Institutions as Tools for Overcoming Social Dilemmas

Karl Sigmund EEP IIASA

Public Good Game (PG game)

groups of size $m \ge 2$ contribute c > 0 or not contribution multiplied by r > 1divided among m-1 other players

Public Good Game (PG game)

groups of size $m \ge 2$ contribute c > 0 or not contribution multiplied by r > 1divided among m-1 other players m_C players contribute, m_D don't $(m = m_C + m_D)$ exploiters earn $rc - \frac{m_C}{r}$ m-1contributors $rc \frac{m_C - 1}{m - 1} - c$ if all contribute, payoff (r-1)cSocial Dilemma

Social learning

Players switch preferentially to strategies with higher payoff

Replicator dynamics for population state

+ Occasional exploration (small random perturbation of state)

No assumption of rationality Evolutionary game theory

Example from Herrmann, Thöni & Gächter,

Peer Punishment

 After the Public Good game, players can punish each other: imposing a fine

at a cost to the punisher

Without punishment With punishment Mean cooperation (MUs) Period

Fehr and Gächter 2000,...

Peer punishment (with Brandt, Traulsen, Hauert, Nowak, Science)

Institutions?

,Institutions are tools that offer incentives to enable humans to overcome social dilemmas'

Elinor Ostrom

Understanding Institutional Diversity, Princeton UP (2005)

Institutional punishment

- Contracts
- Small-scale societies (Ostrom,...)
- Guilds, settlers...
- Janitors, custodians, wardens...

Pool punishment

Yamagishi (1986):

Players contribute G to punishment funds before the Public Good game

Defectors pay fine B

Pool Punishment without second order punishment

Pool punishment with second order punishment

Peer against pool without or with second order punishment

Efficiency traded for stability

Experiment: Peer vs Pool punishment

Boyu Zhang, Cong Li, Hannelore De Silva, Peter Bednarik (Experimental Economics 2014) 238 students

Randomly assigned to 18 groups of 12-14 players (toy communities)

Play 50 rounds

Groups isolated from each other

Within each group, students can choose each round between alternative games

Optional Public Good Game

- PG game:
- Players receive 3 €

 Can play PG game: invest 1 €, which is multiplied by 3 and divided among all other participants

• Can abstain from game: extra 0.5 €

Players can choose

- (a) PG without punishment
- (b) PG with peer punishment
- (c) PG with pool punishment
- (d) no PG game

Players are informed between rounds: how many did what, and what was their payoff

Peer Punishment

- Players see number of defectors
- Can decide: Punish defectors?
 It costs a punisher 0.5 €
 to substract 1 € from a defector

Pool Punishment

Alternatives:

- Contribute nothing
- Contribute 1 € to Public Good Game
- Contribute 1 € to Public Good Game AND 0.5 € to Punishment Pool

(for each 0.5 to Punishment Pool, each defector is fined 1 €)

First and second order version

25 practice rounds

- 5 rounds (a) PG without punishment
- 5 rounds (b) PG with peer punishment
- 5 rounds (c) PG with pool punishment
- 10 rounds full game: choice between
 (a),(b),(c) and (d) (no participation)

50 rounds experiment

9 groups of 12-14 play first-order version9 groups of 12-14 play second-order version

6 end up with peer regime: 3 from each version6 end up with pool regime: all second-order

Toy histories

First order pool punishment: 3 out of 9 end with peer punishment, none with pool

Second order pool punishment: 6 out of 9 end with pool punishment, 3 with peer

First-order

Second-order

Time evolution

Cooperation

Corruption of Institutions

Jung-Hun Lee, Ulf Dieckmann, Yoh Iwasa (JTB 2015)

Donation Game

C (cooperate) provide help b to co - player at own cost c (b > c)D (defect)don't

 $\begin{array}{ccc} C & D \\ C & b-c & -c \\ D & b & 0 \end{array}$

Donation Game with Commitment

players can commit to enforceable contract (cost *s*, penalty -A; A > b, c < s)

$$C \qquad D$$

$$C \qquad b-c-s \qquad -c-s$$

$$D \qquad b-A-s \qquad -A-s$$

C dominates

Optional Commitment

Comitting Cooperator (willing to enter a contract) Comitting Defector (willing to enter a contract) Non - committing Cooperator

Non - committing Defector

b-c-s	-c-s	b-c	-c
b-s-A	-s-A	b	0
b-c	-c	b-c	- <i>c</i>
b	0	b	0

New strategy: Conditional Cooperator (willing to enter contract; if so, cooperates; if other does not enter contract, defects) Comitting and noncommitting cooperators c
 dominated (not shown)

Conditional Cooperator wins

What if law can be bribed?

Anti-corruption campaigns

What if law can be bribed?

A committing defector can pay bribe B (smaller than penalty A)

In examples, A>b>c>s>B and b>c+s)

With corrupt law-enforcers

 Comitting and noncommitting cooperator
 b dominated (not shown)

Rock-Paper-Scissors Bursts of cooperation

When law-enforcers can learn

Bistability

When players can also explore (not just copy)

Global stability (outcome depends on exploration rates)

With reputation effects

