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Game theory was developed as a tool for rational decision-making.  

Its basic concepts were later used in evolutionary game theory to 

describe the evolution of behavioral phenotypes. In the hands of 

evolutionary biologists, this merger of game theory and population 

dynamics became an important tool for analysing frequency-dependent 

selection and social interaction. 

 

I. Game theory 

 

Game theory, as originally created by mathematicians and economists, 

addresses problems confronting decision makers with diverging interests 

(such as firms competing for a market, staff officers in opposing camps 

or players engaged in a parlor game). The 'players' have to choose 

between strategies whose payoff depends on their rivals' strategies. This 

interdependence leads to mutual outguessing (she thinks that I think that 

she thinks...). There usually is no solution which is  

unconditionally optimal, i.e., which maximizes a player’s utility 

function, no matter what the co-players are doing. In contrast to such 

mutual dependence, monopolists can optimize their 

budget allocations without having to worry that others will anticipate 

their  decisions. An optimization problem may be fraught with 

uncertainty, or computationally complex, but usually, what is meant by a 



solution stands beyond doubt. In game theory, this need not be the case. 

Even in the simple game of ‘matching pennies’ (two players I and II 

choose independently between two alternatives, I wins if the two agree, 

and II if they differ), no outcome can leave both players satisfied.  

 

A player can choose between alternative moves, or strategies. Since it is 

often useful to be unpredictable, a player may also choose a mixed 

strategy, i.e., opt with specific probabilities for this or that 

alternative. It can be shown that for any game, there exist at least one 

set of strategies (one for each player) which are best replies to each 

other (see Box 1). In this case, no player has an incentive to deviate 

from his or her strategy, as long as the other players stick to theirs. 

This defines a Nash equilibrium. (In the matching pennies game, both 

players have to choose with probability 1/2 between the two alternatives; 

as this example shows, Nash equilibria need not exist if mixed strategies 

are not admitted). 

 

The notion of a Nash equilibrium satisfies a minimal consistency 

requirement for the ‘solution’ of a game (since otherwise, at least one 

player would deviate from it), but it presents a series of pitfalls. 

Consider, for instance, the following ‘helping game’, where two players 

have independently to decide whether or not to confer a benefit b to the 

other player, at a cost c to themselves. If b>c, they would both earn b-

c>0 by cooperating. But since it is better to defect, i.e., not to incur 

the cost, each player’s best reply, irrespective of the other’s decision, 

is to defect. The unique Nash equilibrium, in the helping game, is thus 

mutual defection. This game thus displays a ‘social dilemma’: the pursuit 

of self-interest is self-defeating. In other games, there exist several 

Nash equilibria, and the choice of the right can be a tricky issue. A 



large part of classical game theory deals with equilibrium refinements 

and equilibrium selection. 

 

 

    II. Evolutionary game theory 

 

In the context of evolutionary biology, the two central concepts of game 

theory, namely strategy and payoff, have to be re-interpreted.  A 

strategy is not a deliberate plan of action, but an inheritable trait, 

for instance a behavioral program. Payoff is not given by a utility scale 

indicating subjective preferences, but by Darwinian fitness, i.e., 

average reproductive success. The 'players' are members of a population, 

competing for a larger share of descendants. If several variants of a 

trait occur in a population, then natural selection favors the variants 

conferring higher fitness. But if the success of the trait is frequency-

dependent, then an increase of the frequency of variant may lead to a 

composition of the population for which other variants do better.  

Similar situations are studied in population ecology. Thus, if prey is 

abundant, predators increase for a while. But this increase reduces the 

abundance of prey, and therefore leads to a decrease of the predators. 

Evolutionary game theory can be viewed as the ecology of behavioral 

programs. 

 

A classical example, which led Maynard Smith to develop evolutionary game 

theory, is provided by inner-specific contests. Assume that there are two 

behaviorally distinct types: 'Hawks' escalate the fight until the injury 

of one contestant settles the issue, whereas Doves' stick to some form of 

conventional display (a pushing match, for instance, where injuries are 

practically excluded), and give up as soon as the adversary escalates. If 

most contestants are 'Doves', 'Hawks' will be able to settle every 



conflict in their favor, with a corresponding gain in fitness. Hence, 

'Hawks' will spread. If most contestants are 'Hawks', however, then 

escalating a conflict will lead with probability one-half to injury. If 

the object of the fight is not worth the injury, then the 'Dove' trait 

will spread. No trait is unconditionally  

better than the other. 'Hawks' can only spread if their frequency is 

below G/C, where G is the value of the contested object and C the cost of 

an injury (both measured in terms of fitness). If their frequency is 

higher, it will diminish. Oversimplified as it is, this thought 

experiment shows that heavily armed species, for which the risk of injury 

is large, are particularly prone to conventional displays, i.e., ritual 

fighting. This fact had been observed empirically, but before the advent 

of evolutionary game theory, it was erroneously interpreted as 

benefitting the 'good for the species'. 

 

[Place Fig. 1 near here] 

 

A large number of behavioral traits, but also of morphological or 

physiological characters, such as the length of antlers, or the height of 

trees, are subject to frequency dependent selection. Trees invest 

considerable resources into growth, for instance, because neighboring 

trees do. To fall behind, in such an ‘arms race’, means to give up a 

place in the sun. Traits subject to frequency-dependent selection occur 

in many types of conflicts between two individuals, for instance 

concerning territorial disputes (between neighbors), division of parental 

investment (between male and female), or length of weaning period 

(between parents and offspring). Moreover, frequency-dependent selection 

also occurs without antagonistic encounters, as when individuals are 

'playing the field'. The sex ratio is a well-studied example. In the 

simplest scenarios, the rule is simple: if the sex-ratio is biased 



towards males, it pays to produce daughters, and vice versa. Under 

specific conditions, however, occurring with inbreeding or local 

competition for males, the sex-ratio may evolve away from 1:1. Other 

examples of frequency-dependent selection concern the dispersal rate 

among offspring, the readiness to emit an alarm-call, or the amount of 

time spent on the look-out for predators. 

 

The evolution of cooperation is one of the best-studied chapters of 

evolutionary game theory. Traditionally, this is modeled by the helping 

game described above. If an individual is equally likely to be potential 

recipient or donor in a given encounter, then a population of cooperators 

would earn, on average, b-c>0  per interaction, and be better off that a 

population of defectors earning 0. But an individual would always 

increase its fitness by refusing to help, and hence we should not see 

cooperation.  

 

Game theorists have encapsulated this social dilemma in the Prisoner's 

Dilemma (PD) game. In this game, each player can choose between the two 

strategies C (to cooperate) and D (to defect).  Two C players will get a 

reward R which is higher than the punishment P obtained by two  D 

players. But a D player exploiting a C player obtains a payoff T 

(temptation to defect) which is higher than R, and this leaves the C 

player with the sucker's payoff S which is lower than P. A rational 

player will always play D, which is the better move no matter what the 

co-player is doing. Two rational players will each end up with payoff P 

instead of R (see Fig 2).  

 

Many species engage in interactions which seem to be of Prisoner's 

Dilemma type. Vampire bats feed each other, monkeys engage in 

allogrooming, vervet monkeys utter alarm calls, birds join in anti-



predator behavior, which includes vigilance and mobbing, guppies and 

stickleback cooperate in predator inspection, hermaphroditic sea bass 

alternate as egg-spenders, many species of birds engage in nest helping, 

lions in cooperative hunting or joint territorial defense. It is 

difficult, however, to measure the lifetime fitness of free-living 

animals, and in many cases, it remains doubtful whether a given type of 

encounter is really of the Prisoner’s dilemma type, i.e., satisfies the 

inequalities T>R>P>S. Some of the afore-mentioned examples could be 

instances of by-product mutualism, in which both players are best served 

by cooperating and none is tempted to defect. Other types of encounters  

(for instance, the Hawk-Dove game) may have the structure of a so-called 

Chicken game (with T>R>S>P), in which the best reply to the co-player's  

C is a D, but the best reply to a D is a C. In both cases, cooperation 

(at least by one partner) is no paradox.  

 

There are several ways in which the Prisoner's dilemma can be overcome. 

In general, any form of associative interaction favors cooperation. Such 

association may be due to kinship, to partner choice, to the ostracism of 

defectors or simply to spatial structure and limited dispersal.  Indeed, 

if players can only interact with their nearest neighbors, then clusters 

of cooperators can grow. This spatial aspect of game theory is likely to 

operate for many sessile organisms. 

Moreover, if interactions of the Prisoner's dilemma type are repeated 

between the same two individuals, players can have the option to break up 

partnerships, or vary the amount of cooperation, depending on past 

experience. But even without these options, the strategy of always 

defecting is not invariably the best option in the Iterated 

Prisoner's dilemma (IPD game). If the probability of a further round is 

sufficiently high, then even a small amount of conditional cooperators 

suffices to favor cooperation. The best known example of such a 



discriminating strategy is Tit For Tat (TFT). A TFT-player cooperates in 

the first round and from then on always repeats whatever the co-player 

did in the previous round (see Fig.3). 

  

The best examples for reciprocation may be found in human societies.   

Among humans, moreover, reciprocation is often indirect. An act of 

assistance is returned, not by the recipient, but by a third party. A 

prerequisite is that players know enough about each other. This condition 

is likely to hold if groups are close-knit and individuals can exchange 

information about each other. 

 

III. Game dynamics 

 

The major new tool of evolutionary game theory consists in using 

population dynamics. This ‘technology transfer’ from population ecology 

relies on the assumption that successful traits spread. If there are only 

two possible types A and B, for instance, then essentially only three 

scenarios are possible, depending on whether a minority of one type can 

invade a resident population consisting of the other type only (see 

Fig.4): 

(a) A can invade B but B cannot invade A. In this case, the dominant 

strategy A will always out-compete B. This happens with the Prisoner's 

dilemma, if A-players defect and B-players cooperate. 

(b) A can invade B and B can invade A. This leads to the coexistence of 

both types in stable proportions as, for instance, if A are 'Hawks' and B 

are 'Doves'. 

(c) no type can invade the other. This is a bi-stable situation; whoever 

exceeds a certain threshold will outcompete the other. This happens with 

the Iterated Prisoner’s Dilemma if A is TFT and B always defects.  

 



With three types A, B and C, the game dynamics becomes considerably more 

complex, in part because 'rock-paper-scissors'-cycles can occur: A is 

dominated by B, B by C, and C in turn by A. Several such situations have 

been documented. In cultures of E. coli, for instance, the wild type A 

can be superseded by a mutant strain B killing the competitors by 

producing colicin, which acts as a poison. Simultaneously, this mutation 

produces a protein conferring immunity against the poison to its bearer. 

A population of type B can be superseded by a further mutant type C which 

produces the immunity protein but not the colicin (since this poison is 

inefficient in a population consisting of types B and C). In turn, type C 

can be invaded and eliminated by type A. Another rock-paper-scissors 

cycle has been found among males of the lizard Uta stantibus. The three 

types correspond to inheritable male mating strategies. Type A forms no 

lasting bonds but looks for sneaky matings; type B lives monogamously and 

closely guards the female; and C guards a harem of several females, of 

course less closely.  

 

Depending on the parameters, evolutionary models of rock-paper-scissors 

games either lead to the stable coexistence of all three strategies or to 

oscillations with increasing amplitude which lead to the recurrent 

elimination of the three types (see Fig.5). The competition of male 

lizards displays the former type of dynamics, and that of E.coli bacteria 

the latter. 

 

With four or more types competing, game dynamics can become yet more 

complex. The frequencies of the different types can keep oscillating in a 

regular or chaotic fashion. In addition to the dynamics describing 

frequency-dependent selection among a given set of types, mutations can 

produce new types occasionally. This usually proceeds at another time 

scale. Evolutionary game theory allows studying both short-term and long-



term evolution. For the latter, it is often convenient to assume that the 

transient effects following a random mutation have settled down before 

the next mutation occurs. As long as the population consists of one type 

only, this leads to a trait substitution sequence: the fate of a mutant, 

i.e., its fixation or elimination, is settled before the next mutation 

occurs. The path of the corresponding 'adaptive dynamics' can lead to 

evolutionary stable states immune against further invasion (see ESS) or 

to ‘branching points’ where the population  splits up and becomes 

polymorphic.  

 

Game dynamics can also be used to analyze the interactions between 

different subpopulations (such as males and females, or territorial 

owners and intruders). A fast-growing branch of evolutionary game theory 

deals with structured populations: here, the assumption of random 

encounters is replaced by that of interaction networks.   

 

Evolutionary game theory deals with phenotypes, and usually assumes that 

‘like begets like’. With sexual replication, however, this assumption can 

fail. Mendelian segregation, pleiotropy and sexual recombination can lead 

to situations where more successful types produce less successful 

variants. In principle, such features can be integrated into models of 

frequency dependent selection acting within the gene pool, but this can 

lead to intractable dynamics. Moreover, arguments from evolutionary game 

theory can fail, just like optimization arguments from adaptationism, due 

to genetic constraints. In the absence of specific information on the 

genotype-phenotype map, however, evolutionary game theory often provides 

an efficient heuristic tool for understanding frequency-dependent 

adaptation at the phenotypic level. Moreover, it also proved a suitable 

tool to describe social learning and cultural evolution.  

 



 

See also the following articles:  

Evolutionarily Stable Strategies 

Evolution of Cooperation 

Adaptive Dynamics 



Glossary: 

 

Strategy: Rule that describes how an individual acts in a given 

situation.  For example, in an inner-specific contest, possible 

strategies are to fight or to flee. 

Replicator dynamics: A model for the dynamics in evolutionary games. When 

a strategy fares better than the average then this strategy is expected 

to spread in the population.  

Hawk Dove game: A prominent model for animal contests in evolutionary 

game theory. It is assumed that there are two types: ‘Hawks’ escalate a 

fight, in which case ‘Doves’ give up.  When ‘Hawks’ are frequent it is 

better to be a ‘Dove’, in order to avoid serious injuries. Conversely, if 

the population consists of ‘Doves’, then escalating a fight pays off. 

Prisoner’s Dilemma:  A famous game that describes the conflict between 

group-interest and self-interest.  Two individuals may either cooperate 

(C) or defect (D). If both choose C, they are better off than if both 

choose D. However, individually each player prefers to defect, leading to 

a dilemma. 

Payoff:  Number that represents the success of a given strategy. In 

classical game theory, payoffs are described as utilities, whereas 

evolutionary game theory interprets the payoff of a strategy as its 

reproductive success. 

Frequency dependent selection: when the reproductive success of an 

individual does not only depend on its own type, but also on the 

composition of the population. For example, if the sex-ratio in a 

population is biased towards females, then males have an advantage. 



Nash equilibrium: A game is in equilibrium, if none of the players has an 

incentive to deviate from its strategy, as long as the other players 

stick to theirs.  
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Box 1: 

 

A game between two players I and II can be described by its normal form, 

which consists of a list of all the strategies nee ,...,1     and  

mff ,...,1  available to player I and player II, respectively, and of their 

payoff values ija  resp. ijb  obtained when I plays ie   and II plays jf . A 

mixed strategy for player I is given by the vector x  of the 

probabilities ix  to use ie . Since 1...  nxx , the vector ),...,( 1 nxxx   is 

an element of the unit simplex nS  spanned by the vectors of the standard 

basis in nR , i.e., the vectors with 1ix  and 0jx  for ij  , which 

correspond to the pure strategies ie . 

If player I uses strategy x and player II uses y , then the payoff for 

the former is given by the sum of the terms jiij yxa , summed over all i and 

j, and the payoff for the latter by jij yxb . We denote these terms by xAy  

and xBy , respectively.  

The strategy x  is said to be a best reply to strategy y  if zAyxAy   

holds for all z  in nS . In this case, player I cannot expect any gain 

from using a strategy different from x. Similarly, y  is a best reply to 

x if xBwxBy   for all w  in mS . A pair of strategies ),( yx  is said to 

be in Nash equilibrium if both conditions are satisfied, i.e., if each 

strategy is a best reply to the other. In this case, both players have no 

incentive to deviate unilaterally from their strategy. In the special 



case of a zero sum game (i.e., when ijij ba   holds for all i and j), these 

strategies are maximin strategies, i.e., each maximizes the minimal 

payoff and thus guarantees the best security level. 

 

One speaks of a symmetric game if the players have the same sets of 

strategies and payoff values and thus cannot be distinguished. Formally, 

this means that jiij ba   holds for all i and j. In this case, a strategy x  

is said to be a Nash equilibrium if the symmetric pair ),( xx  is a Nash 

equilibrium pair, i.e., if xAxzAx   for all z  in mS .  

 

Box 2 

 

In the simplest formal setup for evolutionary game theory, the 1e  to ne  

correspond to different types of individuals in a large, well mixed 

populations, and the ix  are their relative frequencies (thus, the state 

of the population is given by x in nS ). The game is assumed to be 

symmetric. Since an individual of type ie  randomly meets an je -individual 

with probability jx , and obtains payoff ija  from the interaction, the 

average payoff for ie -players is given by ninii xaxaAx  ...)( 11 , and the 

average payoff in the population by xAx. The frequencies ix  evolve as a 

function of time t, according to their success. If one assumes that the 

per capita growth rate of type ie  is given by the difference between its 

payoff and the average payoff in the population, one obtains the 

replicator equation ])[( xAxAxxdt
dx

ii
i   on the state space nS . Every Nash 

equilibrium is a fixed point of the replicator equation, and every stable 



fixed point is a Nash equilibrium, but the converse statements need not 

hold. 



Figure Captions: 

 

Fig. 1: Payoffs for the Hawk-Dove game: If a hawk encounters another 

hawk, there is an equal chance to win the contest or to get injured, 

resulting in an expected payoff of (G-C)/2. Against doves, a hawk always 

comes off as the winner, leading to a safe payoff of G. The payoffs for 

doves are derived analogously.  

Fig. 2:  Payoffs for the Prisoner’s Dilemma (with T>R>P>S):  Irrespective 

of the opponent’s strategy, it is always better to defect, since T>R and 

P>S.  If both players follow this logic they end up with payoff P instead 

of R.  

Fig. 3: Payoffs for the Iterated Prisoner’s Dilemma (IPD): When a TFT 

player meets a co-player of the same type, both will cooperate mutually, 

leading to an average payoff of R. Against a co-player who defects always 

(All D), a TFT player stops cooperating after the first round and plays D 

subsequently. If the number of rounds is random and the probability of a 

further round is w, this results in the payoffs displayed in the matrix.  

Fig. 4: Different scenarios for the evolutionary dynamics between two 

strategies:  

(a) Dominance: The blue strategy always out-competes red. Evolution leads 

to the state in which every individual adopts blue.  

(b) Coexistence: Red invades blue and blue invades red. Eventually, there 

is a stable coexistence of both strategies. 

(c) Bi-Stability: Both, red and blue are stable. The eventual outcome 

depends on the initial population. 

Fig. 5: Dynamics of the rock-paper-scissors game. Paper beats rock, 

scissors beats paper and rock beats scissors. Depending on the exact 

payoff values, this may either result in closed cycles (left), a stable 



coexistence of all strategies (middle) or never-ending oscillations 

(right). 
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Figure 2: 
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Figure 3: 
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