollutants (SO2, NOx, PM2.5 

and PM10) calculated with GAINS compare well with those based on measurements 

(for the studied pollutants the major relative error was found to be factor of 2.5), which 

suggests that the activities and shares of abatement technologies in Eq. (1) represent the 

reality reasonably well. Finally, since the emission factors for the traditional pollutants 

have been revised several times due to restrictions in their emissions and 

concentrations, but much less efforts have been put to determining particle number 

emissions, which are restricted only in the latest EURO standards for road traffic, it is 

quite obvious that the emission factors are the most uncertain part of the emission 

calculation for PN.  

The uncertainty levels related to different sources vary significantly. The EFPN and 

PSD applied here for road traffic have been determined in a long sequence of EU funded 

projects were compiled, revised and reviewed in the project TRANSPHORM. 

However, even in this source sector there remain uncertainties related e.g. to the varying 
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driving conditions, effects of varying ethanol concentration in fuels and differences 

between laboratory and real-world emissions. The road traffic emission factors can still 

be estimated to be among the best analysed ones together with the heating stoves, 

boilers and fireplaces fuelled with wood in Western countries, due to the various 

research articles on their EFPN:s. On the other end, the emission factors for coke 

production plants [10] and coal combustion in residential (mainly cooking) stoves [11] 

are highly uncertain, because both are based on only one article. For these sources, 

among several others having a minor part in European emission, but potentially much 

larger in other parts of the world, the EFPN:s for different technologies cannot be 

determined from the literature, and thus we have set the effects of emission abatement 

technologies on EFPN to be similar to EF for particulate matter mass emissions. This 

most certainly decreases the reliability of the emissions from these sources when newer 

technologies become more popular. Also the biomass, i.e. wood, agricultural residues 

and dung, combustion in residential sector especially in India and Africa are not fully 

representative, due to the lack of references for the typical burning equipment and 

conditions.  

Another factor for uncertainty is often weak presentation of the smallest particles, 

dP<0.01 µm, in the emission factors and PSDs. High sulphur contents in the fuel lead 

typically to high emissions of below 0.01 µm particles before or immediately after the 

emissions to atmosphere. However, not all the instruments applied for determining the 

emission factors detect these particles and sometimes they are also too volatile to be 

detected with the used technologies. Additional uncertainty related to these smallest 

particles yields from the lack of emission factors, apart from road traffic, for different 

fuel sulphur contents and technologies removing SO2 from the exhaust e.g. in coal 

plants or industrial combustion.  

The variations in source sector specific uncertainties in emission factors described 

above cause steep differences in the spatial distribution of the uncertainties. In the areas 

dominated by traffic emissions (see Figure 2), the total uncertainty is the smallest, 

whereas the emissions in China, India and Russia can be considered much higher. 

5. Final remarks 

The particle number and mass emissions are typically dominated by different sources 

sectors and individual sources contribute very differently to these measures. Thus, 

despite all the above mentioned uncertainties, the PN emissions in GAINS can be 

expected to describe better the real world emissions than those estimated by converting 

mass emissions to number emissions with source sector –specific size distributions and 

mass-to-number factors. For reducing these uncertainties, it is necessary to conduct 

particle number emission and size distribution measurements for the indicated source 

sectors. 
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Abstract 

 

We are interested in the spatial distribution of fossil-fuel-related emissions of 

CO2, but it is important to understand the uncertainty in emissions estimates. Uncertainty 

is introduced in the magnitude and location of large point sources, the magnitude and 

distribution of non-point sources, and from the use of proxy data to characterize emissions. 

For the U.S. we develop estimates of the contribution of each component. At 1 degree 

resolution, in most grid cells, the largest contribution to uncertainty comes from how well 

the distribution of the proxy (population density) represents the distribution of emissions. 

In other grid cells the magnitude and location of large point sources make the major 

contribution. Uncertainty is strongly scale-dependent with uncertainty increasing as grid 

size decreases.  Uncertainty for one degree grid cells is typically on the order of +/- 150% 

but this is perhaps modest in a data set where emissions per grid cell vary over 8 orders of 

magnitude. 

 

Keywords: U.S. CO2 emissions, gridded emissions, large point sources, proxy data 

1. Introduction 

There is a wide range of interest (both geochemical and geopolitical) in 

geographically explicit inventories of the sources and sinks of the greenhouse gas CO2. 

It is a challenge to estimate sources and sinks in a spatially-explicit context and to best 

characterize the location and magnitude of emissions and sinks we would like to 

estimate also the associated uncertainty. Current gridded inventories of emissions from 

fossil-fuel use and industrial processes rely heavily on related, proxy and re-purposed 

data. In the following analyses we refine and combine the components of uncertainty 

and discuss them in the context of the widely-used Carbon Dioxide Information 

Analysis Center [1] gridded inventory for fossil-fuel related emissions from the U.S. 

(see also [2]).   

Few studies have explored the uncertainty of global-scale, grid-level emissions 

datasets. Rayner et al. [3] noted that “none of the pointwise fossil emission products 

available today include” estimates of uncertainty and then estimated that for their 

dataset “uncertainties can be as high as 50% at the pixel level”. They also pointed out, 

importantly, that uncertainties for nearby pixels are not independent because, for 

example, the uncertainty for any given grid space includes consideration that a large 

point source might be only slightly displaced and the total for the ensemble of cells is 

constrained by national data. Rayner et al. emphasize that “using the uncertainty of this 
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pointwise map alone in an inversion is a serious error since it assumes independence of 

errors.”  

2. Methods and analysis 

Large point sources make up a large percentage of anthropogenic carbon 

dioxide emissions for the U.S. and for other industrialized countries [4]. In 2010 one 

third of U.S. emissions were reported from only 311 sites of large point sources [5]. As 

soon as the first few latitude and longitude data points from these data sets were typed 

into Google Earth many of these point sources were not observed at their reported 

locations. We have to deal with both magnitude and locational uncertainty. Total 

uncertainty in emissions from any geographic grid space thus has to reflect uncertainty 

in small or areal sources and in both the magnitude and location of large point sources. 

Woodard et al. [6] have developed one key component of what we need to 

quantify the spatially explicit uncertainty in gridded inventories of CO2 emissions – an 

approach for dealing with the uncertainty in the locations of large point sources.  Also 

many gridded inventories exist that document ground level sources of anthropogenic 

emissions of CO2 for the U.S. and the globe and these inventories use a variety of top-

down and bottom-up methods to geographically distribute emissions that are not 

attributed to large point sources.  Each of the top-down inventories uses some sort of 

proxy, such as population density or satellite-observed nightlights, to help distribute 

emissions totals from a large (national or state) scale down to the level of grids as small 

as 0.1 degrees on a side. Some of the inventories use multiple proxies to take advantage 

of their differing characteristics. Using proxy data, while necessary, can result in the 

misallocation of emissions values both spatially and temporally. Hutchins et al. [7] 

show that the differences among existing data sets increase as grid size is decreased. To 

address these issues, we have taken the first steps toward calculating the total 

uncertainty for a CDIAC-like inventory for the U.S. at the 1-degree grid scale. Data 

here are estimates of annual emissions for the year 2009. 

In the gridded CDIAC inventory [1] data on population density are used as a 

proxy for the spatial distribution of all emissions within a country. For this analysis, we 

have removed emissions from electric power plants from the country total prior to using 

the population proxy to distribute the remaining national emissions. The power plants, 

with magnitudes and locations from EPA’s eGRID dataset [5], were then added back 

to give total emissions in each grid cell. The emissions inventory discussed here is thus 

comprised of two components, power plant emissions from the eGRID dataset and all 

remaining national emissions distributed using population density as a proxy. These 

remaining emissions do contain some additional, large industrial sources of CO2, but 

reporting to the EPA GHG Reporting Program [8] shows that in 2010, 73% of emissions 

from sources greater than 25,000 metric tons of CO2 equivalent were from power plants. 

Comparable data on industrial sources are not available outside of the U.S. and for the 

purposes of this study we assume these industrial sources to be part of the areal sources 

of emissions (hereafter “non-point sources”).  

There are thus 6 components of uncertainty that need to be combined for an 

estimate of total uncertainty for the cells in the modified CDIAC database: 

 Uncertainty in total national emissions 

 Magnitude uncertainty for large point sources 

 Spatial uncertainty for large point sources 

 Magnitude uncertainty of the population proxy 
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 Spatial uncertainty for the population proxy 

 Uncertainty in using population density as a proxy for emissions 

For this analysis all calculations are based on one-sigma uncertainty. In 

combining the component uncertainties we assume that, except for the uncertainty in 

the national total, each of the components are independent of each other and they are 

therefore combined in Euclidean fashion (the square root of the sum of the squares) on 

a grid cell by grid cell basis. The uncertainty in the national total is passed to all 

components equally across grid cells. In this analysis we use data for emissions in 2009 

as published by CDIAC in 2013. Temporal uncertainty would need to be considered in 

developing a time series of emissions. 

Uncertainty in total national U.S. emissions is estimated at 2.5% (one sigma). 

This value is based on comparisons with other inventories, U.S. EPA analyses, and 

literature research of the components which combine to calculate total national U.S. 

emissions. (see also Andres et al. [2]). According to the U.S. EPA [9] the 95% 

confidence interval for total U.S. CO2 emissions from fossil fuel combustion is -2% to 

+5%. Instead of using this asymmetric value we take the symmetric value of ±5%, and 

since this is two standard deviations about the mean and our computations are all based 

on one standard deviation, the estimated national error used in our computations is 

±2.5%. 

A random sample of 500 large point sources from the US EPA eGRID data set 

was taken in order to find the exact locations of the power plant discharges. We used 

Google Earth satellite imagery to identify the point sources and to verify each latitude 

and longitude. With spatial information from Google Earth, the distance between the 

actual location and the reported location was computed for each point source in the 

sample. The maximum distance from the reported location to the observed location of 

a point source was approximately 106 km. The mean distance from the reported location 

for all of the sample point sources (excluding zero) was 1.97 km. The mean distance 

from the reported locations for all of the point sources in the sample was 0.84 km. The 

latter value was then used as the mean spatial uncertainty. The spatial uncertainty for 

the top 81 emitters was larger than for the random sample of points. It was found that 

60% were farther than 1km from the reported location. The mean difference in location 

was 7.94 km and the maximum spatial difference was about 122 km. 

The information gathered from the 500-item random sample suggested that the 

differences between discharge locations and eGRID reported locations might be 

attributed to: 1.) differences between the plant site and the exact location of the CO2 

discharge stack, 2.) use of default locations in the EPA database, such as the centroid 

of a county, when the initial report to EPA did not include plant coordinates, 3.) 

typographical errors, 4.) reporting the location of a company office or mailing address 

instead of the plant site, and 5.) dealing with the existence of multiple stacks on the 

same site. 

The locations of power plants are not part of a continuous distribution and 

therefore most traditional statistical methods do not work well in dealing with the 

uncertainty in their emissions. The discrete, or binary, nature of the locations (a plant 

either is in a given grid space or it is not) spurred the creation of a new method for 

dealing with the likely locations and the uncertainty in the emissions from power plants 

and the development of a new statistic, PSUM = Point Source Uncertainty Measure, [6] 

which we treat as a standard deviation in the analyses here. The uncertainty results are 

scale dependent, as with any spatial uncertainty. For a given locational uncertainty, the 

larger the grid cell the greater the probability that the point source will actually be found 
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in the reported cell. Monte Carlo analyses were run using the magnitude of emissions 

and the reported location for each point source as well as the calculated mean spatial 

uncertainty and the size of the geographic grid cells. A resulting grid of simulated 

means effectively distributes the reported CO2 emissions from a point source to 

surrounding cells based on the fraction of the total number of simulation executions that 

fell in each cell. 

The magnitude uncertainty for emissions from large point sources is taken to be 

a constant ±10.62% (one sigma) [10]. This number was derived by comparing data 

collected on smokestack emissions of U.S. electric power plants with emissions 

calculated from fuel deliveries at the same plants. The value 10.62 was the mean of the 

difference of the two measurements. 

LandScan is a recently developed global data set [11] that estimates the average 

locations where people actually are rather than where their home location is. Landscan 

was first produced in 1998 and data sets for 2000-2012 are now available. CDIAC has 

contemplated use of LandScan population data but has not yet made the conversion. 

The CDIAC gridded CO2 emissions data set relies, however, on a 1984 population 

distribution data base from the Goddard Institute for Space Studies [12]. While this 

GISS data set allows an estimation of the spatial distribution of CO2 emissions over a 

long time series, an additional contribution to uncertainty results from the changes in 

urbanization and population distribution that have occurred since 1984. Although the 

GISS data are used as the proxy for distributing emissions, we use LandScan 

characteristics here to illustrate the uncertainty that could be achieved for the post-2000 

time period. 

Magnitude uncertainty in LandScan for the U.S. was assumed to be comparable 

to the estimates of uncertainty derived by the U.S. Census Bureau at the same spatial 

scale [13]. LandScan does not currently have any published estimates for uncertainty 

but we assume that it is very low in the U.S. As in all of the data sets used here, the 

uncertainty will vary by country or region in a global analysis.  The uncertainty estimate 

provided by the U.S. Census Bureau is 0.01%. Spatial uncertainty in LandScan was 

estimated by looking at the changes incurred as a result of small shifts in the cell 

boundaries. We took the LandScan data set and distributed CO2 emissions proportional 

to the population density values associated with each grid cell. We then shifted the grid 

cells by 10 kilometers (approximately one tenth of a grid cell in the central U.S.) in 

each direction (N, S, E, and W) so that each grid cell contained successively one tenth 

of each of the four surrounding cells. This effectively creates a weighted sum in which 

the central cell emissions value is weighted by 90% and the cell that is shifted towards 

the center is weighted by the remaining 10%. A weighted sum was computed for each 

of the four shifts that occurred. The standard deviation for the resulting four weighted 

sums was then computed and stored as the uncertainty value within the central cell.  

In order to characterize the uncertainty associated with using population density 

as a proxy for CO2 emissions we started with the per capita emissions in each state [14] 

(with data on large point sources removed) and the mean number of grid spaces per 

state.  We calculated the standard deviation in per capita emissions from non-point 

sources at the state level and took this as a measure of the variability in the relationship 

between population density and emissions density at that scale. We assumed that the 

variability among states provides a measure of the variability at the grid level within 

states. This provides enough information that we can back-calculate to estimate the 

standard deviation in emissions by grid cell attributed to the population proxy. Then we 

can use this standard deviation as the uncertainty estimate for using population density 

as a proxy for emissions at the grid cell level.  
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3. Discussion and conclusions 

The combination of the six aspects of uncertainty produces a total uncertainty, 

by gridspace, for a hypothetical, modified CDIAC dataset. Figure 1 shows these results 

as a percent of total emissions in each grid space. Recall that these numbers apply to a 

hypothetical data set – one in which 1.) the data on large point sources have been 

substituted for an equal quantity of emissions that were previously distributed according 

to population density and 2.) the data on population density have an uncertainty 

attributed to data from the U.S. Census Bureau at the same scale. In both cases we 

expect that the best achievable uncertainty will be much higher in many other countries 

where the data on population and large point sources have greater uncertainty.  

The scale shown on Figure 1 is quite high. This was not unexpected because of 

how much uncertainty there is for the exact location and magnitude for CO2 sources at 

this scale. Figure 1 shows that the uncertainty associated with the modified CDIAC data 

set is consistently around 150% of the emissions total for each grid space. Recall that 

these estimates of uncertainty are for a modified CDIAC data set where we have now 

isolated large point sources before using population density to distribute the remaining 

emissions from non-point sources.  We have also treated the population density data as 

though they had been derived from Landscan, thus avoiding the shifts in population 

density that have occurred since construction of the Goddard Institute for Space Studies 

data set for 1984.  Recall too that this uncertainty is for individual grid cells of 1 degree 

scale and is very scale dependent. There is strong correlation among grid spaces because 

of the spatial uncertainty about the exact placement of large point sources and because 

the national total is a defined constant.  

Total uncertainty is the combination of all of the components, but we also learn 

something of the role that each component takes in forming the whole. With an 

understanding of the relative magnitude of each of the pieces, and the locational 

characteristics of where each component is large, we can try to target specific efforts to 

best reduce the total uncertainty. Table 1 provides summary statistics on the different 

components of uncertainty. Table 1 indicates that proxy uncertainty has the highest 

mean percentage of all the components.  In particular a full 52% of grid cells have 90% 

of their uncertainty coming from proxy uncertainty. The implication here is that in the 

majority of grid cells, reduction of uncertainty can only be done by addressing 

uncertainty in the proxy relationship. This means that we must obtain a better 

understanding of the relationship between the proxies we use and the emissions they 

are meant to represent. Contributions from large point sources often dominate 

uncertainty for the grid cells where large point sources are present. And, the values here 

depend very much on the geographic scale. Uncertainty will increase for many reasons 

if the grid size is decreased without reducing the parameters of spatial uncertainty. 

Our efforts to systematically estimate the uncertainty in a gridded data set of 

CO2 emissions suggest that the uncertainty is quite high in the U.S. and it is probably 

higher in many countries where data on large point sources and the distribution of 

population are less well documented. Uncertainty will increase as the geographic scale 

is decreased. While data users need to appreciate the data uncertainty, the best data are 

probably suitable for many purposes. The analyses suggest that at 1-degree 

latitude/longitude resolution the current uncertainty (one standard deviation) by grid 

space in the U.S. is on the order of +/- 150%. Taking this analysis to a global scale will 

require additional analysis to characterize spatial uncertainty for each country or group 

of similar countries.  

  



4th International Workshop on Uncertainty in Atmospheric Emissions 

----------------------------------------------------------------------------------------------------------------------------  

122 

 

Acknowlegement: 

Portions of this work were supported by NASA CMS grant NNH11ZDA001N-CMS. 

 

 
Figure 1. Uncertainty by grid space shown as a percentage of total emissions at 1-degree 

resolution. Areas shown with very high uncertainty are often a result of cities with abrupt changes 

in population density. Excluding these few areas of very high uncertainty we can see that the 

overall uncertainty in grid spaces is on the order of 1.5 times the total emissions. This is for a 

hypothetical, modified version of the CDIAC data set for 2009 (see text). 

 

Table 1. By grid cell, a breakdown of each component of uncertainty with its summary statistics. 

Uncertainty in the national total is not included since it affects each of the grid cells equally. Note 

that the country borders create problems in that emissions may or may not occur even if a grid 

cell is designated as predominantly ocean, and some of the zero values lie along the eastern 

shoreline of the U.S. This is one of the challenges of cropping a global data set to a single country 

for a targeted analysis. Values are given as the percent uncertainty in a single grid cell. 

(Quart.=Quartile) 

 

 

 Min 1st Quart. Median  Mean  3rd Quart.  Max 

Magnitude Uncertainty, 

large point sources  

  

 0.00  

  

  0.00  

 

 13.96  

 

 41.70  

 

  94.88  

 

110.60  

Spatial Uncertainty,  

large point sources 

 

 0.00   

 

  0.00   

 

 12.62   

 

 37.69   

 

  85.77   

 

100.00 

Magnitude Uncertainty, 

LandScan 

   

 0.00    

 

  0.00    

 

   0.01    

 

   0.01 

 

    0.01    

 

    0.01 

Spatial Uncertainty, 

LandScan 

 

 0.00   

 

  0.09   

 

   0.55   

 

  10.34   

 

    2.93   

 

673.00 

Proxy Uncertainty  0.00 22.99   141.20   100.70   161.50   161.50 

Total Uncertainty, Emissions 

Data at Grid Cell Level 

   

112.9    

 

138.3    

 

153.6    

 

154.2    

 

166.4    

 

712.9 
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Abstract 

CO2 emissions from fossil fuel combustion (FFCO2) serves as a reference in carbon budget 

analysis and thus needs to be accurately quantified. FFCO2 estimates from different emission 

inventories often agree well at global and national level, however their subnational emission 

spatial distributions are unique and subject to uncertainty in the proxy data used for 

disaggregation of country emissions. In this study, we attempt to assess the uncertainty 

associated with emission spatial distributions in gridded FFCO2 emission inventories. We 

compared emission distributions from four gridded inventories at a 1 × 1 degree resolution and 

used the differences as a proxy for uncertainty. The calculated uncertainties typically range 

from 30% to 200% and inversely correlated with the emission magnitude. We also discuss 

limitations of our approach and possible difficulties when implemented at a higher spatial 

resolution.  

Keywords: Emission inventory, carbon dioxide, fossil fuel emissions, uncertainty, atmospheric 

inversion 

1. Introduction 

CO2 emission from fossil fuel combustion (FFCO2) serves as a reference in carbon 

budget analysis where carbon uptake by natural processes is typically the biggest 

unknown. The uncertainty associated with global total FFCO2 was estimated as 8% (2 

sigma) by the work by Andres and co-authors [1] and FFCO2 estimates from difference 

emission inventories often agree well at global and country level [2]. 

Disaggregation of country emissions is a common method to develop a gridded 

emission inventory. Emission spatial distributions are estimated using spatial proxy 

data such as population density/counts [e.g. 3, 4] and satellite-observed nightlights [e.g. 

5, 6] for diffused sources, geographical locations of point sources (e.g. power plant, 

cement production facilities and steel furnaces) [e.g. 6, 7, 8] and line sources such as 

road and railroad networks, aircraft and ship tracks [e.g. 7], and combinations of those. 

While the uncertainties for country total emissions are thought to be small (e.g. 5% 

for US), the emission disaggregation step can introduce significant errors in emissions 

estimates at higher spatial resolutions. The errors introduced will be propagated through 

atmospheric transport model simulations and subsequent budget analyses. Thus, it is 

critical to quantify and characterize the uncertainties (errors) associated with the spatial 
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distributions of fossil fuel emissions. In this study, we present a new approach to assess 

an uncertainty associated with spatial distributions in gridded FFCO2 emission 

inventories. 

2. Method  

In disaggregation of country emissions, emission magnitude at grid cells can be 

achieved by multiplying the mass of the total emission to normalized spatial proxy data. 

In this example, a single emission sector is assumed along with the use of single proxy 

data for simplification  
 

𝐸𝑖,𝑗 =  𝑀𝑇𝑜𝑡𝑎𝑙  ×  𝑊𝑖,𝑗 (1) 
 

𝑊𝑖,𝑗 = 𝑃𝑖,𝑗/ ∑ ∑ 𝑃𝑖,𝑗
𝑛
𝑗=1

𝑚
𝑖=1  (2) 

 

where  Ei,j is the emission magnitude of grid (i,j), MTotal is the total mass of emissions 

for the domain of interest, Wi,j is the weight given as a normalized proxy value of Pi,j. 

With a rule of combined uncertainty, the percent uncertainty of Ei,j can be calculated 

as a combination of percentage uncertainties for (a) total emission mass and (b) 

weight at grid cell 
 

𝛿𝐸𝑖,𝑗/𝐸𝑖,𝑗 =  √(𝛿𝑀𝑇𝑜𝑡𝑎𝑙/𝑀𝑇𝑜𝑡𝑎𝑙)2 + (𝛿𝑊𝑖,𝑗/𝑊𝑖,𝑗)2 (3) 

 

The uncertainty for the total mass is often available, however the challenge is to 

estimate the uncertainty for the second term based on spatial disaggregation. One could 

use the uncertainty estimates for the proxy data to estimate the second term in the root 

in the equation (3). A limitation of such approach is the inability of accounting for 

emissions that are not represented by proxy data used. The spatial distributions are 

unique and subject to the proxy data used for disaggregation of national emissions. 

Thus, the uncertainty assessment is specific to a particular disaggregation method and 

do not reflect the fact that some of the emission features might not be addressed by the 

underlying methodology.  

In this study, we compared emission distributions from four emission inventories 

that are based on different disaggregation methods and used the differences to estimate 

the second term. We normalized the emission datasets to the same global total and 

calculated the mean and standard deviation at grid cells as follows:  
 

𝛿𝑊𝑖,𝑗 𝑊𝑖,𝑗⁄ ~ 𝑆𝐷𝑖,𝑗 𝑀𝑒𝑎𝑛𝑖,𝑗⁄  (4) 
 

We used four emission datasets used in a recent atmospheric inversion 

intercomparison work by Peylin and co-authors [9]: Emission dataset developed by 

Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National 

Laboratory (ORLN) [3] (hereafter CDIAC), the Open source Data Inventory for 

Anthropogenic CO2 (ODIAC) [6] and two versions of Emission Database for 

Atmospheric Research (EDGAR) (v4.2 and Fast Track) [7]. Those emission datasets 

share some of underlying country level data and/or spatial proxy data, but the authors 

believe that their methods have produced distinct emission spatial distributions and can 

be considered to be reasonably different from each other. In common atmospheric CO2 

inversion, FFCO2 is assumed to be the flux quantity with the least uncertainty and, 

unlike natural fluxes, is not optimized [e.g. 10]. The differences we would see in 
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different gridded FFCO2 emission inventories are possible sources of uncertainty 

associated that could propagate into flux inverse estimates. 

3. Results and discusssions  

Figures 1 shows spatial distributions of four different gridded emission datasets 

(CDIAC, ODIAC, EDGAR/v4.2, EDGAR/FastTrack). Here only emissions over land 

(normalized to the same total) were presented. We aggregated four different gridded 

inventories to a common 1 x 1 degree domain. The major patterns we can see in the 

global distributions are driven by country emissions estimates that have very good 

agreement in general, especially for top emitting countries. The differences seen in 

subnational emission distributions are largely attributable to the differences among 

disaggregation methods. In CDIAC and ODIAC for instance, areas with no emission 

are spreading over northern high latitudes and some desert areas such as Africa and the 

center part of Australia. This can be explained by the fact that CDIAC and ODIAC do 

not have an explicit representation of emissions from road network and its spatial 

distributions, while the two versions of EDGAR do. If uncertainty associated with 

spatial distributions is assessed just using a single gridded emission inventory, the 

emission distribution discrepancy like we found between CDIAC/ODIAC and EDGAR 

would not be addressed.  

 

Figure 1. Spatial distributions of fossil fuel emissions from four different emission 

inventories (CDIAC, ODIAC, EDGAR v4.2 and EDGAR Fast track). 

Emission fields for the year 2008 were aggregated to a common 1 × 1 

degree resolution and then global total are scaled to the same total as 

CDIAC. Values are given in the unit of mega tonne Carbon per year. 

Our uncertainty estimate associated with emission spatial distributions is shown in 

Figure 2. The values in the map were calculated as standard deviation of emission 

values at grid cell from four different gridded inventories (normalized) divided by mean 

of the four, as briefly described in the section 2. The calculation was implemented at a 

common 1 x 1 degree resolution. The calculated uncertainties typically range from 30% 

to 200%. The uncertainty tends to be lower over areas with intense emissions and higher 

over the areas with relatively low emissions. This seems to be qualitatively reasonable 
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if we take emissions from road network as an example. The final uncertainty 

(uncertainty for emission estimates and spatial distribution) can be achieved by 

combining the uncertainty with the uncertainty for the global total emissions using a 

root-square fashion.  

 

Figure 2. Estimates of uncertainty associated with the spatial disaggregation of 

country emissions. Values are given in the unit of percentage (%). 

The uncertainty estimates from this approach are directly applicable to the studies 

such as atmospheric inversions where FFCO2 is not optimized and, as a result, is 

assumed to be perfect. Our approach might be limited by the fact that the variety of 

disaggregation methods (hence, emission spatial distributions) is not rich enough to 

implement this type of analysis, although we attempted selected four emission datasets 

that contain substantial differences. We also acknowledge that the use of multiple 

emission dataset for estimating the spatial uncertainty does not assure it addresses all 

the possible error sources. This approach might not work if implemented a much higher 

spatial resolution where distinct spatial patterns of sector emissions become more 

visible. The proxy data is as it says “proxy” and in fact is not explicitly representing 

unique dynamics of human activities. At a high spatial resolution, geolocation 

information of sources would become a key to achieve accurate emission spatial 

distributions [e.g. 6]. Currently, it seems less common to collect geolocation 

information of sources as we regularly do for activity data. Collecting activity data with 

geolocation information for example would allow us to precisely map emissions and 

greatly improve emission spatial distributions even at a high spatial resolution.  

4. Summary  

We present a method to estimate the uncertainty associated with disaggregation of 

national emissions. We compared four different gridded inventories and used the 

differences as a proxy for the spatial uncertainty. The calculated uncertainty typically 

range from 30~200% and are inversely correlated with emission magnitudes. This 

seems to be qualitatively reasonable considering the fact intense emissions are 

relatively easy to identify and weak emissions are often difficult to place. We also 

discussed some of the methodological limitations we have identified.  

 Demands for an emission inventory gridded at a high spatial resolution has been 

increased as observational data have become rich and modelling capabilities have been 

improved to facilitate higher resolution transport and inversion modeling. The emission 
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inventories face a difficulty in achieving accurate spatial distributions at increasingly 

high resolutions. Collection of additional information associated with emission sources 

(e.g. geolocation) could greatly help us to accurately map emissions and assess 

uncertainties associated the resulting emission spatial distributions.  
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Abstract 

Working with spatial data, regardless of the specific content (emission data, population data, 

land use data, etc.), requires dealing with gridded datasets. A grid is a commonly used 

representation method for data, where a value of interest is associated with each cell of the grid. 

While very adequate for representing and analysing data, combining data from different sources 

implies working with different grids, and this is more complicated. In this article, we present 

some preliminary findings of applying a novel approach to map spatial data onto a different 

grid. The approach simulates intelligent reasoning through the use of artificial intelligence and 

employs additional knowledge to help create a high quality remapping. We also present the 

difficulties in applying this methodology in real world applications. 

Keywords: map overlay problem, grid remapping, spatial operations, artificial 

intelligence 

1. Introduction 

Data regarding atmospheric emissions are one example of data that carries a spatial 

dependency. For research purposes, e.g. to investigate the exposure of a population or 

to correlate data, it is often necessary to combine data from different sources. As data 

tend to come from different sources, the grids on which they are defined can be 

incompatible: different size of cells, different orientation or a combination. This is 

called the map overlay problem and it occurs when the data of a grid cell in one grid 

needs to be correlated or even compared to data that is presented an a different, 

incompatible grid. The simplest solution is to use areal weighting, which allows to 

remap one grid onto a different grid, using the amount of overlap of the cells as weights 

used to redistribute the data. This however implicitly assumes that the data are 

uniformly distributed within each single grid cell. While this assumption may hold for 

some data, or even for some cells, it is not always a valid assumption. The current 

approaches are ignorant to the fact that many other data and knowledge are available; 

some of this data may be known to exhibit a correlation to the data that we need to 

remap. In [1], we presented the first concept of an artificial intelligent system that is 

able to perform the remapping of one grid onto another grid, using this additional 

information to improve the spatial distribution of the modeled data. Following the first 

concept, several implementations were made and experiments were performed. Here, 

we present our findings regarding the challenges ahead when needing to apply this 

method on real world data. 

In the next section, the representation of spatial data is shortly introduced, while an 

introduction to the artificial intelligent system used it in Section 3. The challenges with 

real world data are presented in Section 4, followed by the conclusion. 
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2. Spatial data 

2.1 Spatial data representation 

Spatial data can be represented in one of two commonly used models: feature based 

or field based [2,3]. In a feature based model, basic geometric objects are used to 

represent real world objects: lines are used to represent roads, polygons represent areas, 

etc. In a field based approach, a numeric value that carries a spatial component (e.g. 

emission values) are modeled over a region of interest. This can be achieved using 

triangular networks (commonly used for e.g. altitudes) or grids. In the application of 

modelling emissions, grids are more common. In a grid, the region of interest is 

partitioned in a number of grid cells, that completely cover the region of interest; if all 

cells have the same shape and size, the grid is considered regular. The cell of a grid is 

considered the smallest possible unit. For a grid that represents e.g. emission values, 

the grid provides no information regarding the distribution of the emission within each 

cell: the emission can be concentrated in one part of the cell, uniformly spread over the 

cell, or can have any other distribution. This causes problems when incompatible grids 

– grids that have ill aligned grid cells – as there is no easy mapping from one grid onto 

another grid. Exaples of incompatible grids are shown in Figure 1. 
 

 
Figure 1. Examples of incompatible grids: shifted, different cell size, rotated or a 

combination. 

2.2 Grid remapping algorithms 

The map overlay problem occurs when one grid needs to be remapped onto another 

grid. Several approaches exist in literature, but all of them make either an implicit or an 

explicit assumption regarding the underlying distribution. For more details we refer to 

[4], and briefly describe the most common methods below. 

The easiest and most commonly used algorithm for grid remapping is areal 

weighing. This approach implicitly assumes a uniform distribution of the data in each 

grid cell individually. The calculation to remap one grid onto another is very easy, as it 

suffices to consider the relative amount a cell of one grid overlaps with a cell of the 

other grid. This is illustrated on Figure 2. While effective in many cases, the method 

fails when the assumption does not hold. 

Spatial smoothing is a second approach. Here, the modeled data is considered as a 

third dimension, which is subsequently smoothed and resampled. This is illustrated on 

Figure 2. The implicit assumption here is that the data is smooth of the entire grid and 

the performance of the method depends on the accuracy of this assumption. 

The last method mentioned is spatial regression, where a priori statistical 

assumptions on the distribution of the data are used to control the grid remapping. The 

application of this method requires expert knowledge and quite complicated 

calculations. The distribution of the data is explicitly assumed here, but such knowledge 

may not be available. 
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Figure 2. Illustrations of areal weighing (left) and spatial smoothing (right). 

3. Artificial intelligent method and spatial grid remapping 

3.1 Short introduction to fuzzy set theory 

Fuzzy set theory is an extension to set theory, presented by Zadeh in [5].  In a fuzzy 

set, each of the elements carries a value from the interval [0,1], this is the 

membershipgrade µ. This value can have one of three interpretations [6]: as a degree of 

membership – in which case it expresses “how much” the element belongs to the set, 

as a degree of certainty – in which case it reflects how certain it is the element belongs 

to the set, or finally as a degree of possibility – to indicate how possible it is the element 

belongs to the set. As such, a fuzzy set is defined by means of a traditional set and an 

associated membership function, which maps each element to its membership degree. 

Many applications of fuzzy sets exists [7], but for the application here we consider the 

possibilities of representing imprecise values and linguistic terms. An imprecise value 

(e.g. approximately 50) can be represented by a fuzzy set which has a membershipgrade 

1 for the element 50, and decreasing membership grades as values are further from 50, 

as indicated on Figure 3. A linguistic term (such as “small”) can be represented as 

illustrated on Figure 3: 0 is considered small with degree 1, larger numbers have 

decreasing membership grades and numbers above 50 are not considered small (they 

have membership grade 0). Examples for the terms “medium” and “large” are also on 

Figure 3. The definitions of course depend on the domain and application and the 

provided fuzzy sets are just an example.  

 

 
Figure 3. Examples of fuzzy sets used to represent low, medium and high numbers 

(on a scale from 0 to 100). 

3.2 Fuzzy rulebase systems 

Artificial Intelligence is a term that covers many approaches; for the presented 

algorithm, a rulebase system [8] is considered. Fuzzy systems have proven their 

effectiveness in control and applications can be found in many household appliances. 

A rulebase consists of a number of rules, for example: 
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   if x is small then y is small 

   if x is medium then y is medium 

   if x is high then y is high 

 

Here, x is an input parameter, which is a normal number, high/medium/low are 

linguistic terms represented by fuzzy sets, and y is an output parameter. All the rules 

are evaluated, so a given x can be both high and medium at the same time (e.g. using 

the definitions on Figure 3), but each to a different extent. Each rule results in a fuzzy 

set for y; the outputs of all rules are aggregated and defuzzified to yield the final result. 

For more details on this method, we refer to [8]. 

3.3 Concept of grid remapping using a fuzzy rulebase 

The use of a fuzzy rulebase system to perform grid remapping requires the creation 

of the rulebase. The first problem is: what are the parameters used in the rulebase (x in 

the above example)? Several parameters can be considered as mentioned in [9], but in 

general parameters are what allow the additional data to be used. One example for a 

parameter is the amount of overlap of the auxiliary grid with the input cell under 

consideration. The second problem is: to define low/medium/high, it is necessary to 

find limits for the parameter. A lower limit could be the value of the grid cells of the 

auxiliary grid that are fully contained by the cell, whereas an upper value could be the 

total value of the grid cells of the auxiliary grid that intersect the cell.  

 

 
Figure 4. Example of the remapping algorithm: input (top-left), auxiliary data (bottom-

left) and result (right). The line pattern shows the underlying distribution, the bar charts 

in the result cells show - from left to right - the result obtained through areal weighting, 

the ideal result and the result obtained with the presented approach. 

Once it is known which parameters can be used, an appropriate rulebase can be 

constructed. To determine the result of the remapping, it suffices to apply the rulebase 



4th International Workshop on Uncertainty in Atmospheric Emissions 

----------------------------------------------------------------------------------------------------------------------------  

134 

 

for every output, calculating the parameters and evaluating the rulebase to yield a fuzzy 

result for the output cell. This concept is explained in more detail in [1]. 

An example is shown on Figure 4. The example is still artificial, but should 

highlight problems that also can occur on real world data. The dark lines are the 

underlying lines that contain data and from which the grids were defined. The shades 

in the result reflect the values obtained with the presented method. Compared to areal 

weighting, it is clear the method is able to identify the 2 nearly horizontal lines near the 

bottom, whereas areal weighting sees them as one big region. The presented method 

tends to assign lower values to cells that are located further away from the ideal line, 

which is also desirable. On the two nearly horizontal lines near the bottom, an 

alternating pattern is visible, from left to right, which is an artifact introduced by the 

method. The next section aims to explain the origin of these and other problems and 

ties them in to real world situations. 

4. Challenges related to applying the rulebase system 

Various prototype implementations and proofs of concept have proven that the 

methodology can work. However, initial attempts at applying the prototype 

implementations on real world data have revealed some issues that still need resolving. 

First, there are problems of a more technical nature, described in the next 2 subsections; 

next there are problems related to the real world data itself, described in the subsequent 

2 subsections. The first two problems can still be resolved using artificially generated 

examples, but the latter two would benefit from real world data. 

4.1 Mathematical precision 

The first problem relates to the way numbers are handled on a computer system. 

Coordinates of grid cells are represented by floating point values, which have a limited 

precision on a computer system. The consequences of this are very well explained in 

[10, Chapter 4], and in particular they pose problems for parallel or near parallel lines, 

which is the case for the grid cells. The presented algorithm highly depends on correctly 

assessing the overlap between intersections and calculating intersection areas. Initial 

test data suffered less from such problems, as the coordinates tended to be more 

artificial.  

An example of what happens when values get incorrectly rounded can be seen on 

Figure 5, where the thick lines indicate locations where the intersection is incorrectly 

identified. Such errors can lead to wrong limits for the parameters. One work around 

for this was recently developed and is presented in [11], a more general workaround 

has been developed but still needs to be verified. 

4.2 Parameter definitions and their limits 

The application of the rulebase requires both parameter values, lower limits and 

upper limits. All three of them have equal importance, as a poorly defined lower and 

upper limit can make the parameters useless.  In [9], we presented some suggestions for 

parameters. The example on Figure 4 was performed using a single parameter that 

relates to overlap of the auxiliary data. While the data does concentrate more towards 

the lines, the end result somewhat reflects the auxiliary grid: this explains the 

fluctuations in data that should be constant. Use of multiple parameters, even relating 

to the same data, should neutralize this effect, while still providing a result that shows 
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a better distribution. Research in additional parameters is currently the next phase of 

the research. 
 

 
Figure 5. Example of a grid where rounding of the coordinates cause incorrect 

identification of intersection: the thicker lines are lines where neighbouring gridcells 

are incorrectly identified as intersecting. 

4.3 Relative grid distributions 

This topic is somewhat related to the previous topic, but there is a difference. 

Independent of the parameter definitions is the impact of the relative positions of the 

different grids. The parameter currently considered in the example is completely useless 

if the grid onto which the data is remapped exactly divides each grid cell. The reason 

for this is that in this situation, the parameter value, its lower limit and its upper limit 

will all be equal, and therefore no evaluation can be made by the rulebase system. The 

example on Figure 4 shows a fluctuating pattern along the near-horizontal lines: the 

values are alternating higher and lower. This is not desirable, as their values ought to 

be the same or at least similar: neither to input data nor the auxiliary data indicate this 

alternating pattern. The reason for its occurrence is the combination of the parameter 

that was used and the relative grid position. This is a second example that shows an 

effect that can happen, if the combination of the grid distributions and the parameters 

is not ideal. Solving this is both tied to solving the problems mentioned in 4.2, but also 

in making sure the auxiliary supplied data is indeed useful and of good quality for the 

considered problem. 

4.4 Availability and quality of the data 

The last aspect relates to the data itself. The assumption is made that auxiliary data 

are available, which for many research will be the case. The correlation between the 

data to be remapped and the auxiliary data should be known from prior research and 

not discovered on the data set at hand. The data should also be of good quality: grid 

obtained from down-sampling an existing grid might appear to be of higher precision, 

but internally is not. Regardless of the parameters implemented in the system, the use 

of such grids may provide unsatisfactory results. 

5. Conclusions 

The article shortly describes a novel approach to remap gridded spatial data and lists 

the challenges in bringing the approach from theory to practise. The biggest challenges 

are listed, along with the ideas that will be pursued to solve them.  
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Abstract 

Quantification of CO2 emissions at fine spatial scales is advantageous for many 

environmental, physical, and socio-economic analyzes; in principle it can be easily 

integrated with other data in gridded format. It is especially important for better assessment 

of carbon cycle and climate change. Some possibilities exist for incorporation of the 

additional knowledge to improve the results and their uncertainty. There is, for example, a 

constant progress in assessment of local emissions from observations done in the 

atmosphere. This information can possibly help in improving disaggregated emission 

estimates. This paper discusses these questions and outline possibility of using these 

additional knowledge for improving estimation of emissions in fine scales. 

Keywords:  Greenhouse gases emissions, spatially resolved data, disaggregation, integration 

of multi-model results 

1. Introduction 

This paper is meant as a discussion paper which attempts to overview the research 

results that can be used in improving spatial gridded GHG estimates at a fine resolution 

by using existing or possible to obtain information coming from different sources. This 

problem is intrinsically connected with uncertainties of the used information, as it is 

quite intuitionally evident that a more sure information should be more credited in 

integration of knowledge than a less sure one, and therefore the former should be more 

weighted in the final result than the latter.  

Quantification of GHG emissions at fine spatial scales is advantageous for many 

environmental, physical, and socio-economic analyzes; in principle, it can be easily 

integrated with other data in a gridded format. This is especially important for improved 

assessment of carbon and other chemical component cycles and climate change. To 

better understand the transport of different pollutants atmospheric dispersion models 

are used. This way influence of emissions can be confronted with the atmospheric 

concentration measurements. In this modelling two factors are considered to be mainly 

responsible for modelling errors: emission accuracy and meteorology. This is the reason 

for a battle for high accuracy gridded emission estimates. 

In some applications, of particular importance are estimations of fossil fuel CO2 

fluxes, which are used to quantitatively estimate CO2 sources and sinks, see e.g. [5]. A 

few institutions gather data on emissions from fossil fuels at national levels, like the US 

Department of Energy Carbon Dioxide Information Analysis Center (CDIAC) [6, 50]; 

the International Energy Agency (IEA) [35]. IPCC gathers data from national GHG 

inventories within the Kyoto Protocol agreement and its continuation [36]. British 

Petroleum company compiles energy statistics [7] that can be conveniently used for 

estimation of national CO2 emissions. These datasets have been used for estimating 

global sources and sinks on a regional (e.g. continental) scale, [2, 11, 29, 59, 63, 64]. 

Their resolution is, however, too small to be directly useful for very fine emission grids. 
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Much less data are available on emissions in the below-national scales. Some 

countries publish data for provinces, but their scale is still too rough compared with 

other contemporary studies, like those presented in the sequel. Spatial disaggregation 

of emissions introduces additional uncertainty to a developed inventory. This is why 

the option of using additional information to reduce this uncertainty is of great interest. 

A common approach to disaggregation of emissions is a usage of proxy data, which 

are most often areas of fine grids or population therein. However, independent estimates 

of GHG fluxes, like inverse modeling or eddy covariance, provide opportunity to 

incorporate additional knowledge and provide more comprehensive spatial 

quantification of carbon budget. Evidently, there is a mismatch between distinct 

approaches to estimation of fluxes. In general, there are two kinds of estimates: it can 

be either accounting of emissions (bottom-up) or by measuring concentrations of CO2 

and inferring about original emission fluxes (top-down). Merging such datasets is a 

challenging task due to incomplete accounting and uncertainties underlying each of the 

methods. Moreover, one should take into account various spatial scales and different 

scarcity of data. This paper outlines several methods, discusses advantages and 

limitations of using them for improving inventory emission estimates in fine scales, and 

review methods used for combining uncertain data sets, highlighting the issues related 

to spatial dimension of the task. 

2. Disaggregation based on proxy data 

2.1. Basic research stream 

Disaggregation methods for obtaining high-resolution emissions typically use 

proxy data available in finer scales. The most straightforward approach to estimate data 

in a fine scale is to disaggregate national emissions proportionally to gridded population 

information, see e.g. [1, 55, 67] or in some cases proportionally to the area. Another 

proxy data are the satellite observations of nighttime lights [16, 17]. Direct use of these 

proxy data does not allow for very fine resolutions, as emissions from some sources, 

like power plants, do not correlate well with proxies. That is why Oda and Maksyutov 

[53] extracted emissions from point sources before disaggregating the non-point 

emissions proportionally to the nightlight distribution, and integrated them again to 

obtain 1km × 1km emission data. Rayner et al. [61] used a modified Kaya identity, in 

which emissions are modeled as a product of population density, per capita economic 

activity, energy intensity of economy, and carbon intensity of energy to predict 

emissions from several sectors, namely energy, manufacturing, transport (broken to 

land, sea, and air emissions).  

A very high resolution of emission cadasters (2km × 2km grid) was obtained for 

Poland within the 7th FP GESAPU project [24]. It resulted from a detailed analysis of 

information from various sources, published by governmental and research agencies, 

as well as energy or industry plants (e.g. taking part in emission trading scheme); the 

analysis was followed by disaggregation on activity levels and precise modeling, see 

[8, 9]. At present, this approach to disaggregation seems to provide the best results. 

Nevertheless, the relevant procedure, like gathering data from numerous sources and 

publications or individual disaggregation of multitude of variables, requires immense 

input of human work, so this approach is as far suitable rather only for regions of a 

country or a few countries. 

The GESAPU approach allows for rather straightforward assessment of uncertainty 

of disaggregated data, following the IPCC guidelines Tier 1 (error propagation) or Tier 
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2 (Monte Carlo method) methodology ([37, 38]. Again, Bun et al. [9] and 

accompanying papers ([12, 13, 30, 71] provide details of the analysis. As well, it is 

based on individual examination of all sources and sinks. Hogue et al. [31] discuss 

problems of doing similar analysis using existing global databases. Oda et al. [54] 

proposes a method of calculating uncertainty parameters. This method will be 

mentioned in the sequel. 

2.2. Extensions 

An intrinsic possibility is to use more than one proxy data for disaggregation. This 

can be done using linear regression function. The problem is to estimate its parameters, 

as no data for the fine resolution grid are given usually. Using data from other regions 

is questionable. Ghosh et al. [25] calculated the correlation between the nighttime lights 

and the Vulcan data [28] compiled for USA with the resolution 10km × 10km, and then 

used this correlation to calculate disaggregated emissions for other countries, but this 

approach did not provide satisfactory results. An ad-hoc method was proposed to 

improve this approach.  

A method to use regression function, in a more general context of spatially 

autocorrelated data, was proposed in [32]. Its idea is to estimate the regression function 

parameters for the coarse grid and use them in the regression function for the fine grid. 

This method works well when the coarse and fine grid cell areas differ not more than a 

few to a dozen times ([32, 34]). But its range of applicability depends very much on the 

similarity of correlations on different area scales. 

This methods enables automatic calculation of uncertainty distribution arising from 

statistical inference, see [33]. 

 

 
Figure 1. Predicted (y*) versus observed (y) values  

 

Figure 1 presents scatterplots of predicted values versus observations for original 

ammonia data in 5km × 5km grid as well as the values disaggregated from 10km × 

10km grid. For the disaggregation from 10km×10km to 5km×5km grids, the mean 

square error (MSE) was 0.064 (conditional autocorrelation (CAR) model) and 0.186 

(regression). Although introduction of spatial dependence evidently improved accuracy 

of prediction, the linear reggression method gives pretty good match.  

A problem with using regression function is in estimating zero emissions, i.e. 

emissions (or activities) for the cells where they do not exist. This problem, known also 

under the name semicontinuous variables, clumped-at-zero or zero-inflated data, can 

also happen in the disaggregation proportional to one proxy variable, but it is more 

CAR model Linear regression 
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acute for the multivariable case. In this problem a variable has a continuous probability 

distribution for positive values and a nonzero probability mass at zero. Simple cutting 

off of the negative values is perhaps operative, but scientifically not well justified. Min 

& Agresti [52] discuss this problem and review methods of dealing with it. They will 

be not discussed here. 

3. Other sources of information 

3.1. Atmospheric observations 

Two kind of observations can be of value to constrain inventory estimates and 

perhaps improve their accuracies. One is measurement of the specific gas concentration 

or mixing ratio. An example can be found in [75]. The problem is to partition the 

estimated atmospheric load obtained possibly from subtracting a background 

concentration, to emission sources. This is typically done using the inversion methods 

to estimate CO2 fluxes. For this, the Bayes estimator is generally applied ([18, 68]). To 

use the inversion method, the function which relates emission with concentration 

(footprints) is needed. It is typically computed using the atmospheric dispersion models 

and is finally of the linear form 

𝒚obs = H𝒙 +  𝝍     (1) 

where 𝒚obs is an 𝑚-vector of the measured atmospheric concentrations (mixing ratios) 

in the receptor points, in space and time, above the background value, 𝒙 is an 𝑛-vector 

of fluxes (emissions) from sources in the region considered, and 𝐇 is the matrix that 

relates emissions in sources to the measurements. The elements of the 𝑚 × 𝑛 matrix 𝐇 

are computed using a transport model. It is assumed that they are constant in the 

considered time period, which may be a rough approximation. 𝝍 is an 𝑚-vector of 

uncertainties of the relation (10); it is modeled as a random variable with the Gaussian 

distribution  

𝑝(𝝍) = [(2𝜋)𝑚 det 𝐂𝑦]
−1

exp {−
1

2
𝝍𝑇𝐂𝑦

−1𝝍}   (2) 

The real fluxes are unknown but it is assumed that uncertain information on fluxes 𝒙prior 

is given, so that  

𝒙 = 𝒙prior + 𝝑      (3) 

where again, the uncertainty is modeled as a random vector with the Gaussian 

distribution, independent on 𝑝(𝝍), 

𝑝(𝝑) = [(2𝜋)𝑚 det 𝐂𝑥]−1 exp {−
1

2
𝝑𝑇𝐂𝑥

−1𝝑}   (4)  

Using the Bayes theory the conditional probability 𝑝(𝒙|𝒚obs) is given by 

 𝑝(𝒙|𝒚obs) =
𝑝(𝒚obs|𝒙)𝑝(𝒙)

𝑝(𝒚obs)
     (5) 

It is proportional to  

𝑝(𝒙|𝒚obs) ∽ exp {−
1

2
[(𝒚obs − H𝒙)𝑇𝐂𝑦

−1(𝒚obs − H𝒙) + (𝒙 − 𝒙prior)
𝑇

𝐂𝑥
−1(𝒙 − 𝒙prior)]} (6) 

After some manipulations the value �̂� which maximizes the above conditional 

probability is obtained which gives the Bayes estimator of the fluxes 

�̂� = 𝒙prior + (H
𝑇𝐂𝑦

−1H+𝐂𝑥
−1)

−1
H

𝑇𝐂𝑦
−1(𝒚obs − H𝒙prior)      (7) 

The statistical uncertainty of the Bayesian estimator can be calculated as a covariance 

matrix 

Ĉ𝑥 = (H
𝑇𝐂𝑦

−1H + 𝐂𝑥
−1)

−1
= 𝐂𝑥 − 𝐂𝑥H

𝑇(H𝐂𝑥H
𝑇 + 𝐂𝑦)

−𝟏
H𝐂𝑥    (8) 
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The estimate �̂� is the sum of the prior estimate plus a correction, which depends on the 

deviation of observations from their predicted values. This correction improves the 

initial estimate of fluxes (e.g. obtained from disaggregation of the inventory estimates). 

The expression (8) informs us that the errors of the improved estimates (the values on 

the diagonal of Ĉ𝑥) are not bigger (and very likely smaller) than the errors of the á priori 

estimate. 

To use the above expressions, one has to know estimates of the covariance matrices 

Ĉ𝑥 and 𝐂𝑦. This issue is discussed in numerous papers, e.g. [45, 57, 63]. Various 

methods of finding appropriate values have been proposed; very often diagonal 

matrices have been used. Exponential decay of covariance values, both in space and/or 

time, has been found to match the reality better. Michalak et al. [51] develop a 

maximum likelihood method for estimating the covariance parameters. The likelihood 

function is formulated and the Cramér-Rao bound is derived. 

The idea to use the likelihood function approach has been also used in the so-called 

geostatistical inverse modelling [27]. In this setting, instead of using prior information, 

emissions are modelled as linear combinations of trends. More advanced modelling of 

the fluxes has been proposed in the so-called assimilation data method proposed by 

Kaminski et al. [39], and then used e.g. in [60]. In this method, a more thorough model 

of emissions from the biosphere is included. 

The above expressions have been used mostly in flux inversion studies. Ciais et al. 

[14] provide various comments on practical applications of this sort of methods. Peylin 

et al. [57] use them for estimating monthly European CO2 fluxes and report 60% 

reduction of errors. Rivier et al. [63] apply them for estimating monthly fluxes of CO2 

from the biosphere and ocean for the global and European scale. The Bayesian estimate 

errors are reduced therein by 76% for the western and southern Europe, and by 56% for 

the central Europe. Lauvaux et al. [45] give inversion results for a 300km × 300km 

region in the South-West of France near Bordeaux with the 8km × 8km resolution of 

CO2 fluxes, reporting about 50% error reduction. Continuous measurements were taken 

in two towers, and two aircrafts measuring CO2 were used. Thompson et al. [70] 

estimated the N2O fluxes in the western and central Europe. With only one in-situ 

measurement point used for inversion, they obtained between 30% and 60% error 

reduction for Germany. 

The idea of atmospheric inversion methods is very general, and it can be used for 

improving estimates given any additional information in a suitable form. Atmospheric 

measurements are rather rare in space, so it may be difficult to obtain significant 

improvement for a very fine spatial grid for large areas. However, using local 

measurements and fine gridded a priori data the good resolutions can be achieved. For 

example, Gałkowski [21] obtained this way emission estimates with the resolution of 

few kilometers using measurements performed the stations in Kraków, and at Kasprowy 

Wierch located on a mountain in Polish Tatras (1989 m a.s.l.) some 100 km south of 

Kraków. This resolution is only a few times coarser than the very fine resolutions of 1-

2 km, which have been obtained by using inventory data and disaggregation based on 

proxies. 

Atmospheric inversion methods seem nowadays to be the most important 

approaches used to constrain estimates of emission fluxes from the biosphere. 

3.2. Measurements of tracers 

Measurement of tracers connected with emissions helps to identify better the 

fluxes. The most important tracer is 14C isotope. The 14C isotope is produced by cosmic 



4th International Workshop on Uncertainty in Atmospheric Emissions 

----------------------------------------------------------------------------------------------------------------------------  

142 

 

radiation in the upper atmosphere, and then it is transported down and absorbed by 

living organisms. The 14C isotope decays in time of a few hundred years (its half-life 

equals approximately 5700 years), while the fossil fuels come from organisms which 

lived million to hundred million years ago. Intensive burning of the fossil fuels dilutes 

the atmospheric concentration of the 14C isotope [66]. This way (a lack of) 14C isotope 

may be used as a tracer of fossil fuel originated CO2 emissions, and the rate of dilution 

can be used to assess local/regional/global emissions of fossil fuel CO2. 

The 14C isotope has not been the only tracer of CO2 emissions considered. Also, 

SF6 and CO have been investigated [22, 47, 72], but 14C has been found to be the most 

useful and directly available. Lopez et al. [49] used additional tracers of CO, NOx, and 
13CO2, besides that of 14CO2, to estimate relative fossil fuel (from liquid and gas 

combustion) and biosphere fossil fuel (from biofuels, human and plant respiration) CO2 

in Paris, and got good agreement. 

Estimation of the fossil fuel CO2 basically comes from two mass balance equations, 

for CO2 and 14C (or 14CO2), which are presented in the concentration form (or, more 

often, in the mixing ratio form; the mixing ratio 𝑠 is defined as 𝑠 = 𝜌𝑐/𝜌𝑎, where 𝜌𝑐 is 

a CO2 density and 𝜌𝑎 is the air density) 

CO2

obs
 = CO2

bg
 + CO2

ff
 + CO2

bio
 + CO2

other
     (9) 

C
obs

 = C
bg

 + C
ff14

 + C
bio 14

+ C
other141414

    (10) 

where the superscripts stand for, respectively, the observed (obs) mixing ratio, 

background (bg) mixing ratio – without the local fossil fuel emission, fossil fuel (ff) 

mixing ratio, biosphere (photosynthesis and heterotrophic respiration) component (bio), 

and other components, like those coming from burning of biomass, nuclear industry or 

ocean (other). The 14C isotope is typically measured as a relative difference between the 

(13C corrected) sample and absolute rate [40, 65] 

∆14C= 
(

C
14

C
)

obs

−  (
C

14

C
)

abs

(
C

14

C
)

abs

    (11) 

where the absolute (abs) value is the absolute radiocarbon standard (1.176ˑ10-12 

mol14C/molC), related to oxalic acid activity. Equation (11) is usually expressed in per 

mill (‰) and written as 

 ∆14C = [
(

C
14

C
)

obs

(
C

14

C
)

abs

− 1] ˑ1000 [‰]    (12) 

After some transformation the following final equation can be obtained 

∆14C
obs

CO2
obs

 = ∆14C
bg

CO2
bg

 + ∆14C
ff

CO2
ff

 + ∆14C
bio

CO2
bio

 + ∆14C
other

CO2
other

 (13) 

From (9), the concentration of one component can be calculated and inserted to (13). 

The choice of the eliminated component depends in principle on possibility of 

measuring the values in the equations, and the case considered. For example, having 

eliminated CO2
obs

, the equation for CO2
ff

 is found as follows 

  CO2
ff =

 (∆14Cobs − ∆14Cbg)ˑCO2
bg

 ∆14Cff −  ∆14Cobs
 + 

(∆14Cobs  −  ∆14Cbio)ˑCO2
bio

∆14Cff −  ∆14Cobs
 + 

(∆14Cobs − ∆14Cother)ˑCO2
other

∆14Cff −  ∆14Cobs
 

As the concentration (and mixing ratio) of 14C in the fossil fuel CO2 is equal to 0, then 

from (11) we have Δ14Cff = −1000. It is often assumed that CO2
other

 = 0, particularly 

when a site is far from other sources. Other assumptions may be appropriate for the area 
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considered, as this methodology can be applied to the studies of different scales, ranging 

from the global ones to small-scale.  

Various authors discuss assumptions and assess underlying uncertainties. Turnbull 

et al. [73] present a systematic discussion and quantify uncertainties using modelling 

and the above equations.  

Another important aspect is the choice of location for measurements of background 

values. Since the measurements are usually taken for long time periods, the background 

values are taken from observations at high-altitude sites. In Europe, commonly used 

background observations come from the High Alpine Research station Jungfraujoch at 

3450 m a.s.l. in the Swiss Alps. Other local sites considered in Europe are the Vermunt 

station in Austria (1800 m a.s.l.) and the Schauinsland in Germany (1205 m a.s.l.). In 

Poland, there is an observation site at Kasprowy Wierch (1989 m a.s.l.) in the High 

Tatra Mountains, which can be used as a regional reference station [44]. Turnbull et al. 

[73] estimate differences of 1-3 ‰ due to the choice of a background site.  

The resolution of   CO2
ff

 determination depends, first of all, on a spatial distribution 

of ∆14C
ff

measurements. The ∆14C
ff

 measuring observation stations are rather scarce. 

For instance, in 2008 there were only 10 measurement sites in Europe [56]. Much better 

spatial resolution can be obtained using measurements in plant materials, like corn 

leaves, rice, grape wine ethanol, grass, tree leaves, and tree rings. Most of them allow 

only for annual estimation, so measurements have to be done for many years to get 

longer time series. Only wine ethanol and tree rings enable historical records. This way 

Palstra et al. [56] was able to measure 14C in 165 different wines from 32 different 

regions in 9 different European countries. The measurements were compared with those 

obtained from a regional atmospheric transport model, predicting fossil fuel CO2 with 

the resolution 55km × 55km, with a good compatibility. Riley et al. [62] used 

measurements from winter annual grasses collected at 128 sites across California, USA, 

to model transport of fossil fuel CO2 by using a regional transport model with the 

resolution 36km × 36km. These resolutions are still not high enough to be directly 

useful in very fine gridded cells and need to be disaggregated for this or used for 

improving estimates in coarser grid.  

3.3. Direct local measurements of fluxes 

The fluxes can be also measured. The fluxes from big chimneys are actually 

estimated with quite good accuracy. But also fluxes coming from the biosphere or urban 

environment can be measured using several methods. Observations from the flux towers 

are taken above the plant canopies, and use the so-called eddy covariance method. The 

basic idea of the eddy covariance can be found in [10]. Foken & Wichura [19] discuss 

the connected errors. Other possible measurements use chamber system, see an example 

in [75], to measure fluxes coming from the soil.  

The flux tower observations could be a perfect way to provide very high resolution 

emission fluxes from the biosphere both in space and time provided that a net of flux 

towers is dense enough. Unfortunately, flux towers are rather scarce. Even over the 

large area of USA and Canada, only 36 flux tower observations are reported [58]. Their 

use can be therefore rather considered in the future, when more flux towers are 

constructed. At present, they are used mainly for an assessment of biosphere emission 

models, see [3] or [58]. 

When using local flux measurements, particularly coming from the soil, some 

problems may arise with high spatial variability of the obtained results For example, 

Gałkowski [21] reports three times difference between measurements of nitrous oxide 

fluxes from the soil in a distance of few meters.  
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To be useful in estimation of areal data, the point measurements have to be 

interpolated. Geostatistical methods, like Kriging [15, 23], are usually applied. It is, 

however, suitable only for homogeneous fields. Bayesian melding [20] is a method that 

can cope with usual inhomogeneity of pollution fields, see e.g. [48]. These methods 

have been developed to include time dependence, [4, 46].  

4. Combining multi-model estimates 

There are many different ways to combine results of models. Three groups are 

distinguished in this paper, although the authors do not claim that they cover all 

published methods. 

Averaging. Simple averages, see e.g. Oda (2015), can be quite efficient. Weighted 

averages  

�̅� =
∑ 𝑤𝑖𝑥𝑖𝑖

∑ 𝑤𝑖𝑖
 

perform usually better, but the weights 𝑤𝑖 have to be defined in them. Usual method of 

determining weights from the historical differences between the model output and 

observations cannot be used, as observations of real emission values do not exist. The 

situation is a bit similar to combining models in climate projections, see [41, 69] for 

review of the methods used there. As the models use projections for the future, both the 

discrepancies of the model output from the ensemble mean in the current time and in 

the future are considered there. For example, in reliability ensemble average method 

proposed in [26] the weights are calculated as the product of two terms inversely 

proportional to the absolute values of these discrepancies. Adaptation to emission 

models could use only one discrepancy. The calculations can follow iteratively. 

Bayesian approach. The Bayesian methodology proposed in the atmospheric 

inversion may be applied for combining model results, which give independent 

information complementing each other. In this case, the following function has to be 

minimized 

 𝐽 = (𝒚obs − 𝒙)𝑇𝐂𝑦
−1(𝒚obs − 𝒙) + (𝒙 − 𝒙prior)

𝑇
𝐂𝑥

−1(𝒙 − 𝒙prior)   (14) 

where 𝒚obs is the vector of the emission estimates from the first model and 𝒙prior is the 

vector of estimates from the second one. The solution of the minimization problem is   

�̂� = 𝒙prior + (𝐂𝑦
−1+𝐂𝑥

−1)
−1

𝐂𝑦
−1(𝒚obs − 𝒙prior) = 𝒙prior + 𝐂𝑥(𝐂𝑦+𝐂𝑥)

−1
(𝒚obs − 𝒙prior)      (15) 

and the estimate of the improved estimate covariance matrix takes the form 

Ĉ𝑥 = (𝐂𝑦
−1 + 𝐂𝑥

−1)
−1

= 𝐂𝑥 − 𝐂𝑥(𝐂𝑥 + 𝐂𝑦)
−𝟏

𝐂𝑥      (16) 

Particularly simple computations are obtained for diagonal covariance matrices 𝐂𝑥 and 

𝐂𝑦. In this case the above formulae read 

�̂�𝑖 = 𝑥𝑖,prior +
𝑐𝑖𝑖,𝑥

𝑐𝑖𝑖,𝑥+𝑐𝑖𝑖,𝑦
(𝑦𝑖,obs − 𝑥𝑖,prior),        𝑖 = 1, … , 𝑛    (17) 

�̂�𝑖𝑖,𝑥 =  
1

1

𝑐𝑖𝑖,𝑥
+

1

𝑐𝑖𝑖,𝑦

=
𝑐𝑖𝑖,𝑥𝑐𝑖𝑖,𝑦

𝑐𝑖𝑖,𝑥+𝑐𝑖𝑖,𝑦
,       𝑖 = 1, … , 𝑛      (18) 

It is readily seen that �̂�𝑖𝑖,𝑥 ≤ 𝑐𝑖𝑖,𝑥 and �̂�𝑖𝑖,𝑥 ≤ 𝑐𝑖𝑖,𝑦. This procedure can be generalized to 

more than two models. 

Joint probability distribution approach. This approach has been proposed by 

Kryazhimsky [42]. In his approach no weighting is used. He operates on the joint 

probability distribution (multivariable distribution) obtained as the product of the 

distributions of individual distributions under assumption of their independence, as in 

the bivariate case 
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𝑝(𝑥, 𝑦) = 𝑝(𝑥)𝑝(𝑦) 
although the method can be applied to a higher multivariate distribution as well. In 

opposition to the two previously mentioned ones, this approach has been as yet not 

extensively evaluated in practical applications. It was used in [43] for combining 

estimates of net primary production of forest obtained from two models.  

5. Final remarks 

A preliminary review of possibilities of using additional knowledge to improve 

fine gridded estimates of GHG emissions is presented. Besides the mentioned above, 

there may be still more information that can help in better estimation of gridded 

emissions, but not dealt with in the paper. Different constraints on local emission (like 

lack of specific sources in the cells) can be possibly used in obtaining better accuracy. 

There may be, for example, independent emission assessments done on part of 

considered regions. Also some common sense knowledge can be used. One of important 

problems connected with integration of different knowledge is mismatch of the grids 

used in different studies, often spotted in real applications. These problems are 

discussed [74], who also presents an approach based on artificial intelligence methods 

to solve them. Many practical difficulties are also pointed to in [31].  

A basic question is how much all additional knowledge can improve the estimates 

obtained by using proxy variables. This probably will depend on specific case. Not 

much can be probably expected in the case of industrial emissions, particularly of the 

carbon dioxide gas. However, for such emissions like nitrous oxide, N2O, from the 

biosphere, which is very poorly estimated by present techniques, introduction of, say, 

atmospheric inversion methods can perhaps give a considerable improvement. These 

questions can be solved only by investigations of specific cases. This makes the area 

for interesting research projects. 
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Abstract 

Because of the G4M model non-linearity marginal abatement cost curves (MACCs) are 

sensitive to variation of the model parameters, irrespective of the fact that the same parameter 

variations are applied in both zero-CO2 price and non-zero-CO2 price runs. Since integrated 

assessment models in general are complex computer models with non-linearity one may expect 

all MACCs constructed using such models are sensitive to variation of the model parameters. 

The MACCs constructed using G4M are much more sensitive to parameter variation at a certain 

range of CO2 prices, usually low CO2 prices. The MACCs for total biomass CO2 emissions 

constructed using G4M are most sensitive to variation of corruption coefficient (measuring 

efficiency of use of abatement costs) and, on the second place, to agriculture land price. Experts 

applying MACCs for policy analysis must be aware of uncertainty features of the MACCs as 

the uncertainty can influence the outcome of the analysis. 

Keywords: G4M, marginal abatement cost curve, sensitivity, model parameters 

1. Introduction 

Marginal Abatement Cost Curve (MACC) relates potential of greenhouse gas 

(GHG) emissions reduction over a baseline and costs of the reduction. It is often used 

by research institutions and governments in a number of countries for analysis of 

mitigation policies. MACCs are constructed, in particular using integrated assessment 

models. MACCs provide information for analysis of such policy instruments as 

implementation of a CO2 tax or a cap-and-trade system [1].  

Experts employing MACCs for policy analysis must be aware of uncertainty in the 

MACCs as the uncertainty can influence the outcome of the analysis. For example, in 

case of a CO2 tax implementation an uncertain MACC may give wrong information on 

possible reduction of CO2 emissions resulting from the implemented tax; in case of 

introduction of a cap-and-trade system an uncertain MACC may misinform on carbon 

price that could result from a certain volume of carbon allowances. 

Global Forest Model (G4M) simulates afforestation, deforestation, forest 

management directed at sustainable wood production, response of the mentioned 

processes to CO2 price incentives and respective CO2 emissions. G4M is applied for 

development of MACCs including such mitigation options as enhanced afforestation, 

avoiding deforestation and forest management directed to both wood production and 

carbon sequestration [2].  

This study is aimed at answering the questions: what is sensitivity of the MACCs 

to selected model parameters and how the parameter uncertainties can impact GHG 

abatement policies related to forest sector?  
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2. Method 

We study sensitivity of MACCs to variation of three G4M parameters selected in 

the consultations among the project3 partners: corruption coefficient (cr), wood price 

(w) [USD/m3] and agriculture land price (l) [USD/ha]. The corruption coefficient 

measures the efficiency of incurred costs for abatement: cr=1 (highest efficiency) 

means that no abatement costs are consumed by corruption and cr=0 (lowest efficiency) 

means that all costs are consumed by corruption.  

We run the G4M model for a number of CO2 price scenarios: initial prices starting 

in 2020 (0, 1, 3, 5, 10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120 USD/tCO2) and rising 

5% per year (that results in CO2  price range of 4-520 USD/ton CO2 in 2050) using 

standard parameter values as in [2]. For the purposes of sensitivity analysis we vary the 

values cr, w, and l mentioned above: we decrease/increase them by 1, 2.5, 5, 10, 50 and 

90% (only single parameter was changed during a run). For a year within the range 

2020-2050 a MACC is defined as a difference of biomass CO2 emissions at zero CO2 

price and a non-zero CO2 price. The emissions include afforestation, deforestation and 

forest management components. The parameter deviation was applied to all CO2 price 

runs thus serving as a bias for MACC. For the run we used population and GDP 

following SSP2 scenario (https://secure.iiasa.ac.at/web-

apps/ene/SspDb/dsd?Action=htmlpage&page=about), wood demand, regional 

agriculture land prices and wood prices were estimated by GLOBIOM model 

(http://www.globiom.org/) under assumption of bioenergy demand of 50PJ/year.  

We calculated 12 MACC variations for each parameter. The results get the 

following notations: crpV, crmV, wpV, wmV, lpV and lmV, where p means an increase 

of a parameter, m means a decrease of a parameter and V means 1, 2.5, 5, 10, 50 or 90% 

change of the parameter. Because of limited space of the paper we present detailed 

analysis of MACC sensitivities to 10, 50 and 90% variation of the parameters globally 

as well as summary information for Brazil, Indonesia and Mexico for the year 2030. 

3. Results 

At 1-5% variation of the parameters deviation of the global MACC curve follows 

the shape of respective deviations at 10% variation of the parameters but the amplitude 

is smaller. At 10% variation of the parameters the global MACC curve is most sensitive 

when CO2 price is 5 USD/tCO2 (Figure 1-3). At this CO2 price a decrease of the 

corruption coefficient (means more abatement costs are consumed by corruption) 

makes the highest impact on the MACC – the efficiency of abatement costs decreases 

by 230 MtCO2/year. Increase of the corruption coefficient (means less abatement costs 

are consumed by corruption) has a slightly smaller effect on the MACC – the abatement 

increases by 229 MtCO2/year. Agriculture land price variation influences the MACC 

considerably – decrease of the land price yields 172 MtCO2/year higher abatement 

while increase of the land price decreases the abatement by 122 MtCO2/year. Global 

MACC’s deviation from a baseline (all parameters cr, w, l unchanged) diminishes with 

the increasing CO2 price slower than the countries’ MACCs considered in the study. 

The variation of corruption coefficient makes the maximum impact on the global 

MACC across the 3 parameters at CO2 prices 1-30 and 80 USD/tCO2. The variation of 

wood price makes the maximum impact on MACC across the 3 parameters at 40-60 

                                                           
3 "Options Market and Risk-Reduction Tools for REDD+" funded by the Norwegian Agency for 

Development Cooperation under agreement number QZA-0464 QZA-13/0074. 
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and 100-120 USD/tCO2. Wood price reaches its maximum impact on MACC at 15 

USD/tCO2. 
 

 

Figure 1. Sensitivity of MACC for total biomass CO2 emissions to deviations of 

agriculture land price globally in 2030. 

 

Figure 2. Sensitivity of MACC for total biomass CO2 emissions to deviations of 

wood price globally in 2030. 

 

Figure 3. Sensitivity of MACC for total biomass CO2 emissions to deviations of 

corruption coefficient globally in 2030. 
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At 50% variation of the parameters the global MACC curve is most sensitive when 

CO2 price is 5 USD/tCO2 (Figure 1-3). At this CO2 price decrease of the corruption 

coefficient (means more abatement costs are consumed by corruption) causes deviation 

of the MACC by -1,310 MtCO2/year. The effect of the corruption coefficient variation 

diminishes by 15 times to -75 MtCO2/year at 120 USD/tCO2. The corruption coefficient 

has the largest impact on MACC across the parameters at 1 and 5-30 USD/tCO2. Wood 

price has a considerable effect on MACC at all CO2 prices with maximal value of 531 

MtCO2/year at 5 USD/tCO2 and has the largest effect across the parameters at 40-120 

USD/tCO2. Agriculture land price makes maximum impact on MACC (903 

MtCO2/year) at 3 USD/tCO2 when it overcomes the effect of the other parameters. 

At 90% variation of the parameters the MACC curve is most sensitive at 20 

USD/tCO2 (Figure 1-3). At this CO2 price decrease of the corruption coefficient (means 

more abatement costs are consumed by corruption) causes deviation of the MACC by 

-3,477 MtCO2/year. The effect of the corruption coefficient variation diminishes slowly 

and has the highest impact on MACC across the parameters at 5-120 USD/tCO2. 

Agriculture land price has lower impact with maximum at 5 USD/tCO2 (1,699 

MtCO2/year), it exceeds the impact of the other parameters at 1 and 3 USD/tCO2. Wood 

price reaches its maximum impact on MACC (733 MtCO2/year) at 10 USD/tCO2. 

The corruption coefficient has the largest impact on the MACC at all levels of the 

parameter changes. With increasing the amplitude of the parameter variation the 

maximum impact shifts from 5 USD/tCO2 (at 10 and 50% variation) to 20 USD/tCO2 

(at 90% variation). Wood price has relatively even impact at all CO2 prices, while 

agriculture land price has two picks – higher at low CO2 prices and lower at high CO2 

prices. Increase of the parameter variation amplitude to 90% defuses the CO2 price at 

which individual parameters cause maximum deviation of MACC. 

For Brazil and Mexico similarly as in the global case considered above the 

corruption coefficient has the largest impact on the MACC at all levels of parameter 

variations. With increasing the amplitude of the parameter variation the maximum 

impact shifts from lower CO2 prices to higher: in Brazil – from 5 USD/tCO2 (57 

MtCO2/year) at 10% corruption coefficient increase to 10 USD/tCO2 (-443 

MtCO2/year) at 50% corruption coefficient decrease and to 15 USD/tCO2 (-644 

MtCO2/year) at 90% corruption coefficient decrease; in Mexico – from 10 USD/tCO2 

(-9 MtCO2/year) at 10% corruption coefficient decrease to 15 USD/tCO2 (-51 

MtCO2/year) at 50% corruption coefficient decrease and to 25 USD/tCO2 (-70 

MtCO2/year) at 90% corruption coefficient decrease. 

In Indonesia the corruption coefficient does not make the overall maximum impact 

on the MACC, nevertheless the impact is considerable especially for CO2 prices over 5 

USD/tCO2 and large variation of the parameter. With larger decrease of the corruption 

coefficient the maximum of its impact on MACC shifts to higher CO2 prices. The 

corruption coefficient has the largest impact on MACC across the parameters at CO2 

prices greater than 5 USD/tCO2 for 50 and 90% variation of the parameters. Agriculture 

land price decrease has the largest impact on MACC at all levels of the parameter 

changes. With increasing the amplitude of the parameter variation the maximum impact 

shifts from 5 USD/tCO2 (-28 MtCO2/year) at 10% increase of the agriculture land price 

to 3 USD/tCO2 (177 MtCO2/year) at 50% and to 1 USD/tCO2 (306 MtCO2/year) at 90% 

decrease of agriculture land price. 



4th International Workshop on Uncertainty in Atmospheric Emissions 

----------------------------------------------------------------------------------------------------------------------------  

156 

 

4. Discussion 

The parameter deviation was applied to all CO2 price runs thus serving a bias for 

MACC. In this case MACC deviation is caused by the model non-linearity across CO2 

prices, i.e. different sensitivity of the emissions to the same deviation of a parameter at 

zero and non-zero CO2 prices. For the studied countries and globally the emission 

response to alteration of agriculture land price is very high at CO2 prices 3-10 

USD/tCO2 symmetrically to negative and positive deviations of the parameter (see 

Figure 4 for the global case). 

 

Figure 4. Sensitivity of total biomass CO2 emissions to agriculture land price globally 

in 2030. 

The emission response to wood price alteration has different shapes in the studied 

countries while the global case incorporates features of all countries. In Brazil the 

sensitivity is high at all CO2 prices but at the prices 1-5 USD/tCO2 the sensitivity 

changes its sign (with a maximum at 10 USD/tCO2). The “anomaly “ is explained by 

the fact that at some CO2 prices increase of wood price causes increase of deforestation 

rate because a part of deforested wood is sold that pushes switching from forestry to 

agriculture. This is the effect of an interplay between agricultural land price, CO2 price, 

and wood price. The effect comes from the decision-making algorithm of G4M: 

conversion from forest to agriculture is based on the highest level of net present value 

(NPV) that can be achieved by one of these land use alternatives. In this case a higher 

wood price is not enough for economically sustainable forestry and (as a one-time profit 

from selling the wood) adds an incentive for moving to agriculture (deforestation) [2]. 

In Indonesia the emission response to wood price is variable over the CO2 prices with 

maximum deviations around 3 and 60 USD/tCO2. In Mexico the emission response to 

wood price is symmetrical by the sign of the parameter variation with maximum at 10-

15 USD/tCO2. For Mexico we see the same effect of increasing deforestation with 

increasing wood price at 5-10 USD/tCO2. The global picture communicates similar 

message: for the carbon price about 10 USD/tCO2 an increase of wood price increases 

deforestation as compared to a baseline corresponding to that carbon price (10 

USD/tCO2). 

The emission response to variation of the corruption coefficient has a similar shape 

– with a sharp maximum deflection of the emissions at CO2 prices 3-10 USD/tCO2 

when the corruption coefficient increases (see Figure 5 for the global case). When the 

corruption coefficient decreases the sensitivity is high at a wide range of CO2 prices up 

to the whole range if the corruption coefficient decreases by 90%. 
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The G4M model is non-linear on and sensitive to the variation of the cr, w, and l 

model parameters. Existence of a range of CO2 prices under which the MACCs are very 

much sensitive to the variation of model parameters, is, probably, model specific and 

connected with simulation of decision making and values of NPVs of the alternative 

land uses. 

 

 

Figure 5. Sensitivity of total biomass CO2 emissions to corruption coefficient 

globally in 2030 (greater coefficient means higher efficiency and less 

corruption). 

4. Final remarks 

Because of the G4M model non-linearity MACCs are sensitive to variation of the 

model parameters, irrespective of the fact that the same parameter variations are applied 

in both zero-CO2 price and non-zero-CO2 price runs. Since integrated assessment 

models in general are complex computer models with non-linearity one may expect all 

MACCs constructed using such models are sensitive to variation of the model 

parameters. 

The MACCs constructed using G4M are much more sensitive to parameter 

variation at a certain range of CO2 prices, usually low CO2 prices. 

The MACCs for total biomass CO2 emissions constructed using G4M are most 

sensitive to variation of corruption coefficient (measuring efficiency of use of 

abatement costs) and, on the second place, to agriculture land price. 

Experts applying MACCs for policy analysis must be aware of uncertainty features 

of the MACCs as the uncertainty can influence the outcome of the analysis, e.g. 

misinform on possible reduction of CO2 emissions resulting from the implemented CO2 

tax or misinform on carbon price that could result from certain total carbon allowances 

in case of introduction of a cap-and-trade system. 
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Abstract 

This short paper presents elements of a simulation environment for negotiation of prices in 

GHG emission permit trade and results of simulations of international trades performed by 

programmable agents. Several market mechanisms and strategies used by programmable 

agents are discussed and applied in simulations. The results show convergence of the trading 

schemes to the equilibrium, depending on the case that consists of the trading mechanism and 

the strategies used by the agents. The simulation can be used for estimation of equilibrium price 

at market designing stage. It can be also used for simulation of proposed markets for uncertain 

emission inventories, which is envisaged for further studies. 

Keywords: Greenhouse gases, emission permit trading, computer simulation, multi-agent 

systems 

 

1. Introduction 

Although the trading of GHG emission permits has been introduced in the Kyoto 

Protocol more than a dozen years ago and some experience has been already gathered, 

the markets are still unpredictable, particularly in assessment of the equilibrium price. 

Good estimate of the equilibrium price would allow the market planner to better 

organize the market and plan its parameters. Ermoliev at al. [8] proposed simulation of 

a bilateral trade using multi-agent systems for assessing the equilibrium price. A 

programmable agent would be under control of a party taking part in the trade and 

would use discreet private information to bid in a process of automatic negotiation. This 

simulation approach differs from the game-theoretic simulations, like those presented 

in [2, 3].  

Recently, estimates of marginal abatement curves obtained by using simulation tools 

were published, like those calculated in GAINS [26], EPPA [16], and using bottom-up 

modeling [1]. This enables simulations of trades among parties. In this paper a few 

market mechanisms are considered to simulate trade among 16 regions of the world. 

The cost curves were adopted from [16]. Results obtained by using different negotiation 

methods and different price formation strategies by programmable agents are compared 

and discussed. This paper develops the earlier approach by Nahorski at al. [18], where 

also a much smaller group of 5 parties was considered, by considering more market 

mechanisms and many other negotiation strategies. Multi-agent trade simulations could 

be also used for checking designed market schemes before they are practically 

implemented. 
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The simulation approach could be also used for markets for enterprises. The main 

obstacle is knowledge of marginal abatement curves in such markets. 

Another difficulty in organizing the GHG emission permit markets is high diversity 

of emission accuracy bounds among the trading countries. There is a couple of 

approaches to cope with this problem, see e.g. [9, 14, 15, 18, 22, 27]. Simulation of 

these approaches by using multi-agent tools is envisage as continuation of the results 

presented in this paper. 

2. The trading mechanisms used in simulations 

A negotiation is a dialog between two or more parties, in order to resolve a conflict 

or to reach an agreement. A dialog is an exchange of communicates between two or 

more parties to reach their personal aim. The details of conducting the negotiation 

define most of the trading schemes. The automated agents negotiate parameters of the 

deal, as for example price, or conditions of delivery. The negotiation models can be 

divided into two categories: bilateral negotiations, which involve usually two parties 

(although multilateral negotiations are also possible), and auctions that by definition 

include multiple parties. There are many types of auctions which are in use, to mention 

the English Auction, the First-Price Sealed-Bid Auction, the Vickerey Auction, the 

Dutch Auction or Dutch Flower Auction, and the Continuous Double Auction. In the 

paper we consider the Dynamic Bilateral Negotiations and the following types of 

auctions: Continuous Double Auction, Sealed-Bid Auction, Sealed-Bid Reverse 

Auction, and Sealed-Bid Double Auction. For more detailed introduction to trade by 

programming agents see e.g. [12].  

A market participant intending to buy a commodity (a buyer) places an offer; called 

a bid, together with the number of units and the price that the buyer is willing to pay 

for it. A participant intending to sell a unit of a commodity (a seller) places an offer; 

now called an ask, which includes the number of units and the price the seller wants. 

The market clears whenever the price of a bid is equal or greater than the price of the 

ask. The paired offers are removed from the market, and all other offers remain 

unchanged. The clearing price in every trade mechanism is set in the middle of the 

lowest accepted buying price (lowest accepted bid) and the highest accepted selling 

price (highest accepted ask). Every offer consists of the offered price and the offered 

number of permits.  

2.1 Continuous Double Auction (CDA) 

The Continuous Double Auction (CDA) is one of the market mechanisms frequently 

used in the stock market and also in their computer simulations. This type of market 

consists of three entities: the sellers, the buyers, and the market operator (the broker) 

that manages the trade: orders the bids and asks, and arranges transactions if prices of 

asks are lower or equal than prices of bids. The broker also records important market 

events and outstanding offers. The current lowest ask is called the outstanding ask, and 

the highest bid is called the outstanding bid, both these values are important during 

formulation of the offer price. 

The buyers and sellers in the market are expected to behave rationally: their bids and 

asks should be profitable, and the ask-bid spread should be reduced in time to enable 

the market prices to evolve toward the equilibrium price. 

There are variants of CDA markets, which depend on specifics of particular markets 

or traded goods. The CO2 emission permits market also requires some modifications of 
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the general schema. The most important is division of CDA trade into cycles. Market 

participants may give their offers simultaneously, but only one of each kind in one 

cycle. Having collected all offers, the cycle terminates. Only these transactions are 

executed which are profitable for both participants. Offers unused in one cycle could 

be valid in a limited number of cycles. But it is rather favorable to make a new offer in 

the consecutive cycle, taking into account new market events. Cycles in auctions are 

not identified with any real periods of time and time is not crucial in this kind of market. 

Surpluses and shortages from one cycle can be sold/bought in subsequent ones. 

Due to changes of marginal prices of market participants caused by conducted 

transactions (see Fig. 3), limitations are imposed on the number of transferred permits 

in one transaction to avoid big perturbations of prices in consecutive cycles. 

In another variant, the transactions are concluded immediately after an ask and a bit 

matches have been detected. Also this variant is considered in the simulations. 

2.2 Dynamic Bilateral Transactions (DBT) 

In the bilateral trading, agents split into pairs and a single negotiation process occurs 

inside any pair. The splitting process is performed randomly, it occurs after termination 

of the running negotiation process, and is repeated iteratively. Established pairs conduct 

bilateral contracts depending on their expected profits. Each negotiation process may 

lead to an agreement or not. 

2.3 Sealed-bid Auction\Reverse Auction (SA\SRA) 

In the sealed-bid auction mechanism there are two roles in the trade: the auction 

operator, and the bidders. The operator calls for the auction to sell/buy a number of 

permits, possibly specifying the minimum/maximum unit price. Responding, a bidder 

gives its preferred unit price. The operator collects all the bids, and selects the winning 

one, with the highest/lowest unit price. In the simulations, the operator role is chosen 

randomly among the agents, while the remaining are the bidders. 

2.4 Sealed-bid Double Auction (SDA) 

In the double auction there are three roles: buyers, sellers, and the operator. The 

operator calls for the auction, and the sellers put the asks, and the buyers put the bids. 

Single clearing uses a clearing price that is not greater than prices of accepted bids, and 

not lower than prices of accepted asks. The clearing can also consists of more than two 

offers. Then, the clearing price should be set to satisfy as many asks and bids as 

possible.  

3. Strategies used in the simulations 

Vytelingum et al. [25] define a strategy of an agent as a set of atomic actions (that 

the agent can do), which were chosen based on the history of the market states and on 

the agent states. In a real situation it is very unlikely that an agent has information about 

all historic states of the market and especially about all parameters of the market. That 

is why real strategies are operating with limited number of variables, considering 

limited computational and sensory resources. 

Strategies can be divided to those which use only current information and those 

which take into account also the history of the market states [17]. Among the former 

one there are the Frank or Truth Telling strategy, Pure Simple strategy, Kaplan strategy 

[23], Zero Intelligence strategy, and Preist and van Tol strategy [20].   
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Among the strategies that consider history, GD strategy proposed in [10] estimates 

so-called belief function from gathered information, which helps to form the proposed 

price. Other, complicated strategies with multi-level learning, are the Adaptive-

Aggressive strategy and FL strategy [13]. The latter uses fuzzy logic reasoning. In this 

paper we use few chosen strategies described below. 

3.1 Frank (F) or Truth Telling (TT) strategy 

In the Frank strategy all agents bid according to its current marginal prices. As they 

do not behave strategically, the strategy is called Frank or Truth Telling. 

In a similar simple strategy, described in [4] and called Pure Simple strategy, agents 

bid a constant 10% below the value of private evaluation. This strategy under the name 

Gamer was also played in the Santa Fe tournament [21], where it reached a similar, 

very low place to the TT and ZI strategies. 

3.2 Zero-intelligence plus (ZIP) strategy 

Zero intelligence (ZI) strategy was proposed by [11]. A ZI trader simply submits a 

random offer drawn from a uniform distribution.  

Zero-intelligence plus (ZIP8) strategy, described in [5], bases on the auction history. 

8 means the number of parameters passed to the strategy. It was later extended to 60 

parameter strategy [6], which is however not discussed here. Every agent has the private 

price limit 𝜆𝑖. For the seller it is the minimal value for which he is willing to sell one 

permission, and for the buyer it is the maximal value for which he is willing to buy one 

permission. At any time t, agent i calculates the price using its real-valued profit-margin 

𝜇𝑖(t). 

𝑝𝑖(𝑡) =  𝜆𝑖 (1 + 𝜇𝑖(𝑡)) – for sellers      (1) 

𝑝𝑖(𝑡) =  𝜆𝑖 (1 − 𝜇𝑖(𝑡)) – for buyers      (2) 

The ZIP8 strategy assumes the constant recalculation of the real-valued profit 

margin. It is first drawn from the uniform distribution according to parameters: 

𝜇𝑖~𝑈(𝜇𝑚𝑖𝑛, 𝜇𝑚𝑎𝑥) 

In the course on the auction, the real-valued profit margin changes its value. To 

calculate it, the following is assumed. In the course of the auction, an agent can be either 

greedy or careless, and this property changes during the auction. A greedy agent wants 

to draw a largest possible profit from every transaction, neglecting the inherent risk. 

Careless agent is more aggressive and eager to enter into transaction, caring not so much 

about the profit.  

An agent chooses at any time its behaviour (greedy or careless). It calculates its own 

possible offer from equations (1) – (2), and then checks the relation between calculated 

and the previous offer submitted to the market 𝑞𝑗−1. If the last offer has been rejected, 

an agent becomes careless, otherwise: 

 if the agent is a seller and the last selling offer was greater than it had been 

calculated, it becomes greedy, otherwise it becomes careless,  

 if the agent is buyer and the last buying was greater than it had been 

calculated, it becomes careless, otherwise it becomes greedy. 

Agent calculates its interim offer according to the following equation: 
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𝜏𝑗 = 𝑅𝑖𝑞𝑗−1 + 𝐴𝑖 

The parameter 𝑞𝑗−1 is the previous offer submitted to the market, 𝐴𝑖 and 𝑅𝑖 are 

parameters that are drawn from the uniform distribution according to the following 

rules. 

If the agent is careless: 

𝐴𝑖~𝑈(1 − 𝐶𝑅 , 1), 𝑅𝑖~𝑈(−𝐶𝐴, 0) 

If the agent if greedy: 

𝐴𝑖~𝑈(1,1 + 𝐶𝑅),  𝑅𝑖~𝑈(0, 𝐶𝐴) 

where 𝐶𝐴 and 𝐶𝑅 are the parameters of the strategy.  

Then, an agent calculates the interim profit margin: 

𝑑𝑗 = 1 −  
𝜏𝑗

𝜆𝑗
 

and subtracts the margin used in the previous negotiation round: 

𝛿𝑗 = 𝑑𝑗 −  𝜇𝑗−1 

Next, the profit margin is modified using the Widrow-Hoff delta rule, that is the new 

margin is calculated as  

𝜇𝑗 =  𝜇𝑗−1 + ∆𝑗 

where ∆𝑗 is calculated using the following rules with the learning rate 𝛽𝑖:  

 if the agent is a seller: 

o if it is careless and 𝛿𝑗 ≤ 0 or it is greedy and 𝛿𝑗 > 0, then: 

Δ𝑗 = 𝛽𝑖(𝑑𝑗 − 𝜇𝑗−1) 

o if it is careless and 𝛿𝑗 > 0 or it is greedy and 𝛿𝑗 ≤ 0, then: 

Δ𝑗 = 𝛽𝑖(𝜇𝑗−1 − 𝑑𝑗) 

 if the agent is a buyer: 

o if it is careless and 𝛿𝑗 > 0 or it is greedy and 𝛿𝑗 ≤ 0, then: 

Δ𝑗 = 𝛽𝑖(𝜇𝑗−1 − 𝑑𝑗) 

o if it is careless and 𝛿𝑗 ≤ 0 or it is greedy and 𝛿𝑗 > 0, then: 

Δ𝑗 = 𝛽𝑖(𝑑𝑗 − 𝜇𝑗−1) 

The learning rate 𝛽𝑖 is drawn from the uniform distribution:  

𝛽𝑖~𝑈(𝛽𝑚𝑖𝑛, 𝛽max). 

Now, we can calculate the new profit margin: 

𝜇𝑗 = 𝜇𝑗−1 − 1 + Γ𝑗 

where Γ𝑗 is the updating parameter, calculated using the equation: 

𝛤𝑗 = 𝛾𝛤𝑗−1 + (1 − 𝛾)𝛥𝑗 
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where 𝛾 is the profit margin momentum coefficient. It is set by drawing from the 

uniform distribution: 

𝛾~𝑈(𝛾𝑚𝑖𝑛, 𝛾𝑚𝑎𝑥) 

3.3 Adaptive-aggressive (AA) strategy 

The Adaptive-Aggressive strategy of price formulation has been presented in [24]. 

This is a rather complicated model of the price formulation, considering market events, 

marginal costs of contractors and estimates of the market equilibrium with elements of 

short- and long-term learning. 

The market participants are divided into intra-marginal and extra-marginal traders, 

depending on their limit price (marginal costs) j(t) in moment t and its relation to an 

estimate of the market equilibrium price �̂�∗(𝑡), that is the moving average of last N 

transaction prices pi. 

�̂�∗(𝑡) =
∑ 𝑤𝑖𝑝𝑖

𝑡
𝑖=𝑡−𝑁

𝑁
,       ∑ 𝑤𝑖

𝑡
𝑖=𝑡−𝑁+1 = 1,         𝑤𝑖−1 = 𝜌𝑤𝑖,          𝜌 = 0.9  (3) 

where: 

pi – transaction prices, 

N – time horizon of the equilibrium estimation, 

wi – weights, 

 - the forgetting factor (its value is set by the trading party). 

Each of these groups is naturally divided into buyers and sellers (this allocation of 

participants changes during the market activity). Thus, four different causes of price 

formulation are distinguished: 

• for an intra-marginal buyer 𝜆𝑗(𝑡) > �̂�∗(𝑡), 

• for an intra-marginal seller 𝜆𝑗(𝑡) < �̂�∗(𝑡), 

• for an extra-marginal buyer 𝜆𝑗(𝑡) < �̂�∗(𝑡), 

• for an extra-marginal seller 𝜆𝑗(𝑡) > �̂�∗(𝑡). 

So, the intra-marginal buyers and sellers are in good position for trading, while the 

extra-marginal ones in much worse. However, in the presented market functions of 

traders can be easily changed in consecutive iterations. 

The price formation in the AA strategy requires a lot of information about the 

market, and the formulae used for bidding and asking are different for buyers and 

sellers: 

• for a buyer 

𝑏𝑖𝑑𝑗(𝑡) = {
𝑜𝑏𝑖𝑑(𝑡) +

min(𝜆𝑗(𝑡), 𝑜𝑎𝑠𝑘
+ )−𝑜𝑏𝑖𝑑(𝑡)

𝜂
   - the first round

𝑜𝑏𝑖𝑑(𝑡) +
𝜏𝑗(𝑡)−𝑜𝑏𝑖𝑑(𝑡)

𝜂
                       - other rounds

  (4) 

 

𝑜𝑎𝑠𝑘
+ = (1 + 𝜁𝑟)𝑜𝑎𝑠𝑘(0) + 𝜁𝑎 ,            𝑜𝑎𝑠𝑘(0) = 𝑀𝐴𝑋𝐴𝑆𝐾 

where: 

MAXASK – the maximum price allowed on the market, 

𝜆𝑗(𝑡) – the marginal (secret) price of the bidder, 

𝑜𝑏𝑖𝑑(𝑡) – the current outstanding bid, 

𝜏𝑗(𝑡) – the target price (described later), 

𝜂 – a correction factor, 1 ≤ 𝜂 ≤ ∞(suggested value is 3), 

𝜁𝑎𝜁𝑟modification factors (suggested values are 0.01 and 0.02, respectively). 

• for a seller 
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𝑎𝑠𝑘𝑗(𝑡) = {
𝑜𝑎𝑠𝑘(𝑡) +

𝑜𝑎𝑠𝑘(𝑡)−𝑚𝑎𝑥(𝜆𝑗(𝑡), 𝑜𝑏𝑖𝑑
- )

𝜂
- the first round

𝑜𝑎𝑠𝑘(𝑡) −
𝑜𝑎𝑠𝑘(𝑡)−𝜏𝑗(𝑡)

𝜂
                   - other rounds

  (5) 

 

𝑜𝑏𝑖𝑑
- = (1 − 𝜁𝑟)𝑜𝑏𝑖𝑑(0) − 𝜁𝑎 , 𝑜𝑏𝑖𝑑(0) = 0 

 

where 𝑜𝑎𝑠𝑘(𝑡) is the current outstanding ask. 

The target prices 𝜏𝑗(𝑡) are different for all four categories: 

• for an intra-marginal buyer 
 

𝜏𝑗(𝑡) = {
�̂�∗(𝑡) (1 −

exp(−𝑟𝜃)−1

exp(𝜃)−1
)                    - for  − 1 < 𝑟 ⩽ 0

�̂�∗(𝑡) +
(𝜆𝑗(𝑡)−𝑝∗(𝑡))∗exp(𝑟𝜃)−1

exp(𝜃)−1
         - for      0 < 𝑟 < 1

  (6) 

• for an intra-marginal seller 
 

𝜏𝑗(𝑡) = {
�̂�∗(𝑡) + (𝑀𝐴𝑋𝐴𝑆𝐾 − �̂�∗(𝑡))

exp(−𝑟𝜃)−1

exp(𝜃)−1
            - for  − 1 < 𝑟 ⩽ 0

𝜆𝑗(𝑡) + (�̂�∗(𝑡) − 𝜆𝑗(𝑡)) (1 −
exp(𝑟𝜃)−1

exp(𝜃)−1
)       - for      0 < 𝑟 < 1

 (7) 

• for an extra-marginal buyer 
 

𝜏𝑗(𝑡) = {
𝜆𝑗(𝑡) (1 −

exp(−𝑟𝜃)−1

exp(𝜃)−1
)         - for  − 1 < 𝑟 ⩽ 0

𝜆𝑗(𝑡)                                           - for     0 < 𝑟 < 1
    (8) 

• for an extra-marginal seller 
 

𝜏𝑗(𝑡) = {
𝜆𝑗(𝑡) + (𝑀𝐴𝑋𝐴𝑆𝐾 − 𝜆𝑗)

exp(−𝑟𝜃)−1

exp(𝜃)−1
        - for  − 1 < 𝑟 ⩽ 0

𝜆𝑗(𝑡)                                                                - for      0 < 𝑟 < 1
  (9) 

 

The aggressiveness of the trader is an element of the short-time learning strategy 

and is controlled by the parameter 𝑟 ∈ [−1,1]. A trader with the value 𝑟 close to −1 is 

called a completely passive. It tries to buy at price near 0 and sell at price near 

𝑀𝐴𝑋𝐴𝑆𝐾 (with the maximum profit). A trader, for which 𝑟 = 0 is called active. It tries 

to buy and sell at price close to �̂�∗(𝑡) (with a moderate profit). At last the trader with 𝑟 

close to 1 is called a completely aggressive and tries to buy and sell at its price 𝜆𝑗(𝑡) 

(without profit). 

The degree of aggressiveness is controlled using the Widroff-Hoff rule: 
 

𝑟𝑗(𝑡 + 1) = 𝑟𝑗(𝑡) + 𝛽1(𝛿𝑗(𝑡) − 𝑟𝑗(𝑡))      (10) 
 

𝛿𝑗(𝑡) = (1 ± 𝜁𝑟)𝑟𝑗𝑠ℎ𝑜𝑢𝑡
± 𝜁𝑎       (11) 

where: 

 – random variable with a uniform distribution on the interval [0.2, 0.6], 

𝑟𝑗𝑠ℎ𝑜𝑢𝑡
– a value of rj at the currently last bid, 

𝛿𝑗(𝑡)- is obtained according to following rules: 

if there was no transaction at time 𝑡 − 1, 𝛿𝑗(𝑡) is determined as follows: 

 for purchase: 

       if 𝜏𝑗(𝑡 − 1)  ≤  𝑏𝑖𝑑𝑗(𝑡 − 1), then 𝛿𝑗(𝑡) = (1 + 𝜁𝑟)𝑟𝑗𝑠ℎ𝑜𝑢𝑡
+ 𝜁𝑎 

-that means an increased aggressiveness of the buyer at the auction, 

 for sale: 
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       if 𝜏𝑗(𝑡 − 1) ≥ 𝑎𝑠𝑘𝑗(𝑡 − 1), then 𝛿𝑗(𝑡) = (1 + 𝜁𝑟)𝑟𝑗𝑠ℎ𝑜𝑢𝑡
+ 𝜁𝑎 

- that means an increased aggressiveness of the seller at the auction, 

if there was a transaction at time 𝑡 − 1, then: 

 for purchase: 

       if in the session 𝑡 − 1 the buyer 𝑗 bought emissions for the price 𝑞𝑗(𝑡 − 1),  

      then: 

  if 𝜏𝑗(𝑡 − 1) ≥ 𝑞𝑗(𝑡 − 1), then 𝛿𝑗(𝑡) = (1 − 𝜁𝑟)𝑟𝑗𝑠ℎ𝑜𝑢𝑡
− 𝜁𝑎 

- that means a decreased aggressiveness of the buyer at the auction. 

  otherwise 𝛿𝑗(𝑡) = (1 + 𝜁𝑟)𝑟𝑗𝑠ℎ𝑜𝑢𝑡
+ 𝜁𝑎 

- that means an increased aggressiveness the buyer at the auction, 

 for sale: 

       if in session 𝑡 − 1 the seller 𝑗 sold emissions for the price 𝑞𝑗(𝑡 − 1),  

      then: 

  if 𝜏𝑗(𝑡 − 1) ≤ 𝑞𝑗(𝑡 − 1), then 𝛿𝑗(𝑡) = (1 − 𝜁𝑟)𝑟𝑗𝑠ℎ𝑜𝑢𝑡
− 𝜁𝑎 

- that means a decreased aggressiveness of the seller at the auction, 

       otherwise 𝛿𝑗(𝑡) = (1 + 𝜁𝑟)𝑟𝑗𝑠ℎ𝑜𝑢𝑡
+ 𝜁𝑎 

- that means an increased aggressiveness of the seller at the auction. 

Suggested values are 𝜁𝑎𝜁𝑟   0.02. 

Similarly the long-term learning rule also uses the Widroff-Hoff rule to update the 

value of 𝜃: 

 

𝜃(𝑡 + 1) = 𝜃(𝑡) + 𝛽2(𝜃*(�̄�(𝑡)) − 𝜃(𝑡))     (12) 

 

𝜃*(�̄�(𝑡)) = (𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛)(1 − �̄�(𝑡)exp(𝛾(�̄�(𝑡) − 1))) + 𝜃𝑚𝑖𝑛  (13) 

 

�̄�(𝑡) = (𝛼(𝑡) − 𝛼𝑚𝑖𝑛) (𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛)⁄       (14) 

 

𝛼(𝑡) =
√

1

𝑁
∑ (𝑝𝑖−𝑝*̂(𝑡))𝑡

𝑖=𝑡−𝑁+1

𝑝*̂(𝑡)
       (15) 

where: 

𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥 – minimal and maximal value of factor 𝛼,  

𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥 – given minimal and maximal values of parameter 𝜃 (suggested values -2 

and 8, respectively). 

𝛾 – the function shaping factor (suggested value 2). 

4. Simulations 

4.1. Simulation system 

The mathematical formulation of the market and organization of simulation was 

analogous to that described in [18] and is not repeated here. The differences are 

presented below. 

To organize simulations, the maximal and minimal prices for the parties are needed. 

The maximal price can be taken as a reasonably high arbitrary value. The minimal value 

is, however, bound by the shadow price of the party. The shadow price is the derivative 

of the marginal abatement cost curve at the current emission value. The marginal 

abatement cost curves for reducing the emission of greenhouse gases have been 

developed on the basis of the data for 2010 published by [16] and its online 

supplementary documentation. Originally they were calculated using version 4 of the 
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MIT EPPA model [19]. To use them in the computer simulations, the cost curves were 

approximated by polynomials fitted by using the regression method. The data were 

given for 16 countries and regions in the world: USA, Canada (CAN), Japan (JPN), 

European Union (EUR), Australia and New Zealand (ANZ), Eastern Europe (EET), 

Former Soviet Union (FSU), India (IND), China (CHN), Indonesia (IDZ), East Asia 

(ASI), Mexico (MEX), Central and South America (LAM), Middle East (MES), Africa 

(AFR), Rest of World (ROW). 

 

Figure 1. Exemplary cost curves and their approximations for USA and FSU in 2010.  

Sample plots for the USA and FSU are shown in Figure 1. The approximated curve 

almost perfectly fits the original curve for FSU, while for USA the polynomial function 

is of too low order to fit the original data exactly. But for computational purposes this 

error is admissible.  
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Figure 2 Trajectory of marginal and transaction prices in consecutive contracts, in 

[USD/MtC/y] for different trading mechanisms. In consecutive panels from 

the top: SA, DBT, SDA, CDA, SRA. Every party uses Frank strategy. 

There are evident differences in parties trajectories for different cases that are 

connected with the random elements of the strategies. However, the following features 

can be observed for the Frank and ZIP strategies: 

 For Continuous Double Auction and Dynamic Bilateral Trade, the plots of 

transaction prices are most spread out; the reason is high randomness of 

strategies used by parties which are concluding contracts, as in both mechanisms 

the decision of contract is made with less knowledge as compared with other 

auctions. 

 For the Sealed-bid Auction the contracts are concluded one after the other by 

decreasing prices. 

 For the Sealed-bid Reverse Auction, the contracts are concluded one after the 

other by increasing prices. 

 For the Sealed-bid Double Auction, the plot of transaction prices is most 

condensed, as the contracts are concluded by choosing the most attractive offer 

among more than two competing ones. 

 For the Frank strategy the plots of marginal prices are smoother than for the 

other strategies, what comes from the fact, that the parties do not use random 

strategies. 

 In every simulation, the prices converge to a value about 16.4 [USD/MT CO2]  
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Figure 3 Trajectory of marginal and transaction prices in consecutive contracts, in 

[USD/MtC/y], for different trading mechanisms. In consecutive panels from 

the top : SA, DBT, SDA, CDA, SRA. Every party uses ZIP strategy. 
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Figure 4. Total averaged costs of emission for trading mechanisms and trading strategies. 

Analysing the averaged costs after 100 simulations we can note the following: 

 USA mainly purchases the permits, so the difference among particular 

mechanisms is not significant; the lower costs can be observed for Sealed-bid 

Reverse Auctions (for both strategies), and for Dynamic Bilateral Trade with 

ZIP strategy.  

 In turn, China (CHN) mostly sells the permits and benefits from the trade. The 

mechanisms that are most favourable for CHN is the Sealed-bid Double 

Auction. 

 The same situation is for FSU, where this party benefits bet from the Sealed-bid 

Double Auctions, while for other mechanisms it benefits only marginally or 

even loses. 

 EUR, ASI, AFR, and MES are the permits buyers, and similarly to CHN the 

best for them mechanism is the Sealed-bid Double Auction. 

 For IND and LAM the lowest costs are for Continuous Double Auction and 

Dynamic Bilateral Trade with ZIP strategy. 

The most interesting feature of the AA strategy for CDA is much shorter time of 

convergence of the transaction and marginal prices to the equilibrium. While the Frank 

strategy needed 1000-1600 iterations for convergence and ZIP strategy 1300-1600 

iterations, the convergence for the AA strategy required about 300 iterations for 

transaction prices and about 500 iterations for the marginal prices. This is caused by 

very complicated strategy trying to elaborate as good offer as possible. The much 
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shorter negotiations are an important feature for applications, where agent representing 

real parties negotiate. 

 

 

 
Figure 5. Averaged (100 iterations) values of transaction prices (upper panel) and 

shadow prices (lower panel) for 16 countries and regions for the Continuous 

Double Auction and AA strategy. 

5. Conclusions 

This paper presents the basic parts of a computer environment for simulation of 

emission permit trade using multi-agent framework. As far, different trading 

mechanisms, like bilateral trade and few types of auctions, and strategies which can be 

used by programmable agents, were reviewed, coded as computer subroutines, and 

described in the text. The results of simulated trade are presented. The case considered 

is a trade of GHG emission permits between 16 countries and regions of the world. The 

marginal costs for these parties were taken from [19]. 
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Different simulated cases, each of which consists of a chosen pair of a trade 

mechanism and a strategy, showed differences in details, but similar general behaviour 

concerning convergence to the equilibrium and relative final total costs of the trading 

parties. 

 

Figure 6. Averaged (100 iterations) values of total costs of CO2 emission reduction for 

16 countries and regions for the Continuous Double Auction and AA strategy. 

The proposed simulation can be developed for estimating the equilibrium price in 

a designed market by implementing a simulated game, in which a programmable agent 

situated and operated by a playing party can use its secret information on marginal costs 

to take part in the game. Results of such a game would help to better design the market 

rules, not only by getting better information on the equilibrium price, but also on 

possible malfunctioning of the market. 

The elaborated environment can be also developed for simulation of proposed 

markets for uncertain emissions. This kind of markets has not exist until now and can 

show unexpected features. The simulated experiments of such markets can demonstrate 

their strong and weak sides. 
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Abstract 

Emissions of carbon dioxide from fossil fuel burning constitute an important component 

of atmospheric carbon budget, on both global and regional scales. In urban settings across 

Europe anthropogenic CO2 burden of local atmospheres is particularly visible. Methane is 

the second most important anthropogenic greenhouse gas. In southern Poland, apart of CH4 

emissions associated with agricultural sector and coal production, other sources of 

anthropogenic methane including leakages from urban gas supply networks and numerous 

landfills in the region are also abundant. We are presenting a brief overview of long-term 

investigations aimed at quantification of atmospheric loads and fluxes of CO2 and CH4 in 

Krakow agglomeration using atmospheric observations combined with ground-level 

measurements and modeling.  

Keywords: carbon dioxide, methane,  urban metabolism, greenhouse gases 

1. Introduction 

Urban centers play an important role in the global greenhouse gas emissions. More 

than 70% of anthropogenic sources of CO2 are located in urban areas [1]. The European 

continent, with its dense transportation network, developed industrial infrastructure and 

high population density is currently responsible for more than 25 % of the global fossil 

fuel CO2 emissions [2]. Urban agglomerations are also important source of methane. It 

has been estimated that aging natural gas distribution networks are leaking at the rate 

of up to 8% of the total gas consumption [3]. 

Here we present the results of long-term investigations aimed at quantification of 

atmospheric loads and fluxes of CO2 and CH4 in Krakow agglomeration using 

atmospheric observations combined with ground-level measurements and modeling. In 

the first part we demonstrate how measurements of atmospheric mixing ratios of carbon 

dioxide, combined with analyses of its carbon isotope composition (13C/12C and 14C/12C 

ratios) can be used to make partitioning of the local atmospheric CO2 budget and 

quantifying the contribution of fossil fuel-derived CO2 in the local atmosphere. In the 

second part, we present two independent methods of assessing surface fluxes of CO2 

and CH4 originating from distributed sources.  

Figure 1 shows schematic diagram of carbon dioxide and methane budget in the 

urban atmosphere. Typical for urban regions are generally elevated concentrations of 

CO2 and CH4 in the local atmosphere, when compared to remote, clean areas [4]. These 

local loads are caused by intense surface emissions of CO2 and CH4 from both point 

and distributed sources. When combined with diurnal variations in the intensity of 

vertical mixing of the lower atmosphere, they often lead to characteristic variations in 
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atmospheric concentrations of CO2 and CH4 in urban regions, with high levels of those 

gases recorded during the night and reduced concentrations during mid-day and 

afternoon hours.  

 

 

 

 

 

 

Figure 1. Schematic diagram of carbon dioxide and methane budget for urban areas. 

Sources and sinks of CO2 and CH4 are marked by '+' and '-' sign, respectively.   

2. Site description 

Krakow, the second largest city in Poland (approx. 800 000 inhabitants) is located 

in the Vistula river valley. Characteristic features of the local climate are significant 

percentage of calm periods (ca. 36%) and frequent temperature inversions, sometimes 

extending over several days. The average wind speed for the period 2005-2009 was 

around 3.3 m s-1.West and south-west direction of surface winds prevail. Westerly 

circulation is generally connected with stronger winds (wind speeds above 4 m s-1). 

Monthly air temperature at the site reveals a distinct seasonal cycle, with summer 

maximum (July-August) reaching ca. 20-25oC and winter minimum (January-February) 

between ca. -5 and 0oC. 

Atmospheric measurement site (red dot on Figure 2) was situated on the University 

campus located in the western part of the city (5004’N, 1955’E, 220 m a.s.l.), 

bordering recreation and sports grounds. Air intake for atmospheric measurements was 

located on the roof of the Faculty building, ca. 20 meters above the local ground.  

 
Figure 2 Location of the measurement points. Red dot represents location of 

atmospheric measurements, yellow points represent sites where measurements of 

soil fluxes of CO2 and CH4 were conducted. 
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Four sites located within the limits of Krakow agglomeration were chosen for 

measurements of soil fluxes of CO2 and CH4 (Figure 2): (i) site A (50°03’51”N, 

19°55’26”E, 209 m a.s.l.) located in immediate vicinity of one of the city’s major 

streets, (ii) site B (50°03’41”N, 19°54’08”E, 203 m a.s.l.) placed within urban meadow 

Blonia – 48 ha grassland recreation area in the city center with no car traffic in the direct 

neighborhood, (iii) site C (50°03’39”N, 19°55’08”E, 205 m a.s.l.) placed in the city 

park between sites A and B, and (iv) site D (50°05’24”N, 19°48’07”E, 247 m a.s.l.) 

located in the home garden on the outskirts of the city, in the upwind distance of ca. 

11km west from other points. Site D was considered a reference site, not directly 

influenced by the city. 

3. Methods 

 3.1 Atmospheric loads and partitioning of CO2 budget 

Regular measurements of atmospheric mixing ratios of CO2 and CH4 were 

performed using gas chromatograph HP6890 equipped with Shin Carbon ST column, 

Ni catalyst and FID detector [5]. Typical uncertainty of mixing ratio measurements was 

in the order of 0.1 µmol mol-1 and 5 nmol mol-1, for CO2 and CH4, respectively. In 

addition, during the period 2007-2009 several diurnal measurement campaigns aimed 

at collection of air samples for mixing ratio and isotopic analysis of CO2 were 

performed. For each campaign 5 to 7 spot air samples were collected in 4-hour intervals. 

Carbone dioxide was cryogenically extracted from the collected air samples for further 

isotope analyses using IRMS and AMS techniques to determine the isotopic 

composition of carbon (13C and 14C) [6,7]. The measured 13C/12C ratios are expressed 

in delta notation on the VPDB scale [8], while the radiocarbon content is expressed in 

capital delta notation relative to Oxalic Acid standard and normalized for the year 1950 

[9]. Overall uncertainty of isotope measurements was in the order of 0.2‰ for  13C 

and 0.7 ‰ for 14C. 

The measured atmospheric CO2 mixing ratio at a given site (Cmeas) consists of three 

components: (i) regional background component (Cbg) which provides the bulk of the 

atmospheric CO2 load, (ii) biogenic component (Cbio), and (iii) fossil-fuel derived 

component (Cfoss). When the carbon isotope composition of atmospheric CO2 is 

measured in addition to atmospheric mixing ratio, the following mass and isotope 

balance equations can be formulated:   

fossbiobgmeas CCCC                                                                                              (1) 

        fossfossbiobiobgbgmeasmeas CCCCCCCC 1111 13131313                   (2) 

        fossfossbiobiobgbgmeas CCCCCCCC 1111 14141414                         (3) 

Equations 1-3 enable partitioning of the measured CO2 load in the local atmosphere 

into fossil-fuel derived, biogenic and regional background components (see [4] for 

details).    

3.2 Direct measurements of surface fluxes 

Soil CO2 and CH4 fluxes were measured using closed-dynamic chamber system 

coupled with Picarro G2101-i trace gas analyser. CO2 concentration measurements 

inside the chamber were performed every second. The chamber method is a widely used 
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technique for measuring gas exchange between soil surface and the atmosphere 

[10,11,12]. 

The chamber system used in this work was designed and built in the Faculty of 

Physics and Applied Computer Science. The system consists of three stainless steel 

chambers of cylindrical shape, coupled with a collar hammered to the depth of ca. 5 cm 

into the soil and equipped with water seal to avoid gas leakages. The system was 

equipped with a flow regulator stabilizing the air flow through each chamber, pressure, 

temperature and relative humidity sensors installed in each chamber and a drying agent 

(magnesium perchlorate, Mg(ClO4)2) used for drying the air collected in the glass flasks 

for isotope analyses. In order to measure the rate of changes of CO2 and CH4 

concentration inside the chamber, each chamber was sequentially connected to the 

analyzer during the measurement period. One path was equipped with flask ports 

allowing to take air samples for further analyses of isotopic composition of CO2 using 

IRMS technique. The flux of CO2 and CH4 was calculated using the following 

expression: 

           
STR

dt

dC
Vp

f




                                                            (4) 

where: 

 f  -  molar flux density (mmol m-2 h-1),  

p  -   atmospheric air pressure (Pa),  

dC/dt  -  rate of concentration change of the given gas inside the chamber (mmol mol-1 

h-1),  

R -    universal gas constant (kg m2 s-2 mol-1 K-1),  

T  -  ambient air temperature (K)   

V and S - chamber volume (m3) and soil surface area covered by the chamber (m2),  

 

3.3 Indirect assessment of surface fluxes 

During the day, when thermal convection operates in the lower atmosphere, trace 

gases emitted from the surface are dissolved in a large volume of well-mixed layer 

within the Planetary Boundary Layer (PBL), leading to relatively low concentrations of 

those gases observed close to the ground. Inversion of vertical temperature profile in 

the lower atmosphere during late afternoon leads to drastic reduction of the intensity of 

vertical mixing and subsequent accumulation of trace gases in near-ground atmosphere.  

Diurnal changes in the dynamics of vertical mixing within PBL in combination 

with nocturnal boundary layer (NBL) height measurements can be applied for the 

assessment of surface fluxes of selected trace gases. The rate of nocturnal increase of 

atmospheric concentrations of trace gases is controlled by the mixing layer height 

according to mass balance equation: 

 

outin FF
dt

Cd
H 


                                           (5) 

 

where: 

H -      height of the mixing layer  

<C> - mean concentration 

Fin   -  surface flux  
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Fout - flux associated with removal processes (horizontal and vertical transport). For 

nights with low wind speed (< 1 m s-1) and the adopted frequency of 

measurements, this term can be neglected. 

During stable atmospheric conditions with low wind speeds, a distinct vertical 

gradient of trace gas concentration is established within the PBL. As the measurements 

are performed close to the surface, at the height of ca. 20 m, a correction factor relating 

the average increase of the concentration within the PBL (d<C>/dt) to the increase of 

this concentration observed close to the ground is required:  

 
dt

dC

k

H
F

surf

in                                                               (6) 

where: 

H -       mixing layer height 

k –       correction factor  

Csurf  – concentration of the measured trace gas at the adopted measurement height.  

The correction factor k was calculated using numerical simulation of vertical 

profiles of atmospheric 222Rn using EMEP atmospheric model [13]. Radon is a natural 

radioactive noble gas emitted from soils. The soil radon flux is mainly controlled by 

concentration of 226Ra and in some extend by physical properties of the soil. This fact 

enables the use of 222Rn in the assessment of surface fluxes of other trace gases such as 

CO2 and CH4.The NBL height H was monitored using VHS sodar (Version 3) built by 

the Krakow Branch of the Institute of Meteorology and Water Management. Detailed 

description of the sodar system can be found in [14] whereas flux assessment 

methodology is described in [15]. 

 

4. Results and discussion 

 4.1 Atmospheric loads and partitioning of CO2 budget 

Figure 3a shows an example of atmospheric loads of CO2 and CH4 in Krakow 

during the month of June 2007. Shown are daily means of the respective mixing ratios. 

For comparison, Figure 3a contains also daily means of CO2 and CH4 recorded at 

Kasprowy Wierch station, ca. 100 km south of Krakow, located on top of the Kasprowy 

Wierch mountain in the Polish Tatras (1989 m a.s.l). This station can be considered a 

regional background station, free of local influences [5]. It is apparent from Figure 3a 

that urban atmosphere of Krakow is characterized by elevated concentrations of the 

measured trace gases. The excess concentrations with respect to Kasprowy Wierch can 

be substantial; for instance, at June 15th the daily mean CO2 concentration in Krakow 

was around 462 ppm, to be compared with ca. 383 ppm at Kasprowy Wierch. Also 

methane revealed elevated concentration: ca. 2.33 ppm to be compared with 1.85 ppm 

at Kasprowy Wierch. 

 Figure 3b shows the results of event sampling performed on 20/21 June 2007. 

Shown are the values of three parameters: CO2 mixing ratio, 13C and radiocarbon 

content of CO2. Distinct diurnal variability of CO2 mixing ratios is observed, with the 

maximum (417 ppm) recorded late in the night and minimum (391 ppm) in the 

afternoon. Initial increase of CO2 mixing ratio is accompanied by drop of  13C and 

increase of 14C. Later on, during the day 21th June significantly lower values of 14C 

are recorded. 



4th International Workshop on Uncertainty in Atmospheric Emissions 

----------------------------------------------------------------------------------------------------------------------------  

182 

 

 

Figure 3. (A) Daily means of CO2 and CH4 mixing ratios recorded at Krakow and 

Kasprowy Wierch stations during June 2007. (B) concentration and carbon isotope 

composition of atmospheric CO2 recorded during measurement campaign carried 

out between 20 and 21 June 2007 in Krakow. 

 

The data shown in Figure 3b were used to calculate the budget of CO2 in the local 

atmosphere of Krakow during 20/21 June 2007. Equations 1-3 were used to derive 

temporal evolution of individual components of this budget (fossil-fuel derived, 

biogenic and regional CO2 background component). The results are presented in Figure 

4. The calculated contributions indicate a dominant role of biogenic CO2 emissions 

during night hours. During day time anthropogenic emissions dominate. The calculated 

background mixing ratios of CO2 are in good agreement with the measurements 

performed at this time period at Kasprowy Wierch station [4]. 

 

 
Figure 4. Partitioning of atmospheric CO2 load over Krakow during 20/21 June 2007 

into fossil-fuel derived, biogenic and regional CO2 background component. 
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4.2 Direct measurements of surface fluxes 
 

Figure 5 summarizes soil CO2 fluxes measured at four different sites in Krakow 

between July 2009 and June 2013. All investigated sites reveal a strong seasonality of 

CO2 emissions induced by seasonal vegetation cycle and seasonal variations of soil 

parameters (temperature, water content).  
 

 
Figure 5.  Seasonal variations of soil CO2 fluxes measured at four selected ecosystem 

sites in Krakow agglomeration (A-D - cf. Figure 2), differing in degree of 

anthropogenic influence. 
 

Minimum values of the CO2 fluxes were recorded during winter months 

(December, January and February). Low soil temperatures limit respiration activity, 

while higher water contents reduce permeability of the soil during this season. Snow 

cover, if present, may further reduce transport of CO2 between the soil and the 

atmosphere during winter months. Typical CO2 fluxes measured during winter varied 

between approximately 1 and 5 mmol m-2 h-1 for all sites. During the vegetation period 

(April to October) the CO2 fluxes increase significantly, reaching maximum values of 

25-30 mmol m-2 h-1 at site A, C and D and 40-50 mmol m-2 h-1 at site B. Timing of the 

CO2 flux maxima varies from year to year. The mean value of soil CO2 flux calculated 

for entire observation period and all four sites reaches 16.2 mmol m-2 h-1 and is 

comparable to the mean local fossil fuel CO2 flux, which is approximately 17.8 mmol 

m-2 h-1 (2008) [2]. Measurements of methane fluxes revealed small negative numbers 

(between -1 and -2 mol m-2 h-1 for all urban sites and close to zero for the reference 

site D) indicating that soils in the study area are a weak sink of methane. This fact 

suggests that apparent source of methane leading to night-time maxima frequently 

observed in atmospheric CH4 record available for Krakow station, has entirely 

anthropogenic origin. 
 

4.3 Indirect assessment of surface fluxes 

Calculations of surface night-time fluxes of CO2 and CH4 based on simplified 

atmospheric budget of these gases (cf. section 3.3) were performed for the period from 

May 2005 to May 2009, for nights with wind speed lower than 1m s−1 (for details see 

[15]). The calculated mean monthly surface fluxes of CO2 (Figure 6) reveal distinct 
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seasonality, with a minimum of ca 2 mmol m−2 h−1 occurring during winter time 

(December to March) and a maximum of ca. 20 mmol m−2 h−1 in summer (July and 

August). This seasonality is also seen in direct measurements of soil CO2 fluxes (cf. 

Figure 5) and is modulated by the biospheric component, originating from soil 

respiration. Relative uncertainty of the monthly mean CO2 fluxes derived from 

simplified atmospheric budget varies between ca. 1 and 87%.  

 
 

Figure 6. Monthly means of surface-averaged CO2 flux for Krakow city derived from 

the atmospheric balance method. 
 

Contrary to the CO2 flux, the surface fluxes of CH4 (Figure 7) do not reveal any 

distinct seasonality and, in contrast to chamber measurements, are distinctly positive. 

The monthly means of the calculated CH4 flux scatter between ca. 50 and 200 μmol  

m−2 h−1, with relative uncertainty of the mean values varying between 10 and 227%. 

The mean CH4 flux calculated for the whole analyzed period (May 2005 – December 

2008) is equal 97.2±5.4μmol m−2 h−1. The quoted uncertainty represents one standard 

deviation of the mean value. Multiplying the mean CH4 flux by the surface area of the 

city (326.8 km2), leads to the total mean annual emission of methane into the 

atmosphere in Krakow in the order of (6.2±0.4)×106 m3 yr−1. Leakages of the city gas 

network are thought to be the main source of this methane. 

 
 

Figure 7. Monthly means of surface-averaged CH4 flux for Krakow derived from the 

atmospheric balance method. 
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5. Summary 

 

Urban centers are important elements of the global carbon cycle. Their importance 

will likely increase in the foreseeable future, with the continuing transformation of the 

world population from rural to urban. It is therefore important to gain a deeper 

understanding of carbon cycling in the urban environment in order to design appropriate 

strategies to control emissions of major greenhouse gases into the atmosphere. 

An overview of long-term investigations aimed at quantification of atmospheric 

loads and fluxes of CO2 and CH4 in Krakow agglomeration using atmospheric 

observations combined with ground-level measurements and modeling, presented 

above, reveals the potential of such approach for quantifying atmospheric loads and 

surface fluxes of major greenhouse gases in complex urban environment, thus 

constituting an independent verification tool for greenhouse gas emissions reported in 

the framework of international agreements by signatory countries.      
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Abstract 

Results of recent projects on domestic heating emission inventories in Poland are presented in the paper. 

Wider context information concerning the impact of domestic heating emissions on air quality in urban 

areas is provided based on the authors’ experiences at the field of Air Quality Action Plans (AQAP). Past 

and current methods used for emission inventories are discussed including GIS analysis, questionnaires, 

interviews and calculations. The influence of Low Carbon Economy Plans (LCEP) on the domestic 

heating emission inventories is presented as well. Case studies for Kraków (AQAP) and Gdańsk 

(AQAP/LCEP) cities are described together with general conclusions on the role of precise inventories 

in the urban environmental and development programmes.  

Keywords: air quality, emission inventory, domestic heating sources 

1. Introduction 

Past and recent investigations have demonstrated that urban air quality in many 

Polish cities depends on the emissions from domestic heating systems. PM10 and B(a)P 

parameters measured in the heating season are elevated comparing to the summer 

period (see Figure 1). 

 

Figure 1. 2009 time series of B(a)P concentration in Poznan (Załupka et al., 2012). 

During the JRC project (Junninen et al., 2009) the high contribution of coal fired 

domestic sources in air pollution in Krakow was proved by the chemical mass balance 

method. 

Air quality modelling results (Lochno et al., 2013) also show that domestic heating 

sources are one of the main group of emission sources that influence the air quality in 

Krakow and other cities. An example of source apportionment modelling results is 

presented in Table 1. 

Solid fuel fired domestic heating sources (SFFDH sources) has been indicated as a 

high priority issue in majority of Air Quality Action Plans (AQAP) prepared in Poland 

since 2005. Local and regional decision makers are facing the problem of SFFDH 

sources identification to set up the appropriate strategy of emissions reduction. In many 

cases heat energy balance calculation method is applied to provide information for 
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decision makers on the overall number of SFFDH sources. However some of city 

administrations decided to start deep investigation and launched bottom-up inventory 

projects. 

 

Table 1. Contribution of different emission sources to PM10 and B(a)P annual 

concentration in Kraków for the areas where EU limit/target values are exceeded  

(Lochno et al., 2013) 

 Local domestic 

heating 

Local transport Local industry Background and 

other sources 

PM10 42,3% 17,0% 21,0% 19,7% 

B(a)P 48,7% 9,4% 3,5% 38,4% 

 

2. Kraków case study 

 

In May 2014 Kraków City administration began a new air quality project titled 

‘MONIT-AIR: An integrated spatial data monitoring system for better air quality in 

Kraków’. As a part of this project a precise bottom-up inventory of existing SFFDH 

sources was started. The main reason to undertake this task was necessity to understand 

were the remaining SFFDH sources are located, are they concentrated or dispersed and 

what is the real scale of the solid fuels problem within the city. The city of Kraków was 

divided into seven areas for which inventory sub-projects were set up (Figure 3). 

 

 

Figure 2. The areas of SFFDH inventory in Kraków. 

 

After several months of field work the inventory is still in preparation. Before 

publishing the final results it is already possible to share some experiences on 

methodology and uncertainty issues.  

The inventory sub-project starts from the analysis of existing data on non-solid-fuel 

based heating systems and networks within the selected area (district heating, gas and 

electricity networks). Basing on such analysis the set of buildings likely to contain 

SFFDH sources is being prepared. Then a questionnaire interview begins. Each 
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interviewer has assigned a subset of buildings where he asks questions on the type of 

heating, fuels used for heating and the number of heating sources. In the cases where 

the residents of building are absent or refuse to answer the questions there is a special 

procedure of filling in the questionnaire basing on interviewer observations. All 

information collected using the questionnaires has to be recorded in the database using 

an on-line IT application. 

The interviewers are trained before starting the field work on every relevant aspects 

of their work. Although a special attention is paid during the trainings to the possible 

errors there are a lot of uncertainty sources that can be met in the inventory process. 

The most important are specified in Table 2. 

 

Table 2. Factors influencing uncertainty of questionnaire-interview based inventory 

of SFFDH sources. 

Factor Description 

Place of interview The interviewers have no rights and obligation to go 

inside the building/apartment. There can be situations 

where the interview is carried out at the front of the 

building. The street noise and traffic can adversely affect 

the results of interview. 

Attitude and knowledge of 

interviewees 

Some interviewees can have negative attitude to the 

project and interview itself. In some cases the persons 

asked have not sufficient knowledge to answer the 

questions. 

Skills of the interviewers Although all the interviewers are trained before starting 

their project activities they cannot avoid some errors 

during the interviews and during entering data into the 

web IT application. 

Time scale of the project During the project run (18 months) changes in the heating 

systems can happen. 

 

The final results of the inventory will be available through the urban GIS. This will 

provide decision makers and general public with precise information on the location of 

SFFDH sources and allow to develop detailed financial plan of solid fuel elimination. 

Further steps will include a transformation of the inventory into an IT system which 

will support city administration to monitor continuously domestic heating technology 

improvement and emissions changes. The main outcome of the inventory will be the 

numbers of SFFDH sources in the subareas. Using the specific emission factors it will 

be possible to convert the data into emission inventory and then use localised emission 

data for air quality modelling tasks. For PM10 emissions application of NFOŚiGW 

emission factor (380 g/GJ) is considered. 

The SFFDH inventory project report in Kraków will include an uncertainty analysis 

of the received numbers of SFFDH sources. So far two uncertainty models have been 

considered: GUM based model and a counting model (W. Bich and F. Pennecchi, 

2012). For the GUM based model a symmetric rectangular distribution is assumed for 

every measurement process (each interviewer). The limit uncertainty gi is assessed 

individually for each interviewer ‘i’ and a standard uncertainty can be calculated as: 

𝑢𝑖 =
∆𝑔𝑖

√3
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Then a combined uncertainty can be determined using the GUM equation for 

uncorrelated input quantities. As a second method of uncertainty estimation a model 

proposed by Bich and Pennecchi (2012) for counting processes has been considered. A 

preliminary uncertainty estimation gives results below 10% for the number of SFFDH 

sources in each investigated subarea. The counting model gives generally the lower 

uncertainty results then GUM based model. 
 

3. Gdańsk case study 

 

First time an inventory of domestic heating sources was made for the purposes of 

the Air Quality Action Plan (AQAP 2013). Calculated emissions for 2010 were 

prepared to use for air quality modelling. Calculations were based on heat demand 

analysis for the city buildings pertaining to the number of city residents and the 

contributions of different heating methods. This procedure requires to accept several 

assumptions. The first is heat demand per capita. Perfectly, such information comes 

from a heat supply plan. This plan for Gdańsk related then to the 2003 year. For that 

reason it was necessary to analyse changes from 2003 to 2010. It was done using 

statistical data, which are published by the Central Statistic Office of Poland every year. 

During the first inventory the following data presented by the Central Statistic Office 

were used: 

 the number of residents in Gdańsk, 

 the number and useable floor area of dwellings, 

 the number of dwellings heated with natural gas, 

 the sale of district network heat to residential buildings. 

Because of the target – air quality modelling – an identification of emissions 

locations was very important. This is why a GIS analysis of heating and gas networks 

arrangement was necessary. After collating buildings layer and district heating network 

layer an emission-free areas were obtained. These are multi-family housing 

development built in the second half of the twentieth century. For the remaining areas 

emission density was differentiated depending on the type of buildings (scattered 

single-family or dense multi-family) and heating method. Emissions were calculated 

using EMEP/EEA factors proposed in the 2009 guidebook. 

A next inventory of emissions from residential buildings in Gdańsk has been made 

for the purposes of Low Carbon Economy Plan (LCEP 2015, ongoing). In that case the 

carbon dioxide emissions were in the foreground. However at the same time emissions 

of air pollutants were also inventoried, i.e.: particulate matter (PM10 and PM2.5), 

benzo(a)pyrene, sulphur dioxide, nitrogen oxides. There are a few basic differences in 

LCEP inventory method comparing to the AQAP inventory: 

 taking into account additional fuels - propane-butane and firewood, 

 carrying out a field questionnaire-based survey on SFFDH sources in selected 

areas to verify the calculated number of heating sources fired by solid fuels. 

Other elements which have an impact on the emissions in LCEP inventory include: 

 a different base year – 2013, 

 availability of an updated heat supply plan for 2012, 

 an attempt of getting the actual data from district heat suppliers and fuel 

suppliers, 
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 a change of the EMEP/EEA emission factors in the new 2013 guidebook - they 

were reduced substantially, especially for gas and oil heating (see Figures 3 and 

4). 

Figure 3. A comparison of EMEP/EEA emission factors for PM, SO2 and NO2. 

 

Figure 4. A comparison of EMEP/EEA emission factors for benzo(a)pyrene. 

A comparison of the results for both inventories shows that the second one, more 

detailed, gave lower emissions. Experiences gained during both projects allow to 

indicate the following sources of uncertainty: 

a) Availability of data on fuel consumption is partly insufficient. Heat suppliers 

can provide data on heat consumption. Natural gas supplier can provide data on 

gas consumption. However the consumption of other fuels like coal, propane-

butane, oil and firewood must be estimated. 

b) There is no accurate information on the age of the residential buildings and their 

thermal insulation which affects the estimation of heat demand. 

c) Applied EMEP/EEA emission factors may be not suited for the local conditions.  

d) In the course of the inventory projects human mistakes can happen (e.g. when 

data on the heat/gas consumption are collected). 

 

4. Conclusions 

 

Depending on the applied methodology approach and type of input data different 

results of emission inventory from domestic heating sources can be obtained. Factors 
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influencing uncertainty of such inventory include human mistakes, lack of raw data and 

emission factors errors. To achieve precise data for air quality modelling and 

management a critical data set concerns a number and location of solid-fuel-fired 

emissions sources. The project of bottom-up inventory of SFFDH sources in Kraków 

should demonstrate a lower uncertainty comparing with a traditional calculation based 

inventory. Further investigation and analysis on uncertainty of domestic heating sources 

inventories is necessary. 
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Abstract 

Energy consumption in households has a great potential for energy savings as well as 

for greenhouse gas emission reduction. As national inventory reports provide estimates at 

only a country or regional level, we have developed a new GIS approach that increases the 

resolution of emission inventories. We consider stationary emission sources, such as fossil 

fuel combustion and heat production for household energy needs that cover energy demand 

for cooking, water and space heating. We estimate the spatial emissions of greenhouse 

gases based on IPCC guidelines using official statistics on fuel consumption and spatial 

data about population density. The heating degree-day method was then used to determine 

the climatic conditions and spatial variability in energy demand. The results of the spatial 

inventory are obtained for settlements that are presented as area-type emission sources in 

a geospatial database. The uncertainties in the inventory results are estimated using a 

Monte Carlo method. The results show that uncertainties in greenhouse gas emissions at 

the regional level are significantly higher than at the country level although the uncertainty 

of emissions in CO2-equivalent does not exceed 17.0%. 

Keywords: Greenhouse gas emissions, spatial inventory, residential sector, heat production, 

uncertainty of inventory results. 

1. Introduction 

Climate change refers to a change in the long-term weather patterns that are specific 

to different regions of the world. Many researchers agree that the most likely reason for 

climate change is the increasing greenhouse gas emission concentration in the 

atmosphere [9]. Since the industrial revolution began, the emissions of greenhouse 

gases have increased by 40% compared with the pre-industrial period [16]. It is 

therefore important to draw attention to issues of climate change, directing our efforts 

towards reducing greenhouse gas emissions and mitigating the negative effects of pro-

cesses that are already happening [9], [18]. However, these can only be achieved 

through joint efforts that involve as many countries as possible globally. 

Greenhouse gas emissions can be reduced through more efficient usage of energy 

resources, transition to fuels with higher calorific values and lower emission 

coefficients or increasing the share of renewable energy. However, before investing in 

these changes, it is important to identify large emission sources, and therefore estimate 

the potential for emission reduction for those areas. Accounting uncertainty for spatial 

modeling of greenhouse gas emissions is an important part of such an analysis. 

As the residential sector has a great potential for greenhouse gas (GHG) emission 

reduction compared to other sectors, especially in developing countries, we, therefore, 
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focus in this study on the analysis of emissions from direct fossil fuel use and heat 

production for household energy needs. We discuss mathematical models and 

algorithms that have been developed for spatial analysis of GHG emissions and present 

the method to estimate the influence of the uncertainty of individual inventory 

components on the total uncertainty of the inventory results. We apply the approach 

developed here using available statistical data for Poland and present the obtained 

results. 

2. Spatial modeling of greenhouse gas emissions in the residential sector 

Greenhouse gas emissions in the residential sector constitute a significant share in 

total emissions in most countries [20]. The emissions in this sector are caused by 

burning coal, natural and liquefied gas, wood and other fossil fuels in order to meet the 

energy needs of the households such as cooking, water and space heating. These needs 

can be covered from centralized energy supplies (e.g., district heating) or from 

“individual” energy sources (i.e. energy that is obtained through direct fossil fuel 

combustion).  

The assessment of energy demand is not a new task. There are many global and 

regional models that analyze energy needs in the residential sector. Some models 

describe the household energy consumption on global scale for different regions of the 

world [4], [10], while other models are developed for a particular country [7], [13], 

administrative district or a city [11-12], [14-15], [19]. However, most of these 

approaches analyze energy demand and greenhouse gas emissions only on an 

aggregated level and do not perform an inventory for large areas at a high spatial 

resolution.  

The aim of spatial modeling of GHGs is to obtain geographically distributed 

information on the amount of gases emitted from different sources [2], [3]. Therefore 

the inventory process consists of two main steps. First, we identify the emission sources 

for the sector of interest and then we allocate the amount of fossil fuels that were burned 

to cover certain energy needs in this sector. Based on this data we can estimate the GHG 

emissions for every emission source. 

A spatial inventory of GHG emissions in the residential sector includes one 

additional step. As there are no statistical data on energy consumption and fossil fuel 

use at the level of settlements, statistical data must be disaggregated from the regional 

level to the level of elementary objects. Therefore, the development of the 

disaggregation algorithm is an important part of the inventory process. 

2.1. Input data 

Population density is the most essential input data for the estimation of the spatial 

distribution of GHG emissions in the residential sector as it is used in the creation of 

the geospatial database for the spatial GHG inventory. The territory of Poland was first 

clipped from the map of population density for the European Union and Croatia [8] and 

then the population estimation was adjusted using official statistical data. The objects 

of the population map are referred to as elementary, as they contain information about 

the size of the population at the lowest possible level.  

As most of the energy in the residential sector in Poland is used for space heating, 

heating degree-days are, therefore, another important driving factor for the amount of 

energy that is used by households. Yearly heating degree-days were estimated as a sum 

of the daily deviation of the mean temperature from a heating base temperature but were 
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only calculated for those days when the mean temperature was lower than the base 

temperature [5]. 

The statistical data on the amount of fossil fuels used in the residential sector was 

taken from the Energy Statistics Yearbook published by the Central Statistical Office 

while other input information was taken from online database of official statistical data 

in Poland [1]. Net calorific values as well as emission coefficients were taken from [17]. 

In the case where country specific values are available, we use default coefficients from 

IPCC guidelines [6]. 

2.2 Estimation of greenhouse gas emissions 

In many countries the statistical data about fossil fuels consumption are available 

only at a country or regional level. Therefore, to obtain the information about the 

amount of fossil fuel burned at the level of an elementary object, we need to 

disaggregate the fossil fuels. In the case of direct fossil fuel combustion, the amount of 

fuel is allocated proportionally to energy demand for cooking, water and space heating, 

taking into account access to energy sources, the percentage of living area equipped 

with central heating and the hot water supply.  

The total amount of energy required to provide comfortable indoor temperature 

depends on the characteristics of the building (e.g. the number of floors, the year of 

construction), climatic features of the region (e.g. amount of heating degree-days), the 

intensity of building use (e.g. working-time or day of the week factor) and heat energy 

losses due to several factors such as entrance/exit and ventilation. Heating degree-days 

are determined based on the daily average temperatures taking into account the duration 

of the heating period. The total energy demand for space heating in the elementary 

object (i.e. city, town or village) is determined as the sum of the heat energy needed for 

space heating for all buildings in the settlement. It is estimated using average indicators 

of heat energy needed for heating one square meter of living space: 

,, yearyear

sqm

yearhHDDh LAQkQ    

where 
sqm

yearhQ ,  is the energy demand per square meter of living area constructed in year 

in the elementary object, 
HDDk  is the relative change in the amount of heating degree-

days and yearLA  is the living area per person (square meter) in buildings that are 

constructed in year. 

District space heating is another source of energy for space heating. It is provided to 

households from many heat production locations, in most cases within urban areas. As 

it is complicated to identify the location of these point sources, we consider settlements 

as area sources of emissions. The statistical data on the amount of heat energy provided 

to households is available at the district level while the amount of fossil fuel that is used 

to generate this heat energy is accessible only at the regional level. Therefore, these 

data are disaggregated to the elementary object level proportional to the living area 

equipped with central heating.  

As fossil fuels for centralized heat production and individual household energy needs 

were disaggregated to the level of elementary objects, we calculate the emissions of 

greenhouse gas G  from burning fossil fuel i  in elementary object n  using the 

following formula: 

,,1,,,, NnEFME G

nini

G

ni   

where 
G

niEF ,  is the emission factor of G  greenhouse gas and niM ,  is the amount of 

fossil fuel.  
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At the level of elementary objects, the GHG emissions are determined as the sum of 

emissions from all sources within this geographical object. 
 

 

Figure 1. Specific greenhouse gas emissions from direct fossil fuel combustion 

in the residential sector in Poland at the level of municipalities 

(tons/km2, CO2-equivalent, 2010)  

 

Figure 2. Prism-map of specific greenhouse gas emissions from direct fossil fuel 

combustion in the residential sector in the Silesia region at the level of 

elementary objects (tons/km2, CO2-equivalent, 2 x 2 km, 2010) 
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2.3. Results of the spatial inventory of greenhouse gas emissions 

The largest emissions from direct fossil fuel combustion in the residential sector 

are in Masovian (MAZ - 14.4%), Silesian (SLK - 11.9%) and Greater Poland 

(WKP - 10.3%) regions as shown in Figure 1. Emissions in other regions do not differ 

significantly and range from 2.03% to 8.12%.  

As the region of Silesia is the most urbanized area in Poland and it is a part of the 

Katowice agglomeration, accounting for more than 3 million people according to the 

Department of Economic and Social Affairs of the United Nations organization, 

the emissions in this region are, therefore, high when compared to other territories 

(Figure 1). Figure 2 presents specific emissions of greenhouse gases from direct fossil 

fuel combustion in the residential sector of Silesia. The highest specific emissions are 

in Katowice, Gliwice, Tychy (white circle), and Rybnik and Racibórz (black), Bielsko-

Biała (pink) and Częstochowa (blue). The emissions from heat production are the 

highest in the Silesian region, but as emissions sources are very densely located (Figure 

3), we sum up the emissions in this region together to compare with other regions that 

have much lower emission sources. GHG emissions from heat production in the 

Silesian region are much higher than in the Masovian region (2360 thousand tons in 

CO2-eq., 16.87% of total emissions in this sector, Figure 3) and any other region 

although emissions in the Masovian region are also relatively high (1790 thousand tons, 

12.8% of total emissions). 

 

Figure 3. Greenhouse gas emissions from heat production in Poland  

(thousands tons, СО2-equivalent, 2010) 

3. Uncertainty analysis of inventory results 

The obtained results of the spatial inventory are based on a set of input parameters 

that are not certain and are characterized by normal or log-normal distributions. The 
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uncertainty in the input values of the model can be combined using an error propagation 

approach, but only in the case when all values are normally distributed and uncertainties 

are small. In our case, some input values are log-normally distributed (e.g., CH4 and 

N2O emission coefficients). Therefore we used a Monte-Carlo method to sample 

random variables from these distributions using R. We considered a 95% confidence 

interval for estimating uncertainty in the emissions. We then performed an uncertainty 

analysis of the inventory results at the regional level, as most of the fossil fuels are 

disaggregated from this level downwards. 

Table 1.  Results of uncertainty estimation of greenhouse gas emissions from direct 

fossil fuel combustion in the residential sector in Poland (using data from 

2010). 

Voivodeship 
СО2, 

Gg 
(uncertainty, %) 

CH4, 
Gg 

(uncertainty, %) 

N2O, 
Gg 

(uncertainty, %) 

Total emission 
Gg 

(uncertainty, %) 

Lower Silesian 
2635,8 5,4 0,03 2780,50 

(-12,9 : +14,9) (-21,4 : +25,5) (-19,7 : +23,2) (-13,2 : +15,2) 

Kuyavian-

Pomeranian 

1741,5 4,0 0,02 1848,54 

(-14,5 :+16,7) (-21,5 : +25,5) (-19,9 : +23,4) (-14,7 : +16,9) 

Lublin 
1982,9 4,5 0,03 2103,56 

(-14,3 : +16,5) (-21,5 : +25,6) (-19,8 : +23,4) (-14,5 : +16,8) 

Lubusz 
700,4 1,3 0,01 735,77 

(-11,8 : +13,6) (-21,3 : +25,4) (-19,3 : +22,7) (-12,1 : +14,0) 

Łódź 
2451,2 5,8 0,03 2606,73 

(-15,0 : +17,3) (-21,6 : +25,6) (-20,0 : +23,6) (-15,2 : +17,5) 

Lesser Poland 
3091,0 6,3 0,04 3258,20 

(-12,7 : +14,7) (-21,4 : +25,5) (-19,7 : +23,3) (-13,0 : +15,0) 

Mazovian 
4966,4 9,2 0,05 5211,88 

(-11,6 : +13,4) (-21,3 : +25,3) (-19,3 : +22,7) (-11,9 : +13,7) 

Opole 
893,8 2,1 0,01 948,65 

(-14,5 : +16,7) (-21,5 : +25,6) (-19,9 : +23,5) (-14,7 : +17,0) 

Subcarpathian 
1889,5 3,9 0,02 1994,03 

(-13,0 : +15,0) (-21,4 : +25,5) (-19,8 : +23,4) (-13,3 : +15,3) 

Podlaskie 
759,6 1,7 0,01 805,83 

(-14,3 : +16,5) (-21,4 : +25,5) (-19,8 : +23,2) (-14,5 : +16,8) 

Pomeranian 
1478,1 2,8 0,02 1552,03 

(-11,7 : +13,5) (-21,3 : +25,4) (-19,2 : +22,7) (-12,0 : +13,8) 

Silesian 
4591,5 10,1 0,06 4860,85 

(-13,8 : +15,9) (-21,4 : +25,6) (-19,9 : +23,4) (-14,1 : +16,2) 

Świętokrzyskie 
1106,2 2,5 0,01 1174,20 

(-14,5 : +16,7) (-21,5 : +25,6) (-19,9 : +23,4) (-14,7 : +17,0) 

Warmian-

Masurian 

900,1 1,9 0,01 949,97 

(-13,0 : +15,0) (-21,4 : +25,5) (-19,5 : +23,0) (-13,2 : +15,3) 

Greater Poland 
3013,4 5,9 0,04 3172,27 

(-12,4 : +14,3) (-21,3 : +25,4) (-19,5 : +22,9) (-12,7 : +14,6) 

West Pomeranian 
1163,7 1,8 0,01 1210,98 

(-9,6 : +11,0) (-21,0 : +25,1) (-18,6 : +21,9) (-9,9 : +11,3) 

According to the IPCC classification, the residential sector is part of the 1A4b 

category in the energy sector. The uncertainty of CO2 emissions in this sector at the 

country level is relatively low – around 3.0% (National inventory report of Poland, 

2010), as the uncertainty of the activity data is 4% and the uncertainty of the emission 
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factor is 1% for liquid fuels and 2% for gaseous and solid fuels. Such low uncertainties 

in the input data can be explained by the high level of statistical data aggregation and 

overall accurate energy statistics at the country level. 

However, in our spatial approach, we used data about fossil fuel consumption at the 

regional level, which is in units of weight. We first converted these data to energy units 

using national or default (IPCC guidelines) net calorific values, which we later 

disaggregated and then used for the emission estimations. By using regional statistics 

on fossil fuel combustion instead of country level data, we reduced the uncertainty due 

to disaggregation, but at the same time we introduced uncertainty in the net calorific 

values, which are rather high (e.g. 19.1% for coal). This leads to an increase in emission 

uncertainty at the regional level (Table 1) compared to the uncertainty in emissions at 

country level, as mentioned previously. 

The statistical data on coal and liquid gas usage at the regional level were available 

in units of weight while the data on natural gas combustion are available in energy units. 

As a result, the uncertainty is slightly lower in those regions where natural gas 

constitutes a bigger share in the total energy consumption in the residential sector (e.g. 

Wielkopolskie voivodeship) compared to other regions.  

4. Conclusions 

Uncertainty analysis is an important part of the spatial inventory of greenhouse gas 

emissions as it gives an understanding of the ranges in which the emission estimates 

fall and which parameters of the model introduce the highest uncertainty into the model 

results. This information can be used to find possible ways to decrease uncertainties in 

the emission inventory when disaggregated to subnational level and to build more 

certain spatial cadasters of greenhouse gas emissions.  

The spatial inventory of greenhouse gas emissions from direct fossil fuel combustion 

and heat production for residential sector energy needs was conducted using the official 

statistical data, national emission coefficients and net calorific values (or recommended 

by IPCC in the absence of national data). The obtained results show that uncertainties 

of greenhouse gas emissions at the regional level are significantly higher than at the 

country level; however, the uncertainty of emissions in CO2-equivalent does not exceed 

17.0%.  
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Abstract 

Air pollution dispersion models have recently been used for supporting decisions 

concerning air quality management and emission control. Emission inventory is the basic input 

dataset in air quality evaluation. To select the best strategy of emission reduction and to assess 

the possible environmental effects, there is a need to estimate the contribution of the respective 

emission sources to the resulting air pollution. This paper addresses the problem of uncertainty 

of air pollution models, related imprecision and uncertainty of the emission data. The problem 

is discussed in a case study for Warsaw agglomeration, where the main urban scale air 

pollutants: SO2, NOx, PPM10, PPM2.5 are considered. CALMET/CALPUFF modeling 

system is used as the main forecasting tool which links the emission data with the resulting 

concentrations. Uncertainty analysis, based on a Monte Carlo algorithm, shows the main factors 

which decide on the resulting uncertainty of the model forecast. 

Keywords: air pollution, emission inventory, computer model, uncertainty analysis 

1. Air quality models in decision support systems 

A direct application of air quality models is in forecasting dispersion of pollutants, 

analysis of ecological results of some specific meteorological episodes, or evaluation 

of the final environmental impact of emission sources. Recently developed Integrated 

Assessment Models (IAM) [2, 3, 9, 16] are used for supporting decisions concerning 

air quality management and emission control policy. The air quality model is a key 

module of such a system which enables to assess environmental, economic or health 

benefits of emission abatement, and to select the best strategy of emission reduction. In 

such applications, there is a need to estimate the contribution of emission sources to 

ambient concentrations with required accuracy. However, due to a very complex 

structure of such systems, there exist many sources of environmental effects of 

atmospheric pollution as well as in the resulting regulatory decisions.  

The quantitative assessment of uncertainty brings the modeling prediction closer to 

reality. It increases decision maker’s confidence in the modeling results and  improves 

the quality of the final decisions. To assess the accuracy of modelling results and a 

connected decision support process, inaccuracy and uncertainty of the model should be 

evaluated. The main sources of results’ variability (temporal or spatial) and uncertainty 

(imprecise information or lack of information about unknown quantity) should be 

identified and assessed [11, 15, 17].  

It is a common view in the literature that emission field inventory is one of the main 

sources of uncertainty in modeling of air pollution dispersion. The problem is 

particularly significant in urban agglomerations [1, 4, 10, 12, 14]. Emission field in 

such cases comprises a variety of sources, point-, area- and line-, with different 

technological parameters, emission intensities, composition of polluting species, and 

also – with different uncertainty which is introduced to the system. This uncertainty 
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must be taken into account in complex analysis, when the results are to be used in 

supporting regulatory decisions. 

2. Urban scale uncertainty analysis 

The computations performed in the framework of the study relate to the forecasts 

and analysis of air pollution dispersion in Warsaw agglomeration. The aim was to 

evaluate the environmental impact of the main categories of emission sources as well 

as to estimate the uncertainty of this forecast, which is related to the uncertainty of 

emission field inventory. The analysis covers a rectangular domain, approx. 30 x 40 

km2 of Warsaw Metropolitan Area shown in Fig. 1. The regional scale, Gaussian puff 

dispersion model CALPUFF [18, 19, 20] was used to simulate the air pollution transport 

and transformations within the domain. 

 

Figure 1. The study domain and the receptor points ([8], due to CCA License) 

In case of the discussed Warsaw study the total emission field was decomposed into 

four basic categories, mainly according to the emission parameters and the intrinsic 

uncertainty [7]. According to the previous remarks, assumed emission field was 

categorized into following four classes: 

• 16 high point sources (power/heating plants – low uncertainty), 

• 1002 low point sources (industry – medium uncertainty), 

• 872 area sources (residential sector – high uncertainty), 

• 1157 linear sources (transportation – high uncertainty). 

For computational purposes, the domain is discretized with a regular square grid 

with the step size h = 1 km. The point sources are located according to the geographical 

coordinates, the area and linear sources are represented as one grid element, 1 km2 

(compare Fig. 1). Computations take into account temporal variability of the 

meteorological and emission input data with the assumed step-size of time resolution, 
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τ = 1 h. The annual mean concentrations of the main polluting species are recorded at 

563 fictitious receptor points, located in the center of grid elements shown in Fig. 1. 

The list of the main primary and secondary pollutants considered in this study 

encompasses  sulfur oxides (SO2), nitrogen oxides (NOX), sulfate and nitrate aerosols, 

particulate matter (PM10 and PM2.5) and Pb. 

3. Uncertainty analysis 

The uncertainty of the modeling results has been assessed using a Monte Carlo 

algorithm [6, 13] and the input uncertainties of the emission data. Applied to all the 

sources and pollutants, 2000 random sets of emission data were preprocessed within 

the assumed ranges of uncertainty. Each random set of the emission data encompasses 

a one-year time interval. As stated in [8], to avoid generating unrealistic emission 

episodes, a correlation between emission intensities of key individual pollutants from 

each emission source was established.  

Table 1. The input uncertainty range depending on emission category (95 CI) 

                  ([8], due to CCA License). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 presents these ranges, assumed for 4 categories of emission sources, at the 

95% confidence interval. The applied input uncertainties have been mainly based on 

expert opinions as presented in [8]. The normal distribution of the input emission data 

was assumed. The relative uncertainty range of the resulting pollution concentrations 

at a receptor point is calculated as a ratio: (c97.5 − c2.5)/cM, where  c2.5 is the 2.5 and 

c97.5 is the 97.5 percentile concentration value, and cM is the mean value. 

In the previous papers [7, 8] violation of air quality limits (EU 2008) by NOX, PM10, 

PM2.5 concentrations, mainly in central districts, was indicated. The accuracy of the 

forecasts was confirmed by comparison of the results with measurements (FA2 index). 

Below the main factors which decide on the final uncertainty are discussed. 

The first factor which determines the resulting uncertainty is the category of 

emission sources with the dominating share in polluting the receptor (see Table 1). For 

example, it is known that NOX and Pb are typical traffic-related compounds for which 

the concentration maps are correlated with the topology of the arterial streets. The 

correlation is also seen on uncertainty maps. The mobile sources also contribute to PM10 

pollution, but in the case of PM2.5 and SO2 there is a considerable share of the area 

Pollutant 
Emission sources 

High point Low point Area Linear 

    SO2 ± 15% ± 20% ± 30% ± 30% 

    NOx ± 20% ± 30% ± 40% ± 40% 

    PPM10 ± 25% ± 40% ± 40% ± 40% 

    PPM2.5 ± 25% ± 40% ± 40% ± 40% 

 
    PPM10_R – – – ± 40% 

    PPM2.5_R – – – ± 40% 

 
Pb ± 30% ± 40% ± 50% 

 

± 50% 
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sources (residential sector) and also of some point sources. The above correlations are 

reflected in the uncertainty maps.  

An important factor influencing uncertainty is the relative share of emission 

categories which contribute to the selected receptor point. Exemplary maps shown 

below compare distributions of a typical traffic-related NOx pollution and the pollution 

of PM2.5, which strongly depends on other emission categories, e.g. the area emission 

from the residential sector. Figure 2 contains two related pairs of maps, pollutant 

concentration and uncertainty, for NOx (top) and PM2.5 (bottom), respectively. 

 

 

Figure 2. The spatial maps of concentration (left) and uncertainty (right): 

 NOX – top and PM2.5 – bottom ([8],due to CCA License) 

 

It can be observed that the maximum concentrations (left maps) occur in the central 

districts of the city, but the spatial variability of uncertainty (right map) is much more 

evident is not strictly correlated with the concentration map. For NOX the maximum 

uncertainties are obtained near the main crossroads (similar properties represent the 

other traffic dependent pollutants, such as PM10 or Pb),  while the global uncertainty 

maximum for PM2.5 represents the residential sector (individual housing area).  

In these cases, high uncertainties correlate to some extent with the concentration 

values, but in fact they depend also on the location of the receptors. The location 

determines the relative share of the contributing emission categories and the quantity 
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of the individual emission sources which affect a given receptor point. A specific 

coincidence of these factors leads to extreme values of the overall uncertainty at some 

locations. The quantity of individual sources that substantially contribute to a spot 

strongly influence the uncertainty. Due to the averaging effect, the rising number of 

such emission sources leads to the lower aggregate level of the relative uncertainty, 

while a low number of the unbalanced sources mean high uncertainty. This fact is 

illustrated by the data for pollutions NOX  and PM2.5 recorded at receptors #136 

(crossroad) and #156 (housing), presented in Table 2 and in  Table 3, respectively. 

Table 2. Uncertainty of  NOX concentration depending on the receptor location 

 

Table 3. Uncertainty of PM2.5 concentration depending on the receptor location 

 

 

So, the fewer sources contribute to the pollution level, the higher level of the relative 

uncertainty may be expected. At the same time, an unbalanced contribution of the 

individual generally increases the aggregate level uncertainty for the forecasted 

pollution. This general conclusion is illustrated in the two selected receptor points, 

namely receptor #136 (crossroad) where the high level of uncertainty occurs for traffic-

related pollutants (NOx), and receptor #156 (residential area) in a peripheral district 

where fine particulates PM2.5 predominate in the emission field and induce a high level 

of uncertainty. On the other hand, in such cases, the impact of the input emission 

uncertainty assumed in Table 3 becomes less important. 

 Receptor  #136  

uncertainty range 45% 

Receptor #156 

 uncertainty range 28% 

Sources 
Concentration 

[ug/m3] 

Share 

[%] 

Dominating 

sources 

Concentration 

[ug/m3] 

Share 

[%] 

Dominating 

sources 

LINEAR 29,8 94,3 4 15,94 80,1 9 

AREA 1,0 3,1  2,86 14,4 2 

LOW 0,7 2,2  0,4 3,5  

HIGH 0,1 0,3  0,7 2  

Total 31,6  4 19,9  11 

 Receptor  #136  

– uncertainty range 23% 

Receptor #156  

– uncertainty range 33% 

Sources 
Concentration 

[ug/m3] 

Share 

[%] 

Dominating 

sources 

Concentration 

[ug/m3] 

Share 

[%] 

Dominating 

sources 

LINE 6,4 74,5 5 3,1 33,7 1 

AREA 1,9 22 1 5,8 60 3 

LOW 0,2 2,0  0,2 2,2  

HIGH 0,08 0,9  0,1 1,1  

Total 8,58  6 5,97  4 
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4. Summary 

The paper  addresses the problem of uncertainty of urban scale air pollution models 

under uncertainty of emission data. The case study discussed deals with Warsaw 

agglomeration where Monte Carlo algorithm is used. and sources contribute to the 

pollution level, the higher level of the relative uncertainty may be expected. Exemplary 

results illustrate the spatial distribution of uncertainty in the domain. The main factors 

are indicated which decide on resulting uncertainty of the forecast. It relates to the 

receptor’s location, but also depends on the share of emission classes that affect the 

receptor site and on the number of the individual emission sources  contributing to the 

overall concentration. 
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Abstract 

The main purpose of this paper will be examining the possibility of effective selenium (Se) 

air emission inventory form small domestic combustion sources. Authors would like to raise 

issues connected with data collection, its consistency and also stress the context of uncertainty 

analysis of air emission from small geographically scattered sources. 

Although emission inventory of selenium is covered by UN ECE LRTAP Convention, the 

selenium emission inventory has not been performed so far nor in Poland, neither in its part. 

Data derived from working paper [1] suggested underestimation of selenium air emission from 

domestic stoves. Moreover official emission inventory guidelines [2] reported significant 

difference between Tier 1 Se emission factors for energy industries (NFR: 1A1a) and residential 

combustion (1A4bi). This data hinder emission inventory and may significantly affect results 

of uncertainty analysis. 

Keywords: selenium, air emission, uncertainty analysis 

1. Introduction 

This paper presents using scarce, incomplete and uncertain data in air emission 

inventory. Due to many lacks in estimation of selenium air emission such as: using data 

derived from simplified official guidelines (Tier 1) [2], lacks in measurements, no data 

on economical or any other national dependencies, lacks of data on uncertainties the 

official data for international submission is still under preparation and analysis [1]. 

The main task of presented analysis is to merge pieces of information from various 

sources and determine range of uncertainty of Se air emission from domestic (small) 

combustion sources (included in NFR 1A4bi category). 

As initial analysis authors would like to present quantitative assessment of 

uncertainty according to previous works [3,4] in particular using mixture model with 

two components [3], expressed as: 

f(x) = wf1(x) + (1 – w)f2(x),                            (1) 

where: 

f(x), probability density function (PDF) of emitted air pollutant; 

0 ≤ w ≤ 1, weight of component PDF; 

f1(x), f2(x), PDFs of components. 

Methodology presented in this paper considers results of selenium content analysis 

in Polish coals, due to their importance in national economy. Also introduced selected 

methods of data integration due to small amount of direct measurements available. Due 

to its volatility in combustion process Se content in fuel could be treated as an emission 

factor. Moreover, the lack of measurements of selenium content in coal makes 

impossible straightforward analysis of  selenium air emission. 
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According to formula (1), functions f1(x) and f2(x) could be treated as PDFs of 

emission source activity and also emission factor respectively. For determining of total 

uncertainty of emission, assumptions of partial uncertainties are needed. 

Case of incomplete data forced use of bootstrapping or maximum likelihood 

estimation. Basing on assumptions from [3], considered distributions were: lognormal, 

Weibull and Gamma. Apart from adjusting distributions technical aspect of 

independent distributions combination was considered. 

In second step, authors would like to analyze spatial aspects of estimated emission 

considering disaggregation of top-down emission estimation by surrogates. 
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