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INTRODUCT ION

This paper is an attempt to extend methodological research
of complex systems development at ITASA. The most typical'and
probably most urgent example is analysis and planning of long-
range development of energy systems. During the last decade
interest in energy problems has considerably increased all over
the world and we are now witnesses of significant progress in the
field [1-12]. This concerns however mostly the varticular im-
plementation of different energy models. As for methodological
mathematical analysis of the problem we deal here, at initial
stages, with inevitable lags, though first attemnts have already

been made in this direction (see, for example, [13,14].

Meanwhile, in analyzing outputs of energy models implemented
in different ways, many methodological problems are arising: for
example, how to link energy supply, resources and economy models
into a whole system? what is the world ("global") energy model:
is that game-theoretical, optimization or simulation? how does
our uncertainty in the "future" input data influence our "cer-
tainty" of present decisions? etc. These questions do not only
relate to energy models but are also of concern for any problems
of long range development of a complex system [15,16] (for example,
analysis of interaction of manpower-economy development in the

long run [17]).

IIASA seems to be an unique place for stimulating such kind
of methodological work. Different approaches, different opinions,
different models, which are under permanent discussion or in-
vestigation at IIASA -- all of this eventually and inevitably

becomes a point of view, a starting point of any methodology.

This paper, as mentioned above, should be considered as an
initial attempt in this direction. To start with we describe
three basic dynamic optimization models: energy supply, resources
and economy development models. These models are formalized in
the framework of dynamic linear programming [18,19].



In aescribing these models we try to draw out the typical
features of different models, omitting the details of particular
implementation in order to obtain three basic formalized models
-- energy - resources - economy which could be useful for sub-
sequent mathematical analysis. Therefore the structure of the
paper directly follows the goals of'the paper. 1In -each of ‘three
sections we first consider a basic model and then some real
models, which relate to the basic model viewed as modifications

of this basic model.

The models are considered independently on a national
(regional) level. The linkage of models (e.g. energy-economy)

is discussed in the fourth section.



1. Energy Supply Models

We start With Energy Supply Systems (ESS) for.the reason

that it plays a central role in any energy resources studies.

The main purpose of the ESS model is to study major energy
options over the next 25-50 years and longer thus determining
the optimal—féasible transition from the mix of technologies for
energy production currently used (fossil), to a more progressive
and, in some sense, optimal, future mixture of technologies

(nuclear, coal, solar, etc.) for a given region (country).

Considering ESS models we will basically follow the Hafele-
Manne model [3]. Then different versions and modifications of
the ESS models will be discussed.

In formulating DLP problems, it is useful to single out [19]:
(1) state equations of the systems with the distiﬁct
separation of state and control wvariables;

(ii) constraints imposed on these variables;

(iii) planning period T - the number of time periods during
which the system is considered and the length of each

time period;

(iy) performance index (objective function) which quantifies

the quality of a program.

We will consider these four stages separately as applied to the
ESS model. '

1.1. Basic Model

a. State Fquations

The ESS model is broken down into two subsystems: energy
production and resource consumption subsystems. Hence two sets

of state equations are needed.



Energy Production and Conversion Subsystem. The subsystem

consists of a certain number of technologies for energy production
(fossil, nuclear, solar, etc.). The state of the subsystem at
each time period t is described by the values of capacities in
that period t for all energy production technologies.

Let

yi(t) be the value of the ith energy production

capacity (i ='1,...,n) in time period t;

n be the total number of different technologies
for energy production to be considered in
the model;

vi(t) be the increase of the ith capacity in time

period t (i =1,...,).

It is assumed that a life-time of each capacity is limited and

constitutes T, for the ith capacity.

Thus the state equations, which describe the development

of the energy production and conversion subsystem will be the
following:

yi(t+1) = yi(t) + vi(t) - Vi(t"Ti) (i=1,...,n (1.1)
t=0,1,...,T=-1)
with the given initial conditions
0
i

y;(0) = y. (i=1,...,n) . (1.2)

The increase of the new capacities vi(t) in preplanning period

(t < 0) is also assumed to be known:
0 0 . '
Vi(dﬁ) = vi(—ri),...,vi(—1) = vi(-1) (i=1,...,n) (1.3)

where {vg(-ri),...,vg(-1)} are given numbers.



Equations (1.1) can be rewritten in a vector form

y(t+1) = y(t) + v(t) - vit-1) (1.1a)

y (0) = yo_ (1.2a)

Here

y(t) = {yi(t)} (i=1,...,n) 1is a state vector of the
subsystem in time period t; it describes the state of
the energy production and conversion subsystem in this

period, and

vit) = {vi(t)} (i=1,...,n) is a control veetor; it

describes control actions in time period t; T = {Ti}.

Resources Consumption Subsystem. State equations of this

subsystem describe the dynamics of cumulative amounts of ex-

tracted primary energy resources.
Let

zj(t) be the cumulative amount of the jth resource ex-
tracted by the beginning of time period (year) t,

(3 =1,...,m);

m be the total number of different primary resources

under consideration.

q_i(t) be the ratio of the amount of the jth resource
(primary energy input) required for loading the ith energy
production capacity (secondary energy output) in time
period t (i =1,...,n;3 =1,...,m); .qji(t) is the con-
version process i~ j.

Generally, some capacities may not be completely loaded;
therefore we introduce a new variable u; (t) which is the intensity

of production for the ith capacity (i = 1,...,n) in time period t;

Evidently,




ui(t) < yi(t) (i =1,...,n) (1.4)
or

u(t) < y(t) . (1.4a)

Supposing the primary energy resource extraction in time
period t is proportional to the value of intensities of energy
production in this period we can write the state equations in

the form
n
25 (1) = z,(8) + i£1qji(tl? u, (t) (1.5)

with intial conditions

_ 0 . _
zj(O) = zj (3 1,...(m) ’ (1.6)
or in matrix form
z(t+1) = z(t) + Q(t)u(t) , (1.5a)
z(0) = 20 . (1.6a)

Here z (t) is a state vector, u(t) is a control vector.
The linkage of the subsystems (1.1) and (1.5) is carried out by
means of inequalities (1.4). '

In some cases it is necessary to introduce stocks of the
extracted primary resources (inventory resources). Let Ej(t)
be such a variable for the jth resource and wj(t) is the annual
extraction of this resource; then the state equation for the

inventory subsystem will be the following:
zZ(t+1) = E(t) + w(t) - Q(t)u(t) .

In the above case Z(t) = 0 for all t and w(t) = Q(t)u(t). This
is a reasonable assumption because one can neglect the accumula-

tion of stocks of resources for long-range considerations.

It should be noted that the real equations of resource
consumption subsystem are more complex (see references and dis-

cussion at the end of this section).



b. Constraints

The state equations (1.1) and (1.5) determine dynamic con-
straints on variables. We also have static constraints on var-
iables for each time period t.

Nonnegativity Constraints. Evidently, all variables intro-

duced into the state equations (1.1) and (1.5) cannot be negative:
v(t) >0 , y(t) >0 , u(t) >0 , z(t) >0 . (1.7)

Availability Constraints. First, the upper bounds should be

imposed on the annual construction rates
vi(8) < v, (t) (i=1,...,n) , (1.8)

where Vi(t) are the given numbers.

In a more general form these constraints can be written as
F(t)v(t) < £(t) (1.9)

where f(t) is the vector of non-energy inputs which are
needed for the energy production subsystem. The matrix F(t)
denotes the amounts of these resources required for the con-
struction of a unit of the ith capacity in time period t.

Bounds on new technology introduction rates can also be written

in the form (1.9). More general cases where the time lags be-

tween‘investment decisions and actual capacities increases are

taken into account are considered in Section 3.1. 1In this case
we can directly link the ESS model with the economic model de-

scribed in Section 3.

The constraints on the availability of the primary energy

resources can be given in the form:

z(t) < z(t) (1.10)



where z(t) is the vector of all available energy resources

(resources in the ground) in time period t.

The constraints on the availability of the secondary energy

production capacities are given by (1.4).

Demand Constraints. The intermediate and final demands of

energy are supposed to be given for all planning periods. Hence
the demand constraints can be written as

E

dki(t) ui(t) > dk(t) (1.11)

i=1

or _
D(t) u(t) > d(t) C(1.11a)

d(t) = {dk(t)} is the given vector for all t = 0,1,...,T-1
of energy demand, both intermediate and final (e.g., elec-

tricity and nonelectric energy for final demand);

D(t) = {dki(t)} is the matrix with the components d,. (t),
defining esther intermediate consumption of the secondary
energy k per unit of the secondary energy production or

conversion efficiency of capacity i to produce a unit of

the secondary energy k.

‘e. Planning Period

The planning period is broken down into T steps where T is
given exogeneously. Each step contains a certain number of years
(e.g. one, three, five). 1In [3] the planning period equals 75
years and each step corresponds to three years, thus T= 25. Since
information on the coefficients of the model becomes more in-
accurate with the increasing number of steps it is useful to con-
sider steps which have different length. For example, in [20]
the planning period is 100 years and T is equal to 10 periods
(five periods six years each, the next threebperiods'ten years

each and the last two periods twenty years each.)



d. Objective Function

The choice of the objective function is one of the important
stages in model building. Discussion of economic aspects of ESS
modelling objectives comes out of the framework of this paper.
Here we would like specifically to underline only two points: 1)
in many cases the objective functions can be expressed as linear
functions of state and control variables, thus making it possible
to use LP techniques. 2) The optimization procedure should not
be viewed as a final one in the planning process (yielding an
"unique" optimal solution), but only as a tool for analyzing the
connection between policy alternatives and system performance.
Thus in practical applications the policy analysis with different
objective functions is required. For our pﬁrpose it is sufficient

however to limit ourselves by some typicai examples of objectives.

Below we consider the objective function which expresses the
total capital costs both for operation and construction, dis-

counted over time:

T

o
I

-1 n n
zo B(t)[g1 c‘il(t) u; (8) + lz c‘i’(t) vy (t)] , (1.12)

t i 1

where

cf(t) are the operating and maintenance costs for the ith
capacity in time period t;
cz(t) are the investment costs for the ith capacity in

time period t;

B(t) 1is the discount rate.
In vector form,

T-1 - ‘
g o= ¥ g [(eM),ult) + (¥(e), vl . (1.12a)

t=0

It should be noted that the term (cu(t),u(t)) expresses
not only direct operating and maintenance costs at step t but
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also may indirectly include the cost for primary resources con-
sumed at this step. In a more explicit way this cost can be
written as (co(t),Q(t)u(t)), where c%(t) should increase with the

cumulative amount of resources being consumed. This leads to a

nonlinear objective function. A reasonable approximation in
this case is a step-wise function for cZ(t). Thus, c9(t) in
(1.12) can be a step—wise function with values on each step
depending on the values of cumulative extraction resources z(t)
(or on the difference z(t) - z(t)). .

e. Statement of the Problem

First we introduce definitions.

A sequeﬁce of vectors
v={v(0),...,v(T-1)} , u= {u(0),...,u(T-1)}

are controls of the system.

A sequence of vectors
y = {y@),...,y(T)}

determined by (1.1,1.2) is a (capacities) trajectory of the

system; a sequence of vectors
z = {z(0),...,2(T)} ,

determined by (1.5,1.6) is a (cumulative resources) trajectory

of the system.

Sequences of vectors {v,u,y,z}, which satisfy all constraints
of the problem (e.g. (1.1 - 1.11) in the case) are feasible.

Choosing a feasible controls v and u one can obtain by (1.1-1.3)

and (1.5,1.6) feasible trajectories y and z and compute the value
of objective function (1.12). Thus,

J = J(y(0),z(0),v,u) = J(v,u) . (1.13)

A feasible control {v*,u*}, which minimizes the (1.12) or
(1.13), we will call an optimal control.
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Now we can formulate the optimization problem for the energy

supply system.

Problem 1.1. Given the state equations

y(t+1)

y(t) + v(t) - v(t-1) (1.1a)

z(t+1)

z(t) + Q(t)u(t) (1.5a)

with initial conditions

y0 (1.2a)

y (0)

2(0) = z° (1.6a)

and known parameters

vi=t) = v0(=1),...,v(-1) = vO(1) . (1.3)

Find controls {v,u} and corresponding trajectories {y,z},
which satisfy the constraints v(t) > 0; u(t) > 0; y(t) > 0;
z(t) >0

F(t)v(t) < £(t) (1.9)
ult) < y(t) (1.4)
z(t) < z(t) | (1.10)

D(t)u(t) > d(t) (1.11a)

and minimize the objective function

T-1
J(v,u) = ] B(t) [(c¥(t),u(t)) + (c'(t),v(t))] (1.12a)
t=0

Verbally, the policy analysis in the energy supply system:
model, which is formalized as Problem 1.1, can be stated as

follows.

At the beginning of the planning period energy production

capacities (1.2a) are known, they are broken down to several

¢
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"homogeneous" teéhnologies (fossil, nuclear, solar, etc.).

There are different options of developing these initial energy
production capacities in the system during the considered
.period. These options are subject to constraints on primary
energy resources availability (1.5a,1.6a,1.10) and constraints
on non-energy resources (1.9), required for the construction 6f
new energy production capacities. Each of these options has its
own advantages and disadvantages. The problem is to find an

optimal mix of thése options, which

- is balanced over all advantages and disadvantages of

each individual option and phased over time;

- meets the given demand in secondary energy (1.11a);

- minimizes the total operational and.construction

expenditures (1.12a).

There are two important vector-parameters in the model,
which are given exogenously: non-energy resources f(t), avail-
able within the planning period and the demand for secondary en-
ergy d(t). These values determine mainly the interaction of the
energy supply system with the economy development system (see

Section 4).

1.2. Discussion

Above a simplified version of the energy supply system
(ESS) model was considered, which reveals however the major
features of real systems. The particular implementation of the
ESS models is naturally more detailed and complicated, and
depends to a great extent on the general approach selected for
the whole ESS model and on energy and economic assumptions used
for building its separate submodels. We will not, however,
concern the physical peculiarities of particular ESS models but
try to underline below the methodological specifics of the ESS
models and their relations to Problem 1.1. It should be noted
that notations are changed below compared to the original ver-
sions of the models in order to facilitate analysis and compar-

ison of the models.
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a. Hlfele-Manne Model [3,21]. First of all, there is no
division between o0ld and new capacitieé in the model described
above. All capacities are divided into two groups: new techno-
logies for which additional capacities are being constructed
during planning horizon and "old" ones. We denote by y(t) =
{y;(6)} (i=1,...,n) and y,(t) = {yg (£)} (i=1,...,n4) the
vectors of new and old capacities. éecondly, a total loading

of capacities is assumed in [3]; that is

u(t) = y(t) . (1.13)

Thus, in this case, the state equations for the energy re-

sources consumption subsystem have the form
z(t+1) = z(t) + Aly(t) + yo(t)] o (1.14)
for coal and petrogas, and

z(t+1) = z(t) + A1y(t+1) + Ay(t) + B1v(t+2)
+ Bzv(t+1) + B3V(t) - BuV(t—T) (1.15)
for natural uranium and plutonium.
Demand constraints in [3] are written in the form
Dy (t) + Doyo(t) > d(t) : (1.16)
for final demand and
Dyy(t) + Dy [v(t+1) - v(t-1)] > 0 (1.17)

for intermediate demand.

In [3] the objective function is considered in a linear
form, similar to (1.12) (model societies 1 and 2) and in non-

linear form:
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T-1 b b, _
T = § la(t)d;l(t) + a,(t)d,%(t)] (1.18)
1 1 2 2 A
t=0
(model society 3). 1In the latter case it is supposed that

demands (d1(t) for electric and d2(t) for nonelectric energy)
are responsive to price and hence endogenously determined in

the model.

b. ETA Model [22,23]. The ETA: a model for energy technology
assessment is closely related to energy supply system models
considered above. The model was developed by A. Manne and repre-
sents further development of the nonlinear version (society 3)
of the H&fele-Manne model [3]. ETA is a medium-size nonlinear
programming model (with linear constraints). It contains for
15 stages planning horizon (each 5 years long) altogether 300
rows, 700 columns and 2500 nonzero matrix elements and requires
on IBM 370/168 70 seconds to solve one case and 30 seconds for
each subsequent case. The problems were solved by a reduced

gradient algorithm by B. Murtagh and M. Saunders.

Formally, ETA model constraints have the form of (1.1-1.3),
(1.13 = 1.17). The objective function may be viewed in either
of two equivalent ways: maximizing the sum of consumers' plus
producers' surplus, or minimizing the sum of the costs of con-
servations plus interfuel substitution plus the costs of energy
supply. 1In the latter case it is a combination of (1.12) and
(1.18). The result of this objective function is that ETA
automatically allows for price-induced conservation and also

for interfuel substitution.

e. MESSAGE [24,25]. The models considered above (Problem 1.1)
are formalized as DLP models of general tyve (one-index models).
By introducing energy flows (from supply points to demand points)
we come to a dynamical LP model of the transportation type (two-
indices). MESSAGE and DESOM energy models can be written in

this form.
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MESSAGE was developed by A. Voss, M. Agnew and L. Schratten-
holzer at ITIASA as an extension of the W. Hafele - A. Manne
model. The model differs from its predecessors [3,21] by inclu-
sion of all allocated secondary. energy to end users; an increased
number of supply technologies; distinction between different
price categories of natural resources and by adding costs of re-

sources extracted to the objective function.

Below we consider a simplified version of the MESSAGE model.

Let

xji(t) be the energy flows in time period t from supply
category j to demand category i.

Then, as usual in the transportation problem, we can define:
the supply of energy of type i, that is the intensity u; (t) of

the ith production capacity in time period t

u; (t) = gajixji(t) - (1.19)

where

a4 specifies the production of secondary energy type i
per unit of primary energy resource j.

The consumption wj(t) of primary energy resource j in time

period t is

wj(t) = . (t) (1.20)

where

B

ji specifies the technical efficiency of a conversion
technology for energy flow from primary resource j to

secondary energy 1i.

The dynamics of the secondary energy production subsystem and
primary energy (resource) consumption subsystem are described

in a conventional way (cf. (1.1) and (1.5)):



_“]6_

yi (E+1) =y, (£) + vi(t) = vy (t-T15) (1.21)

zj(t+1) zj(t) + wj(t) (1.22)

where we use the same notations as in (1.1) and (1.5), annual

consumption %j(t) is defined from (1.20), and

ui(t) < yi(t) (1.23)
where ui(t) is defined from (1.19).

In addition we have demand constraints

§ x5 (8) > 4y (%) | (1.24)

where

di(t) is the given exogenously demand for secondary

energy i in time period t.

Taking into account some additional constraints on vari-
ables which are of the same form as for Problem 1.1, we can

finally formulate the following DLP problem.

Problem 1.2. Given the state equations
yi(t+1) = y; (8) + vy () - vi(t—ri) (i =1,...,n)
zj(t+1) = zj(t) + wj(t) (3 = 1,...,m)

with initial conditions

0 .
Yi(O) =vy; i Zj(O) =z, vi(t—ri) = vg(t—ri)

(i=1,...,n;j3=1,...,m;t < Ti)

Find controls{xji(t)}, {v;(t)} and corresponding state

{yi(t)}, {zj(t)} variables which satisfy the conditions

u, (t) = g%ixﬁ}ﬂ < yy ()
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w; (t) = % By (B) x55 (8) 5 z45(8) < 2y
x5 (8) > a; (k)
j
vy (8) <V, (%)

and minimize the objective function

T

3= ]
t=

1 no, no o, mo
B(E) [ I c;u(t) + § civ.(t) + [ ciw.(t) (1.25)

0 i=1 + ?t i=7 t 1 j=1 3 J

It should be noted that Problem 1.2 is-only a simplified version

of MESSAGE. The real model includes different price categories

m for primary energy resources:
Zi(t) = zzim(t) ’
m
distinction between primary and secondary conversion processes:
(1) (1) 2) . (2)
vy 5 v ana vP ey, v
and other conditions.

The typical dimension of the MESSAGE model is the following.
Planning period T is equal to 13 time periods (65 years divided
by 5 years time periods). The number of demand constraints is
7 xT, the number of resources constraints is 5 xT, the number of
total resources availability constraints 17 x 1, resources ex-
traction intensity constraints 2 xT, capacity loading constraints
35 xT, the number of equations for capital stocks 35 xT and the
number of capacity loading constraints 5 xT. All this gives us
in terms of conventional LP problems about 1097 rows and 1202

columns, with some 90 constraints for each time period;



d. DESOM [20]. DESOM (Dynamic Energy System Optimization
Model) was developed in the Brookhaven Nafional Laboratory and
is an extension of the Brookhaven Energy System Optimization
Model (BESOM) which was a static, single period LP model. 1In
DESOM the demand sector has been disaggregated into technology
related end uses (22 mutually exclusive end uses as defined by
their energy couversion processes). The general structure of
DESOM is similar to Problem 1.2.

Let us consider the state equations for capacities develop-

ment in the form
yi(t+1) = yi(t) + vi(t) - vi(t—Ti) - VOi(t) (1.26)

where the meaning of control vi(t) and state yi(t) variables is
the same as in (1.1); VOi(t) is the exogenously given decrease

of existing (old) capacities in time period t.

In [20] a scenario variable o(t) is introduced which re-

stricts the growth rate of capacities:
yi(t+1) < a(t)yi(t) . (1.27)

Generally oa(t) are greater than 1, which implies that in-
stalled capacity may expand in time period t; if a(t) < 1 the

capacity will decrease in time period t.

Using (1.26) one can rewrite the inequality (1.27) in the

following form which is similar to the inequality given in [20]:

t _ t-1
Yai (E+1) + ) v.(g) < a(t)[y (L) + ) V-(g)]
0i g=t—Ti i | 01 g=t-1-Ti i
where
t-1
Yoi(t) = ;00 - ] v l9)
g=0

is the inherited capacity (capital stock of old capacities) for

conversion process i in time period t (given exogenously).
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To link the production subsystem with the resources con-
sumption subsystem, demand and other constraints on intermediate

energy flows are introduced in [20]. Let

xkl(t) be the amount of energy flow in time period t

from supply category k to meet energy demand 2.
Then we can define

X, , (t)
u; (t) = % ¥ %— (1.28)
(k,2) €qQ(i) "ko

where
is the load factor for intermediate energy flow

from supply category k to demand'category L3
A is the length of time period} generally, A = A(t);

Q(i) is the set of indices (k,2), which defines the
path of intermediate energy flow :from supply k

to demand £;

ui(t) is the amount of installed capacity for conversion
process i required in time period t to deliver
Xkl(t)7 that is, ui(t) being the intensity of

conversion process i in time period t.

Evidently, the amount of installed capacity to be available
in time period t must be sufficient to produce intermediate
energy flows utilizing capacity for conversion process i in time

period t:

Xy (£)

- y; (t) (1.29)

> =

(k,2) eQ(i) "k&

which is similar to (1.4).

Off-peak electrical intermediate energy flows that use
capacity installed for peak requirements are not included in
(1.29). 1In this case '

,
- X, (t) < gqg.,y.(t) (1.30)
A (k,Q,)EZQ(i) ke = Y
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where g, is an overall load factor applied to all electrical
capacity, saying that a conversion facility of type i can only

operate q; proportion of the time.

Introducing intermediate energy flows variables allows to

write down demand and resource constraints.

The amount of energy from intermediate energy flows xkﬁ(t)

must be sufficient to meet demands dl(t):
Exkl(t) = dz(t)

for each demand category £.

On the other hand,‘intermediate energy flows xkl(t) in time

period t define a demand for primary energy resource j:

k?l Skp Xkp (8) = wy(t) (1.31)
where
Siky are supply coefficients representing the technical

efficiency of conversion technology for inter-
mediate energy flow of resource j from supply k

to demand £;

wj(t) is the amount of resource j to be used in time

period t.

Introducing the cumulative amount zj(t) of resource j ex-
tracted till the end of time period t, one can write the state

equation for the resource consumption subsystem in the form

_ . _ 0 |
zj(t+1) = zj(t) + wj(t) ; zj(O) zJ (1.32)

which is similar to (1.5).

Evidently,

t
zj(t+1) = zj(O) + z

w. (g) .
g J

0
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In [20] there are upper and lower limits on cumulative

resources:

. < . (t < zZ. . : 1.33)
53 < zj( ) < z] (

zj is associated with the real world resource j availability;

the lower 1limit z, assures some minimum consumption.

In addition to (1.33) in [20] there is a restriction'on the
growth rate of resources extraction, that is the amount of re-
source j to be extracted in time period t+1 is no greater than
Bj(t) times the amount of resource j to be extracted in time

period t:
wj(t+1) < Bj(t)wj(t) . (1.34)

Generally Bj(t) > 1; to phase out a resource over time one

can set Bj(t) < 1 for t in later time periods.

Like in other models there are environmental constraints in

[20]. They are written in the form

kzz €om ¥k (B) < Ep(t) (1.35)

where
€rom is the amount of emission of type m for inter-

mediate energy flow from k to £&;

Em(t) is the maximum permissible quantity of emissions
of type m in time period t.

The objective function of the problem is to minimize the
total discounted cost, i.e.

T-1

o=

1 2 3
Y)Y e, () %, (£) + Yei(t) v, (t) + Jco (t)w. (t)
£20 KL k& | kg g i 1 % J 3

(1.36)
where
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C;g(t) is the cost for intermediate energy flows

(undiscounted) ;

ci(t) is the cost per year for capacity to be built in

time period t for conversion process 1i;

cg(t) is the cost for resource j in time period t.

Provision for recapturing the remaining life for the var-
iables vi(t) in the last time period is incorporated in the model

but is not shown in (1.36).

Thus the optimization prdblem for the DESOM model can be

formulated as follows:

Problem 1.3. Given the state equations

yi(t+1) yi(t) + v (t) - vi(t-ri) - vOi(t)

2z . t+1 2. t + w.(t

Yi(o)

]
L
uo HOo

zj (0)

I
N

and known parameters
0 0
vi-ty) = vi(=1),-..,v(=1) = v (=1) ;
vOi(t), t=0,1,...,T-1 ,

find controls {vi(t)}, {wj(t)},{xkg(t)}, and corresponding tra-
jectories {y; (t)}, {zj(t)}, which satisfy the constraints

v, (t) >0 xkg(t) >0 , y;() >0 ; zj(t) >0
}}éxkg(t) = d,(t)
Y ) xkz(t) = wj(t)

k.2
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x, , (t) |
P I < vy, 5 der
k,2 "k '
1 . 2
T k%gxkz(t) < quyy (), ier
Ej(t) < zj(t) < zj(t)
yi(t+1) < o (t) yi(t)
. L (t) w, |
Wj(t+1) < BJ( ) wj(t)
and minimize the objective function
Tl 1 2 3
J = tZO Y(t) kzz Cg (£) 3, (£) + E ci(t) vy () + § c3 () wy (t)

Considering Problem 1.3, one can see that it is very close
to those considered above (excluding the special way of intro-

ducing the intermediate flows sz(t))'

As reported in [20] the model without eﬂvironmental con-
straints had 130 rows constraints and 750 variables per time
period. The first version of the model contains four periods
optimization problem and it takes about 30 minutes on the IBM
370/155 to solve it. The standard base case is being developed.
This case will cover a 100-year period from 1973 to 2073. It
will consist of six five-year periods providing considerable
details to the turn of the century; three ten-year periods to
permit large-scale introduction of fusion and solar technologies

and two twenty-year periods to reduce truncation effects.

e. SPI Model. The model has been developed in the Siberian
Power Institute (SPI) of the Siberian Department of the USSR
Academy of Sciences to analyze possible energy development stra-
tegies and comparison of tendencies in science and technology.

The model is part of the system of models for long-term energy
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development forecasting (for 30 to 40 years). As this system of
models was described in a few references (seé, for example,
[1,2,8-10]), we discuss here only some specific features of thé
SPI ESS model.

The SPI model has a specific block structure with detailed
description for each region k and year t of production connections
of energy conversion at all stages ranging‘from extraction of
primary energy (different kinds of fuel and nuclear fuel, water,
solar and geothermal energy) via production and distribution of
secondary energy (liquid, solid and gaseous fuels, secondary
nuclear fuel, electric energy, steam, hot'water) to the production
of final energy utilized in industry, transport, agriculture,
municipal and service sectors. For each time period t the model
consists of o0il, coal, gas, nuclear and electro energy blocké
and for each region k of fuel and electro energy supply blocks.
Each block can be generated, introduced to a computer and up-
dated independently.

The balance equations for each region k and year t of pro-

duction and distribution are the following:

of primary energy a

k

k k _ K
j(Za)aaj (£) Xy (8) + kZ-, Xy (t) = j(ZB)bo‘j (€)xg5 (t)
+ I,bg ®) X ®) + age)
of secondary energy B
k k Kk, . X .
s &y 630 ey (8} ¥ L () = ] kg (8) x5 (6)
+ 1 blgk' (t) xlgk'(t) + d]g(t)
kl
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of final energy Yy

k k X
j(zY) avy(8) X (6) = ar(e) .

Here

XZj(t); xgj(t) and X?j(t) are the intensities of production

of primary a, secondary B and final y energy with

technology j for region k and year t;

' »
xkkl(t) and ng (t) are the unknown scales of transportation

of primary ¢ and secondary B energy between regions

k and k' at year t;

azj(t), agj(t), atj(t) aré the technological coefficients of

output of energy in the process of its conversion.

bgj(t); bgj(t) are similar coefficients of energy consumption;
] 1
bik (t), bgk (t) specify energy losses during transportation;

di(t), dg(t), d?(t) are demands for primary o, secondary_B

and final energy y in region k and year t.

The nonenergy resources (WELMM factors [26]) constraints

which are similar to (1.9) are written in the form

1% £ (1) x};j (t) + 3 £ . (t) x5 (b)

Oy Ij 10 Blklj lBJ B3

k k
+ ) ES o (v) x0.(t) < f.(v) .
v.k,3 VI v -t

For each non-renewable kind of primary energy a we have
constraints

) xi-(t) <z,
ik,

which are similar to (1.31) - (1.33).
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One can see that these conditions, though having a much more
detailed form are of the same structure as the constraints of
the models mentioned above. The description of the dynamics

of system development differs however in some relations in the

SPI model.

The equations linking blocks t and t+1 have the following
form in the SPI model [9]:

x..(t) + Z X..(t) = §.(t+1).= z X..(E+1) + x. (t+1)
jg%o 1] jEJ1 1) 1 jeJo 1] 1

where
i is the index of any energy unit (plant, station, etc.) ;

j is the index of the type of the conversion process.

The set of indices Jo is associated with conversion (or
production) capacities which exist in time period t ("old")
and the set of indices J4q is associated with capacities which
‘were built till the end of year t ("new"); thus ?i(t+1) is
the production capacity of type i at the end of year t (or at
the beginning of.year t+1); xi(t+1) is the capacity of type i1
which is dismantled in year t+1.

The above equations can be rewritten in a form closer to

state equations (1.1):

I oxs(b41) = F x . (t) + T x..(t) - x, (£+1) .
jeg, jez, jeg, * 1

Evidently, ]} X;5(t) may be associated with y; (t), whereas
i€3,

_ ) xij(t) - x; (t+1) with v, (t) - v, (t=1;).
JGJ1
The other peculiarity of the model is the objective function.
The minimization of the total discounted cost was considered not
being quite adequate in view of uncertainty in prices. Therefore,

the objective function of the model is given in the form of dis-
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counted consumption of total expenditures for different material

resources and manpower (WELMM factors):

-1
B(t) E. (t) £. (t) ,
tzo.g . 1

T

o
I

where coefficient Ei(t) matches the value of the ith resource

fi(t) with the remaining resources, B(t) is a discounting factor.

The dimension of.the model is 500-600 constraints and 4000-
5000 variables for the long-range planning variant and 1200-1300
constraints and 600047000Avariables for the five-year planning
problem. To solve these optimization problems a special prdgram
package has been developed which giVes a 3-4 fold reduction of

the computation time in comparison with the. conventional approach.
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2. Resources Model

The resources model is aimed at the evaluation of long-term
resources exploration and extraction strategies. It also pro-
vides inputs for the energy supply model (see Section 1), essen-
tially by establishing relations between available quantities of
given natural resources and their possible cost of production
(extraction) [26 - 39].

We consider production of natural resources over a given
planning horizon at a regional (national) level. The lengths of
a time step and of the whole planning horizon correspond to that
in the energy supply model. Availability of resources are ex-
pressed in physical units and costs are measured in monetary

units.

The model's structure is similar to the energy supply model
in the sense that it is a DLP model in which the optimal mix of ‘
technologies for exploration and extraction of natural energy

resources is determined.

2.1. Basic Model

a. State Equations

The model consists of two subsystems: resources accounting
subsystem and capital stocks subsystem. The first subsystem de-
scribes a shift of resources from speculative to hypothetical
categories and from hypothetical to identified categories. Here
we use definitions given in {32 -36]. Both renewable and non-
renewable resources are considered. The second subsystem de-
scribes the accumulation and depletion of capacities (capital
stocks) for exploration and extraction of both renewable and

nonrenewable resources.

In the resources extraction we consider various mixes of

extraction technologies.

Before describing the resource model, let us consider a
simple example, which illustrates how the dynamic of the process

is to be described. Let x(t) be the total amount of nonrenew-
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able resource at time period t. Applying given extraction tech-
nologies one can extract only a certain portion of the whole
amount of this resource in the ground. We denote the extract-
able (recoverable) resource by x(t). It is convenient to refer
to &(t) as a net value and to x(t) as a gross value. Between
gross and net values of the resource the following relation

holds

x(t) = =x(t)/6

where 6, 0 < 6 < 1 is the recoverability factor of the resource

(for a fixed technology) at time t.

Bearing this in mind we can use three types of description
of the process in gross values, in net values and mixed type.
Let u(t) be the (grosS) amount of the resource, extracted in
time period t, and u(t) be the (gross) amount of the resource,
shifted from the hypothetical to the identified category. Then

the balance equation is

x(t+1) = x(t) - u(t) + U (t) (t =0,1,...,T-1)
Evidently, that

x(t) > 0 for all t,

which is equivalent to

t
o ou(t) < x(0) +
=0 T

Il o~3 ct
o
a

(t=1,...,T) .
T

To obtain a description in 'net' units all the variables

must be multiplied by §. Due to linearity of the relations:

X(t+1) = &(t) - 4(t) + d@)

(We refer to the variable with a roof as to net values.)
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In practice a mixed description is generally used:

x(t+1) = x(t) - u(t)/8(t) + a(t)

In this case the condition
x(t) >0

is equivalent to

t

) ou(t) < (SI:X(O) +

=0

The value

t t
x(0) + Z [ﬁ(r) - ﬁ(rq > (1—6)[x(0) + Z ﬁ(r)]
=0

=0

denotes the (gross) amount of the resource remaining in the

ground after t periods of extraction.

Further we will use the mixed description, omitting the

‘roof for variable (t) for simplicity [37,38].

Nonrenewable Resources. Let

xl(t) be the (gross) amount (stock) of an identified non-

renewable resource of category i at time period t;

u;i(t) be the (net) amount of resource of category i
extracted by technology m in time period t (ex-

traction intensity);

M, be the total number of extraction technologies

which can be applied to nonrenewable resource ij;

i(t) be the (gross) amount of resources of category i
shifted from the hypothetical to the identified
category by the exploration technology k;

K. be the total number of exploration technologies

which can be applied to nonrenewable resource i.
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Then the dynamics in total amounts of identified nonrenewable
resources will be the following:
2

1 1 _ 1 1 ‘
x; (£+1) = x,(t) mele umi(t)/dmi(t) +k€ZK1 uy .

(t). (2.1)
Here d;i(t) is the recoverability of resource i by technology m

at time t.

For hypothetical resources we introduce, in a similar way,

(all variables are "gross" values):

xf(t) is the total amount of hypothetical resources of

category i in time period t;

uf(t) is the total amount of resource i shifted from the
speculative to the hypothetical category as a

result of exploration activity in time period t;

The state equations for this group of nonrenewable resources

will be the following: :

xi(t+1) = Xi(t) - )

2 3, .
u, . (t) + u’ (t) (2.2)
k€ k i

1

[EP—

Similarly, for the speculative category of nonrenewable resources:
3 _ 3 3 4
x7(E+1) = x7(t) - ui(t) + u(t) , (2.3)

where
xg(t) is the total estimate of speculative resources of

category i at step t;
ug(t) is the change of estimate of hypothetical category i
as a result of improved scientific knowledge.
In (2.1) - (2.3) i=1,...,N,, where N, is the total number of con-
sidered categories of nonrenewable resources.

In the state equations (2.1) - (2.3)

*X1(t) , xg(t) , xi(t)} (i =1,...,Ny)
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are state variables for the nonrenewable resources subsystem;
1 2 3 4 1 1 . _
{umi (t), uki(t)' ui (t), ul(t)} (mEMl ’ kEKl y 1 = 1!"'IN1)

are control variables.

Renewable Resources. In a similar way we can write the

state equations for renewable resources:

1 1 2'
yi(t+1) = y.(£) + ) (t) (2.4)
i i k€K2 k
y2(e+1) = y2(t) - 22 2o + v (t) (2.5)
1 1l kEK 1
yi(t+1) = yi() - vi(e) + v‘i‘(t), i=1,...,N, (2.6)

where
yl(t) is the total flow of the available resource

of category i in time period t;

yi(t) is the total flow of the hypothetical resource i in
time period t; )
yi(t) is the total flow of the speculative resource i in

time period t;

vii(t) is the intensity of exploration technology k

applied to resource i in time period t;

Kf is the total number of exploration technologies
for resource i;

N2 is the total number of considered categories of
renewable resources.

In the renewable resources subsystem (2.4) - (2.6)

{yl(t) yI) L yI ()} (i = 1,...,Ny)

are the state variables;

{v (t), v (t)y , v ()} (x 1,...,K 11 o= 1,...,N2)

are the control variables.
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Initial conditions are suppoéed to be given for all re-

source categories

xl(O) = xl’o ’ i=1,.. /Ny

yl(O) = 91'0 , =1, .,;Nz

35(0)- = ZXi’O , i=1;. .;N1

yi(oi = y3'% = TN, 2-7)
xz(O) = xi’o ’ i=1,. .,N1

yi(O) = yf’o , i=1,...,N, .

Capacities' Dynamics. Alongside with subsystems which

describe resources extraction and exploration, it is necessary
to introduce a subsystem of resource extraction and exploration
capacities development. It is described by equations which are

similar to (1.1). Let for extraction subsystem:

z (t) Dbe the extraction capacities of type m in time

period t;
wm(t) be the increase of the mth extraction capacities
in time period t;

T be the service time of the mth capacity.

Then the state equations for this submodel will be the following:
z (E+1) = z (t) + w (t) - wm(t— T_) o .(2'8)

where in the general case m&eM; UM, - the union of two sets:

M1(the total set of technologiés for extracting nonrenew-

able resources), and

Mz(the total set of technologies for extracting renewable

resources.)
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Initial conditions are given:

z_ (0) = 2 . ' (2.9a)

_II 0 - —
Wm(t—Tm) = wm(t—Tm) ; 0 <t <1, 1 . (2.9Db)

The dynamics of exvloration capacities can be described

in a similar way. For simplicity, these equations are omitted

here.

b. Constraints

Exploration and extraction of natural resources are subject
to a number of constraints.

Physical Constraints. All variables in the model are non-

negative by their physical sense:

1 1
xi(t) > 0 , umi(t) > 0

2 2
xi(t) > 0 , uki(t) > 0 .,

3 3 (2.10)
xi(t) > 0 ui(t) > 0 ,

uLi‘ (t) > 0 ’

i = 1,..-,N1 ;
m = 1,...,M1 ;
k = 1,...,K1 .

1 1
Yi(t) > 0 Vi ty > 0

2 2

() > O vie.(ty > 0
i = ' ki ' (2.11)
yi(e) > 0 vitey > o0

&

vi(e) > 0

=
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i = 1""IN2 H
m = 1,...-,M2 H
k = 1,...,K, .
z (£) > 0 w () > o0 mEM UM, .

Recoverability Constraints. The recoverability of resources

is assumed to be associated with the type of resources and tech-

nology used for their extraction.

As mentioned in the introduction of this section they can

be written for nonrenewable resources as
xl(t) > 0 (2.12)

which is equivalent (due to (2.1) and (2.7)) to:

t 1,0 t
) 21 (r)/a (0 <%+ ] 21 1 (0 - (2.12a)
=0 meM; T=0 keK,

(i = 1,-..’N1)
For renewable resources such constraints can be written as:

mezMZ I!‘ll(t)/(S i yl(t) (l = 1l°--,N2)-" (2.13)

Here v;i(t) is the amount of the renewable resource i ex-
tracted by technology mEEMf in time period t (extraction
intensity). Opposite to (2.1) this variable does not enter the
equation (2.4) for renewable resources.

Due to (2.4) and (2.7) the condition (2.13). is equivalent
to:
-1

) (01762, (6) < y X0+ ¥ (1) (2.14)
meM2 “mi TZO kGK2 kl
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Availability Constraints. The simplest form of these con-

straints can be expressed as upper bounds on control variables:

=2

2
u, (B) < ups(t)
ui(t) < Tt (2.15)
ul () < T, (e)
and
1 =1
Vmi(t) hi Vmi(t)
Ve (E) < V(e
: (2.16)
vi(_t) < Vi(t)
4 —U

These constraints are similar to (1.8) and may express very
roughly the availability of various technologies for exploration

and extraction over time.

The development of a resource system can require some other
resources (such as land, manpower, etc.) which are external in
respect to the system (WELMM factors, see [26]). These constraints

can be written in the form similar to (1.9):

vlu(

y oYt t) (2.17)

v
si (t)'usi(t) <R

s,1i

X_r;’li"(t) Vai (B) < RV fe=1,...,0\  (2.18)
' drt v=1,2,3,u)
where

vau(t) and RVQV(t) are the amounts of external resource £

(WELMM factor £), available in time period t for
nonrenewable and renewable resources subsystems

(¢=1,...,L) and for each group of exploration

activities v.
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L is the total number of WELMM factors considered
as external to the model;

viu viv .

r.y (t), rqi are the (normative) consumptions of WELMM

factor £ per unit of the production output;

1 . 1 .
SEMi,lf\)=1, SEKi,_lf\)=2

and

qeM; , if v=1, g€k , if v

I
N
-

the first subindices should be dropped on the left sides
(2.17), (2.18), if v = 3,4.
viu VAV

Practically, coefficients réi (t) and rqi (t) are negli-

gibly small for v = 2,3,4.

The other important type of availability constraints is
connected with the linkage of resource extraction and production
capacities. 1In fact, extraction of resources is limited at each

time period by available production capacities:

gu:ni(t) <z (8) , meM; (2.19)
1
gvmi(t) < .zm(t) , meEM, (2.20)

where zm(t), me§M1, mEEM2 are defined from equation (2.7).

In its turn, the development of extracting capacities sub-
system (2.7) may be limited by resources, available for con-
struction of new capacities. 1In this case, control variables
wm(t) in (2.7) are subject to constraints, which are similar to
(2.17) and (2.18).

Demand Constraints. Demands are exogeneous for the resource

model. These constraints can be written in the form:

[ ul0) > alw)  i=1,...,8 (2.21)
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for nonrenewable resources, and

] o Vi) > dj(e)  i=1,..0n, (2.22)

mEM

for renewable resources, where df(t) and dZ(t) are the demands

of resource of type i in time period t.

It should be noted that accurate estimation of demands _
»{d?(t), dz(t)} is very important in the resource model, because
of the strong influence of these parameters on the timing and
corresponding costs to put into operation new extraction techno-
logies and intensity of exploration activities, that is, on the

optimal solution.

e. Objective Function

There can be different objective functions for the resource
system development. Following the ESS model we determine the
objective function as to minimize the total discounted costs

required to implement a resource development strategy:

J(u1Iu2Iu3luulv1IV2IV3lvulw) =

B T—I a(t) c1u | (t) + 2u 2 ) +
- tzo moi mi Ui gi_ckl ki
3u 3 . 4u 4
+ c, ul(t) + ciuy ()| + c (t) +
§ i i Z ] [ Z mi Vi

L cil’vil(t) + Xc3v 3(t) + ZCHVvu(t)] +
,i

z w
+ clz (£) + Yclw_(t) +
% m “m % m " "m

1%2u _1%u 1
* [ I Cpi Tmi UYng(E) Loy rg wey(B) 4
Q,m,l Q,,k 1
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Here-
Tu 2u 3u 4u 1v 2v 3v U4y

Cj 7 Cj v Cpir Cxir ©1 ¢ €5

Cmir Sxi’ Ci

are exploratory

costs for non~ and renewable resources,

c; are operational costs,
c; are capital investment costs,
‘],Q.q ‘]Qq
Crni * Spi r---+ are costs of WELMM factors (external

resources) .

Transportation costs can also be included in the model.

d. Statement of the Problem

Finally we can formulate the problem of optimal development

of the resource system as follows:

Problem 2.1. Given the state equations for nonrenewable
resources subsystem (i = 1,...,N1):
1 o _ 1 1 2 L 1 _.1,0
x; (t+1) = x5 (t) ) 3 Ui (B)/ 85 (8) + Ty uy; (8) 5 x5 (0) =x;
meEM, k€K,
i : i
2 - 2 3 . 2 _.2,0
x{(e+1) = x{(8) = LowL )+ uie) 5 x7(0) = xi’
kKEK.
1
3 _ .3 _ .3 4 . 3 _ .3.0
xi(t+1) = xi(t) ui(t) + ui(t) : xi(O) = X3
for renewable resources subsystem (i = 1,...,N2):
1 1 2 . _ 1 1,0

keKy
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2 ' 2 2,0

yi(e+1) = yie) = T,vii(e) 4+ vie) 5 yi(0) = yi’
keK.
1

viern =y -vi +vie o 0 vl =300

for extracting capacities subsystem hn€{1,...,M1} and

rne{],...,Mz}):

zm(t+1) = zm(t) + wm(t) - wm(t—Tm) ;zm(O) = zg' ;

wo(t=r ) = wd(t-r)  0<t <t -1 .

. 1 2 3 L 1
Find con#rols umi(t), uki(t)’ ui(t), ui(t)}, Vi (8)

vii(t), Vi(t), Vg(t)},{wm(tq- and corresponding trajectories

1 2 3 1 2 3 .
{gi(t); xi(t)_,xi(t)} ' {yi(t) iy;(t) ,yi(t)} and {zm(t)}, which
satisfy the constraints:

a) nonnegative constraints

1 1 1 1
upg(8) >0 x;(8) >0 Vi (8) 20 yj(e) >0
2 2 2 2
uki(t) >0 xi(t) >0 Vki(t) >0 yi(t) >0
3 ' 3 3
u; () >0 x; () >0 vilt) >0 yi(t) > 0
ug(t) >0 vg(t) > 0
b) recoverability constraints
xi(t) >0  (i=1 N,)
i Z v
Fvl. (6)/82.(6) < yl(t)  (i=1 N.)
mi mi Y A

m
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c) external resources availability constraints
(e =2,...,L;v=1,...,4):

\)Qu(

R t)

| A

IRV AL v
sZi-rsiu(t)_ ug; (t)

I e e vV

v%v(
q,i 9* a*

t)

A

R

d) produétion capacities availébility constraints:

JZ-umi(t)_ < zm(t) , mE M,
1
Jz_vmi (t) < zm(t) ; meE M,

e) demand constraints

I%uzli(-t) > dj(t) (i = 1,...,N1)
%Vrlni(t) > di () (1 = 1,...,N,)

and minimize the objective function (v = 1,2,3,4):

T-1
Vv
J(u,v,w) = ] B(t)[ ) cslilu\s)i(t) +
t=0 \),S,i :
VV vV A 4
+ ) Cgy Vei (E) + Zszm(t) + Zcmwm(t) +
V,5,1 m m
viu _viu v VAV ViV Vv
+ Cgi Tgi Ugy(B) + ) egy Tl Vsi(t)] .
VeleS,1 Vv,8,s,1
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2.2. Discussion

Problem 2.1 is general enough and allows different modifi-
cations. They give a possibility to carry out policy analysis
of extraction and/or exploration activities for one resource or
for a group of resources, for a region or a country; to deter-
mine optimal balance of these activities for nonrenewable and
renewable resources. Below we consider some examples of these

modifications and particular cases of Problem 2.1.

a. Ezxtraction and Exploration Model

First we consider the case for analyzing interrelations be-
tween extraction and exploration activities for a nonrenewable

energy resource (e.g. coal, oil, etc.)

The problem consists of the following. For a given region
(country) there are known initial values of identified and hypo-
thetical stocks of the resource, classified on n different cat-
egories (e.g. on-shore crude, 0il, natural gas and off-shore
~crude oil.)

There are also M different extraction and K different
exploration technologies. The intensities of these technologies
depend at some time period on the extraction and exploration

capacities available at this time period.

The problem is to determine the optimal mix of extraction
and exploration activities in a given planning horizon (extraction
and exploration plans), which is balanced with the development
of the capacity subsystem and yields the maximum output for this

planning horizon.

Using the conditions of Problem 2.1, this problem can be

formalized as follows:

Problem 2,2. Let be given initial stocks of identified

and hypothetical resources

1 1,0 2
x;(0) = x4 ; x;(0) = x (2.23)
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with the state equations for extraction activities:

xp(e+1) = xi(0) - § ouperzslo@) ] up o)

meM k&K

and exploration activities:

2 2 2 2.
xj (t+1) = xj(f) - kéKuki(_t) + ui(t)

(2.24)

(2.25)

where ﬁi(t) is the increase of the hypothetical resource of

category i at time t (discovery rate).

"Let also be given the initialvalues of extraction and ex-

ploration capacities

_ . 2 _ 2.0
2 (0 = zy i zy (0) = Zy

with the state equations

z;l(t+‘l) z:n(t) + w:n(t) - wl(e-th

(£+1) = zZZ (£) + wp(t) - w2 (t-1?)

z2
k

(2.26)

(2.27)

(2.28)

The intensities of extraction and exploration activities

2

(t), u (t), as well as 1nten51tles of new extraction and

exploratlon capacities construction w (t), wz(t) are subject to

budget and other resources constralnts

) mlz(t)u () + ] rk g (8) ukl(t) +

m,1i k,i

+§ (t)w (t) +Zr£(t)w (t) 2 Ry (t)
1 1 2 2

§umi(t) < zplt) %uki('t) < zp(t)

(2.29)

(2.30)

(2.31)




Sy

Find nonnegative control sequences
03, Wl ), W) and wi()}
mi ki i i
and corresponding nonnegative. state variables
{x;(t)}, {xi(t)} and {yl(t)}, {yi(t)} '
whicﬁ yield a maximum total output of the resource

T-1 ]
J = I @ kgupi(e) (2.32)
' t=0 m,i

where Ky is the energy conversion factor for the resource of
category i. Here ﬁ?(t) (discovery rate) is considered as a

scenario variable.

b. Extraction Model

If the increase {i;(t)} of the identified resource is con-
sidered as a scenario variable (but not as a result of controllable
exploration activities), then the state equations for the extrac-

tion system will be simplified:
~ _ .0
X; (841) = x, (8) - u; (£) /8, (v) + ui(t), x;(0) = x5 (2.33)
where ﬁi(t) is the value of the identified resource of category
i shifted from the hypothetical category i at time period t,
u; (t) is the total extraction of resource i at time period t
(we do not single out different extraction technologies in this

example) .

The development of the extraction capacities subsystem is

described by the state equation similar to (2.27):

o

zi(t+J) = zi(t) + wi(t) - wi(t—Ti); zi(O) = 25 (2.34)
with constraints:
u; (t) < oz, (t) i wiy(t) >0 ;3 z;(t) 20 ; (2.35)
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gr‘gz(t) wi(t) + [ri () u; () < Ry(£); wy(t) > 0  (2.36)
«;(8) >0 . ' (2.36a)

The problem is to determine the extraction policy of the
given identified resource, which is subject to constraints in
the extraction capacity (2.35), availability of external resources
(2.36) and recoverability of this resource (2.36a). It gives the

total maximal output during the planning period.

The objective function can be written again as (2.32), or,

if we introduce the cumulative amount of the resource extracted,
E(t+1) = E(t) + J k. u, (t) £E(0) = 0 (2.37)
, i

as maximization of E(T).

e¢. Exploration Model.

This model allows to determine exploration policies which
'yield a maximum shift of the hypothetical category of resources
to the identified category. This system is a counterpart of the

extraction system and is described by the equations:

¥ (B41) = x; (8) = uy(8) + §;(8) 5 x;(0) = x§  (2.38)

z (641) = 2, (t) + w;(£) = w, (t=1,); 23 (0) = zy  (2.39)

ui(t) < Zi(t) H ui(t) i 0 ’ Zi (t) i 0 (2.40)

gril(t) wi(t) < Ry (t) ;7  wy(t) >0 (2.41)

x; (£) > 0 (2.12)
-1

g = ] Ju/(t) > max . (2.043)

t=0 1
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d. Cost Minimization

In the above examples the objective was to obtain a maximum
output from the extraction and/or exploration systems. For many
practical purposes it is necessary to obtain dependence between
optimal cost J* and the cumulative availability of a resource
(e.g. for calculating cost coefficients in the objective function
(1.12) of the energy supply system model). It can be done by a

simple optimization model

xg (E+1) = x5 (£) = uy (£) /6, (8) + @, (£);  x;(0) = x§

2, (E+1) = z; (£) + Wi (€) - Wy (t=1y) 5 % (0) = 2

E(t+1) = g(t) + gKi(t) u; () E(0) = 0

Je uj(0) > date) 5 ug(e) >0 ; (2.44)

i

u; (&) <z (8) ;- z;(E) >0

Xi(t) > 0

J = 122 Z[c‘il(t) u, (£) + cf (¢) wi(t)] + min . (2.45)
i

This model differs from the extraction model by the objective
function (2.45) and by the inclusion of demand constraints (2.44),
Resources constraints (2.36) are omitted here as they are taken
into account by cost coefficients c?(t) and cf(t) in the objec-
tive function (2.45).

Clearly, in this simple model

I <y u;(t) = d(t)
1

*
for optimal ui(t). Hence

E(t+1) = £(t) + d(t) £(0) =0
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and

T—1
E(T) = ) d(t) . (2.47)
£=0

The problem is to calculate cost-supply curves
J¥ = J(u*(z(T)) = ¢(z(T)) .

It should be noted that the behavior of these curves strong-

ly depends on the behavior of the demand curve d(t).

e. Dimension of the Models

Finally, we calculate a typical dimension of the resources

model. Let
M be the total number of different countries in a region,
L be the number of resource provinces within a country,
K be the number of basins within a province,
T be the length of a planning horizon,

2 be the number of different resource categories in a

basin,

m be the number of different technologies which can be

used in exploration and extraction

k Dbe the number of WELMM factors limiting extraction.

One can see that the model will have

(324m) * K+ LM state equations,

(20+k+m) « K+« LM constraints (nonnegativity con-

straints are not counted), and

3« 4*m-K-L-M control variables for each time

period.

For example, consider a region consisting of only one
country with two resource provinces. Assuming that the average

number of basins in a province is equal to 3, the average number
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of different resource categories is 2 (for instance, crude oil
and natural gas), the number of different technologies is 2

and the limiting WELMM factors are 2, we calculate that we would
have for each time period 48 state equations, 48 constraints and
the number of constraints equal to 78. Thus, for a quite realis-
tic size the resources model is manageable and can be solved

even by standard LP codes.

[+ Resource Models under Uncertainty Conditions

One of the intrinsic features of the resources model is
uncertainty in parameters, especially for speculative and hypo-
thetical categories of resources. The conventional way in
handling this difficulty is to consider these parameters as
scenario variables (e.g. ﬁi(t) in (2.25), or ﬁi(t) in (2.33))
carrying out numerous computer runs for different hypotheses on

these variables.

A more sophisticated approach is to consider maxmin problems
associated with the given model. The maxmin appvoach allows to
evaluate upper and lower bounds of the objective function for
optimization problems with uncertainty conditions and to elabo-
rate extraction and exploration policies which guarantee the re-
quired results within a given range of uncertain parameters.

Methods for solving maxmin DLP problems are considered in [40].

Another approach to treat uncertainty conditions in resource
models is the statement of the problem in a multistage stochastic

programming framework [41].
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3. Economy Development Models

In this section we present a model simulating optimal be-
havior of the entire economy of a region for different objectives.
Interest in optimal economy models has been increasing in recent
years. The reason is that they allow one to take into account
some "optimal” mix of the dynamics of such important economic

indicators as production levels, capital investment, intermediate

and final consumption of goods to be produced. Different optimi-
zation models of economy development are considered, for example,
in [15,16,42-45]. However, we shall not analyze all these models
here, but restrict ourselves by describing a multibranch indus-
trial model INTERLINK [46-48], which is conceptionally based on
its predecessor-nm-model developed at the Computer Center of the
USSR Academy of Sciences [44-45]. The model presented below can

be seen as a simplified version of the original mw-model.

3.1. Basic Model

a. State Equations

The system under consideration is broken down into two
subsystems: production and capacities development (or capital

stock accumulation)

Production subsystem. The operation of industry is de-
scribed in terms of n producing sectors. Let

xi(t) be the stock of production in sector i (i=1,...,n)

accumulated up to a time period t,

u. (t) be the gross output (production level) of sector i

in time period t,

vi(t) be the additional capital stock constructed in

time period t, and

aij(t) be the input-output coefficients.

We assume also, that

T. is the time (number of time periods) required to
construct and to put into operation additional

capacity in sector j;
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bij(t) are capital coefficients;

wi(t) is

si(t) is

Then the state

can be written

the final consumption of sector i products, and

the net export.

equations describing the production subsystem
as follows:

n
X (841) = x;(8) + u (t) - j£1 aij(t) uj(t) -
(3.1)
n ?5
- ) b,.(t-1) v:(t-1) - w; (t) - s, (t)
j=1 1=0 *J ] * *
(i=1,2,...,n;t =20,1,...,T-1) .

Initial inventories and preplanning controls are assumed

to be given:

_ 0
Xi(O) = X. 4

i (3.2)

0
vi(t—Ti) = vi(t-Ti) ' (3.3)

0,n--,Ti"1) .

Assuming T. = T for all sectors j =

J
can be rewritten in a matrix form:

1,...,n, equation (3.1)

T

x(t+1) = x(t) + (I-A(t))u(t)- )] B(t-1) v(t-T) -w(t) - s(t)
=0 '
where (3.1a)
x(t) = {x;(t)} is a state vector, ul(t) = {u; (0) 1,
v(t) = {vi(t)} , w(t) = {wi(t)} are control vectors, and
s(t) = {si(t)} is considered here as exogenous vectors

(i =1,...,n).

For some problems export/import must be considered as
control (decision) variables. 1In these cases the net export

s(t) is better represented as follows:



-51-

s(t)y =st@) -sT(e) , sT() >0 , s () >0

where s+(t) is the vector of import, s (t) is the vector of

export.

Capacities Development Subsystem. Let

yi(t) be the value of the production capacities of type i

and di(t) be the depreciation factor in sector i at time period

t (i =1,...,n).
Then the dynamics of production capacities is written as follows:

) (i=1,...,n) . (3.4)

y; (£+1) = (J-di(t))yi(t) + vi(t--Tl

The initial capital stocks are given

y 0 = yd . | (3.5)

Assuming again for simplicity that

T, = T for all i = 1,...,n ,

we can rewrite (3.4) in a matrix form:
y(t+1) = (I-D(t))y(t) + v(t-T) ' (3.4a)

where D(t) is a diagonal matrix with d; (t) on the main diagonal;
y(t) = {yi(t)} (i=1,...,n) is a state vector for the production

capacities subsystem.

b. Constraints

Evidently any economic system is operating within certain
constraints which imply physical, economic, institutional and

other limits to the choice of controls.

Physical Constraints. All state and control variables are

nonnegative:



~52-

\4
o

\4
o

y; (£) , v.(t) > 0, (3.6)

w,(t) >0
i=1,...,n;t=0,1,...,7-1) .

Resources Availability Constraints. The production system

requires certain external resource inputs for its operation.

First of all, these are labor and primary resources. Both con-

straints can be written in a similar way:

for labor resources:

ij (t) u] (t) _<_ Q,k(t) ’ (k = 11---IK) (3-7)

it~ B8

i=1

where
Rk(t) is the total labor of category k (k=1,...,K)

available in time period t;

ij(t) are the labor output ratios for sector j;

and for other resources (WELMM factors):

n
j£1 rmj(t) uy (¢) <r (t) , m=1,...,M (3.8)

where
rm(t) is the total amount of resource category m,

(WELMM factor m) available in time period t;

rmj(t) are specific resource requirements per unit of
sector i production (resource - output ratios)

in time period t.
In the matrix form equations (3.7) and (3.8) are

L(t) u(t) = 2(t) (3.7a)

R(t)u(t) < r(t) . (3.8a)
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Production Capacities Constraints. The gross output of

each sector is limited by the available production capacity

ui(t) i yi(t) (l = ]I---In) . (3.9)
or, in vector form

ult) < y(t) . - (3.9a)

Inventory Constraints. These constraints relate to the

possibility of accumulating limited amounts of good's stocks.

For storable goods:

0 < x;(t) < %, (&) (3.10)

where
fi(t) are the given stock capacities, and

xi(t) are calculated from (3.1).
For nonstorable goods we have instead of (3.10):
xi(t+1) > xi(t) ' (3.11)

which is similar to the following inequality:

n n TZJ
ug (t) - j£1 aij(t) uj(t) - j£] T=0bij(t—-T) Vj(t—T)
(3.12)
- wi(t) - si(t) >0
or
T
(I-A(t))u(t) - ) B(t-t1) v(t-1) ~w(t)-s(t) > 0 . (3.12a)
=0

It should be stressed that in many practical cases, the accumu-
lation of goods stocks in large amounts is unreasonable or too
expensive. Hence, {xi(t)} are small in comparison to the outputs
of the system. Therefore we can consider the balance equation
(bill of goods) in the form of inequality (which is equivalent

to (3.12a)):
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T
(I-A(t) u(t) > J B(t=1) v(t-1) + w(t) + s(t) (3.13)
=0

or equality

(I-A(t)) u(t) = B(t—T)‘V(th) + w(t) + s(t) (3.13a)

o~

=0
both for storable and nonstorable goods.

Consumption Constratints. Final consumption is usually

bounded for each sector i. In many cases it can be represented

in the form:

Wi(t) > gi(t) w(t) ’ ‘ (3.14)
where
w(t) = total final consumption,
gi(t) = share of total consumption provided by sector i;
Exogenously given vector g(t) = (gi(t),...,gn(t)) predefines the

profile of a final consumption over time. The introduction of a
consumption profile allows one to use a scalar control w(t)

instead of control vector w(t):
w(t) > g(t) w(t) . (3.14a)

e. Objective Function

Above, {u,v,w} = {ui(t),vj(t),wi(t)} are control variables,
{x,y} = {x;(t),y; ()} are state variables. The choice of optimal
control depends on the choice of the objective function of a
problem. In the following we consider typical examples of the

objective functions.

Maximization of the Cumulative Discounted Goods Supply-

In this case the objective function is

T-1
J = ] B(t) w(t) (3.15)
£=0

where B(t) is the discounting factor.
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If we consider only the last step, then the objective

function will be

n
w
J = ghi('” w, (T) (3.16)

i=1

where h, (t) are weight coefficients for different products.

Maximization of the Final Stock of Goods.

X
hi(T) Xi(T) (3.17)

I
]
e~

i=1

h?(T) are weight coefficients ("costs") for xi(T).

Maximization of the Terminal Values of Production Capacities

n
_ y
J = i£1hi(T) y; (T) (3.18)

hz(T) are weight coefficients for yi(T).

Minimization of Total Expenses. This criterion is similar

to the objective functions, considered in Sections 1 and 2:

T-1
J = ¥ o) (), ut)) + (e (E),vie)) + (Y (t),y (L))
t=0
(3.19)

where
cu(t), cy(t) are operating and maintenance costs,
cv(t) is the investment cost,
B(t) 1is the discounting factor.
Other objective functions are also possible [42-47].

It should be noted that goals of control can also be expressed

by additional constraints, such as




-56~

w(T) > w(T) (3.20)
x(T) > X(T) (3.21)
y(T) > y(T) . | (3.22)

For example, one wishes to minimize the total expenses (3.19)

under the given level of final consumption (3.20).

d. Statement of the Problem

For reference purposes we are writing below a typical

optimization problem that occurs in economy models.

Problem 3.1. Given the state equations of the production

subsystem:

T
x(t+1) = x(t) + (I-A(t)u(t) - ) B(t-1) v(t-1) -w(t) - s(t)

=0
(3.1a)
and of the capital stock subsystem:
y(t+1) = [I-D(t)] y(t) + v(t- T) (3.4a)
with initial conditions
0 ‘
x(0) = x (3.2a)
Mt—?)=v0&-?) ; 0<t<T-1 (3.3a)
0 _
y(0) =y . (3.5a)

Find controls u = {u(0),...,u(r=13}, v = {v(0),...,v(T-1-1)1},
w = {w(0),...,w(T-1)} and corresponding trajectories x = {x(0),
ceeryx(MY, v ={y(0),...,y(T)}, which satisfy the conditions:

nonnegativity constraints:

x(t) >0 u(t) > 0
y(t) > 0 v(t) >0 (3.6a)
z(t) > 0 w(t) >0
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labor availability constraints:
L(t) u(t) < 2(t) (3.7a)
resources availability constraints:

R(t) u(t) < r(t) (3.8a)

production capacity constraints:

u(t) < y(t) v (3.9a)
inventory constraints for storable goods:

x(t) < X(t) (3.10a)

for nonstorable goods:

T
(I-A(t))u(t) > ZOB(t—r) v(t-1) + w(t) + s(t) (3.13a)
=

consumption constraints
w(t) > g(t) w(t) (3.14a)
and maximize the objective function

T-1

J = § B(t) wt) . (3.15)
t=0

3.2. Discussion

Below we consider some modifications and extensions of
Problem 3.1.

a. Conversion Model [U44-45]. 1In many practical cases it

is necessary to take into account the process of reconstruction
(conversion) of production. In this case the above conditions

should be replaced:

state equation (3.1) by:
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n :
X, (t41) = x,(8) + u;(t) - j£1 a; 5 (t) uj(t) -
n | 5 n T3 S s
- b..(t-1) v. (t=-1) - by . (t=-T17) -«
sE1 Lo Pis . j,§>=1 =0
-vg(t-rs) - w; () - sil‘(t) . | (3.23)

Here
v?(t) is the additional production capacity in sector j,
obtained from conversion of sector s into J

started at step t;

bij(t) are the capital coefficients of conversion s~ j.
T? is the number of steps, required for conversion

s> j.

The state equation (3.4) is replaced by:

n .
yi (B41) = (1-d;(£)) y; (£) + v, (E=-1) - S£1v;(t— %) +
o S S ] S
+ s£1 ki (- 1)vi(t-13) (3.24)

where ki(t) is the conversion coefficient, which shows the in-
crease of the production capacity in sector i per unit of con-

version activity s-—>i.

The capacity constraints (3.9) in the case of conversion
are replaced by:

T.-1
i
u, (t) < x; (t) + ) Ci(t—T) v, (t-1) -
=0
s s
n Ti—1 n Ti—1

- 5 I viteen + T ] cStn) vi(t-T) . (3.25)
s=1 1=0 s=1 1=0 *
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b. Capital Stock Subsystem. 1In some cases it is more con-

venient to describe the development of the production subsystem
in terms of capital stock rather than in terms of production
capacities. 1In these cases, instead of state equations (3.4) or

(3.24) we have to introduce the state equations:

z; (E+1) = (1—ai(t))zi(t) + vi(t-Ty) -
(3.26)

n’ i s n
- 2 vs(t-ri) + £

vi(t - Ti)
s=1 [

1

where
zi(t) is the capital stock in sector i at time period t;

ai(t) is the depreciation factor.

If there is no conversion in the system, then the last
right term in (3.26) must be omitted.

Besides, the production capacity constraints (3.9) are
‘replaced by

Bi(t) ui(t) < zi(t) (i=1,...,n) , (3.27)
where Bi(t) is the capital-output ratio.

c. Simplified Model. Here we describe a simplified version

of Problem 3.1, which may be of interest for more long-range and
aggrecate considerations, for example, for the case of linking
energy-economy submodels.

We assume that the time period is such that time lags can
be excluded from consideration and, further we neglect a pos-
sibility to stock goods. The conversion processes are not con-
sidered in the model either. Thus the problem can be formulated
as follows:

Problem 3.1a. Given the state equations for capital stock

subsystem in the form
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y(t+1) = (I-D(t))y(t) + v(t)
with initial state

y) = y° ,
subject to constraints

bill of goods:

(I-A(t))u(t) = B(t)v(t) + w(t) + s(t)

resources availability constraints:
L(t) ult) < &(t)

R(t) u(t)

I A

r(t)

production constraints:
u(t) < y(t)

consumption constraints:

w(t) > g(t) wlt) ,

find controls {v(t) , u(t) , w(t)} and corresponding trajectory

{y(t)}, which maximize the objective function

T—1
J =] B(t) wlt) .
t=q

d. INTERLINK Model. The model was developed at IIASA by

I. 2imin for modelling economy development of a region (country)

in the IIASA system of energy development models. It represents
a version of the dynamic multibranch w-model [44,45]; its struc-
ture is close to Problem 3.1 and its description is given in
[46-48].
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The typical dimension of the INTERLINK model is the follow-
ing: number of state equations (sectors of economy) equals 17,
number of constraints - 41 for each time period. Each time
period corresponds to 5 years; the planning horizon is equal to

50 years, hence the total number of time periods is 10.

The total dimension of the corresponding LP problem:
the number of rows is about 600, the number of columns is also
about 600.
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4. Linkage of the Models

Above three models were considered - energy supply system,
primary resoﬁrces system and economy development system which
were presented by Problems 1-3, respectively. Each of these
models can be used individually for energy resources and tech-

nology assessment.-

However; this approach of separate analysis is limited ih
its possibilities because many important features of the systems
are missing due'to their interactions. Thus one should build
models of the whole system of energy-resources-economy inter-
action and hence we ought to investigate ways of linkages of
individual models into a whole system. This new stage of energy
policy modelling has started just recently, only 2-3 years ago
(1,2,8-12,23,49-51]. Two basic approaches can be singled out here.
First, to integrate separate models into a single optimization
problem with the corresponding objective function [50 - 53]. The
second approach is to investigate linkage of submodels, consider-
ing these submodels on some independent basis each with its own
objective function [1,9,11,12,23,45].*)

Both approaches naturally have their own advantages and
drawbacks. The major advantage of the first, "machine" approach,
is that it allows to take into account all the constraints and
interactions between many factors influencing the decision and
combine them in some optimal way. However, building an inte-
grated model evidently leads to a very.large optimization problem
which, although sometimes possible to solve, is always very

difficult to interpret.

The "manual" approach -- information obtained from one sub-
model is interpreted by an analyst and provided as input to
another submodel -- is more attractive but is much more time con-
suming and sometimes may lead to uncertainty whether the "true

optimal" solution for a whole system has been obtained.

*
)We don't consider "non-optimization" approaches which
come out from the framework of this paper (see [49]). )
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Thus, we need to combine both approaches and therefore we

consider both of them below starting with the integrated model.

4.1. Integrated Model

Considering the ESS and economy models we can see that there
are two main linkages between them: final demand for energy which
is the output of the economy model and nonenergy resources supply
for which the requirements are outputs of the ESS model. We
shall combine the ESS model (Problem 1.1) and the economy model
(Problem 3.1) into a whole system, using subscript E for the

energy sector and NE for the nonenergy sectors.

For a uniform representation we assume that both the in-
dustrial processes of economy and energy sectors are described
in terms of physical flows. Besides, in the model below we omit,
for simplicity, time lags in construction and put into operation
production capacities, that is, we will use simplified versions

of the ESS and Economy models.

a. State Equations

Production Subsystem. This is a combination of state

equations (1.%1a) and (3.4a) for energy and nonenergy sectors
respectively in their simplified form (we describe depreciation

of the capacities in the same way for both equations):

yg (£+1) = (I A (€))yg (£) + v (£) (4.1)
Yyg (BF1) = (T - Acp (£) ) yp (B) + vgp (t) (4.2)
with intial states
yg(0) = yg (4.3)
Yyg (0 = ¥Og (4.4)

Here yE(t) and yNE(t) are vectors of production capacities
for energy and nonenergy sectors, vE(t) and VNE(t) are the

increases of these capacities in time period t.
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Energy Resources Consumption Subsystem. To describe the

accumulation consumption of primary energy resources we will

first use the equation (1.5a) (instead of the detailed version

of Problem 2.1:

zE(t+-1) = zE(t) + QE(t) uE(t) ; (4.5)
0

zE(O) = zg (4.6)

Q < zp(t) < zg(t) (4.7)

where
zE(t) is the vector of cumulative amounts of primary
energy resources extracted at the beginning of

time period t;

uE(t) is the vector of activities in the energy sector,

upper limits E(t) may be estimated from the resource

model (Section 2).

b. Constraints

The most important constraint in the model is the balance
between the production of goods and their consumption (Bill-of-
Goods Balance). Like in the simplifiéd version of the economy
model (Problem 3a) we neglect the possibility to stock goods,
thus considering the static form of these conditions:

for energy output (upper index "E" for matrices):
E E
- Ayg (Bluge (8) + (I -Ap(t))up () =
= BE(£)v _(t) + BE(E)v_(t) + w_(£) + s_(t) (4.8)
NE NE* E™ E"° E" E o

for nonenergy products (upper index "NE" for matrices):

(I-ANE(t))ug (£) = ARF u_(t) =

= Bﬂg(t)vNE(t) + BEE(t)VE(t) + wp (£) + s () (4.9)

NE
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We also have production capacity constraints

for energy sectors:

uE(t) < yE(t) (4.10)
and for nonenergy sectors
uNE(t) < yNE(t) (4.11)

(see (1.4) and (3.9), respectively).

Labor availability constraints (3.,7) are written in the

form:

LNE(t) uNE(t) + LE(t) uE(t) < 2(t) (4.12)
and for WELMM factors (cf. (3.8)):
RNE(t)uNE(t) + RE(t)uE(t) < r(t) . (4.13)

Final consumption constraints (3.14) can be written as

wg (£) > gp(t) w(t) (4.14)

e (8) > gun (£) w(t) . (4.15)

where the given vectors gNE(t) and gE(t) specify profiles of

final consumption for nonenergy and energy products, respectively.

Evidently, all the variables are nonnegative:

uNE(t) >0

| v

o ; VNE(t) >0 ; VE(t) >0

uE(t)

~e

c. Statement of the Problem

Finally, we obtain the following optiﬁization problem:
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Problem 4.1.. Given the state equations
yg (E+1) = (I- D5 (E))yg (£) + vg(t) (4.1)
Yy (E41) = (T - Bgp (£))yp(t) + vyp(t) (4.2)
with initial states
. .
_ .0

Find controls {VE(t)},{vNE(t)} and {uE(t)},{uNE(t)} and

corresponding trajectories {yE(t) (t)}, which satisfy con-

'YNE
straints:

- bill-of-goods constraints:

(I-A7(£))ug (t) - Anp(t)u (£) = BE(£)vg(t) + BEp(B)vy_(£) +

(4.8)
+ wE(t) + sE(t);
NE NE _
-Ag (t)ug(t) + (I—ANE(t))uNE(t) =
(4.9)
NE NE
= Bg (t)VE(t) + BNE(t)vNE(t) + WNE(t) + sNE(t)
- production capacity constraints:
ug (£) < yg (t) (4.10)
uNE(t) < yNE(t) (4.11)
- primary energy resources constraints:
T
zE(t+1) = zE(t) + QE(t)uE(t) (4.5)
_ .0
zE(O) = 2p (4.6)
< z(t) (4.7)

zE(t)
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labor constraints:

LE(ﬁ)uE(t) + LNE(t)uNE(t) < % (t) (4.12)
- WELMM constraints:
RE(t)ué(,t) + Rgp (B)ugp (£) < r(t) | (4.13)
- final,gonsumption constraints:
wE'(ﬁ) > gp () wlt) , (4.14)
wWyg (B) > gyp (£) wlt) (4.15)
- nonnegativity constraints:
Hp(E) 2 0 ugp(®) 2 0 vpl) >0 vt > 0
yg(t) > 0 yyg () > 0 w(t) > 0 (4.16)
which maximize the objective function*)
T-1
J = ) BI(t) w(t) . (4.17)
t=0

Problem 4.1 again is a DLP model. Its solution gives, in
principle, possibilities to investigate the interactions between
(a detailed) energy and nonenergy sectors of an economy. As
mentioned above, we can solve Problem 4.1 as a whole DLP problem,
or in an iterative mode, giving special attention to the links

between ESS and economy parts of the integrated model.

. .
)This objective function is chosen only for illustrative pur-

poses. Many other objectives are of interest for this integrated
model.



-68-

Clearly, in the same way the resources model (Problem 2.1)
can be included in the integrated model (instead of the simpli-
fied equations (4.5-4.7)). We will not, however, consider it

here.

In the integrated model there is an important feature which
cannot be seen explicitly from the matrix notations of Problem
4.1. Practically, all the individual models which are to be
integrated into a system may have different levels of aggregation.
In fact, when we investigate the influence of ESS on economy
development, the ESS model should be presented much more in de-
tail than the economy model. In this case, a special model is
to be developed which determines the influence (impact) of energy

development upon the economy as a whole (see below).

Therefore having in view the linkage of the energy-resources-
economy models, one has to take into account first, the means of
linkage (machine or man-machine), and secondly, the level of ag-

gregation and specifics of each individual model.

4.2. Iterative Approach

Now we consider the iterative interaction between ESS and

economy model. The general scheme is the following.

Considering the integrated model described above (Problem
4.1), one can see that it is basically the economy model (Problem
3.1), partitioned on energy (E) and nonenergy (NE) sectors. On
the other hand, it includes as a part the ESS model. 1In fact,
equations (4.1), (4.3), (4.5) - (4.7), (4.11) and (4.14) are the
same as in the Problem 1.1 formulation.

We denote by
dg (£) = AR (£)ugp(t) + BUL (€)vyp (€) + wp(£) + sp(€)  (4.18)

the demand for secondary energy, and by

E
Dg(t) = (I-Ag(E)) . (4.19)
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Then one can rewrite (4.9) as
- E '
DE(t)uE(t) = dE(t) + BE(t)vE(t) _ (4.20)

which is similar to the demand constraints (1.11) of the ESS

model because of the smallness of the last right term.

Let's denote the requirements of ESS in non-energy products
by

NE

NE(£) = BRE(t)vy(t) + AT (B ug(e) . (4.21)

f
Taking into account that the requirements of nonenergy products
for operation and maintenance of energy production (the second
term on the right side of (4.21)) are small in comparison with
the requirements for construction (the first term), one can see
from (4.21) and (1.9), that
NE

F(t) = BE () . (4.22)

Let us have some initial estimate of the energy demand aﬁ(t)
for the given planning period 0 < t < T-1. Solving the ESS
model (Problem 1.1) for this demand, we can calculate the required
increase in capacities Vt(t) of ESS and the corresponding values
of production capacities yE(t) and its output (intensities)
up (t) < yp(t).

The requirement of ESS in non-energy resources ng(t) is
calculated from (4.21). Now we can solve the economy model
(Problem 3.1) or the integrated model (Problem 4.1) with fixed
ﬁﬁ(t), VE(t), §E(t), subject to a certain set of assumptions

about future development of the entire economy.

This solution yields intensities (gross outputs) EﬁE(t) and
additional capital investments NE(t) in nonenergy sectors as
well as a new value of the corresponding demand for energy HE(t)
(calculated from (4.18)). If old dE(t) and new aE(t) values of
energy demand coincide, the procedure terminates, in the opposite

case we have to repeat the iteration with a modified demand.
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Generally speaking, the solution obtained in such a way is
not an optimal solution for Problem 4.1, but a satisfactory one
because it satisfies all constraints of the problem and optimizes
(separately) two objectives ((1.12) and (3.15), for example) for

energy and nonenergy sectors.

To obtain an optimal solution of the whole Problem 4.1 in
such an iterative way, 6ne_may use different decomposition methods.
In this case the dual variables (marginal estimates), obtained
from the solution of the economy model, define the corresponding
objective function for the ESS model (instead of (1.12)). Con-
vergences properties depend on the particular implementation of
the procedure. It should also be noted that for the implementa-
tion of this procedure the economy model should be sufficiently
disaggregated in order to provide the ESS model with the shadow

prices of sufficient detalization.

But in practice a single optimal solution of Problem 4.1 is
not very valuable -- no matter whether it has been obtained "auto-
matically” by the simplex method, applied to Problem 4.1, or in
some iterative way. Clearly, such a complex syétem requires a
man-machine iterative procedure with an energy-economic analysis
of separate iterations. Let us now look at the points where "man"

interference is appropriaté. They are:

- Changing the objective function in the whole Problem 4.1
and in the ESS model (Problem 1.1). (In fact, this is a vector-

optimization problem [13]).

- Determining energy demand dE(t) not from the equation
(4.18), but from a special energy demand model (e.g. [54]).

NE

R (£)

- Determining requirements in non-energy resources f

for ESS by a special model [55].

- Changing the parameters of the model (especially associ-
ated with assumption on technology innovation and profile of

consumption) .
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Many of these interferences may be considered as attempts

to take into account nonlinearities of the system.

4.3. Discussion

a. PILOT Model [50-53]. This model has been developed by
G. Dantzig and S. Parikh at the Stanford University. This is a

DLP model on a pilot scale that describes in physical terms tech-
nological interactions within the sectors of the U.S. economy

including a detailed energy sector.

The structure of the model is quite similar to the model of
Problem 4.1. Dynamic equations include capacity balance con-
straints, manpower skill adjustment limit constraints and those
related to raw energy reserves, cumulative exploration and pro-

duction and intermediate energy stocks.

The capacity balance is equivalent to (4.1) and (4.2).
Manpower skill adjustment constraints specify the educational
and training capacities and are written in the form (cf. (1.27)
and (1.34) in DESOM model) :

L(t+1) < BL(t) ,

where the manpower vector L(t) is partitioned on skill groups.

The resources constraints are similar to constraints (2.24)
and (2.25) and are intended to keep an accurate record of the
energy reserves, cumulative exploration (and productidn) and

stocks.

The (static) constraints represent energy demand require-
ments, energy processing and operating capacity limitations, and
environmental aspects. The linkage between energy and nonenergy

sectors is given by the bill-of-goods constraints (4.8), (4.9).

The objective of the model maximizes the discounted vector
bill-of-goods received per person, summed over time. It can be
expressed as

T

§oA(E) M(t),p(t))
t=1

o
1l
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where the vector M(t) represents the consumption levels and
vector p(t) is the population distribution over different in-

come levels.

The detailed model will include 87 - sector input-output

matrix, the energy sector may be modelled by approximately 150
equations per period. Thus, an order of magnitude for the
number of constraints for each time period in an integrated
model, with a reasonable level of details, may be about 400:
87 for industrial activity, 2 times 87 for capacity constraints
and about 150 for detailed energy sector. A 20-25 period model
(e.g. a 75 - year triannial model) would therefore have approxi-
mately 8,000 to 10,000 constraints.

As noted in [53] these LP models would be among the largest
models built to date. Therefore as a first step, a much smaller
model which "incorporates many, if not all, of the essential
features of its larger counterpart” [53] has been attempted.
This pilot model is expected to have about 125 equations per
period. For a 30-year triannial model, there will be about
1.250 to 1.400 equations. 1Initially, the model will be solved
using straight simplex method of the MPS/370 system.

b. IMPACT Model. This model is an extension of the model

developed by Yu. Kononov and V. Tkachenko at the Siberian Power

Institute [55-56]. The model serves to investigate the influence
of long-term changes in technology, structure and rates of energy

development upon other branches of the national economy.

The model is described by the following equations (for
details, see [56]).

Direct requirements of ESS in nonenergy products:

T
o (6) = A (ug(e) + | BRF (emDvplen) (4.23)

=0 E

If we neglect by time lags T in construction, then the equation
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(4.21) is obtained. In the original version of the IMPACT model

[56] a carried forward presentation is used, that is

t+T
ng(t) - AEE(t)uE(t) + thﬁgE(T—t)vE(T) | (4.23a)

NE
E N .
construction of additional capacities to be put into operation

where the matrix BNC (t-t) denotes the contribution for the

at time period T, where t < T < t + T.

Total (direct and indirect) products (material, equipment,

etc.) requirements are derived from equation (4.9):

(I - ANT () )uyp(£) = Byp (B)vyp(t) + £5° (6)

+ WNE(t) + s, (t) (4.24)

NE
Using VNE(t) and VE(t) one can also calculate the total direct
and indirect capital investments. The model includes also several
equations for evaluating direct and indirect expenses of WELMM

resources.

The model operates in the following way. Problem 1.1 for
the given demand EE(t) of secondary energy is solved. 1Initially,
nonenergy resources constraints (1.9) are not taken into account.
The solution of the problem gives the values ﬁﬁ(t) and Vﬁ(t),
which are drivers for the IMPACT model. Using (4.23) one can
calculate ng(t) for given GE(t) and Vé(t). Substituting ng(t)
into the equation (4.24) and solving linear equations (4.24) with

additional conditions [56]:

VNE(t) = max{min (u

(t) - u..(1t));0} (4.25)
T<t NE

NE

one can find the indirect investment VNE(t) into economy which

ESS needs to meet the given demand Eﬁ(t).

We are only describing the general scheme of the IMPACT

model. The particular implementation of this model depends on

the specifics of the ESS and economy models to be linked.
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e. SPI Model [9]. The interactions between energy and
nonenergy sectors of the national economy were also analyzed at
the Siberian Power Institute of the Sibirian Branch of the USSR
Academy of Sciences. For this analysis a special multisector
model has been developed. The model describes the interactions
of the energy (E) sector with those nonenergy (NE) sectors which
directly or indirectly influence the energy sector. There are

8 such nonenergy sectors with 31 types of products.

The mathematical formulation of the model is close to Prob-
lem 4.1 (below we change the notations in comparison with the

original version in [9]).

The development of the production subsystem is described by
the state equations which are similar to (4.1) and (4.2)

gyieE<t+1) = (Zadi(t) Yiep(t) + gviem

(t+1) = §; ()y;p (£) + v o (8) .

YinNE iNE

The balance of goods is written in the dynamic form (cf.
(3.1) and (4.8), (4.9)):

for nonenergy sectors:

Zing (BN} = Zip (B) 4 aygp (B)y e (t) - §aijNE(t) YynE (B)
- Jz EbijNE(t-‘FT) VjNE(t+T) - wiNE(t) - siNE(t)

for energy sectors:

ziE(t+1) = ziE(t) +

D ~1

3ier (B) Yiep(t) = %aijE('t) Ying (B)

wiE(t) - siE(t) .

(For the energy sector the stocks are fuels.)
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Here ziNE(t), ziE(t) are the stocks of production for non-

energy and energy sectors respectively at time period t; aiNE(t)
and aieE(t) are loading coefficients of production capacities,
hence |

Uing (B) = ajg (B Y ng (B)

uieE(t) - aieE(t)yieE(t)

where uiNE(t), uieE(t) are the production levels (gross outputs)
at time t:

The subindex e for the energy sector corresponds to the
different technology of energy production. Thus the energy sector
is represented in a more disaggregated form in comparison to the
nonenergy sectors of the model.

As in the IMPACT model there is used time forward (1 > 0)

presentation of the requirements for construction.

Constraints on labor and other limited resources are given
in a similar way as (4.12) and (4.13):
E E
) Z_rvie (£)Y5ep(t) + 1 ATyje(tsm) Vigp(m) +

NE NE
+ Ty (B)y; e (8) + grvi(t,'r) v (D1 < 1,8 .

The model is solved in an iterative mode.
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5. DLP Canonical Form

Considering the models described above, one can see that

all of them can be reduced to a single canonical form [18,19].

Problem 5.1. Given the state equations
t
x(t+1) = A(t)x(t) + ) B(t-1) u(t-1) , (5.1)
=0

with initial conditions

x(0) = x0 ;5 ut-v = u¥(t-1) (0 < 1 < t-1) (5.2)

and constraints

G(t)x(t) + D(t)u(t) f(t) (5.3)

| A

x(t) > 0 ; u(t) (5.4)

| v
o
L]

Find control u = {u(0),...,u(T-1-1)} and the corresponding tra-
jectory x = {x(0),...,x(T)}, which maximize the objective func-
tion

-1

J(u) = (a(T),x(T)) + } [(a(t),x(t) + (b(t),u(t))l. (5.5)
t=0

Here {u(t)} are control variables, {x(t)} are state variables.

One can see that all the models considered in the previous
sections can be either reduced to this canonical DLP problem,
or the methods developed for the canonical problem can be directly
applied to these models. Problem 5.1. represents a DLP problem
in a canonical form and can be viewed either as some staircase
linear programming problem or as optimal control theory problem.
Hence, both methods -- linear programming and control theory --
can be applied to the solution of Problem 5.1. A survey of these

methods is given in [18,19].
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CONCLUSION

Dif ferent individual energy-resources-economy models and
their linkages into a whole system have been discussed in the
preceding sections. It has been shown that all these models
are reduced to a canonical form of the DLP problem. Therefore,

a unified methodological approach can be developed to analyze
and solve these models. Below we discuss briefly several further

directions of'methodological analysis of energy models.

a. Energo-Economic Analysis. In this paper we analyzed

common mathematical features of the models. Of great interest
is the analysis of the models —- objective functions, constraints,
level of aggregation, uniform data bank, etc. -- from the economy

and energy technology point of view.

b. Vector Optimization Methods. Clearly, a single objec-

tive function is not a realistic modelling of the energy systems.

A discussion of this problem can be found, for example, in [57].

e. Duality Theory. The shadow prices which are the solu-

tion of the dual problem provide a valuable tool for a marginal
analysis of the model. Duality theory for the canonical DLP
Problem 5.1 is given in [58]. The application of this theory to
energy models, discussed in this paper, would be useful in many

respects.

d. Numerical Solution Methods. As mentioned above, Problem

5.1 is an LP problem. Hence, standard LP codes can be (and have
been) applied for the solution of energy models. Special methods
which take into account the specifics of DLP problems have also

been developed ([59 - 64], see also references in [19]).

Experimental codes of these algorithms show good results in

comparison to the standard simplex methods [ 60,61].

e. Post-optimal Analysis. Of great practical interest are

methods of post-optimal analysis of solution including parametric



_78_

DLP methods, sensitivity and stability analysis. A general
theory of linear and guadratic parametric programming has been

developed recently in [65].

f. Implementation of the Solution. The implementation of

the optimal solution has no less importance than the finding

of this solution. We have to mention here the guestions of
realization of optimal solution as a program (that is, as a

time sequence of controlling actions) or as a feedback éontrol
(that is, the current control action is determined by the current
state of the system).

g. Linkage of the Models. The development of linkage

methods of individual models is becoming probably the most

important issue for the time being. Here we can single out:

- relations between long-, medium- and short-term energy
models (for example, how the optimal solution of an aggregated
long-term model relates to the solution of a more detailed
short-term model) ;

- methods of linkage of energy-resources-economy individual
models into an integrated energy model for a nation or a region
(some of these methodological guestions were discussed in Section
4 of the paper);

- methods of linkage of national energy models into a
world model.

Discussion of some methodological and computer implementation
methods of models linkage can be found for example in [1,9,10,11,
12,23,66 - 68].
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