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Abstract 

The possibility of using bioenergy as a climate change mitigation measure has sparked a discussion 

of whether and how bioenergy production contributes to sustainable development. We undertook a 

systematic review of the scientific literature to illuminate this relationship and found a limited 

scientific basis for policy-making. Our results indicate that knowledge on the sustainable 
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development impacts of bioenergy production is concentrated in a few well-studied countries, 

focuses on environmental and economic impacts, and mostly relates to dedicated agricultural 

biomass plantations. The scope and methodological approaches in studies differ widely and only a 

small share of the studies sufficiently reports on context and/or baseline conditions, which makes it 

difficult to get a general understanding of the attribution of impacts. Nevertheless we identified 

regional patterns of positive or negative impacts for all categories – environmental, economic, 

institutional, social and technological. In general, economic and technological impacts were more 

frequently reported as positive, while social and environmental impacts were more frequently 

reported as negative (with the exception of impacts on direct substitution of GHG emission from 

fossil fuel). More focused and transparent research is needed to validate these patterns and develop 

a strong science underpinning for establishing policies and governance agreements that 

prevent/mitigate negative and promote positive impacts from bioenergy production. 

 

Introduction 

During the last decades developed and developing countries have introduced policies to encourage 

the use of bioenergy including i.a. the Brazilian National Alcohol Program (ProAlcool), the US 

Renewable Fuel Standard (RFS), the EU’s Renewable Energy Directive (RED), the Alternative Energy 

Development Plan (AEDP) in Thailand, and the Indian National Policy on Biofuels (Sorda et al., 2010). 

The promotion of bioenergy as a climate change mitigation measure has sparked a intensive 

discussion concerning potential impacts on sustainable development. Commonly mentioned positive 

impacts focus on opportunities for new uses of land, economic growth, climate change mitigation, 

increased energy security and employment (Smeets et al., 2007; Nijsen et al., 2012; Mendes Souza et 

al., 2015). On the other hand, there are concerns about potential disruption to food security and 

rural livelihoods, direct and indirect greenhouse gas (GHG) emissions from land use change, 

enhanced water scarcity, ecological impacts, increased rural poverty, and displacement of small-

scale farmers, pastoralists and forest users (Dauvergne and Neville, 2010; Delucchi, 2010; German et 

al., 2011; Gamborg et al., 2014; Hejazi et al., 2015). 

How bioenergy interacts with sustainable development has become a key scientific question as 

demand for bioenergy increases globally. The recent Intergovernmental Panel on Climate Change 

(IPCC) Working Group III contribution to the Fifth Assessment Report (WGIII AR5) highlights the 

relationship between context conditions, the use of bioenergy as a mitigation option, and the 

impacts on sustainable development. Discussing impacts of bioenergy on sustainable development, 

the IPCC WGIII AR5 concludes that “…the nature and extent of the impacts of implementing 

bioenergy depend on the specific system, the development context, and on the size of the 

intervention” (Smith et al., 2014). 

Different case studies have documented that expanding production of the crops most commonly 

used to produce bioenergy can affect local incomes, food security, land tenure, or health in positive 

and negative ways, and that the outcomes of bioenergy production can be unequally distributed 

(Tilman et al., 2009; Persson, 2014). Model-based assessments have tried to integrate sustainability 

considerations, pointing out likely interactions between bioenergy and food prices as well as 

biodiversity and water use(Popp et al., 2011; Lotze-Campen et al., 2014; Scharlemann and Laurence, 

2014). However, the effects of bioenergy on livelihoods and the role of governance agreements in 
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promoting or mitigating specific types of impact have not yet been included in modelling exercises 

(Ackerman et al., 2009; Lubowski and Rose, 2013; Creutzig et al., 2014; Smith et al., 2014). 

Furthermore, previous studies have concluded that more clarity about the relationships between 

bioenergy production, livelihoods, and equity is still needed (Hodbod and Tomei, 2013; Creutzig et 

al., 2013; Hunsberger et al., 2014). 

In light of the urgent need for action on climate change (IPCC, 2014), persistent economic and social 

inequalities, and intensifying competition for land (Lambin and Meyfroidt, 2011; Haberl, 2015), there 

is a need for science-based policy making with respect to the impacts of bioenergy on sustainable 

development. We have examined the scientific evidence base for such policy making in a 

comprehensive systematic review using the scientific literature produced in the time period covered 

by the IPCC Fifth Assessment Report. 

 

Methodology for reviewing impacts of bioenergy production on sustainable development 

The aim of this systematic review was to analyse the state of knowledge about how the production 

of bioenergy resources affects sustainable development. This is key for understanding to what 

extent the existent knowledge can provide advice for policy makers. The systematic review focuses 

on the following impact categories: social, economic, institutional, environmental, and technological 

(including food security and human health as social). The review is based on the assumption that if 

production of a bioenergy resource impacts any of the focus categories it also impacts sustainable 

development. Thus analysing the reported impacts on these focus categories will facilitate an 

overview of the state of knowledge regarding the impacts from bioenergy production on sustainable 

development. 

We followed the steps included in the methodological guidance for systematic reviews by (Petticrew 

and Roberts, 2008; Bartolucci and Hillegass, 2010). The review protocol that served as 

methodological basis included five steps: 1) definition of scope and aims; 2) research questions; 3) 

search for and selection of evidence; 4) quality appraisal; 5) data extraction and synthesis (see 

detailed protocol of the systematic review in the supplementary material). 

We investigated to what extent the scientific community has answered the following questions 

which are of high interest in various contexts, including policy, in which decisions on future 

implementation of bioenergy are decided upon: Where do sustainable development impacts from 

bioenergy production take place? What is the evidence for the purported impacts? How are impacts 

attributed and measured? Are there certain context conditions that enable the observed impacts? 

Are the reported impacts specific to particular biomass resources? These questions were motivated 

by the discussions addressed in AR5, WGIII (Smith et al., 2014, annex on bioenergy). Although the 

AR5 considers impacts on sustainable development, it does not provide a geographically 

differentiated analysis or an understanding of the relation between context conditions and impacts. 

Several authors (Creutzig et al., 2014; Smith et al., 2014; Bustamante et al., 2014; Stechow et al., 

2015) explicitly highlight the need for improving the understanding of regional distribution of 

mitigation impacts on sustainable development, disaggregating by technologies and bioenergy 

inputs and under consideration of context conditions. The aim of this article was to make a first step 

in this direction through a stringent systematic review. 
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We used the same time frame for scientific publications as the Fifth IPCC Assessment report  (AR5) 

(see supplementary information for the selection criteria and process) and went into a far more 

detailed analysis with regard to the questions reported above.  

 The AR5 defines bioenergy as “energy derived from any form of biomass such as recently living 

organisms or their metabolic by-products” (Allwood et al., 2014). We include nine biomass resources 

in the review: forest residues, unutilized forest growth, dedicated biomass forest plantations, 

combined forest sources, agriculture residues, dedicated biomass agricultural plantations, organic 

waste, combined agricultural resources and combined forest and agricultural resources (see protocol 

in the supplementary information for specific definition of each biomass resource). As the focus of 

the research was to understand the impacts from production and collection of these biomass 

resources on development, we did not distinguish the technologies used for producing bioenergy 

from biomass (i.e. first or second generation) but considered the demand that both technologies can 

create on biomass resources.  

We acknowledge that there is no general agreement on how to measure impacts on sustainable 

development (Sneddon et al., 2006; Muys, 2013). Thus, we based the systematic review on the 

development impacts as outlined in the Agriculture, Forestry and Other Land Use (AFOLU) chapter of 

the IPCC WGIII AR5 (Smith et al., 2014). We considered a set of 33 potential impacts on sustainable 

development structured into five impact categories: institutional, social and health-related, 

environmental, economic and technological (see Tables SI3 and SI4). We assumed that if production 

of a bioenergy resource affects any of these impact categories, it also affects sustainable 

development. Thus, analysing the reported impacts in a systematic manner provides an overview of 

the state of knowledge regarding how bioenergy production affects sustainable development as 

defined above. 

Selection of studies and data extraction 

The selection process was done in three steps: definition of search criteria, a search in two scientific 

collections and a quality appraisal. For the search criteria we included thirty inclusion criteria 

covering all five development categories and two further criteria on bioenergy forms for a set of 

sixty inclusion criteria combinations; and we included 12 exclusion criteria (see “article selection and 

data extraction” in the protocol included in the supplementary information for further details). We 

further refined the selection using 31 categories of Web of Science, including 12 research areas. We 

limited the search to articles in English. The search was conducted in the Web of Science and in 

Science Direct including all their data bases. This procedure yielded a wide and inclusive sample of 

1175 articles covering all five development categories. For the quality appraisal we randomly 

selected a subset of articles (n=873 or 74.3% of the original sample), which makes the sub-sample 

representative. Only 541 of these passed the quality appraisal (criteria and procedure for the 

appraisal is clarified in the “quality appraisal” section in the protocol included in the supplementary 

information). 408 articles out of the 541 (75.4%) were randomly included in the data extraction and 

the research team carefully reviewed all articles. During the data extraction, we removed 92 articles 

because none of the 33 potential impacts included in our list were discussed, although they did 

discuss issues belonging to the five categories (that explains why these articles passed the quality 

appraisal). Thus, the results presented below are based on the analysis of the detailed data 

extracted from 316 original research articles that discuss at least one of the 33 impacts included. 
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Data analysis 

We analysed the data in three steps: (1) characterization of the study, (2) consideration of the 

context conditions in the area of the study and (3) reported impacts. Exploratory data analysis 

revealed a vast heterogeneity of how data were gathered, impacts attributed, and results reported 

in the 316 analysed articles (see detailed counting of results in the supplementary information, file 

impacts trees). This heterogeneity combined with the number of variables mostly precluded the use 

of sophisticated statistical analysis methods, and our analysis is mainly based on descriptive tables 

and cross-tabulations, combining data from all three steps. The statistical significance of potentially 

interesting relations between context conditions and impacts was analysed using Fisher-tests  (R 

Core Team, 2014). 

 

Results  

Almost half of the articles in the systematic review analyse impacts from dedicated biomass 

plantations (agriculture and forestry), while few articles examine the sustainable development 

impacts from using agricultural or forestry residues (4 and 6%, respectively), or organic waste (2.5%) 

(see Table SI 10). Although several studies report that the use of organic waste as bioenergy 

feedstock can be associated with positive or low negative impacts, and hence considered an 

attractive bioenergy resource (Gregg and Smith, 2010; Odlare et al., 2011; Haberl et al., 2011), but 

the evidence in our review is insufficient to object or support this proposition as too few studies 

analyse this resource. 

 Different places, different state of knowledge 

Our results show an uneven geographical distribution of the studies, with most articles focusing on 

developed regions: 26.7% on Europe, and 26.3% on North America; compared to only 13.1% on Asia, 

8.2% on Africa, 7.8% on Latin America (Central and South America), 2.2% on Oceania; 15.7% of the 

studies conduct global analyses (Figure 2, Table SI 11). This distribution contrasts with the share of 

annual plant biomass production (approximated through Net Primary Production or NPP) of these 

regions: 16% in Europe, 12% in North America, 19% in Asia, 20% in Africa, 26% in Latin America and 

6% in Oceania (Krausmann et al., 2013). Although a multitude of socioeconomic and natural factors 

influence any region’s technical or economic bioenergy potential, we consider NPP a useful proxy for 

its biophysical suitability for biomass production (Haberl et al., 2013). Modelling and empirical data 

suggest that current NPP levels may underestimate achievable productivities in human managed 

systems (DeLucia et al., 2014), but should be viewed in the perspective of scales of cultivation 

required for bioenergy to make an important contribution to the future energy supply, and also 

possible ecological impacts of high-input cultivation systems (Haberl, 2016). 

Table 1 is divided into three categories of countries: i) well-studied key countries, (section A in Table 

1); ii) potentially relevant but understudied countries, i.e., countries with high NPP but few, if any, 

studies (section B in Table 1); and iii) relatively over-studied countries, i.e., countries with low NPP 

and hence a relatively minor global contribution to the global bioenergy potential but nevertheless 

with many studies associated with them (section C in Table 1). 
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The small share of studies considering impacts on sustainability in developing regions is surprising, as 

studies assessing global bioenergy potential commonly point to some of the countries in section B as 

possible large future suppliers of biomass and biofuels (Nijsen et al., 2012; Hoogwijk et al., 2009; 

Smeets and Faaij, 2010; Beringer et al., 2011; Haberl et al., 2011). For example, in Latin America, 

only Brazil (contributing 26 cases or 74% to the studies in countries of this region) emerges as a focal 

point of the scientific literature, while the number of country-specific studies in other countries is 

small (three studies in Argentina and one study each in Costa Rica, Ecuador, Guatemala, Mexico and 

Peru). Hence, of the 20 countries in Latin America, only one country with a large NPP is well-studied, 

whereas six countries are under-studied despite their large potential. Extrapolations of impacts from 

the local/national to the regional level are thus not yet possible.  

When looking at which impacts have been considered and where, our results show that most 

regions focus on the environmental and economic categories and barely consider social impacts with 

the exception of food security (see Figure 1 and Table 2). Only studies focusing on Asia and Africa 

show a more balanced interest across categories. 

 Only a small number of impacts have been studied across regions 

Beyond the impact categories we further analysed which specific impacts were most frequently 

considered in each region (see Table 3). Studies at the global level focus on impacts on displacement 

of activities, on deforestation or forest degradation, on soil and water, on food security and on GHG 

emissions. To a lesser extent, but nevertheless important, global studies look at market 

opportunities, feedstock prices and technology development and transfer. 

 

The regional distribution of the interest in specific impacts is uneven. In North America (mainly USA) 

impacts from the environmental category are included among the seven most frequent followed by 

impacts on prices of feedstock and on market opportunities from the economic category. The three 

most frequently analysed impacts in Europe and Latin America (mainly Brazil) are those on 

displacement of activities, on soil and water, and on direct substitution of GHG emissions from fossil 

fuels. Studies from Oceania only consider six impacts; four of them in the environmental category 

with the most frequently analysed being impacts on soil and water. 

The distribution of analysed impacts in Africa and Asia is more balanced. Most of the impacts have 

been considered in these two regions, suggesting a better engagement with the complexity of 

understanding sustainability impacts or an expectation that social impacts are relatively more 

important in these regions. The five impacts most often considered in Africa are impacts on food 

security, on energy independence, on economic activity, on employment and on poverty (in this 

order). In this region, impacts on land tenure, on women and on capacity building are considered 

more often than in other regions. The five impacts most frequently considered in Asia are those on 

food security, on economic activity, on soil and water, on displacement of activities and on 

employment. 

 Unbalanced understanding about impacts on sustainable development  

The perspective of whether impacts are positive, negative or neutral is also uneven across regions. 

Our analysis of a selection of impacts shows that mostly negative impacts are reported in Latin 

America and at the global level, while the other regions show a more balanced picture (see Tables 
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3). The more detailed analysis presented below shows interesting differences in the importance 

given to each category and on where specific impacts were assessed as positive or negative.  

Institutional impacts are included in over 30% of the articles (see Table 2). Within this impact 

category, energy independence is the most frequently studied impact across regions, especially in 

Europe and Africa, and biofuel deployment is reported mostly as having a positive impact on it. 

Other impacts in this category such as cross-sectorial coordination show mixed results for all regions, 

while land tenure was reported as negatively impacted in Africa, Asia and Latin America. 

Social impacts are considered in over 30% of all studies, with food security being the most frequently 

addressed impact in this category (over 25% of the total studies and almost 75% of the articles 

considering social impacts). We undertook a detailed analysis of food security because it has been 

mentioned as one major concern for promoting deployment of bioenergy. Negative impacts on food 

security were reported twice as often as positive impacts. For all regions impacts on food security 

are reported more often as negative than as positive, except in Africa where an equal number of 

studies report impacts as positive, negative or neutral (see Figure 2 and Table 3).  

In addition, we found that at the global level, the more often models are used for analysing impacts 

on food security, the higher the frequency of negative impacts (see Figure 2). Although the small 

number of studies does not provide statistic robustness, this finding suggests a difference in the way 

impacts on food security are modelled or measured at the global level.  

Other key social impacts – including gender and intra-generational impacts, social conflicts, 

displacement of farmers, and impacts on traditional or indigenous practices – are insufficiently 

studied in all regions, and practically not considered in global studies.  

The environmental impacts category is the most frequently considered category by the studies in the 

sample (over 70% of the total articles in the review, see Table 2), and each individual impact is 

addressed by at least a quarter of the studies. Across regions all impacts in this category are 

reported as mostly negative or neutral, with the exception of  direct substitution of GHG emissions 

from fossil fuels, which is considered positive or neutral in all geographical contexts. It is important 

to note, however, that over 65% of the studies used models for attributing direct substitution of 

GHG emissions from fossil fuels, and only 20% of these combined models with case study 

measurements. Thus the qualification of this impact is highly dependent on the system boundaries 

and attribution criteria used. Negative impacts on the displacement of activities or other land uses 

are more frequently reported in Latin America, North America, Europe, and at the global level (see 

Table 3). In Asia, slightly more positive impacts are reported compared to other regions. 

Impacts on biodiversity are predominately reported as negative or neutral (see Table 3), except in a 

few studies from Europe and North America, whereas impacts on deforestation or forest 

degradation seem to be more negative for Latin America and at the global level. Further, impacts 

from the use of fertilizers on soil and water are reported as negative for Europe, North and Latin 

America, where these account for the majority of studies addressing this issue. 

Economic impacts are considered in over half of all articles (see Table 2), and were predominantly 

positive for most impacts assessed in this category. Positive effects on market opportunities are 

noticeably reported in studies for North America and Europe (see Table 3), whereas positive effects 

on economic activity were more frequently reported in Africa and Asia. Impacts on prices of 

feedstock show mixed results for all regions. As for other impacts where modelling was used far 
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more often than case study measurements, the positive or negative character of the economic 

impacts category needs more analysis considering the system boundaries and attribution criteria 

used. 

Over 20% of all articles consider technological impacts (see Table 2). Technology development and 

transfer is the most frequently considered impact, followed distantly by impacts on labour demand, 

infrastructure coverage and access to infrastructure. Impacts on technology development and 

transfer are seen mostly as positive in all regions with only two studies reporting negative impacts: 

one from Africa and one at the global level (see Table 3). 

 How context conditions influence development outcomes remains unclear 

We analysed how impacts have been attributed by examining whether context conditions were 

explicitly reported. Context conditions describe the situation in the absence of additional biomass 

production and use for energy. Insight into these conditions is necessary for establishing a baseline 

or reference scenario and/or for attributing impacts on sustainable development from bioenergy 

production in a transparent manner. The systematic review includes 31 possible conditions that can 

describe the context in relation to the five impact categories (see supplementary information for a 

complete list of context conditions). We first analysed the extent to which impacts reported in the 

articles match to the corresponding context conditions at the level of category (i.e., whether context 

conditions were reported for those categories where impacts were identified).  

The analysis shows that only 13.6% of the articles comprehensively describe the context conditions 

against the category of the reported impacts, whereas 23% do not report context conditions at all. 

For the remainder, conditions were partially or fully mismatched (i.e., context conditions are 

described but not for the category of impacts reported). This lack of clarity of the context conditions 

applies to articles dealing with developed and developing countries, as well as global analyses. 

However, we found that studies analysing bioenergy production in developing countries report 

context conditions more often than studies on Europe, North America or those with a global scope 

(see Figure 3). The lack of information applies across all reported impacts. For instance, from those 

articles quantifying impacts on food security, only 35% provide context conditions in the 

corresponding social category; concerning GHG emissions only 12% of articles provide corresponding 

baseline conditions. We recognize that for some standardized methodologies (e.g., LCA), and for 

most models, certain assumptions regarding context conditions are embedded in the procedures 

used. However, when they are not reported and/or validated, which is often the case, it remains 

unclear how impacts were attributed. 

We undertook a deeper analysis of the relationship between context conditions and several specific 

impacts. Initially, we conducted a descriptive analysis of impacts on food security, which is the most 

frequently reported social impact, to determine if it is possible to establish the context conditions 

that trigger positive or negative impacts on food security. 80% of the articles mentioning impacts on 

food security include some description of the context conditions. We found that in articles reporting 

impact on food security, most context conditions are considered at least once (see Figure 4) and that 

no particular context condition clearly stands out in relation to either positive or negative impacts 

(e.g., conditions that are most frequent in the food security analysis, such as the use of modern 

technologies, show up both for negative and positive impacts).  
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The general lack of correlation between context conditions and impact sign is also reflected in the p-

values of Fisher-tests, which we applied to all 1023 combinations of context conditions and impacts 

to check the influence of a particular context condition given or not given on the counts of impact 

signs. Table 4 displays that only 5 combinations have a p-value below 5% and reports their 

corresponding numbers of condition-impact combinations. 

The Fisher-test indicates if the counts of impact signs in case of condition being “yes” differs 

significantly from the counts of impact signs when the condition is “no”. Thus, a low p-value does 

not represent strong evidence that the condition has an influence on the impact. This influence can 

only be postulated if the combination of conditions and impact also suggests its existence and 

direction. This is the case for only two combinations:  

 Combination 1  context condition “ existing deficits in food access and /or food security” 

and impact on “food security”: When the context condition “existing deficits in food access 

and/or supply” is given, then biomass production for bioenergy is almost exclusively reported 

to have a negative impact on food security. Studies reporting the absence of these deficits, on 

the other hand, report either a positive or a neutral impact on food security.  

 Combination 2  context condition “benefit sharing mechanism for economic benefits are in 

place” and impact on “direct substitution of GHG emissions from fossil fuels”: The impact on 

direct substitution of GHG emissions from fossil fuel is largely positive when no benefit-

sharing mechanism for economic benefits are in place, while the presence of such 

mechanisms exclusively leads to this impact being negative.  

For the other three combinations in Table 4, the number of impacts is very small if the condition is 

answered with “no” and the distribution of impacts (positive, negative or neutral) is ambiguous. 

Thus, even if the condition being “yes” suggests a positive impact sign in two of these cases, it is not 

known if these conditions really influence the corresponding impacts. 

The regional analysis for the two combinations that in total suggest a correlation between condition 

and impact are displayed in Table 5. Fisher-tests showed no significant difference between “yes” and 

“no” answers for any region.  

 Patterns in the distribution of positive and negative impacts 

The results show some general patterns that are worth highlighting (see especially Figures 2, 3 and 4 

and Table 3). Impacts on some economic and technological categories are persistently positive 

across studies and regions. Within these categories impacts on energy independence, direct 

substitution of GHG emissions from fossil fuels, market opportunities, economic activity and 

diversification, employment as well as different technological categories are far most often reported 

as positive. In contrast, most impacts in the social and environmental categories are reported largely 

as having negative impacts, especially on land tenure, food security, displacement of other activities, 

biodiversity loss, and conflict and social tension. These patterns indicate an important trade-off: that 

bioenergy projects may generate positive economic impacts but negative environmental and social 

impacts.  

The incomplete information on context conditions (Figure 3 and statistical analysis) makes it difficult to say 

anything conclusively across studies on what are the most relevant conditions triggering any specific impact. 

Yet, previous work has pointed to some reasons worth highlighting, notably that government institutions in 

countries targeted for bioenergy production often face severe constraints in implementing public policies and 

regulations intended to protect, for instance, land rights and food security (Ravnborg et al., 2013; Larsen et al., 
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2014). This is reinforced by our findings on context conditions related to food security and to some extent by the 

participation of governance related conditions highlighted through the Fisher-Test. It is also worth noting that 

since climate change mitigation has been an important motivator for promoting bioenergy, it has been a higher 

research priority than other goals such as those related to biodiversity or land tenure. The latest IPCC 

Assessment Report made a great advance in including ethics and sustainable development in its considerations 

and paves the way for a more systemic research approach towards understanding development impacts from 

bioenergy production. More research is needed in the future to develop this approach, given the knowledge gaps 

identified in this review. 

 

Conclusions and outlook 

Understanding the impacts of bioenergy production on sustainable development has been an 

important research topic in recent years, but its coverage is uneven, both in terms of geographical 

coverage, feedstocks considered, and in the categories of impacts considered. Furthermore, results 

are hardly comparable because context conditions and attribution criteria are not properly reported 

in the majority of the studies.  

In the following we present our conclusions about the research questions in this review. 

Where do sustainable development impacts from bioenergy production take place?  

Geographically, we identified three distinct groups of countries, based on NPP as a proxy for 

biophysical biomass production potential, for considering bioenergy deployment in a given country. 

In the first group we find countries with a high biophysical potential and a reasonable number of 

studies. These studies give good information about environmental and economic impacts, showing a 

tendency towards positive impacts from bioenergy production on direct substitution of GHG 

emissions from fossil fuels, market creation, technology development and transfer. However social, 

institutional and technological impacts remain uncertain because they were far less often 

considered. The second group comprises countries with a high NPP but very few studies. Most of 

these are developing countries where there is a need for better understanding of possible 

sustainable development impacts of bioenergy implementation. For countries in this group, more 

research is needed to provide robust information for policy-making and governance agreements. 

The third group comprises countries with a relatively smaller NPP but many studies. This group 

consists mainly of developed countries and lessons on methodological issues from these studies can 

be used for future research in understudied countries.  

 

What is the evidence for the purported impacts and how are impacts attributed and measured?  

There is a lack of systematic reporting on criteria for attributing impacts. Despite the existing 

discussion on attribution of specific methodologies (e.g. Finkbeiner, 2013; Muñoz et al., 2015 on 

attribution of indirect land use change in LCA), this omission in the studies makes it impossible to 

pursue a consistent comparison of results. We found that the environmental and economic impact 

categories were more thoroughly studied whereas far less is known about how bioenergy 

production will affect the social and institutional categories of sustainable development. Institutional 

and social impact categories are better considered in country-level studies than in global studies. 

Although there is an apparent indication of trade-offs between positive impacts on the economic 

category and negative impacts on the environmental and social categories, more clarity about what 
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triggers the trade-offs could not be achieved due to the non-comparability of the results across the 

studies (lack of attribution criteria) and to the lack of information on context conditions in the 

majority of the studies.   

Are there certain context conditions that enable the observed impacts?  

We found that there is a gap on reporting the specific context conditions prior to any intervention 

aimed at producing biomass for bioenergy, with less than 15% of the studies providing a 

comprehensive presentation of the context conditions in the category on which they attributed 

impacts. The lack of consistency in reporting context conditions and their relation to the reported 

impacts prevents clear and definitive conclusions on how the context affects the development 

outcome. Previous assessments have highlighted the need for “good governance” as a condition 

required for promoting positive impacts of bioenergy production (Creutzig et al., 2014; Smith et al., 

2014; Hunsberger et al., 2014). The reported negative impacts on land tenure, food security and 

food production, or other social and institutional aspects bear witness that bioenergy deployment 

can result in undesirable consequences and on the importance of understanding the context 

conditions, especially existing governance of natural resources. 

Are the reported impacts specific to particular biomass resources? 

We found a concentration of studies dealing with dedicated biomass production, especially 

agricultural plantations. Other biomass resources have been less studied and the use of waste as 

bioenergy feedstock has not received much systematic scrutiny. We conclude that analytical 

frameworks and methods that facilitate the analysis at a higher level of complexity, i.e., including 

more categories or allowing aggregation from various studies, are still needed. Such frameworks 

need to ask for the inclusion and reporting of context conditions, explicitly and transparently, so that 

context-dependent differences can be identified. Future empirical research, especially case studies, 

should aim to inform about the most effective governance arrangements – and identify situations 

where governance agreements have insufficient capacity to guarantee that bioenergy deployment 

consider international due diligence standards.  

It is opportune to interpret our results in the context of the recent IPCC assessment of climate 

change. The IPCC author team concluded that:  

 

“One strand of literature highlights that bioenergy could contribute significantly to 

mitigating global GHG emissions via displacing fossil fuels, better management of natural 

resources, and possibly by deploying BECCS. Another strand of literature points to abundant 

risks in the large-scale development of bioenergy mainly from dedicated energy crops and 

particularly in reducing the land carbon stock, potentially resulting in net increases in GHG 

emissions” (Smith et al, 2014) 

 

One interpretation of this divergence is that the first strand of literature emphasizes technological 

opportunities, such as yield increases, to reduce land use impact, and reap economic opportunities, 

while the other strand of literature investigates environmental dimensions under risk of being 

harmed (Creutzig, 2014). The growing literature exploring sustainable landscape management 

systems for the provision of biomass and other ecosystem services might gradually come to bridge 
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the gap between these two strands of literature. Not the least, the integration of bioenergy systems 

into agriculture landscapes has been recognized as a promising option for addressing environmental 

impacts associated with current agriculture systems (Clarke et al., 2014; Edenhofer et al., 2014; 

Smith et al., 2014).    

The IPCC report annex on bioenergy also points out that environmental, social, and economic 

consequences of bioenergy deployment are site specific, but remains inconclusive on weighting the 

consequences across case studies. This review goes beyond the IPCC assessment in providing a 

comprehensive meta-analysis, demonstrating that case studies evaluated so far tend to see 

increased economic and employment opportunities, GHG savings from fossil fuel displacement, and 

infrastructure development, but also risks related to land use change, in particular GHG emissions, 

food security, soil and water quality, biodiversity, and socially problematic outcomes.  

Since the publication of the latest IPCC assessment report, further research on bioenergy has been 

published, which is in line with the main conclusions of our systematic review. The screening of this 

literature suggests that case studies mostly emphasize GHG emissions metrics and economic 

performance (e.g. (García et al., 2015; Mandaloufas et al., 2015)) and  Dale et al. (2015) point out the 

importance of appropriate sustainability criteria and indicators. This observation suggests that the 

systematic bias observed in our survey of case studies can be interpreted as showing that social 

dimensions have been assigned a lower priority by scientists and policy processes than some 

environmental and economic dimensions.  

There are limitations to the systematic review presented in this article. First, the complexity of the 

subject of analysis, such as the high number of potential interactions within the system boundaries 

and the lack of inclusion of criteria for analysing trans-boundary impacts or trade-offs between 

specific criteria and scale of the impacts, renders results of models and case studies partially 

inconclusive and subject to a priori values of investigators (Tribe et al., 1976). Second, most results in 

both cases depend on attributional accounting, which has been argued to be possibly misleading, 

while consequential accounting, being subject to higher uncertainties, might provide more policy-

relevant information. This is especially relevant for studies using LCA methods (Brandao et al., 2013; 

Hertwich, 2014; Plevin et al., 2014; Plevin et al., 2014). Third, we focused on studies published in 

English only. These limitations should be considered in future studies, and analysed using 

complementary assessment methods. 

Overall, we find that comparatively assessing the impacts of bioenergy production on sustainable 

development using the available scientific literature is a considerable challenge, but we are able to 

propose four recommendations for future research: a) pursue a more stringent use of frameworks 

and methodologies that attribute impacts of bioenergy production on all development categories; b) 

report context conditions and criteria for attributing development impacts transparently; c) improve 

understanding of impacts of bioenergy production in developing countries with potentially 

favourable biophysical conditions for bioenergy; and d) improve understanding of potential 

sustainable development impacts in different regions of using other bioenergy feedstock than 

biomass from dedicated plantations (e.g., organic waste and /or agricultural/forestry residues). 

Addressing these issues is essential for providing a more solid scientific basis for policy making and 

governance agreements in the field of bioenergy and sustainable development. 
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Country 
# of 

studies 

% of 

global NPP 

Rank # 

studies 
Rank NPP 

A. Countries with more than 1 study and more than 1% of global NPP 

United States 80 6.50% 1 3 

Brazil 25 12.10% 2 1 

China 13 5.60% 4 5 

India 13 2.30% 5 10 

Canada 9 6.00% 10 4 

Indonesia 9 3.20% 12 8 

United Republic of Tanzania 8 1.10% 14 19 

Australia 7 4.90% 15 6 

B. Countries with less than 5 studies and more than 1% of global NPP 

Russian Federation 3 11.30% 27 2 

Argentina 3 2.40% 23 9 

Dem. Rep. of the Congo 0 3.70% 98 7 

Colombia 0 1.90% 89 11 

Peru 1 1.60% 51 12 

Angola 0 1.50% 65 13 

Mexico 1 1.50% 48 14 

Venezuela 0 1.50% 209 15 

Bolivia 0 1.40% 78 16 

Sudan 0 1.30% 192 17 

Kazakhstan 0 1.20% 131 18 

C. Countries with 5 or more Studies and less than 1% of global NPP 

Italy 14 0.24% 3 63 

Sweden 13 0.36% 6 50 

United Kingdom 12 0.23% 7 65 

Malaysia 10 0.56% 8 32 

South Africa 10 0.63% 9 28 

Germany 9 0.37% 11 46 

Thailand 9 0.51% 13 35 

Mozambique 6 0.91% 16 22 

Austria 5 0.08% 17 97 

Belgium 5 0.04% 18 125 

Spain 5 0.37% 19 48 

Denmark 4 0.05% 20 119 

France 4 0.58% 21 31 

Netherlands 4 0.04% 22 123 
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Impact Condition
p-value 

(Fisher-test) y
es

 /
 +

y
es

 /
 -

y
es

 /
 n

n
o
 /
 +

n
o
 /
 -

n
o
 /
 n

Food security or food production 

(negative if reduced or positive if 

improved)

Existing deficit in food access and/or 

supply
0.00154111 2 20 3 3 1 4

Conflicts or social tension
Existing deficit in food access and/or 

supply 0.02222222 7 1 2 0 0 1

Direct substitution of GHG emissions 

reductions from fossil fuels

Sharing mechanisms of economic benefits 

in place 0.03571429 0 2 0 6 0 0

Prices of feedstock Modern (industrial) technologies 0.04449388 11 4 13 1 2 0

Employment ( being employment 

creation (+) or employment reduction (-

))

Mechanisms for sectorial coordination 

are in place
0.04545455 7 0 0 2 1 2

Combination Condition / Impact
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