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Abstract

ki x ky x - - - x k, games are uniquely decomposed into their strategic and

behavioral parts. The strategic part contains all information needed to determine a spec-
ified strategic outcome (e.g., Nash, Quantal Response Equilibria (QRE)); the behavioral
portion is what motivates cooperative approaches such as tit-for-tat, side-payments, etc.
The decomposition reduces complexity; e.g., the space of 2 x 2 games is reduced from
R®to points in a three-dimensional cube. Applications include characterizing all 2 x 2
games, finding which Nash (or QRE) structures accompany certain classes of k; x - - - x
k, games, and how results concerning two and three player tit-for-tat strategies differ.



STRATEGIC AND BEHAVIORAL DECOMPOSITION OF GAMES

DANIEL T. JESSIE AND DONALD G. SAARI

1. INTRODUCTION

In analyzing cooperative and competitive interactions, games can range from the classic
single-shot, to repeated, evolutionary, quantum games, bargaining solutions, etc. Central
to all approaches is the “initial game” identifying what is being analyzed. Consequential
to these procedures is the game’s basic structure, which is developed here.

The surprising complexity of spaces of games has hindered previous efforts to find a fully
developed structure. Even the simplest n-person game, where each player has only two
strategies, requires n2™ values. As such, each game can be identified with a point in the
Euclidean space R®?", and each R™?" point defines a game. Thus the space of 2 x 2 games
is the eight-dimensional R® and the space of 2 x 2 x 2 games is R?4.

This intricacy is reflected by a partial characterization of the simplest 2 x 2 games
developed by Robinson and Goforth [11]. By identifying 144 central 2 x 2 ordinal games,
they partitioned R® into 144 regions. Hopkins [3] captured the inherent complexity of this
space by reducing portions of this analysis to five-dimensional manifolds; another method
leads to a torus with genus 37 (think of this as the number of holes). The natural objective
of further reducing the dimension and complexity of a space of games is carried out here.

Candogan, Menache, Ozdaglar, and Parrilo [1] developed an approach emphasizing a
game’s “Nash strategic flow.” This interesting decomposition arises from translating a game
into a flow on a graph, and using properties of the flow to characterize games, which is of
particular interest when studying potential games. Aspects of what they find are captured
by our coordinate system approach; elsewhere we plan to use our results to describe and
extend a flow component analysis.

Among the various ways to decompose games (e.g., Jones [5]), a commonly used method
separates a game into its cooperative (identical play) and zero sum components such as

(1) 6604:6622+O 6|2 2

4 —4(2 0 0 0|1 1 4 -4 1 -1
Kalai and Kalai 7] use appropriate terms from each component to develop their thought-
provoking “coco” (cooperative-competitive) bargaining solution. But decompositions can
alter a game’s original strategic structure. In Eq. 1, for instance, the original game has
one mixed and two pure (TL, BR) (i.e., top-left, bottom-right) Nash strategies, but each
component on the right has a single dominant strategy and neither has a mixed strategy.
Our approach always preserves the strategic form.

Both authors were supported, in part, by NSF Grant NSF CMMI-1016785.
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2 DANIEL T. JESSIE AND DONALD G. SAARI

More specifically, any k1 x kg % ... X k, game is separated into the portion that captures
all strategic aspects (usually Nash) and the part that affects other behavioral/cooperative
actions. This reduces the space of 2 x 2 games from eight dimensions to where information
needed for Nash strategic aspects is given by points in a square; all aspects are captured
by points in a three-dimensional cube. Similarly, 2 x 2 x 2 games are reduced from 24
dimensions to where strategic information is in a nine-dimensional cube; all aspects are in
a 17-dimensional cube. For n-player, two-strategy games, the analysis is reduced by 2n+1
dimensions.

0 04 2 gu4 41-2 6 g_8002
2 46 6 T*° B0 22 4

2) b= 6 —2| 0 0

The value of knowing a game’s strategic information is obvious; to indicate the impor-
tance of the behavioral terms, all three Eq. 2 games share the same BR Nash equilibrium,
but each is analyzed in a different way. The G; game is uncontroversial because the BR
Nash strategy is the Pareto superior outcome. Game G is a Prisoner’s Dilemma where the
BR Nash equilibrium is Pareto inferior to the TL outcome. Game Gs is more ambiguous;
if the entries represent money, then a way to obtain the superior total of the BL outcome
would involve side payments to induce the column player to play L. These differences are
caused by the behavioral component in our decomposition.

Our method, then, identifies those features that can change how a game is analyzed. To
do so, an n player k1 x ks X --- % k;, game is uniquely divided into three parts: the first
portion identifies strategic interests, the second component is what influences all cooper-
ative behavioral reactions, and the third “kernel” portion merely adds the same value to
each of a player’s entries. All three Eq. 2 games are Nash equivalent, so all differences in
the analysis of, or behaviors elicited by these games are strictly due to their behavioral
terms. With the Prisoner’s Dilemma (Gs), then, the behavioral portion is what motivates
seeking ways to achieve the TL outcome.

The decomposition also identifies large classes of games with specified strategic proper-
ties. A desired modeling, for instance, may require a certain Nash structure; e.g., perhaps
two competing pure strategies. As developed in Sect. 5.2, all possible games with a desired
strategic feature can be identified with our decomposition. This permits the design of
experiments (currently being carried out with paid subjects) to determine in what ways a
game’s strategic and behavioral portions influence the selected strategies. Because there
exists a continuum of games, where each has an identical strategic component but the
behavioral terms can differ as widely as desired, the behavioral components become new
variables for analyzing games and designing experiments.

The approach is introduced (Sect. 2) with 2 x 2 games and generalized to ky x kg x - - - x ky,
games. The decomposition is mathematically simple; the uniqueness proof (Sect. 7) uses
elementary properties of symmetry groups and representation theory. Applications of the
decomposition, such as showing how standard tit-for-tat results for two-person Prisoner’s
Dilemma games can change with more players, are in Sect. 3. In Sect. 4, the decomposition
is used to reduce the complexity of the space of games. The positioning of standard games
within this structure is described in Sect. 5. Proofs not following statements are in Sect. 7.
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2. DECOMPOSITION

Start by adopting a solution concept; e.g., Nash equilibria. All games with an identical
solution structure are collected into the same set with the following definition (which is
later refined).

Definition 1. (Preliminary) With a given solution concept SC, games G; and G; satisfy
the binary relationship ~gco if they have an identical SC structure.

To illustrate Def. 1 with Nash equilibria and its binary relationship ~p, both

6 6|0 4 2 11 8 9

(3) =1 —1rz o0 %=[0 oli0 a7

have the same pure strategies of TL, BR, and the mixed strategies of (2, 1) for player
one (row player), and (%, %) for player two, so G4 ~n G5. From the perspective of Nash
equilibria, these games are indistinguishable. (G4 was used in Eq. 1.)

We also consider Quantal Response Equilibria (QRE) developed by McKelvey and Pal-
frey [9]. While the motivation and details for QRE are carefully described in [9], QRE can
be treated as modeling limitations (e.g., errors) of players in computing best responses:
shortcomings that cause deviations from Nash equilibrium play. The “logit” QRE systems
analyzed here use a particular way (see Sect. 3.4) to model the players’ limitations; the
level of ability is captured by a parameter A € (0, 00) where larger A values indicate more
adept players. One must anticipate that A plays a central role in the ~g¢ relationship,
which is reflected by our ~grpg, x notation. A natural question (answered below) is whether
a A > 0 value exists (i.e., a limited level of ability to handle best response computations)
where G4 ~grg, Us, or, more dramatically, where G; ~gre x G2. If a A > 0 does not exist,
it would demonstrate that QRE distinguishes between players’ abilities to respond to dif-
ferent kinds of games. But should such a A exist, it would mean that, from the perspective
of QRE and the specified A value, the uncontroversial G; would be indistinguishable from
the Prisoner’s Dilemma.

For all considered solution concepts, ~g¢ is an equivalence relationship. (Namely,
Gi ~sc Gi. If Gi ~sc Gj, then G; ~g¢ G;. If G; ~s¢ G and G ~sc G, then G; ~5¢ Gi.)
Thus ~g¢ partitions the space of games into equivalence classes. Each ~p equivalence
class, for instance, consists of all games with the same Nash equilibria strategies; this
means that G4 and Gs are but two of an infinite number of entries in their ~p class.

To analyze the ~g¢ equivalence classes, the goals are:

(1) Characterize each equivalence class with an essential game theoretic aspect that
defines all games in the class. By characterizing an equivalence class, this trait
cannot be satisfied by a game from any other class.

(2) Determine how games within a class differ.

(3) Determine how different solution concepts partition the space of games in different
ways. Differences between ~grp ) equivalences sets with different A values, for
instance, would identify what structural variations of games explain different QRE
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predictions. All dissimilarities and similarities among ~y and different ~grg
equivalence classes are fully identified.

2.1. The second issue and a decomposition. As shown next, Gi ~n Go ~n Gz (with
Def. 1 and a later refined definition). That these diverse games belong to the same Nash
equivalence class underscores the importance of the second question, which is to understand
how games within a class differ. Answers involve the behavioral term.

As developed starting in Sect. 2.2, each game G has a unique decomposition into the
GV part that determines the Nash strategies, the GP part that captures other behavioral
aspects, and the GX part that just scales the entries. The unique division of the Eq. 2
games, given in the G = GV + GP + GK order, follows:

” g [-L —1[-1 1] [-2 —2[2 —2) [ 3[3 3
=71 1 1 1 -2 2|3 2 3 3(3 37
1 11 1] [3 3/=3 3] [2 2[2 2

(5) Go=1 11 1 173 =3[=3 =3|T[2 2[2 2|
T 11 1] [4 —1]-4 —1| [5 2[5 2

(6) =1 7 1117 1/=2 1|75 2[5 2|

These three games share the same GV Nash strategic form, which completely determines
each game’s Nash behavior; the games are “best response equivalent.” That GV fully
extracts all Nash strategic elements of a game comes from the form of the GX “kernel”
component (which adds the same value to each of a player’s entries) and the “behavioral”
component GZ that admits no differences in rows for the row player, nor in the columns for
the column player. Thus, G® outcomes are determined by coordination of players’ actions,
such as behavioral aspects ranging from altruism, cooperation, tit-for-tat, to “You scratch
my back, I'll scratch yours,” etc.

A key GP feature is its Pareto superior entry, e.g., the dominant G{V and Q]{B entries are
both located at BR. But for Ga, the BR Nash location for GI¥ is the G£ Pareto inferior
position; the GZB Pareto superior TL position is the Qé\r Nash inferior location (both players
wish to move). This conflict between Gy components—strategic and cooperative—generates
the Prisoner’s Dilemma. For Gs, the BL position of the GF Pareto superior term sways
interest from the BR Nash point to the BL choice.

2.2. The Nash decomposition. Using G4 to introduce the decomposition, if the column
player’s L-R strategy is given by probabilities (¢,1 — q), ¢ € [0, 1], the row player’s pref-
erences between T and B are determined by their expected values; e.g., the row player’s
expected outcome by playing T is EV(T) = 6¢+0(1 —¢) and B is EV(B) = 4¢+2(1 —g).
The difference (in a “best response” analysis) is

(7) EV(T)-EV(B)=[6g+0(1-q)]—[4g+2(1—¢q)]=[6—4]g+[0—2](1-q).

With a positive Eq. 7 value, the player should play T; with a negative value, the player
should play B.
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The critical terms are the bracket values in the final Eq. 7 equality. Rather than 6
and 4, their difference of 2 determines the g coefficient; rather than 0 and 2, their —2
difference determines the (1 —gq) coefficient. Thus the strategic analysis remains unchanged
by replacing each term in each pair by how it differs from the pair’s average; e.g., replacing
6 with 6 — %4 =1 and 4 with 4 — 6%4 = —1 (in Eq. 8) does not change the g coefficient
in Eq. 7. Similarly, replacing 0 with 0 — 0—‘52 = —1 and 2 with 2 — 0—42;2 = 1 does not affect
the (1 — q) coefficient. An important but not obvious fact is that terms must be replaced
by how they deviate from the pair’s average to separate a game’s strategic and behavioral
aspects: Other choices need not extract all strategic information (Sect. 7) because (as with
Eq. 1) a remaining component could include Nash information.

The same argument holds when comparing the second player’s expected values for L
and R in response to the row player’s mixed strategies of p and (1 — p) for T and B. This
defines the game G, which has the same Nash structure as Gj.

y_ [T 1[-1 =1
(®) 99 =TT a1 2

Because GJY is defined by differences from averages, these averages define the Gy — GJ¥
entries; e.g., the first term in the upper-left corner of G4 — Gy is6—1=6—[6— 6—‘5—4} = ng_—g,
or the average of the 6 and 4 entries. This leads to the decomposition

6 60
©) 9a =112

4
0 5 2|1 —2]

The second term is further decomposed by extracting deviations from the average of each
player’s entries. Let x; be the 7" player’s average of G4 entries; e.g., k1 = (6+4+0+2)/4 =
3, and xo = 1.5. Player one’s column entries in the last Eq. 9 bimatrix are 5 and 1 and
k1 = 3, so replace b with 5 —3 = 2 and 1 with 1 — 3 = —2. Doing the same for player two
with k3 = 1.5 leads to the following G4 decomposition (that differs from Eq. 1):

(10)

Gy =

6 6|0 4| | 1 1—1—1_|_2 3.5 | -2 3.5+31.531.5
4 —412 0| |-1 =2 1 2 2 —35|-2 35 3 153 1.5]

The same approach holds for any k1 x - - - x k,, game: Replace values at each stage by how
they differ from appropriate “averages.” For the first stage, a pure strategy selected for each
of the other players defines an array of payoffs for the j* player: To define this player’s
G" entries, replace each term in this array by how it differs from the array’s average.

Entries in G — GV are the averages of these arrays. Let k;j be the average of the gt
player’s G — GV entries (which is the average of the j** player’s G entries) to define G¥.
To define GP, replace the j** player’s G — GV entries by how they differ from K-
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2.3. The general case. By using “differences from averages,” an equivalent approach is
to start with the various averages. To illustrate, consider the 4 x 3 game

0 —1] 1 4|5 -4
o 2| 2 4|5 3
(11) 96 =5 —41-1 —5]8 —3
5 1|-2 —1|6 0

The positive payoffs for both players are the (5,3) and (2,4) cells.
Each player’s G& entry is the average of the player’s Gg entries. The sum of the row
player’s entries is 12, with an average of 1. The column player’s average is —1, so

1 =¥[1 —=L|T =i
¥ [T —1]1 =1]1 =1

12 9 =T 11 —1]1 —1|
1 1|1 —1|1 -1

To compute the behavioral QéB, replace the Gg — QE‘F arrays with their averages. Namely,

a pure strategy selected for the other player identifies a G — G& array for the j** player;
replace each term in this array with its average. With Gg and the column player’s far left
choice, the row player’s Gs— G four entries, from top down, are 0—1, ~2—1, —=5—1, —5—1

with an average value of —4. Doing so for all columns and rows leads to

1 —3]-1 2|5 -2

s =4 4]-1 4|5 1

(13) 6 =[—4 -3 -1 =35 =3
4 11 1(5 1

By construction, all rows are identical for the row player; all columns are identical for the

column player.

The strategic term, G§' is what remains; e.g., G& = Gs — [GF + GE, or

3 2| 1 —-1|-1 -1
1 -1 2 11-1 0
N _
(14) Ys = -2 0|-1 -1 2 1]
—2 11-2 =1 0 0

A similar computation shows that Gg ~pn G7 where G7 is the seemingly dissimilar

f 1 |8 4] —a —A —3 —3[7 —3]-4 —3

=2 -=3]9 -1|-5 —2| _n,[-3 —2]7 —2[-4 -2

(15) Gr=I—p5 176 —2[=2 0] % T[=3 —1|7 —1|-4 -1
-5 7|5 5|—-4 6 —3 6|7 6|-4 6

Although Gg ~n G7, the only jointly desired G7 cell of (5,5) has a different location from
the two Gg cells with positive payoffs. By being Nash equivalent, all differences between
Ge and G are strictly determined by differences in their behavioral components.
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2.4. A 2 x 2 x 2 game. To illustrate with a multiplayer game, consider the following
2 x 2 x 2 game where the row, column and front-back (F, Ba) payoffs are
7 7 7|5 11 5 4 4 110 8 9

(16) g : Front =—3——5—g o Bak=rg 557771

Each player’s average entry is 6, so G& has (6,6,6) in each of its eight cells. After sub-
tracting six from each Gg entry, the row player’s average entry value for the LF strategies
is 3((7—6) + (11 — 6)] = 3, which defines each cell’s first entry in the LF column of G&. In
this manner, the behavioral component is

33313 1] [0 03[-4 0 1
31 0|1 1 -4 70 —4 0]-4 -4 —4

(17) G¥ . Front =

What remains is the Nash strategic component G = Gs — (GF + G£5)

—2 2 —2]-22 2] , . [-2 -2 22 2 2
2 —2 —3] 2 2 —ap T3 2 2 2 2 2

(18) GY : Front =

We now refine Def. 1 from its “best-response equivalence” description to a form that
emphasizes the precise structure of the Nash information.

Definition 2. Two ki x -+ X ky, games are said to be Nash equivalent. “~n,” if and only
if they have the same GV component.

The following identical play (Eq. 19) and zero sum (Eq. 20) games have the same Nash
best response (i.e., if player two plays L, one plays T; if two plays R, one plays B; if two
plays ¢ = .5, one is indifferent; whatever one plays, two plays R) so they satisfy Def. 1.
But the decomposition shows that they are not Nash informationally equivalent (Def. 2).

B 2|2 B 1 —2]-1 2| [—& @|8 ©
(19) gIP=_4 “4l4 4| |1 —4| 1 4|73 0[3 0
3 —3|—-3 3 1 —3|—-1 3| [2 0]—2 @

(20) Gzs =311 1| (=1 =1 1 1] [2 0]=2 0

As proved in Sect. 4.3, only in special cases can zero-sum and identical play games be in
the same GV equivalence class.

2.5. Notation and game structure. Notation for a k; x --- X k,, game G is given for the
§* agent, j = 1,...,n, when the pure strategies for the other (n — 1) agents is given by s:
e r; is the agent’s common G¥ value.
e ;s is the agent’s common G?Z entry for the given s.
® s t=1,...,k;, is the 7t agent’s it" strategy in GV for the given s.
® gijs t=1,...,k;, is the G entry.

With this notation, the structure of the space of games can be described.

Theorem 1. For any k1 x --- %X ky game:
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(1) For each i,j and s,

(21) Gigis = Migis + Biis + K5
For each j and s,
kJ
(22) Z Mijss = 0.
i=1
For each 7,
(23)

Zﬁj;s = 0:

where the summation is over all choices of s.

(2) Matrices GZ, G&, and GB + G¥ have no Nash information about the game G. All
Nash information is in G~, and G ~n GV

(3) "A necessary condition for G to have a pure Nash equilibrium is if the associated GV
cell has all positive entries. A necessary and sufficient condition is if for each j,
this entry is the largest n; j.s for the given s.

(4) If each player has a non-zero GB entry, then for n = 2, matriz GP has a Pareto
superior cell with all posilive entries, and a Pareto inferior cell with all negative
entries. This need not be the case for n > 3.

Part 3 of Thm. 1 describes a way to find all pure Nash equilibria: Find GV, which is a
series of elementary arithmetic steps (kiks...kn(n + % + ... ﬁ) of them); then identify
those cells with all positive entries. Hlustrating with the Qév = g?f structure, Gg and
G7 have three pure Nash equilibria along the diagonal: (TL), (Second from top, Middle),
(Second from bottom, Right). Game Gg has only the (BRBa) equilibrium.

Similarly, to determine the pure Nash equilibria of

G:

Front =

6 7 3

2 5

4 3 9

4 5

5
2 i

Back =

compute GV. (Only GV is needed, which requires 23(3 + %) = 36 operations to determine
how appropriate terms differ from their average.) It follows immediately from

-1 1
—1, =l

1 1 -1]-1 -1
-1 -1 1 1 1

: -1 -1 -1 1 1
N . _
G" : Front = — Back = i T 1

that the only Nash equilibrium is BRBa. The unappealing nature of the BRBa G outcome
(e.g., when compared with TLBa) reflects the strong role played by GB.

This structure makes it straightforward to determine the number of strict pure Nash
equilibria admitted by games and to create examples (construct appropriate G choices).
The “strict” modifier refers to the generic setting where, for each s, the j** agent has at
most one option for a Nash point; this always happens if an agent’s GV payoffs differ.
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Corollary 1. Consider the space of k1 X ko X. .. Xk, games where, without loss of generality,
ki1 > ko > ... > ky. For any integer o satisfying 0 < o < kaks ... ky, there is a game with
precisely a strict pure Nash equilibria. No game can have « > kaks ...k, equilibria.

So, 4 x 5 x 6 x 7 games allow up to 6 x 5 x 4 = 120 pure Nash points. The proofs of
Cor. 1 and Thm. 1, parts 2 and 3, are in Sect. 7.

Proof of Thm. 1, Parts 1, 4: Equations 21-23 follow from the construction; Eq. 21 is
obvious. Because x; in G is the average of the 7t agent’s G entries, the sum of the
agent’s entries in [G — G¥] is zero. This sum is the same if, for each s, each entry in the jth
agent’s [G — G| array is replaced with its average, which is 3" 8, Eq. 23 now follows.
Similarly, 8;.s is the average of the jth agent’s [G — G¥] entries for a specified s, so the sum

of these entries in G — [G® + G¥] equals zero. This sum is Zf;l 7ij:s+ S0 Eq. 22 holds.

To prove (4) for n = 2, the row player’s largest ¢ value identifies a specific column, or,
if k1 > 3, possibly more than one column. Similarly, the column player’s largest f; s value
identifies specific rows. The intersection of these rows and columns identify the GZ cells
with the largest values (which, from Eq. 23, must be positive) for each player. These are
the Pareto superior term(s). Similarly, there is a GZ column with the row player’s smallest
B1,s value, and a GB row with the column player’s smallest 825 value. The intersection of
this row(s) and column(s) define the Pareto inferior cell(s); each entry in the cell is negative
(Eq. 23). With 2 x 2 games, the Pareto superior and inferior cells are diametrically located.

As a specified column and row corresponds to lines that are parallel to different R? axes,
the proof reflects the geometry that two non-parallel straight lines in R? must cross. But
n nonparallel straight lines in R®, n > 3, need not meet, so G¥ need not have dominant
nor inferior entries. What simplifies creating examples is that the 3;s entries are free to be
selected subject to Eq. 23. So, adhere to this geometric property of non-intersecting lines
as in the following 2 x 2 x 2 game: (For fixed F or Ba, TL is the Pareto superior choice for
the first two players, and BR is their Pareto inferior choice. The third player’s entries are
selected to ensure there is not a superior nor inferior cell.)

il

Front =

2

3

-2

1

3

-1

2

-1

2

1

=]

1

u

Back =

3

2

—2

—6

2

=1

3

—4

—G

-4

2.6. A geometric representation for 2 x 2 games. With 2 x 2 games, the notation can
be simplified (as in Eq. 24) by dropping the s parameter. Let 7,1 be the row player’s GN
entry for the first row, " column, i = 1,2; then (Eq. 22) —n;1 is the player’s GV entry
for the second row, i** column, ¢ = 1, 2. Similarly, let 7,2 be player two’s GV entry for the
first column, i** row, ¢ = 1,2; —7;,2 is player two’s GN entry for the second column, i?
row, ¢ = 1,2. Similarly, the sum of the two f;;s entires equals zero (Eq. 23), so one is the
negative of the other. Let 3; be the j** player’s entry in the T'L cell, which requires —f3;
to be the BR entry.
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24 N _ M1 "2 2,1 —Ti2 B _ B1 Ba | =P B
(24) g = . §° =

—N11 M2 | M1 —M22 B1 —Ba| =B —Pa

For a further reduction, plot 17; = (1m1,4,72;), 7 = 1,2, as points in R2. The Fig. 1 a, b

choices of n; = (n1,5,72,;) are from G with its Nash p* = 2

2

Next plot 8 = (81, 82); the 8 = (2,3.5) choice in Fig. 1c is from GP.

and ¢* = % mixed strategies.

72,1 2,2 P(TR) B, P(TL)
d81 d81 ',/
{4 /

0, 2 .
/\ M. / m,z N B1
kﬁq (m.,1, l*m,l) K?\ X

d y, l \ P
52 % dsz e (WI,Z:ﬁnl,z)
* \ p P(BR) P(BL)

a. Player 1; strategic

b. Player 2; strategic

c. Game GJ

All entries on a ray (Figs. 1a,b) emanating from the origin and passing through a specified
7; have the same p and q values. (In Eq. 7 terms, multiplying the two bracket values by
the same positive scalar yields identical information about whether to play T or B.) Thus
the four-dimensional (1;,7,) representation for GV can be replaced with (61,8;) points
on the two-dimensional square [0, 27| x [0, 27]; the (61, 62) values identify the appropriate
rays. (As angles 0 and 27 are identified, the square actually represents a torus 72. In a
significantly different manner, Jordan [6] also obtains a torus.) In Sect. 4, the structure of
this square (torus) is developed to characterize the space of all 2 x 2 games.

Definition 3 collects the Def. 2 classes with the same Nash content. This Fig. 1 con-
struction holds for all games (Sect. 5.4), which extends Def. 3 to all k; x ...k, games.

Definition 3. Two 2 X 2 games are Nash-content equivalent if and only if their GV com-
ponents define the same 81, 8y values.

The [ values (Fig. 1c) determine the behavioral positioning (denoted by Be(location))
of the GP Pareto superior point. So 7 € (0, F) (first quadrant) is in Be(TL) indicating that
the dominant GZ point is located at TL. Should the location of this point conflict with that
of the Nash point, behavioral considerations in the game’s analysis become important.

but more complicated than) Fig. 2a can be created.

3. USING THE DECOMPOSITION

The following results indicate ways to use the decomposition.
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3.1. Closeness of games. Figure 1 makes it possible to determine if two games are “close”
with respect to appropriate conditions. Whether the following seemingly dissimilar games
Gg and Gy are close, for instance, depends on the desired criterion.

(25)

13
Gy =

—8

—12

—16

7

1]

—8

13

u

Gio =

35

12

—24

4

—27

-9

16

=7

If the criterion is in terms of Nash content (Def. 3), the answer depends on whether
their (01, 02) values, (Fig. 1a, b positions) are near each other; “close games” tend to have
similar Nash strategies. (Exceptions, as developed in Sect. 5, are points on opposite sides
of boundaries to be identified.) The g;‘f components and their #; values are:

3 4 —4 31 4| -20 -4
-3 -1 1 -31 -1 20 1

The closeness of the angles (and the games) becomes obvious by plotting rays passing
through (—2,4) and (—5%, 4).

If the criterion involves behavioral aspects, as measured by GZ terms and 7 values, Gg
and Gig are “far apart.” For Qég, the 81 = 10, B3 = —12 values define 7 = arctan(—1.2) with
a Be(BL) Pareto point. In contrast, for G5, the 8; = 4, B, = 8 values define 7 = arctan(2)
with the considerably different Be(TL) Pareto point. (This sense of closeness can differ

significantly from that in Robinson and Goforth [11].)

—2
2

(26) Gl =

3.2. Strategic behavioral explanations. The decomposition of an asymmetric match-
ing penny game from Goeree and Holt [2] (with x; = 120, ke = 60) is

(27)

G =

320 40

40 80

140

—20

—20

20

60 0

—60 0

40 80

80 40

—140

20

20

—20

—

60 0

—60 0

+GE

with the mixed Nash equilibrium of p = 0.50, g = 0.125. The puzzle posed by Goeree and
Holt is to explain is why p = 0.5 differs so strongly from their experimental data value of
p = 0.96; the ¢ = 0.16 experimental value is somewhat compatible with the Nash value.

A possible behavioral explanation uses that Gi} captures the loss-gain strategic structure;
player one can lose 140 by playing B, but at most 20, with a large possible reward, by
playing T. As Luce [8] showed with empirical evidence, if a lottery has two expressions
with the same expected outcome (which refines expected value comparisons) where the
first is expressed in terms of gains and the second in terms of losses from a given amount,
people tend to avoid choices expressed in terms of losses. This proclivity suggests a stronger
behavioral tendency to play T than given by Nash predictions. If player two suspects this
is the case, R is the appropriate strategy.

3.3. Tit-for-Tat. A game’s behavioral part both motivates actions other than Nash strate-
gies (Sect. 2.1) and introduces differences between two and multi-player conclusions. To
demonstrate with Ga, its decomposition (Eq. 5), with k1 = kg = 2, is

-1 —-1|-11 3 3|-3 3
1 -1 1 1 3 —3|—3 —3

Gy = + +gf.
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The Be(TL) position of the GZ Pareto superior point makes the TL outcome attractive.
But TL conflicts with the Nash BR structure, so strategies to achieve TL must reflect
the GF structure by encouraging cooperation. To see how G terms surface in a standard
analysis, let player one’s tit-for-tat strategy be: play T on step & = 1; on step k > 1, play
T if player two plays L on step k — 1, otherwise play B. The goal is to determine player
two’s best response with discount rate § € [0, 1).

As known, sufficiently large § values encourage cooperation; what is not fully understood
is how the lower bound, dy, reflects a tension between strategic and cooperative terms. To
explore this issue, if player two cooperates by always playing L, the earnings, F(L), are

2 E(L)=>) —614+) 3514+ 26kt = — 20 .
(28) (L) 2 +k:13 +k=12<5 1_5+[3+1—5H1A5

The first function on the right side represents losses by not playing the Nash ggV strategy;
the second function reflects gains by cooperating to achieve G Pareto superior values.
The third function plays no substantive role; it captures G& terms.
In contrast, by always playing the Nash dominant R, the F(R) earnings are
: 2
1-¢ 1-46
Cooperation requires f’_‘s—a > 135 (from E(L) > E(R)) where the left term reflects G2
cooperative rewards and the right captures gﬁ" gains. Cooperation requires § > dy = %
Re-expressing this inequality (from a general PD game) identifies conditions on f;,
relative to the discount rate and Nash structure, to encourage cooperation via tit-for-tat.

(29) BR) =1 t3- 2+

Theorem 2. In a 2 X 2 Prisoner’s Dilemma game, where the dominant strategy is BR,
tit-for-tat cooperation occurs for a & value if the behavioral GB components satisfy

+ 14 + 1-46
(30) B > 2. 5 4] +— lmul, B2 > 722 5 Imn.2 t—3 71,2

So with gg" and § = %, cooperation with tit-for-tat requires (1,89 > 2. Should s
fail to satisfy Eqg. 30 but f; has a large value, side payments might sustain cooperation.
(Analyzing a mixture of R and L strategies yields a similar relationship.)

Multiplayer PD games. A standard two-player result asserts that sufficiently large 6 values
establish cooperation (e.g., with tit-for-tat, or grim trigger, or ....); i.e., a §y value is found
whereby cooperation is ensured for all § > §y;. Computations leading to Eq. 30 show that
this conclusion reflects the GZ structure (Thm. 1, part 4). But this structure does not
extend to n > 3 players, so it is reasonable to anticipate differences.

In particular, cooperation (e.g., with tit-for-tat, grim trigger, etc.) need not be ensured
for all § > &y. To illustrate with the three-person PD game Gg (Sect. 2.4), TLF is preferred
to the Nash dominant BRBa strategy. As a standard computation proves, § > % supports
TLF with the grim trigger strategy. But now a difference between two and multiplayer
games arises: with a larger § > %, TRF, where player two defects to gain an advantage at
the expense of the other players, can be sustained.
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Experimenting with other GZ possibilities yields a surprising variety of new situations.
For instance, replacing GF with the following G” (which does not have a dominant entry)

30 1[10 3 [0 2 1]-4 2 3
Front =35 071 2 -4y P =0 -1 0]-4 -2 4

the dominant strategy of the resulting game remains BRBa, where TLF (defining a PD
game), BLF, and TLBa are Pareto preferred outcomes [4]. But this game does not have
a clear optimal state, and standard computations show that cooperation is impossible to
attain with grim trigger.

3.4. QRE structures. A question raised in Sect. 2 was whether a “rationality” value
A > 0 exists so that Gy ~grg,x G2. For a brief review, QRE transforms the expected
payoffs of a strategy choice into positive weights. The probability of selecting a strategy
is proportional to its weight relative to the weights of all other strategic choices. If, for
example, the second player’s mixed-strategy is ¢ and the first player’s expected payoff with
strategy s1 is 71 (q), then the weight assigned to s1 is wy = e*(@); X is the QRE parameter.
The probability of choosing s; is p1(A) = wl—_‘_wlm

With our Nash decomposition, if player two uses the mixed-strategy ¢, the expected
payoffs for player one of choosing the top or bottom row are

EV(T)=qmi+b1)+A—q)(me1—F) =ami+ (1 —aq)n1+ab1— (1-q)B1,
EV(B)=q¢(-m1+81)+ (1 —q)(—m21—B81)=—gm1— (1—q)ne1+qb—(1—q)b.

The corresponding QRE weights are

wp(A) = 8)\[???1,1+(1*Q)Tr2,1+q/31*(1*11).31]’ wp(A) = e)\[_qrfljl_(1_‘1)77211'3‘(1]81_(1_'Q)611’

so the choice probabilities are functions of A; e.g., for T, it is pr(A) = wriA) o Similar

wr(A)+wp
expressions hold for k1 x -+ x k,, games.
This A dependency makes it reasonable to expect the A value to strongly influence the

structure of ~grE x equivalence classes, which makes the following theorem surprising.

Theorem 3. For any A > 0, two ky X ... x k, games G; and G; are QRE equivalent,
G; ~qrE,x Gj, if and only if they are Nash equivalent, G; ~n G;.

So, for any A > 0, the highly predictable G; and the Prisoner’s Dilemma Gy (Eq. 2)
satisfy G1 ~grE,x G2; these games indistinguishable from the perspective of QRE! Clearly,
changes in GB can significantly alter how players react to a game (as true with G; and Gs),
but they play no role in a QRE analysis. The same holds for the 4 x 3 games Gg and G7. For
QRE to distinguish between such games, modification must incorporate G¥ information.

While Thm. 3 is surprising from a game theoretic standpoint, it is expected from an
algebraic perspective. Similar to how addition of reals is identified with multiplication
through y = €** for a fixed A > 0, the algebraic matrix structure of Nash and QRE remain
essentially the same, which is essentially the proof of Thm. 3 (Sect 7).
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4. STRUCTURE OF SPACE OF GAMES

Other ways to use the decomposition require the sharper description developed in this
section. After describing the partitioning of the space of games (Thm. 4), Fig. 1 is used to
describe the GV structure of all 2 x 2 games. This structure is used to find which strategic
structures can arise with special games, such as zero sum and identical play.

4.1. Complexity measures. The complexity of games is reflected by the huge dimensions
associated with the decomposition’s subspaces.

Theorem 4. The space of n person ki x -+ x kn games can be identifies with R where
I' = nlkiky ... ky). This space is decomposed as

G=(G",6%,65) e RV xRE xR

where

(31) N=k1k2...kn[n—2%], B:klkg...kn[zki]—n.

i 7 i 7

The space of 4 x 5 x 6 x 7 games is identified with the 4[4 x 5 x 6 x 7] = 3360 dimensional
space R*0, Because N =4 x 5 x 6 x 7[4 — {1 + 1 + 1 + 1}] = 2722, the Nash structure
depends upon 2722 independent variables that define up to 6 x5 x4 = 120 pure Nash points
(Cor. 1). A wide selection of other game theoretic features are introduced by appropriate
choices of the B=4 x5 x 6 x 7[+ + £ + & + 1] — 4 = 634 behavioral G¥ variables.

With 2 x 2 games, Thm. 4 becomes

e The four dimensional GV strategic subspace is defined by {n; ;}i j—1.2-
e The two dimensional G® behavioral subspace defined by {Bj}?zl.
e The two dimensional G¥ kernel subspace spanned by {”'j}?:r

4.2. A further simplification: 2 x 2 games. For k; x --- x k, games, the crucial GV
information (Thm. 4) is reduced (Eqgs. 22, 23) from A to N — n dimensions, and for GZ
from B to B—1 dimensions. For 2x 2 games (Fig. 1), the G information (Def. 3) is reduced
from four to two dimensions, while for G# from two to one. This permits representing the
information with the Fig. 2 geometric diagrams.

Using Fig. 1, plot (61,62) on a [0, 2] x [0, 27] square (Fig. 2a); each axis is divided into
the four Fig. la, b quadrants to define 16 smaller squares. Games in each smaller square
have different strategic behaviors. For instance, if ; defines a ray in the first quadrant,
then 71 ; and 7 ; are both positive, so the jt" agent has a dominant strategy (Eq. 24). This
region is denoted in Figs. la, b, with ds;; in Fig. 2a, the appropriate dominant strategy (T
for 7 = 1; L for j = 2) is listed by the axis and represented by shading the corresponding
column or row. Similarly, if #; is in the third quadrant, then 7, ; and 72 ; are negative
so the —n; ; and —mny ; values in the other row (column) are positive; again, the 4t agent
has a dominant strategy (denoted in Figs. 1a,b, by dss and captured in Fig. 2a by B or
R). This square (torus) suffices for a strategic analysis. The entries along the Fig. 2a axes,
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such as pn, identify the quadrant signs of (11 ;,72;); e.g., pn on the horizontal axis means
that 1,1 > 0 and 21 < 0.

gY.65. 95  Gi'.Gf
! " ol

T
3T GB B L2
R2 6 U iii_: T
nn
Aov |op| o2 o op
92 Vig = _/6
op = T
g 0 % T %‘T- 27

B(TL) B(TR) B(BR) B(BL)

[:Fp :% np o ES?WPUQW
01
a. Strategic g decomposition b. Behavioral G2 c. Rotating

For a mixed strategy, #; must be in the second or fourth quadrants (Figs. 1a, b) where
g<fij<mor 37'” < 0; <27, j =1,2. In Fig. 2a, these are the np or pn intervals. The lines
separating Fig. 2a squares (the edges mentioned in Sect. 3.1) correspond to a transition
between a dominated and mixed strategy. In each Fig. 2a shaded square, and only in these
squares, some agent has a dominant strategy.

For G2, all points along a Fig. lc ray passing through 8 = (81, 32) have an identical
Pareto structure for the players; differences involve positive scalar multiples. These terms
can be represented by angle 7 as in Fig. lc or 2b. Each quadrant represents a different
Pareto superior position.

Information for the R® space of 2 x 2 games is reduced to points in a square (GV
information) times an interval (GZ information) defining a three-dimensional cube. The
0 = 27 endpoints are identified, so it is the product of three circles, or the three-torus T73.

but more complicated than) Fig. 2a can be created.

4.3. Symmetric, identical, and zero-sum games. To show how to use Fig. 2a to deter-
mine which GV structures accompany different kinds of games, start with 2 x 2 symmetric
games. It is easy to show that a symmetric game’s GV point must be on Fig. 2a diagonal.
But the diagonal misses several Fig. 2a regions, which limits the Nash strategic structures
for symmetric games.

In this geometric way, the strategic structure for specified classes of games can be de-
termined. In particular, we prove that (Sect. 2.3) with limited exceptions, zero-sum (sum
of entries in a cell equals zero) and identical play (all entries in a cell are the same) games
cannot be in the same GV equivalence class. By identifying the precise 2 x 2 games that
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are best response equivalent (Def 1) to either class of games, we extend a comment in Mon-
derer and Shapley [10] that ...every nondegenerate 2-person 2 x 2 game is best response
equivalent in mixed strategies either to a [identical play] or to a zero-sum game.”’

Theorem 5. If G is a ky x ky zero-sum game, then k1 = —kq. If G is identical play, then
K1 = ko. For zero-sum, the 8 values are

1 k1 1 ka2
(32) B = T Z Mj2a  Paj= % Z 04,150

i=1 i=1

and, for each i and j,

ko k1
(33) kalkami; — Z Mi,13s) = —ka[k17m524 — Z 75,25

s=1 s=1

For identical play, change all Egs. 32, 33 “—17 signs to +1.

An interesting peculiarity about zero-sum and identical play games comes from Eq. 32;
each agent’s 5 values are uniquely defined by the other agent’s strategic terms.

As shown below for 2 x 2 games, about half of the G behaviors (Fig. 2a) occur in zero-
sum games, and (almost) the other half occur with identical play, so these games capture
most of what can happen. But the GV structure of these games satisfy Eq. 33, which
(Eq. 22) imposes (k1 — 1)(ks — 1) constraints on GV choices. It will follow for kq,ks > 3
that not all k1 x ky GV structures occur with zero-sum or identical play games.

Proof: For zero sum games, the sum of payoffs in the (i, j) cell equals zero, so
(34) Misj + By + Mj2i + Bog = —[K1 + k2] = K.
Summing over i = 1,...,k1, 7 =1,..., ko, yields (Egs. 22, 23) k1ko K =0, or K1 = —Ka.
Setting K = 0, holding j fixed and summing Eq. 34 over all ¢ leads to k181; =
—Zf;l 7j,2:4, Which is the first term in Eq. 32; the second term is found in the same
way. Equation 33 emerges by substituting these 8 values into Eq. 34. For identical play
games, Eq. 34 becomes 1;1,; + B1; — [Mj,2: + Bayi] = —[k1 — ko] = K.
In this manner, appropriate conditions can be derived for the GV, G?, G¥ terms for any
k1 % ... X k, zero sum or identical play game. [

Corollary 2. IfG is a 2 X 2 zero-sum, or identical play game, its GV component satisfies,
respectively,
(35) M=y =g =NLes L0 IR 2 = T
If the appropriate Eq. 35 equality is satisfied, there is a zero-sum, identical play game in
its equivalence class uniquely defined, respectively, by
M2 + 72,2 M1+ 721 M2 + 72,2 M,1+ 121
(36) b=—""F"Sfa=—"F""; P=—"F"=—"F—"
2 2 2 2

1Our thanks to a referee for calling this [10] quote to our attention. Other material in the section was

motivated by a question the referee raised.
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The GV component of a zero-sum (or identical play) game typically is not of that type.
(For instance, 11 = 9,721 = 8,722 = 2, 71,2 = 1 satisfy the zero sum part of Eq. 35.) For
2 x 2 games, a necessary and sufficient condition for GV to be zero-sum is mi=Tp2 =
—12.1 = —M 2, which is a “matching pennies” game located at the center points of squares
5 and 13. Here Eq. 36 forces 81 = B2 = 0, so the GP component plays no role when
GY has a zero-sum structure. Similarly, G has an identical play structure if and only if
M1 = M,2 = —T2,1 = —72,2, which is a “choosing sides” coordination game located at the
midpoints of squares 1 and 9; similarly, 81 = 32 = 0. .

M2,1 ="1,1+¢

2.1

B

a. Player 1; strategic b. G Zero sum games

The GV structures that admit a 2x 2 zero-sum game, given by the shaded Fig. 3b regions,
essentially fill half of the Fig. 2a square. The unshaded region are GV structures that allow
identical play games. Included in both sets are the four bullets, which admit both zero-sum
and identical play games. A direct computation shows that the boundaries between shaded
and unshaded regions correspond to degenerate games (from the [10] quote).

Theorem 6. For 2 x 2 zero-sum games, if both n; = (n1,;,m2,5), 7 = 1,2, are on the
same side of the m ; = ma; dividing diagonal, there is an identical play (but no zero-sum)
game in the G equivalence class. If they are on opposite sides, there is a zero-sum (but no
identical play) game in the G equivalence class. If both are on the 1 j = na,; diagonal (the
four Fig. 3b bullets), there is a zero-sum and an identical play game in the G equivalence
class. If one n; is on the diagonal and the other is not, there are no zero-sum, nor identical
play games in the equivalence class.

With the exception of games with GV structures in squares 1 and 9, each 2 x 2 game is
best response equivalent to some zero-sum game; with the exception of games in squares §
and 13, each 2 x 2 game is best response equivalent to some identical play game.

Proof: To derive Fig. 3b, setting each side of an Eq. 35 equality equal to a constant defines
two sets of linear equations

(37) M1 =m1+¢m2=mz—¢ and 1 =n11+¢Mm2=ma+c



18 DANIEL T. JESSIE AND DONALD G. SAARI

Because of scaling (Fig. 1), it suffices to select ¢ = —1,0, 1, and to determine which equa-
tions are satisfied by n; terms. With ¢ = 0, both sets of equations are satisfied iff both n;
are on the diagonal. The four possibilities (given by the signs of 71 ; = 1 ;) define the four
bullet points in Fig. 3b.

If one n; is on the diagonal and the other is not, Eqgs. 35, 37 cannot be satisfied, so the
GV class does not include zero-sum or identical play games. If neither 7n; is on the diagonal,
then either both are on different sides of the diagonal, or both on the same side. If on
different sides, then select the ¢ = —1, 1 value for which the first set of Eq. 37 is on the same
side as the corresponding 7); point. To find the appropriate scaling (Fig. 1) that satisfies
Egs. 35, 37, draw a ray from the origin through the point. Where this ray intersects the
Fq. 37 line is the scaling ensuring a zero-sum game in the equivalence class. The Fig. 3b
region is determined by the corresponding 6; values. As indicated in Fig. 3a, the line below
the diagonal has 8; ranging from 7 — 7 to 7, while the # values for the companion line
above the diagonal vary between 7 and § + ; the end-points (which represent points at
infinity) cannot be achieved. These constraints, where 6 is in one interval while 65 is in
the other, define the shaded Fig. 3b regions.

Similarly, if both n; are on the same side of the diagonal, then carry out the same
construction for the second set of equations in Eq. 37. This defines the unshaded region
where identical play games are in the equivalence classes. The boundary between shaded
and unshaded corresponds to where one 7; is on the diagonal and the other is not.

To define the “best response equivalence” classes, player one has a dominant strategy in
both completely shaded Fig. 2a columns; for the other two columns, the player’s mixed
strategy remains the same along a vertical line. For player two, the same holds for com-
pletely shaded rows and horizontal lines. Therefore all games in each of squares 3, 7, 11,
15 are best response equivalent; all games on each vertical line in each of squares 2, 6, 10,
14, and all games on each horizontal line in each of squares 4, 8, 12, 16, are best response
equivalent. Finally, all games represented by a point in each of squares 1, 5, 9, 13 are
best response equivalent. Combining these comments with Fig. 3b, it follows that with the
exception of the games in squares 1 and 9, each game is best response equivalent to some
zero-sum game. Similarly, with the exception of games in squares 5 and 13, each game are
best response equivalent to some identical play game. UJ

Identical play and zero-sum games capture almost everything that strategically happens
for 2 x 2 games. This assertion does not extend beyond 2 x 2 games.

Corollary 3. For ki1 = ko > 3, there exist open sets of k1 X ko games that do not have
zero-sum nor identical play games in their G equivalence set.

Proof: The proof follows from the (k1 —1)(ky—1) > 4 linear constraints required by Eq. 33.
Here, n; is a vector consisting of the j® agent’s G components.

As above, set each side of a constraint equal to zero, the resulting planes divide RV
(Thm. 4) into 9lki—1){k2=1) > 8 open regions. For a GV to have an identical play game in
its equivalence class, both 1;’s must be on the same side of each hyperplane (Eq. 33); for
a zero-sum, both n;’s must be on opposite sides. But the geometry admits open sets of 1;
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that are on the same side of some hyperplanes and on the opposite side of other planes.
With obvious modifications, the assertion holds for ki, ko where (ky — 1)(ke — 1) > 2. O

5. CHARACTERIZING ALL 2 X 2 GAMES

It remains to identify which games fall in each of the 16 x 4 = 64 small cubes defined by
the Fig. 2a square and the G line segment (Fig. 2b), and to define new connections. What
simplifies the process are results in the technical Sect. 5.3 showing that, rather than all 16
(Fig. 2a) squares, only the Nash structure (Sect. 5.1) of squares {1, 2, 3, 5} are needed. In
Sect. 5.2, features of the games in each cube are described.

5.1. The Nash structure of the square. The Nash structure of each Eq. 2a square.
follows from the 7; ; signs (along the Fig. 2a axes) and the G form (Eq. 24). According
to Sect. 5.3, it suffices to describe the squares {1, 2, 3, 5}.

Theorem 7. The Nash structures of games in the Fig. 2a torus are as follows:

(1) Games in square 1 (m ; >0 andna; <0 for j =1,2) have the two pure strategies
TL and BR, and a mized strategy.

(2) Games in square 2 (m1 > 0,7m21 < 0 and 9,2 < 0, ¢ = 1,2) have a dominant R
strategy for player 2. Because n21 < 0, the first player plays B.

(3) Games in square 3 (n;; < 0) have BR as the dominant Nash strategy.

(4) Games in square 5 (m1 > 0,m21 < 0 and n12 < 0,1m22 > 0) have no pure strategies
and one mized strategy.

By using +1 to define canonical examples, the center points of squares 1, 2, 3, and 5 are
characterized, respectively, by g{g, g{\;, Qé\r , and Gfy where:

1 11-1 -1
—1 =1 1 1

1, =1|=1 1
i, w=l, 11

1 -1|-1 1
-1 1 1 -1

(38) G = Of = Gy =

5.2. The cube structures. To design all 2 x 2 games with a variety of desired properties,
add appropriate G terms to a desired Nash structure (Thm. 7). The G® Pareto term is
either in conflict, or in agreement, with the Nash structure. For a specified G, GV + G?
defines a two parameter (1, 32) family of games with the same Nash structure.

Ilustrating with square 3, this family starts with the G4 game and its dominant strategy;
it branches off in one direction to create a Prisoner’s Dilemma, while in a different direction
to suggest using side payments. Square 2 has surprisingly similar structures. Square 1
replaces the dominant strategies with two pure and one mixed strategy; in one direction
the parameterized family separates the equilibria, and the another creates interest in non-
equilibria outcomes. All pure strategies are dropped in square 5.

5.2.1. Square 3. These games have a dominant BR Nash strategy.
Cube (3, Be(BR)): The GF Pareto superior point in this cube reinforces the Nash dom-
inant strategy, so, as true with G;, the Nash outcome coincides with expected behavior.



20 DANIEL T. JESSIE AND DONALD G. SAARI

Cube (3, Be(TL)): Games in this cube have 1, 83 > 0 and the general form

39 N B _|Zlmal+58 —|ma[+ 08| —maal =81 |msl+8s)|
(39) e Imal+ 81 —|mel—Be| Imail—F1 Imel— B

Thus Eq. 39 defines a two parameter family of games starting from GV (8; = 82 =0) to a
Prisoner’s Dilemma. The characterization involves which matrix entries dominate, so set
equal each player’s TL and BR entries to find the transition values

The transition values with GI¥ are 8} = 85 = 1.
(1) If By < 87, j = 1,2, the dominant BR Nash strategy also is a Pareto point. An
example with 81 = 82 = 0.5 is the first Eq. 42 game.
(2) If g; > 87 for only one player, this player find attractive an outcome different from
that of BR. Similar to Gz, a sufficiently large §; can suggest cooperative strategies
with side payments as illustrated in the second Eq. 42 game with §; = 4, 85 = 0.
More generally, if

Bi = m 2| ;r 72,2

(41) 5:,; > ‘7]'2,j| ; |771,j| 4 ‘n2,il

(where is the other player), the sum of terms in another matrix entry is larger
than that of BR, which makes a cooperative solution attractive.
(3) If B; > By, j = 1,2, the game is a Prisoner’s Dilemma.

133
1

-05 —05]-15 15 3 —-1[-5 1
15 15| 05 05 |5 —-1|-3 1

Cubes (3, Be(TR)), (3, Be(BL)): In these cubes the G¥ component emphasizes compo-
nents that differ from the Nash structure, which can make certain entries more attractive
than the Nash dominant strategy. The symmetry, where both Be(T'R) and Be(BL) em-
phasize off-diagonal terms, means that games in these cubes have similar characteristics,
so it suffices to describe only cube (3, Be(T'R)), which, with Eq. 39, has 8; < 0 and 82 > 0.

A transition value B2 > |n21| + W (agreeing with Eq. 41) is where the sum of TR
entries exceeds that of BR, which suggests using a cooperative bargaining solution.

(42)

5.2.2. Square 2. Player two with a dominant R strategy. Because 127 < 0, player one
plays B leading to a BR outcome.

Cube (2,Be(BR)): The structure is similar to that of cube (3, Be(BR)) where the
behavioral term adds support to the Nash outcome.

Cube (2, Be(T'L)): With only minor differences from Eq. 39, the general form of a game
in this cube (where 51, 82 > 0) is

+61 —Imal+ 82| —Imil =061 |mgal+ B
43 A B = it} : : : 7
&) g +¢ —|mal+ 6 —|meo| — F 21| — B |?72,2\ - B
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While this Eq. 43 parameterized family (where GZ terms add appeal to TL in conflict

with the Nash BR) does not include the Prisoner’s Dilemma, the features are similar. The
72,11 —Im1,1]
2

only difference from Eq. 40 is the transition value 8] = , S0 cooperation becomes
attractive to player one at a smaller 3y value. If both 8; > 57, strategies such as tit-for-tat
become applicable.

Cubes (2Be(TR)), (2, Be(BL)): Essentially the same as for cubes (3, Be(T'R)) and
(3, Be(BL)).

5.2.3. Square 1. All 2 x 2 games with two pure and one mixed strategy belong to this
square. Thanks to the GV symmetry, where the pure strategies are at TL and BR, there
are essentially two classes of games defined by GZ; they support, or conflict with, the Nash
solutions. Examples are the following G + G& and GV + G& games

v [ 3 3[-3 —3|.5_
e e I

4 5|(-4 5
4 -5|—-4 -5

-4 5(4 5
-4 5|4 5]

B _
:glﬁ_

located at the center of square 1. The G£ structure creates a distinction between the two
G" pure strategies (making TL more appealing than BR); with G&, only the TR cell has
positive entries.

Cubes (1, Be(TL)) and (1, Be(BR)): In this setting, G® adds support to one of the
pure strategies to make one Nash outcome Pareto superior to the other. The “Stag Hunt”
characterizes this behavior; a k1 = k9 = 2 example is

4 410 2
2 012 2

1 1] -1 1

K
T -1 =1179Y

(44) Gsg = =Git +

Because GIY does not distinguish between TR and BL, TL becomes the Gsy Pareto
superior choice strictly because of the Be(TL) choice of GZ. This G?® component plays a
crucial role in achieving the Stag Hunt’s defining features:

(1) There is a Pareto dominant Nash outcome.
(2) But, there is a risk-free option that provides an incentive to deviate from the Pareto
dominant choice.

A definition for a “risk-free strategy” is that its outcome remains the same independent of
what the other player does. So, when player one plays B and player two plays R, it must
be that g31 = g4,1 and g2 2 = g4,2, which become, respectively, —m1 1+ 81 = —121 — 51 and
—11,2 + B2 = —1n2,2 — Ba. Thus, the risk-free condition requires

Mg —m2,4 .
Because GV is in square 1, m,; > 0,m2,; < 0, so both 3;’s are positive in Be(TL). These
positive 3; values, which designate TL as the Pareto superior outcome, ensures the Stag-
Hunt structure. By including the G¥ variables, it follows from Eq. 45 that the stag-hunt
structure holds for a portion of a six-dimensional subspace of R®.
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“Pure coordination games” are in these cubes; one choice, with the Be(T'L) values of
81 = P2 = 0.5, along with k1 = kg = 1.5, is
4 410 0 2 2|=1 -2 05 05|-05 05

9pc =502 21=—2 —1] 1 11705 —05| 05 —05

+ ggc

To have equal non-equilibrium payoffs, the G? values must be determined by GV values.
This conditions requires —71; + 8; = 12, — 3, or that 3; equals the average 3 (m1,; +72,5)-
This §; dependency of 7; ; means that one equilibrium is made Pareto superior to the other
by the G location in either 1i or 1iii (Fig. 2¢). The 1i corner has n1; > |24, j = 1,2,
so TL is the Pareto superior outcome; GV in 1iii with [72,5| > m1,; with BR as the Pareto
superior choice; G¥ allows assigning zeros to non-equilibrium terms. The following captures
the GP and G¥ values as determined by these conditions and the GV choice:

1 1 .
(46) Bi= 5(771,;; +7g4)y Kj=m;—Bi= 5(?71,3' -m4)y =12

Cubes (1, Be(T'R)) and (1, Be(BL)): The “Battle of the Sexes” resides in these cubes
with a description similar to the coordination game. The main exception is that each player
prefers a different Nash outcome as illustrated in the following (kq, ko = 1.5)

4 210 0 2 1]-1 -1 05 —-05|-05 —-0.5

0 0l2 41 [—2 =2 1 =2|T[05 05]/-05 05

i

which has a Be(BL) behavioral component. Also, the positioning of GV in square 1 played
a role. An analysis similar to that of Eq. 46 determines the §; values needed to achieve
such a setting.

Another feature of games in this cube is how the G® component directs attention to
non-equilibrium solutions. To indicate the differences, to create a Stag Hunt game, add
a GB with 1 = B = 1 to g{‘; (to emphasize one Nash choice over the other); this
is the first game of Eq. 47.) But by adding a sufficiently large Be(T'R) component of
B = —10,8> = 10 to g{\;, the resulting game is the second one in Eq. 47; the two games
are Nash indistinguishable, but the second game attracts attention to TR.

2 2(-2 0 -9 11{ 9 9

(47) 0 2] @ Of |=11 =I1|11 =B

5.2.4. Square 5. All 2 x 2 games with a single mixed strategy, which include variants of
“Matching Pennies,” belong to square 5. As true with the above, a sufficiently strong G?
component added to G14 can direct attention to a particular G entry.

5.3. A reduction. The argument showing why only certain Fig. 2a squares need to be
considered corresponds to changing a game by interchanging columns and/or rows; e.g.,
exchanging p and (1—p), and/or g and (1—gq). This symmetry permits focussing attention
on squares {1, 2, 3, 5} rather than all 16, which reduces the need to examine what happens
in only 4 x 4 = 16 small cubes, rather than all 64 of them.
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Interchanging the top and bottom rows of GV (Eq. 24) changes ny = (71.1,721) to
(—m1,1, —m2,1) = —n. In angular terms, 6, is moved to 6 + . The 1y = (1,2, Mm2,2) term is
changed to (12,2, 71,2), which interchanges the “z” and “y” coordinates. A (z,y) to (y,z)
change is a reflection about the y = x line, which is the ray ¢ = 7. If (as in Fig. 2c) angle 0
differs from 7 by angle & (so @ = 6 — 7), the reflected point is on the ray that differs from
y =z by angle —q; i.e., the new angleis 7 —a =% — (6 — ) = § — 0. This is formalized
in the following proposition:

Proposition 1. If the rows of a G matriz represented by (61,03) are interchanged, the new
matriz is represented by (014, 5 —02). If the columns of a (61, 62) matriz are interchanged,
the new matriz is (5 — 61,02 + 7).

To use Prop. 1, the Fig. 2a squares are further subdivided as indicated in Fig. 2c. So,
it the game matrix of a point is in square 4i, then (61, 62) is in the upper-right corner of
square 4. Interchanging the rows (Prop. 1) forms an (6; + 7, 5 — 62) matrix. The 8; + =
value positions the new matrix in the right-hand side of one of the {11, 12, 15, 16} squares
(the first column of Fig. 2a). To determine which one, notice that the vertical distance from
the horizontal § line (Fig. 2a) to the top-right region in square 4 is over 2% squares; this is
the 02 — 7 distance. To find the new point with value 7 — 2, go down this “more than 2%
squares” distance from the top horizontal 27 line (identified with the bottom horizontal
line); it is in the lower right section of square 12. Thus, changing the rows of a matrix
represented by a point in square 4i defines a unique point in 12ii.

Points (i.e., games) that are identified with each other can be determined with the
dynamic of exchanging columns, then rows, then columns, and then rows to return to the
starting point. Illustrating with square 4, a point in 4¢ is mapped to point in 8iv. The full
sequence is 41 — 8v — 1641 — 1247 — 44.

Proposition 2. Starting with a matriz (61,02), perform the following operations in the
same manner: Interchange columns, then rows, then columns, then rows. These operations
define points in the following regions:

(48) 4i — 8iv — 16iii — 124 — 4i,
(49) 2t — 10w — 6122 — 1441 — 24, 3¢ — Tiv — 114é6¢ — 158 — 3
(50) 12 = 99v — 146 — 946 — 14, 59 — 13dv — 5i4 — 134 — 5i.

Similar sequences arise by starting in any other sector of the starting square. According
to Eq. 49, analyzing a game in square 2 is the same as doing so with a game in squares 6,
10, or 14. Similarly, analyzing all games in square 3 describes what happens in squares {3,
7, 11, 15}, and square 4 handles squares {4, 8, 12, 16}. Square 1, however, only handles
squares {1, 9} while square 5 only handles squares {5, 13}. This dynamic shows that it
suffices to examine the game structures only in squares {1, 2, 3, 4, 5}. This dynamic, for
instance, identifies the four Fig. 3b bullets. It also shows that the two matching pennies
games located at the center of squares 5 and 13 define the same game properties.
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A second reduction uses the Fig. 2a diagonal line: Interchanging row and column players
flips the Fig. 2a square about this diagonal. As an illustration, in square 4, player one has
the dominant strategy of B, and player two reacts accordingly; in square 2, player two has
the dominant strategy of R, and player one reacts accordingly. This symmetry reduces the
G" analysis to the squares {1, 2, 3, 5}, which is then combined with the GZ properties
from the four Fig. 2b regions. (As the diagonal passes through squares 1 and 3, only the
half of these squares below the diagonal needs to be examined.)

5.4. General games. For completeness, this concluding technical subsection shows that a
scaling similar to Fig. 1 applies to all games, which extends Def. 3 to all games. For the j*
agent in a ky X --- x k, game and each s, a k; — 1 dimensional vector has all 7, ;¢ strategic
information (Eq. 22). Let n;, j = 1,...,n, collect all of these vectors over all s choices
to define a ﬁ@k;‘ﬁ[kj — 1] dimensional vector. The scaling argument reduces the relevant

; : ; Erkghn g, 1)1 N o .
information to a point on § % ; all GY information is represented by a point in

the product of these spheres, which has dimension N —n. Illustrating with 2 x 3 games, the
row player’s GV information is captured by n; = (m.1,m2.1,m3.1) € R® where the first n; 1
subscript identifies the GV column. After scaling, the relevant information is a S? point.
(To create a figure similar to Fig. 2a, represent the sphere as a square where its top and
bottom edges collapse, respectively, to the North and South poles.) With the 7; 2 s notation,
s = T, B, the column player’s GV information is ny = (M1 22T M2,B, M22,B) € R4,
which the scaling reduces to a point on S%. Thus all strategic information for a 2 x 3
game is represented by a point in §? x S3. A geometric description similar to ( but more
complicated than) Fig. 2a can be created.

A similar computation holds for G®. For the j%* player in an n person ky x --- x ky,

game, all but one of the 3;¢ terms captures this agent’s G® information (Eq. 23). So let
kykg..kn o
B;eR H ,j=1,...,n, be the selected 3,5 terms. All G® information is a point

in the product of these spaces. A scaling reduces the G¥ information to a point in $Z~1.
With a 2 x 2 x 2 game, then, the G information is given by a point in $8. Combined with
the G representation, all (GV,GP) information is given by a point in the 17-dimensional
(5% x 8% x §3] x S8. For a 2 x 3 game, the (GV, G?) information is given by a point in the
eight-dimensional [S? x $3] x S3.

6. SUMMARY

The decomposition of k1 X - -+ x k, games simplifies the analysis by uniquely separat-
ing a game’s Nash equilibria information from the behavioral content, which promotes
non-strategic kinds of analysis. This decomposition reduces the complexity of the space
of games and provides tools that can be used in a variety of ways. As illustrated by us-
ing symmetric, zero-sum, and identical play games, this approach can identify all possible
Nash structures that can accompany a particular class of games. The decomposition also
shows why standard tit-for-tat results for two-player games can change with more players,
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while providing new insights how the behavioral terms influence the strategy and cooper-
ation. This unified framework also can be used to identify, and then analyze algebraically
equivalent games, which is illustrated here by showing that all QRE games have the same
strategic structure of the Nash analysis.

This decomposition identifies the similarities between many different types of applica-
tions of game theory, and provides a new language with which to discuss games. Rather
than focusing on a single game, the decomposition advances a simple way to examine the
entire space of games. This not only permits obtaining more general conclusions about
classes of games, but it permits doing so in a way that simplifies the discussion and reveals
essential features that may not have been previously known.

7. PROOFS

Uniqueness of decomposition: As shown next, the described decomposition is unique. (The
results were discovered by using representation theory based on symmetry properties of
games; subsequently the simpler approach used here was discovered.) Start with what
is required to ensure that a k1 x -+ x k, game does not contain any Nash equilibria
information. By using the usual fixed point theorem approach to find Nash equilibria, this
setting is the degenerate case where all possible strategies are fixed points.

This degenerate setting occurs for the j** player if and only if the player’s arrays defined
by specified pure strategies of the other players are identical; e.g., in ky X - -+ X k,, games,
each row for the row player is the same. If a game does not satisfy this degenerate condition,
then the equality of expected values over all possible mixed strategies of other players no
longer holds. For purposes of being able to use Eq. 23 (needed to prove several of the
results), this space is divided into the G¥ and the GP components. What remains are the
G" components with all Nash information. [J

Proof of Thm, 1: Parts 1 and 4 are proved above.

Part 2: In expected value computations for each of player j’s strategies, terms from G
and G¥ have the same value, so they play no role in comparisons. Only terms from GV
give different expected values.

Part 3: For a cell to be a Nash point, it must have the largest value for each agent’s
choice. According to Eq. 22, these values must be positive, which is the stated necessary
condition. For k; = 2, the j*" player’s other entry must be negative, so this is the best
response. But for k; > 3, more than one entry in the j** player’s array can be positive;
the Nash point is the choice where, for each player, this is the largest value.

In computing GV for the j** player, there are & kjk choices of strategies for the other
players. The defined array has k; terms, where the average is computed and then the

difference of each term from this average, is computed. Thus the j** player has Elkjﬁ [k;+1]
computations. The sum over all n players is k1ky ... k,[n + kil s o i] O

Proof of Cor. 1: Constructing games with the maximum number of strict pure Nash points
makes it clear how to construct games of any smaller number. To show that a k; X ke game
can have ky strict pure Nash equilibria, it suffices to create a GV with these properties; the
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only constraint on selecting 7 j.s terms is Eq. 22. To be strict, for each j and s, one 7; ;s
term is the largest. Only ordinal information is being used, so it suffices to assume that
one value is positive and the rest are negative.

There are k; first-column cells to place player one’s positive n; 1,1 entry; let it be 7 1.1.
To make this (i*,1) cell a Nash point, let it have player two’s positive entry. These choices
specify positive signs of player one’s first column entry and player two’s i* row.

For the induction step, assume for up to player two’s strategy j, j < ky that j Nash
points are created. This identifies signs for player one’s entries for the first j columns
(positive in all Nash cells, negative otherwise), and signs for player two’s entries for j rows.
For player two’s strategy (j+ 1), there remain k; — 7 > 0 rows where the sign of player one’s
entry is not specified. Select one of these k1 — j rows to be the Nash cell by containing both
player’s positive entry; this completes this induction step. By construction, it is impossible
to have more than k2 Nash points because all of the second player’s positive entries have
been assigned.

For the second induction step, assume that o = kgks ... k; strict Nash equilibria can be
created for k1 x ... X k; games, but no games can have more equilibria. It must be shown
that this assertion extends to k1 x ... x k;j x kj+1 games. For the (j + 1)%* player’s first
strategy, select one of these k1 x ... X k; games with the maximum number of Nash points.
Assign the (j+1)" agent’s positive value for each Nash point, which makes it a Nash point
for this k; x ... x k;;1 game. Other choices of the (§ + 1)®* agent are negative. But, for
the k;1 — 1 the assignment of signs are not made. So for the E*h strategy, construct one
of the k1 x ... X k; games with the maximum number of Nash points. This can only be
done for each strategy, which leads to the conclusion. [

Proof of Thm. 2: This standard tit-for-tat computation solves for 8;, rather than d values.

Proof of Thm. 3: The proof is first given for k; x k2 games and then shown how it extends
to k1 % ... x k, games. For player two’s mixed strategy (qi1,q2,...,qk,), player one must
compute k; expected values. For the 3" strategy, the weight is

wz(A) — e’\{ziil 4.5(”?1,1;34‘!31;5)] e e/\zicil qs(ni,l;seﬂ)\ Ziil ﬁl;s
5 k
Each term in the probability assigned to the it* strategy, z%, has the e*2=s21F1s
multiple, so it cancels out leaving the probability

k
e Es2 s Lis

k
i‘:ll e/\ 25_3_1 gs?t,1;s

showing that the relevant QRE game structure is the same as for the Nash equilibrium:
any two games sharing 7; ; values are the same for all A > 0 values. The extension to

general games follows by replacing the s in these equations with s.

Proof of Thm. 4: The proof involves a computation. The §* player faces @,an strategies

from the other strategies. In each of these arrays, there are k; — 1 independent n values
(because of Eq. 22), which means the j* agent has h%ﬁ[kj — 1] independent 71 values.
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Summing over all players yields the A" value. A similar computation (using Eq. 23) hold
for the B computation. [

Proofs of Thms. 5, 6, Cors. 2, 8, Props. 1, 2: Given above.
Proof of Thm. 7: Standard computation.
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