
A Network Flow-Dynamic Programming Algorithm

for Complex Water Resevoir Problems

J. Casti

October 1974 WP-74-52

Working Papers are not intended for
distribution outside of IIASA, and
are soley for discussion and infor­
mation purposes. The views expressed
are those of the author, and do not
necessarily reflect those of IIASA.

A Network Flow-Dynamic Programming Algorithm

for Complex Water Resevoir Problems

J. Casti

1. Introduction

A problem of basic importance in the computational

analysis of complex water reservoir networks is to account

for stochastic inflows and nonlinear objectives without

dramatically altering the computational complexity (and cost)

of the problem. Without the stochastic/nonlinear features,

network flow algorithms provide extremely efficient and

effective procedures for the problem solution. On the other

side of the coin, dynamic programming procedures enable one

to include virtually any realistic feature but at the added

expense of greatly increased computing time and storage re­

quirements. As usual, the water resource analyst is perched

on the horns of a dilemma--cheap solutions with the dangers

inherent in oversimplification versus accurate solutions at

great expense and effort.

In this note, we propose an algorithm which represents

a compromise between the two extremes. Network flow analysis

is employed to effect local optimizations and then dynamic

programming ideas are introduced in order to piece the local

solutions together into an optimal global policy. In this

way, it is hoped to make maximum use of the best features of

each method: the speed of the network flow techniques and the

broad generality of dynamic programming.

-2-

2. The Basic Problem

Let us consider a system in which there are k reservoirs

which must be controlled in an optimal fashion over N time

periods. Let

si (t) = the level of water in reservoir i at time

period t,

u. (t) = the amount of water released from reservoir
1

i at time period t,

i = 1,2, ••. ,k t = a,a+l, ... ,N

On the basis of water use for recreation, power generation,

flood control, irrigation, and navigation, constraints both

on the level of water in the reservoir at any given time and

the amount of water released during any period are imposed

upon the variables s. (t) and u. (t). These constraints are
1 1

of the form

a. < s. (t) < S.
1 1 1

(1)

)1. < u. (t) < U. i =,1,2, •.. ,k1 _. 1 1

where a., S.,)1.,U., are given constants.
1 1 1 ~

As a consequence of the release of an amount of water

Ui(t) and an initial level of water si(t), a certain benefit

~. (s. ,u.) is obtained and a new water level s. (t + 1) is
1 1 1 1

achieved according to the system dynamics

si(t + 1) = si(t) - ui(t) + ri(t)

s. (a) = c.
1 1

(2)

-3-

where r. (t) is a random variable denoting the stochastic
l.

inflow to reservoir i at time t. This quantity is due to

rainfall and various seepage effects into the river basin.

For simplicity, assume that the variables r. (t) are indepen­
l.

dent and identically distributed with distribution function

dG (r, t) .

If we agree that system performance is to be measured

in terms of the total expected gain, then the problem is to

maximize the expected value of

'- ...

N k
J = I L

t=a i=l
R.. s. (t) ,u. (t)

l. l. l.

subject to the dynamics (2) and the constraints (1) •

3. Dynamic Programming Formulatio~

The problem sketched in the preceding section could be

easily resolved by standard network flow techniques if the

functions ~. (s,u) were linear in sand u and if the stochastic
l.

forcing terms in (2) were absent. Unfortunately, in real

systems both the nonlinearity of the R.. 's and the stochastic
l.

inputs are integral parts of the process and cannot be ignored.

Consequently, the linear programming-type algorithms are

stretched beyond their breaking point and recourse must be

taken to more general techniques. The usual approach is to

employ dynamic programming to take advantage of this method's

suitability for handling a wide range of realistic features. -

-4-

Briefly, the procedure is as follows: let

f a (c
l

,c 2 , ..• ,ck) = expected value of J when N-a

periods remain, the

reservoirs have levels c., and
1

an optimal water release policy

is used, i = 1,2, ...• ,k,

a = N,N-l, •.. ,O.

As a result of any initial decision u. (a), the water levels
1

c. change according to (2) and an expected return
1

f I to (s. (a) , u. (a») dG (r ,a)
. 1 1 1 1
1=

is obtained. According to the Principle of Optimality, the

decision u. (a) must be made in an optimal fashion, if any
1

policy including ui(a) is to be optimal. Putting all these

remarks together, we obtain the functional equation

max
ll. < u. (a) < U.

1 1 1 J[I t i (cl' ... , c k ' u l' ••. , uk)
T~l

fa+1(c1 - u1 + r1,··o,ck - uk + rkl]dG(r'l'J

a.
1

C.
1

S.
1

a = N - 1, N - 2, ... ,0

i= 1,2, ..• ,k

-5-

with the initial condition

f N (c 1 ' c 2 ' ... , c k) = cf> (c 1 ' c 2 ' ... , c k)

where cf> is a function measuring the benefit of having water

levels c l ,c
2

, ••• c k which cannot be released.

4. Numerical Solution

Solution of the foregoing functional equation may be

easily resolved if k is small, e.g. k = 2 or 3. However,

for large systems in which k may be 8 or 10, serious compu-

tational difficulties arise due to the so-called "curse of

dimensiona Ii ty . " If, for example, each c. may assume 10
1

values and k = 6, then the function fa(cl, ... ,ck) must be

evaluated and stored for 10 6 different values of its

argument for each a, and for each evaluation a minimization

over the u. 's must be carried out. Consequently, any straight­
1

forward "search and store" procedure for computing f must

be ruled out if k is of realistic size. In order to make

progress, additional ideas and techniques will have to be

employed.

To cut the computational requirements down to size,

we shall simultaneously employ two approximation techniques.

First of all, we utilize approximation in policy space.

For ease of notation, we write the functional equation for

f as

-6-

where c and u are vector quantities, and ~ L, T have obvious

meanings. Then approximation in policy space proceeds as

follows:

i) guess an initial admissible policy uO(c)a

ii) calculate f(O) by

f~Ol (e) ~ I[L (e, uO) + f~~t (T (e ,uO ,rl)}G (rJ

f (0) (c) = Q> (c)
N

a = N - 1, N - 2, •.• ,0

iii) determine the next approximation u (c) as that policy
a

which maximizes the quantity

a=N-l, ••• ,O i

and repeat steps ii) and iii) until convergence takes

place.

Under very reasonable hypotheses on L, it can be shown that

the above procedure is always convergent, in fact, monotoni-

cally convergent (f(O) (c) < f(l) (c) <
a a

for each a) .

pointwise in c

The difficulty with implementing the policy space

interation procedure for high-dimensional processes is in

carrying out the maximization in step iii). However, in

the water resource problem the function L(c,u) has special

structure which may be employed to reduce the maximization

process to one which may be carried out by the efficient

network flow algorithm. The basic structure we exploit is

-7-

separability and concavity of thb functions ~. (c,u), and
1

the fact that the control u does not enter, i.e.

£.(c,u) = ~.(c.)1 1 1 i=l,2, ..• ,k

.L(c.) < 01'1

Thus, we may approximate each function £i(c,u) as

al·c. + b li 0 < c. < Cl1 1 - 1 -

a 2 ·c. + b 2i Cl < c. < C2
Q..(c.)

1 1 1
=1 1

a .c. + bni C < c. < Cn+ln1 1 n 1

i = l,2, •.. ,k

At the same time, we may also use a multiple linear

regression technique to approximate the return function

(m)
fa+l(C l - u l + rl,·J,~,ck - Uk + r k)

k
::: I a. (c. - u. + r.) + S

i=l 1 1 1 1

Having made the foregoing approximations, the minimization

in step iii) becomes a network flow 'problem which may be

solved by the usual techniques. Notice that the approxima-

tion of the ~. need be done only once, while the multiple
1

regression approximation is carried out for each a.

Let us now summarize the proposed algorithm:

o. Approximate the functions t. (c.) by piecewise linear
1 1

functions calling the approximation L(c,u) and guess

an initial policy u~O) (c) .

-8-

1. Compute f(O) (c) by iterati
a

f (0) (c) = ep (c)
a ..

2. Approximate f~O) (cl - u l + rl, ... c k - uk + r k) by

linear functions of the arguments. Call the

apP~oximation f~O)(T(C'U,r)).

3. De~e>~i~e u(i) (c) by employing network flow analysis
a

to maximize

4. Repeat steps 1 - 3.

