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Preface

The foundations of a theory of hierarchical systems were first laid down in
1970 in the classic work of M. D. Mesarovi¢, D. Macko, and Y. Takahara,
Theory of Hierarchical, Multilevel Systems, which provided a set of theoreti-
cal coordination principles. While this study was the impetus for much
further work, both theoretical and practical, it did not focus on practical
aspects. This volume treats the aspects of the theory of hierarchical systems
that will be useful for applications.

Its authors are members of a team that has worked on the subject for
about ten years. Fredric N. Bailey is at the University of Minnesota, and the
other authors are with the Institute of Automatic Control of the Technical
University of Warsaw. There has been close cooperation between the two
universities in various areas of control science for several years. The authors
have also had the privilege of close contact with many other places where
important work is being done on hierarchical systems. Although the book
incorporates important results obtained elsewhere, most of it consists of the
results of research done in Warsaw and Minneapolis.

The book as a whole presents the views and achievements of a team
rather than of individual authors, except perhaps for Chapter 5, which is
mainly the work of Professor Bailey.

Part of the research on which this book is based was supported by NSF
Grant GF-37298, which is gratefully acknowledged.

The International Institute for Applied Systems Analysis has agreed to
include this volume in the International Series on Applied Systems Analysis.
This decision, as well as the encouragement and assistance offered to the
authors, are also acknowledged with appreciation.

The work of ITASA’s editor Robert Lande made a very important
contribution to seeing this book from manuscript into its published form; the
authors acknowledge this contribution with special appreciation.
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Introduction

The purpose of this book is to present the theory of control and coordina-
tion in hierarchical systems—that is, in systems where the decision-making
responsibility has been divided. Since it aims to present theory that will be
useful for applications, it not only encompasses the basic, general, and
consequently somewhat abstract principles of coordination, but also consid-
ers such practical features as differences between models and the reality they
describe, constraints, possible use of feedback information, and time hori-
Zons.

The control of complex systems may be and very often actually is
structured hierarchically for several reasons. For example:

e The decision-making capability of an individual is limited, but it can be
extended by the hierarchy in a firm or organization

e Subsystems (parts of the complex system) may be far apart and have
limited communication with one another

e There is a cost, delay, or distortion in transmitting information

e Subsystems make decisions autonomously using private information
(e.g., in the economic system)

It is to a certain degree irrelevant whether we discuss a hierarchy of
human decision makers or a similar multilevel arrangement of computerized
decisions, as long as we assume that both use the same rational bases. The
book is intended to be useful for both cases. In particular, the structural
principles and the features of the coordination methods, e.g., constraints and
sensitivity problems, apply to both human and computerized decision
making. For computerized decisions, we also need numerical procedures and
algorithms; wherever possible, these are discussed with recommendations as
to which procedures are best suited to which situations.



Since the book deals mainly with control problems, two assumptions are
essential:

e The system under control is in operation and influenced by distur-
bances.

e Current information about system behavior or disturbances is available
and can be used to improve control decisions.

These two assumptions differ from those of studies of problems of
planning and scheduling, where the only data we can use to determine a
control or a policy come from an a priori model, and where, therefore, the
accuracy of results depends heavily on and is limited by the exactness of the
models. In contrast, the success of control systems, the performance ob-
tained, depends also on the structure in which we use the feedback informa-
tion.

Chapter 1 is an introduction. It explains, with illustrative examples, the
multilayer and multilevel structures used in hierarchical control systems. It
presents the possibility of separating the stabilization task from the optimi-
zation task, the allocation of different time horizons to adjacent layers of the
hierarchy, and the partitioning of the optimization problem into coordinated
subproblems. It also briefly presents the informational aspects of hierarchi-
cal systems, and describes the difficulties involved in the formulation of
control problems.

Chapter 2 describes decomposition and coordination as applied to optimi-
zation problems. These concepts provide a background and a source of ideas
for hierarchical control structures. The presentation in this chapter reflects
the need for optimizing complex, interconnected systems and stresses, for
example, equality constraints in the problem. There is also some emphasis
on the dependence of the solutions on the parameters in the models.
Procedures and algorithms are presented that are especially designed for
applications: the accuracy of the solution may be sacrificed in order to
reduce the number of iterations. Open-loop control structures follow di-
rectly from the coordination methods discussed.

Chapter 3 is devoted to control and coordination of steady-state systems,
that is, to static problems. Steady-state control is discussed separately from
dynamic control because in steady-state control we may use feedback
information iteratively. Sections 3.2 and 3.3 present complete results for the
structure in which the measured outputs of the subsystems are available only
to the coordinator, i.e., only the coordinator receives feedback. In particu-
lar, the sensitivity of performance to the differences between the model and
reality is shown. Section 3.4 describes the other case, where the feedback
information is available to local decision-making units, which must, at the
same time, respond to the coordinator. The existing theoretical results are
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less comprehensive in this case, but they are adequate to explain the main
properties of this structure. Section 3.5 deals with another question: if we
admit that the real system is time-varying, how often should the coordinator
intervene? Answers to this question are available for at least some of the
cases. [terative coordination procedures are essentially applicable only in
steady-state control. A dynamic version of these procedures (iterations in
function space) can be produced easily and may be used in step-by-step
improvements of batch processes. The methods used to control a subsystem
must be feasible; that is, they must not violate real constraints that may not
be reflected in the model because of its limited accuracy. The last section of
Chapter 3 discusses this problem.

Chapter 4 presents a few structures and procedures of coordination that
are applicable to dynamic control, with an appropriate use of feedback from
the system. Possible structures based on three different principles are
presented: the dynamic Lagrangian, state feedback, and conjugate variables.
Dynamic price coordination (the dynamic Lagrangian approach) is discussed
extensively in two sections. Section 4.4 gives practical procedures for price
coordination for static systems with dynamic inventory couplings. The
dynamic price coordination structure seems to be the most natural one for
decision-maker hierarchies; it makes considerable use of the so-called
repetitive control algorithms, whose properties are studied in section 4.5.
State feedback multilevel structures are presented in section 4.6; unlike
other structures, they are restricted mainly to linear systems.

Chapter 5 is devoted to problems of information in hierarchical structures.
It shows some ways in which the value and the cost of information can be
incorporated into the system design. In many systems the information costs,
especially the cost of communication, are significant and must be considered
in choosing control structures. If we decide to have restricted information
flows in the system, then the coordination procedures and the performance
will be affected. The last section of the chapter presents some of the results.

The theory presented in this book may assist in:

e Explaining the behavior of existing systems

e Designing the structure of a new system (for example, determining
what decisions are to be made at each level, what coordination instruments
are to be used)

e Implementing decision making based on the computer

The book is addressed to researchers, high-level practitioners, and to
students of control science and decision theory in organizations.



Complex Systems and
Hierarchical Control

1.1. INTRODUCTION
THE CONTROL SYSTEM

Control is a means of influencing an object to behave in a desired way. The
object may be an economic system, a technological process (such as a
chemical plant), a water-resource system, or an ecological system. Thus,
control problems have been worked on in many fields, differing ter-
minologies have arisen, and different approaches have been developed.
Consequently, it is worthwhile to identify at the outset some basic notions
and formulations relating to control systems, and at the same time provide a
rudimentary glossary of terms.

Figure 1.1 presents a typical control system schematically, showing the
controlled system (also called process, plant, object, environment) and the
control unit (controller, decision unit). The controlled system has some
manipulated inputs (denoted by vector m) which may cause a change in the
outputs y (also called outcomes). The controlled system is also subject to
another group of inputs, which are beyond our influence and are termed
disturbance inputs or disturbances z. Disturbances should essentially be
considered random variables.

The task of the control unit (which in a complex case may be an
arrangement of several units) is to determine the value of m that achieves a
certain goal, i.e., that meets a certain specification on the behavior of the
controlled system. We refer to the values determined by the control unit as
control decisions or simply controls. The control unit bases its current control
decisions on observed variables or observations (measurements, denoted by
v) that are related to the controlled system or the disturbances or both. In
shaping the control decisions, the control unit—along with the

4
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FIGURE 1.1 A schematic drawing of a control system.

observations—makes use of its understanding of the controlled system. We
refer to this understanding as the system model.

Let us proceed to a more formal presentation of what we have said so far.
We have to state first that in many controlled systems of practical interest
the output y at a particular time t, that is, y(t), depends not only on the
inputs u(t), z(t) at the same instant but also on all their past values (we say
that the system is dynamic or is a system with memory). We could never
know the past values for all t ranging from infinity to the present, but this
difficulty can be overcome when the concept of the state of a system is
introduced. The vector of state variables x is such that its value at t,, denoted
by x(t,), and the inputs m and z over the interval [tg, t] determine the state
x(t) uniquely.

An example of a state variable is the water level in a reservoir. To know
the level x(t) one would have to know all the past inflows and outflows, or
the level at a particular time t, and the inflows and outflows thereafter.

We can say that x(#,) summarizes” all the past inputs.

For the state x(t) we write

x(t)= d)[t,_,,l](x(to)a M1 Z[to‘:]) (1.1)
and then we can assume for the output
y (1) = g(x(1), m(1), z(1)), (1.2)

by which we say that the output depends on the past inputs through the
present state of the system. (We note that Eq. (1.1) would have a slightly
different form for a system with time delays.)

Note that (1.1) and (1.2) combined yield

(1) = M (X (to), Mpge1s Z11)s (1.3)

which is a direct way of expressing the dependence of the present output on
the inputs over the interval [, t], but also on the initial state x(t,).

It should be noted that in some circumstances the variations of state are
negligible. This happens when some of the manipulated inputs are used to
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enforce a steady-state condition. The output y may, however, still depend
on the (time-varying) inputs m and z. The value of state x, is a parameter in
this dependence (compare Eq. (1.2)):

y(t) = g(x,, m(t), z(¢t)). (1.2)

It should be noted that in Eq. (1.2'), y(¢) is related to m(t) at any given
time, but the dependence changes over time because of the external input
z(t). Equation (1.2") describes a static, time-varying system.

The observation v(t) may be assumed to depend on the values of x, m,
and z at any given time; thus,

v(t)=h(x(t), m(t), z(1)), (1.4)

it being noted that all dynamics are included in Eq. (1.1).

Figure 1.1 indicates that the control unit is generating control decisions
related to observations. We can assume that this is being done according to
a rule

m (1) = d(vg,.). (1.5)

which will be referred to as the control law or control strategy (or the
decision rule). Note that in Eq. (1.5), decision m(t) may be based on
observations made over a time interval [t,, t].

We have mentioned earlier that the control decisions aim at achieving a
certain goal. It may be, for example, that we are given a preference ordering
of the outputs,

V<Y< y3<....

The goal of the control unit would then be to obtain a value of y with the
highest possible ordering. If y is not a single variable but a vector, prefer-
ence ordering is difficult to achieve. It may, however, be done in a simple
form, in which one defines control decisions that maximize (or minimize) a
scalar-valued performance index Q (pay off, utility, welfare function).

In many cases we are interested in optimizing the time-integrated value of
the performance. In that case two equivalent formulations are being used:

o-["awd, o=——["awa
(o tf I to

where q(t) is the value of the performance rate at time ¢, t, is the initial time,
and  is the final time. The interval t—t, is referred to as the control
horizon. What one chooses for the control horizon is very important in some
applications.

The actual formulation of a performance index is up to the user, that is, it
depends on what he decides is of value to him. It may be, for example, that
the value of q is explicitly related to y(t), q(t) = f,(y(t)), which means that we
attach a value to the outputs only. But it may also be q(t)={fy(y(1),
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m(t), v(t)) which means that we consider not only the outputs, but also the
cost of control and the cost of observation.

We should not overstress the importance of ‘‘optimal control.” It will be
optimal only when we are really able to justify reducing the general goal to a
scalar performance index. We may be asked, for example, to design a control
arrangement where the main requirement is that the output or the state of
the controlled system follow some given path (a desired trajectory). We may
still require that the distance of the real trajectory from the desired one be
strictly minimized, or that the follow-up be done at minimum cost, and so
on, but such optimality requirements would here play a secondary role in
the system design.

When the goal of the control has been formulated in one way or another,
for example in the form of a performance index, we are able to discuss not
only the best possible control law but also the structural aspects of the
control system. For the simple case of Figure 1.1, we may be first concerned
with information structure: what should the form of Eq. (1.4) and the argu-
ments in h(-) be, 1.e., what should be observed or measured in the con-
trolled system? The preferred information structure would be such that the
obtainable result of control (optimal value Q of performance) is better.

It remains to say something about treating the uncertainty or randomness
involved in the operation of the control system because of the disturbances
z. The value of Q depends on both the control m and disturbance z. We
may, according to our needs, set the goal of the control unit to be the
maximizing of the expected value of Q, or the maximizing of the worst-case
value of Q:

maximize E[Q], maximize min Q
or set up some other formulation that is appropriate from the user’s point of
view.

The decision problem, i.e., the problem of determining m, is referred to as
deterministic if we assume that z has a known value or is a known function
of time. If the probabilistic properties of z are known and we make an
appropriate use of them, the decision problem is stochastic. If we use the
deterministic approach, it is important to investigate how the control system
behaves when the real disturbance differs from the value used in the model:
we must require that the performance of the control system be relatively
insensitive to this difference between the model and reality. We return to this
question often.

THE COMPLEX SYSTEM

A complex system is an arrangement of elements in which outputs are
connected with inputs, as, for example, in an industrial plant (Figure 1.2). If
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FIGURE 1.2 A schematic drawing of a complex system.

we introduce an orderly input—output interconnection matrix H, we obtain a
scheme as in Figure 1.3. The matrix H represents the structure of the
system. Each row of this matrix is associated with a single input of a
subsystem. The elements in the row are zeros except where a one shows the
single output that the given input is connected to.

HIERARCHICAL CONTROL CONCEPTS

We are now interested in controlling systems represented by Figure 1.3 by
use of some special hierarchical structures. There are two fundamental and

Uq

Control decisions

Yi

Disturbances ° ‘

Uy

- N

Un

Y

FIGURE 1.3 The complex system presented with an ordering matrix H.



by now classical ideas in hierarchical control:

e The multilayer concept (Lefkowitz 1966), where the control of an
object is split into algorithms, or layers, each of which acts at different time
intervals.

e The multilevel concept (Mesarovic et al. 1970), where control of an
interconnected, complex system is divided into local goals, local control
units are introduced, and their action is coordinated by an additional
supremal unit.

MULTILAYER SYSTEMS

The multilayer concept is best depicted by Figure 1.4, where the task of
determining control m is split into:

e Follow-up control, causing controlled variables ¢ to be equal to their
desired values c,.

e Optimization, or an algorithm to determine optimal values of ¢,
assuming some fixed parameters @ in the model of the plant or the
environment or both.

e Adaptation, with the aim of setting optimal values of .

The vector of parameters 8 may be interpreted more generally as deter-
mining also the structure of the algorithm performed in the optimization
layer, and may be divided into several parts that are adjusted at different
time intervals. Thus, we may have several adaptation layers.

The most essential features of the structure in Figure 1.4 are the interac-
tion of the layers at different points in time and with decreasing frequency,
and the use in each layer of some feedback or information from the
environment. The latter linkages are shown in the figure by dotted lines.

Structures like Figure 1.4 are usually associated with controlling industrial
processes, e.g., chemical reactors or furnaces, but the structure can be
applied elsewhere. For example, a similar division of functions may exist in a
hierarchy of decision makers, where the higher level of authority prescribes
the target values (performs the optimizing control), and a lower level makes
the detailed decisions necessary to achieve these targets. It performs a kind
of follow-up control and it may not know the criterion of optimality by
which the target values have been set.

A system like the one represented in Figure 1.4 is designed to implement
control m, which cannot be strictly optimal because the actions of the higher
layers are discrete and are thus unable to follow the strictly optimal
continuous time pattern. It is hoped, however, that the total cost of
performing all control calculations (the total effort of making all decisions) is
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FIGURE 1.4 Multilayer control—a functional hierarchy.

less when the structure of Figure 1.4 is used than it would be without the
functional division, that is, when the current control m is determined
directly by an optimization algorithm. The essential problem must therefore
be the tradeoff between loss of optimality and the computational and
informational cost of control. A practical problem of this kind is difficult to
formalize so as to permit effective theoretical solutions.

The multilayer concept can also be related to a control system where the
dynamic optimization horizon has been divided, as illustrated in Figure 1.5.
These two features are now essential:

e Each of the layers considers a different time horizon; the highest layer
has the longest horizon.

e The model used at each layer, or the degree to which details of the
problem are considered, is also different: the top level is the least detailed.

Control structures of the kind presented in Figure 1.5 have been most
widely applied, for example, in industrial or other organizations and in
production scheduling and control. These applications seem to be ahead of
formal theory, which in this case—as it also was for Figure 1.4—fails to
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Long horizon
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Intermediate
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2 Controlled y
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FIGURE 1.5 Multilayer system formed by separating the time horizons.

supply explicit methods to design such systems. For example, we would like
to determine how many layers to form, what horizon to consider at each
layer, and how simple the models may be. The answers to such questions
have to be found on a case-by-case basis.

MULTILEVEL SYSTEMS

The multilevel concept of hierarchical control, which makes it essential to
introduce local goals and appropriate coordination, has been inspired by
decomposition and coordination methods developed for mathematical pro-
gramming or for solving other kinds of formally specified problems. We
should especially note the difference between the following approaches:

o Decomposition used to solve optimization problems, where we operate
with mathematical models only and the goal is to save computational effort

e The multilevel approach to on-line control, where these features are
important: the system is disturbed and the models are inadequate, reasonable
measurements are available, no vital constraints can be violated, computing
time is limited

Mathematical programming decomposition can be applied directly only as
an open-loop control, though with model adaptation, as shown in Figure
1.6. But here in fact, any method of solving the optimization problem can be
used and the results achieved will all be the same, depending on model
accuracy. Nevertheless, it is highly desirable to study and develop decom-
position methods in programming, even for control. The open-loop struc-
tures like the one represented in Figure 1.6 should not be dismissed, since
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they offer the advantages of inherent stability and fast operation. Structuring
the optimization algorithm as in Figure 1.6 with the multilevel approach may
also yield efficient computational methods in the software and allow mul-
ticomputer hardware arrangements. We devote Chapter 2 to decomposition
and coordination of optimization problems of the nonlinear and dynamic
kind encountered in control applications. In this book we shall pay much
more attention to the multilevel structures of control that use feedback
information from the real system to improve control decisions. Figure 1.7
illustrates what we mean.

In Figure 1.7, there are local decision units and a coordinator, whose aim
is to influence the local decision units to achieve the overall goal. All these
units use information in the form of mathematical models of the system
elements, but they may also use observations.

WHY HIERARCHICAL STRUCTURES ARE USED

If we now look at the hierarchical systems as a whole (compare Figures 1.4,
1.5 and 1.7) we see that they have one feature in common: the decision
making has been divided. Moreover, it has been divided in a way leading to
hierarchical dependence. This means, that there exist several decision units in
the structure, but only some of them have direct access to the controlled system.
The others are at a higher level of the hierarchy—they define the tasks and
coordinate the lower-level units, but they do not override their decisions.

rProceduras to solve optimization }

Lproblem, based upon models

adaptation

TFeed back for model

y

FIGURE 1.6 Open-loop control of a complex system with model adaptation.
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FIGURE 1.7 Multilevel control of a system. Dotted lines show possible feedback
paths.

As explained in the Introduction to the book, there may be many reasons
for the division of the decision making. In terms of human decision making,
one person would be unable to make all the decisions required to run a
complex organization. Moreover, the subsystems of a large organization
often are distant from one another and the transmission of information is
both expensive and subject to distortion. Parallel, decentralized decision
making suggests itself as a solution and is indeed satisfactory as long as the
subsystem or local goals are not in conflict. If they are in conflict, a
coordinating agent is necessary and the hierarchy depicted in Figure 1.7
results.

In industrial control applications the trend towards hierarchical control
can be associated with the technology of control computers. The advent of
microprocessors has made control computers so cheap and handy that they are
being introduced at almost every place in the process where previously the
so-called analog controllers had been used. The information processing
capabilities of the microprocessors are much more than is needed to replace
the analog controllers and they may easily be assigned an appropriate part
of the higher-layer control functions, e.g., optimization.

Some of the other reasons for using decentralized or hierarchical rather
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than centralized structures of control are:

e The desire to increase the overall system reliability or robustness so the
system survives if one of the control units breaks down.

e The possibility that the system as a whole will be less sensitive to
disturbance inputs if the local units can respond faster and more adequately
than a more remote central decision unit.

THE TASKS OF THE THEORY

The purpose of studying hierarchical control systems may be twofold: we
may be interested in the design of such systems for industrial or organiza-
tional applications, or we may want to know how an existing hierarchical
control system behaves. The second case applies to economic systems, for
example. The focus of the two cases differs very much, as do the permissible
simplifications and assumptions that can be made in the investigation.

For example, if we want to design a multilevel system like the one
represented in Figure 1.7, we would have to deal with questions like:

e What kind of coordination instruments should the coordinator be
allowed to use and how will his decisions enter into the local decision
processes?

e How much feedback information should be made available to the
coordinator and to the local decision units?

e What procedures (algorithms) should be used at each level in deter-
mining the coordinating decisions and the control decisions (control actions)
to be applied to the real system?

e How will the whole of the structure perform when disturbances
appear?

e What will be the effect of distortion of information transmitted be-
tween the levels?

In an existing system, some of the above questions were answered when
the system was designed and put into operation. However, we are often
interested in modifying and improving an existing system, and the same
system design problems will come up again.

1.2. MULTILAYER SYSTEMS

Section 1.1 has introduced us briefly to the concept of multilayer systems.
We shall now discuss their two principal varieties in more detail.
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THE MULTIHORIZON HIERARCHY

In a dynamic control problem, for control or a decision to be made and
applied at the current time ¢, we must take into account the future behavior
of the system. When the state of the controlled system is relevant for the
control decision, we have to consider what this state is going to be in the
future. In a dynamic system, future states will depend on the past decisions;
compare Eq. (1.1). Within the framework of optimal control, we speak
about the optimization horizon. As shown in section 1.1 and Figure 1.5, the
optimization horizon can be divided in a hierarchical system.

Let us illustrate the operation of such a hierarchy by reference to control
of a water supply system with retention reservoirs. The top layer would
determine, at time zero, the optimal state trajectory of water resources up to
a final time, e.g., one year later. This would require long-term planning and
the model simplification mentioned in section 1.1 could consist of dropping
the medium-size and small reservoirs, or lumping them into a single equiva-
lent capacity. The model would be of low order and have only a few state
variables (the contents of larger water reservoirs). We can see from this
example why it is necessary to consider the future when the present decision
is being made and we deal with a dynamic system: the amount of water at
any time t may be used right away, or left for the next week, or for the next
month, and so on. Note that the outflow rate which we command today will
have an influence on the retention state at any future ¢

There is a difference between control of a dynamic system and control of
a static time-varying system (see Eq. 1.2'). In the latter case nothing is being
accumulated or stored and the present control decision does not influence
the future. An example might be supplying water to a user who has a
time-varying demand, but no storage facility of any kind.

The long-horizon solution supplies the state trajectory for the first month,
but this solution is not detailed enough: the states of medium-size and small
reservoirs are not specified. The intermediate layer would now be acting and
compute—at time zero—the more-detailed state trajectory for the month.

From this trajectory, we could derive the optimization problem for the
first day of system operation. Here, in the lowest layer, a very detailed
model must be considered, since we have to specify what is to be done to
each reservoir. For example, we might have to specify outflow rates. We
consider each reservoir in detail, but we have here the advantage of
considering a short horizon.

Let us now describe this hierarchy more formally. Assume that the water
system problem was

maximize J "qlx ' (6), m'(¢), (1) dt

to
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and that the system is described by state equation

(1) = fH{(x' (1), m'(¥), 2'(1))

where the state x'(t,) is given and x'(¢) is free or specified as the required
water reserve at t=t,. The control input is m' and the time-varying
disturbance is z'. The value of g is the rate of net profit in the water
system. qo(-) is the functional dependence of this rate on the variables
x', m', z'. Let us divide this problem among three layers. (Note that the
superscripts here are not exponents.)

Top layer (long horizon)

maximize J !qS(x3(t), m3(1), z3(1)) dt,

to

where x3(t) = f2(x*(t), m*(t), z3(1)), x>(t,) is given, and x>(¢) is free or
specified as above. Here, x? is the simplified (aggregated) state vector, m? is
the simplified control vector, z* is the simplified or equivalent disturbance.
Hence, q3 is the same rate of profit as in the original formulation, but q3(-) is
a function relating it to aggregated variables x>, m?, z°>.

Solution of the long-horizon problem determines, among other things,
state £°(¢}), i.e., the state to be obtained at time ¢} (this could be one month
in the water system example). This state is a target condition for the
problem considered at the next layer down in the hierarchy.

Intermediate layer (medium horizon)

maximizeJ 'qﬁ(xz(t), m2(t), z2(t)) dt

to

where x2(f) = f2(x*(t), m?(t), z%(t)), x*(t,) is given, and x(¢}) is given by
%%(t}). The final state requirement cannot be introduced directly because
vector x* has a lower dimension than x>, according to the principle of
increasing the number of details in the model as we step down the hierarchy.
We must introduce a function y* and require

vH(x2(t)) = (1.

Function y? is related to model simplification (aggregation of state as we
go upwards) and should be determined together with those simplifications.
A suitable profit function g3(+) has to be determined as well.

Solution to the intermediate layer problem determines, among other
things, the value of £°(tf), i.e., the state to be obtained at t =t} (this could
be one day in the water system example).
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Lowest layer (short horizon)

maximizeJ ,q(‘,(x‘(t), mi(1), z1(1) dt
where x'(t)=f'(x'(z), m'(t), z'(1)), x'(t) is given, and x'(¢}) is given by
v () = 22(15).

We omit explanation of the details of this problem since they are similar
to those of the previous problems. The functions g§(+), f'(-) used here are the
same as in the original problem (the “full” model), but the time horizon is
considerably shorter. The lowest layer solution determines the control
actions ' to be taken in the real system. See Figure 1.8 for a sketch of the
three layers and their linkages.

If no model simplifications were used, the multilayer structure would
make little sense. If we used the full model at the top layer, we would have
determined the trajectory %' and the control actions ' right there, and not
only for the interval (1, t7) but for the whole horizon (1, t;). The lower
layers would only repeat the same calculations.

x Long horizon
b + {one year)
Target state %°(t}) | State xa(’r}) achieved
Y |

: Medium horizon

(one month)

X

to 1} 1

Target state X2(t%) State x2(t}) achieved

EE——.

1

¥ — Short horizon
—_— (one day)
[+] f

Current feedback

Current control 4
J ' ’ (state x' achieved)

decisions

System
under control

TEnvironmen’f

FIGURE 1.8 The multilayer concept applied to multihorizon dynamic control.
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Let us now introduce feedback and use the system operation to improve
control. We could use the actual value of x'(¢}) as the initial condition for
the intermediate layer problem. This means that at time (] (one day in the
example) we resolve the intermediate layer problem using as the initial
condition:

x*(p) =" (x"(¢D).
After the second day, i.e., at t =2}, we would use
X217 = v (x'(26)
and so on.

This way of using feedback is often referred to as repetitive optimization
because the computational (open-loop) solution will be repeated many times
in the course of the control system operation.

The same feedback principle could be used to transmit feedback informa-
tion to the higher layers with a decreased repetition rate. We shall refer to
this concept of feedback quite extensively in Chapter 4, which deals with
dynamic coordination in multilevel systems.

Consider what would happen if we used no feedback from the system.
The system would be a multilayer structure but its performance might be
unnecessarily worse than if feedback were used. Note that for the dynamic
optimization calculation that is performed in the control system, we need to
know the initial state and a prediction of the behavior of the environment.
The prediction itself calls for repetition of the optimization calculation at
appropriate intervals. Not using the feedback in the form of the measured
state would mean that we will be setting an assumed initial state instead of
the real one in each of the consecutive calculations. The errors may
accumulate. Needless to say, feedback would be redundant when the model
at the lowest layer exactly describes reality, inclusive of all disturbances—
but this is not likely.

An example of an existing multilayer hierarchy is shown in Figure 1.9,
which is based on a state-of-the-art report on integrated control in steel
industries (Lefkowitz and Cheliustkin 1976). We can see there how the
time horizon gets shorter when we step down from long-range corporate
planning to process control. It is also obvious that the problems considered
at the top do not encompass details like what should be done with every
piece of steel in the plant. At the bottom level, however, each piece must
receive individual consideration, because the final action (manipulation)
must be specified there.

One may ask if the model at the highest level can really be an aggregated
one, and if so, how aggregated it can be. A qualitative answer is as follows:
the details of the present state have little influence on the distant future, and
the prediction of details in the distant future makes no sense because it
cannot be reliable. Quantitative answers are possible for specific cases.
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Long-ferm plan: plant development, long-term contracts,
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FIGURE 1.9 Hierarchy of models and time horizons in a steel company.

THE OPTIMIZATION HORIZON

Roughly speaking, we may distinguish two kinds of dynamic optimization
problems:

e Problems where the time horizon is inherent in the problem itself
e Problems where the choice of time horizon has to be made by the
problem solver

Examples of the first variety are a ship’s cruise from harbor A to B, a
spaceship flight to the moon, one batch in an oxygen steel-making converter.
Examples of the second kind could be operation of an electric power system,
a continuous production process, operation of a shipping company, opera-
tion of a steel-making shop.

For the problems of the second kind, it is necessary to choose an
optimization horizon. We are going to show, in a rather qualitative way, how
this choice may depend upon two principal factors: the dynamics of the
system and the characteristics of the disturbance.
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Assume we have first chosen a fairly long time horizon # and formulated a
problem

maximize Q = Jl'qO(x(t), m(t), z(t)) dt

to

for a system described by
x(t) = f(x(1), m(1), z(1))

where x(t,) is known and x(t) is free. Because of the disturbance z, this is
an optimization problem under uncertainty and we should speak about
maximizing the expected value of Q, for example. Let us drop this approach
and assume that we convert the problem into a deterministic one by taking
z, a predicted value of z, as if it was a known input. Assume that the
problem has been solved numerically yielding state trajectory X and control
m for the interval (t,, ).

Figure 1.10 shows what is expected to result in terms of a predicted z and
the solution X. There seem to be two crucial points here. First, a predicted z
will start from the known value z(t,) and always end up being either constant
or periodic—in other words, the initial value z(t;) has no influence on
the estimated value of the disturbance and what we get as z must be either
the mean value or a function with periodic properties. Secondly, if (o, t;) is
large enough (say one year for an industrial plant) we expect that in a period
far from t=t,, the initial state x(t;) no longer has any influence on the
optimal values x(t). If we are still long before t = ¢, the final conditions have
no influence either.

A3
Z(ia)\/
t o
| I
) (Ta) /\r‘2 (tl) : t
ty t, T 1 ¥

FIGURE 1.10 An optimization horizon.
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Thus, what we expect is that the optimal trajectory X that is calculated at
t = t, will exhibit a quasi-steady state interval (¢,, t,) where £ depends only
on Z. But since Z is either constant or periodic, X will be the same; a more
thorough discussion of this can be found in Findeisen (1974).

The above qualitative consideration allows us to explain why, practically
speaking, we would be allowed to consider only (¢, t;) as the optimization
horizon for our problem. Note that if we decide to use this short horizon we
must formulate the problem as one with the given final state:

maximize Q = J"]qo(x(t), m(t), Z(1)) dt

to

for a system described by
x(8) = flx (1), m(1), (1))

where x(t,) is known and x(t,) is given as X(¢;) from Figure 1.10.

The solution £ from this problem and the control # are correct only for a
short portion of (t,, t;) because the real z will not follow the predicted Z.
Thus, we have to repeat the solution after some interval § much shorter
than the horizon t, —t, and use the new initial values x(t,+8) and z(t,+ 8).
The horizon should now reach to t, +8. It is relatively easy to verify our
reasoning by studying a problem that would have an analytical solution, by
simulation, or by just imagining how some real systems operate. The proper
length of an optimization horizon can be defined very briefly as follows: The
optimization horizon is long enough if it permits a proper control decision at
t=t,.

FUNCTIONAL MULTILAYER HIERARCHY. THE STABILIZATION AND
OPTIMIZATION LAYERS

Section 1.1 explained very briefly what we intend to achieve by a functional
multilayer hierarchy: a reduction in the frequency and hence in the effort of
making control decisions. There are also other features of this hierarchy,
such as a division of decision making and data base requirements.

Let us discuss the division of_control between the first two layers:
stabilization (direct control, follow-up control) and optimization; see Figure
1.4.

Assume that for a dynamic system described by

x(0) = f(x(1), m(t), z(1)) (1.6)

we have made a choice as to what variables of the plant should become the
controlled (stabilized) variables; see Figure 1.11. This choice is equivalent to
setting up some functions h(-), relating c(¢) to the values of plant variables
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x(t) and m(t) at the same instant in time
c()=h(x(t), m(1)). (1.7)

We will assume that the values of ¢ are directly measured (observed).
Functions h(-) would be identities ¢ £ x if we chose the state vector itself as
controlled variables—but this choice may be neither possible nor desirable
and a more general form expressed by function h(-) is appropriate.

The direct control layer (Figure 1.11) will have the task of providing a
follow-up of the controlled variables ¢ with respect to their set-points
(desired values) ¢,; the direct control layer ensures that ¢ = ¢,. The optimiza-
tion layer has to impose the ¢; which would maximize the performance
index of the controlled system (or plant in the industrial context); the
optimization layer determines ¢, so as to maximize Q. Note that Q has to be
performance assigned to the operation of the controlled system itself, for
example, the chemical reactor’s yield, with no consideration yet of the
controllers or of the control structure. In other words, Q is a performance
measure which we should know from the user of the system.

The question is how to choose the controlled variables ¢, that is, how to
structure the functions h(-). It is too easy to say that the choice should be
such that there is no deterioration of the control result in the two-layer
system as compared with a direct optimization. Rather, it should be

max Q =max Q
Ca m

where the number on the left is plant performance achieved with the
two-layer system of Figure 1.11 and the number on the right is the

Determine cy4 so as
to maximize Q

Optimization

Direct m
controller

FIGURE 1.11 A two-layer system.
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FIGURE 1.12 A poor choice of controlled variables in a two-layer system to
control a tank.

maximum achievable performance of the plant itself, where the available
manipulated inputs are optimized directly.

In order to get some more constructive conclusions, let us require that a
setting of ¢, should uniquely determine both state x and control m which
will be established in the system of Figure 1.11 when a ¢, is imposed. Since
we are interested in getting optimal values x and m, let us demand the
following property:

c=¢;—>x=X, m=n.

A trivial solution and a wrong choice of controlled variables could be
¢ 2 m. Imposing m = it on the plant would certainly do the job, but it is a
poor choice because the state x that results from an applied m depends also
on the initial condition x(¢,)—the optimizer that sets ¢, would have to know
x(ty).

A trivial example explains the pitrall. Assume we made a two-layer
system to control a tank using two flow controllers as in Figure 1.12. We
delegate to the optimizer the task of determining the optimal flows, F,, and
F,,. The optimizer would have no idea about what level x will be estab-
lished in the tank, unless it memorized x(t,) and all the past actions. We can
see it better while thinking of a steady state: if the optimizer imposes correct
steady-state optimal values F,, =F,, =E,, it still would not determine the
steady level x in the tank.
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Let us therefore require that the choice of ¢ should free the optimizer
from the necessity to know the initial condition:

c(t)y=2¢&,(1) — x(t) = X(t), m(t) = m(t), Vit >t (1.8)

and the implications shall hold for any x(t,).

An example of what we aim at may be best given by considering that we
want a steady-state x(1) = x = a constant in the system, while the system is
subjected to a constant, although unknown disturbance z(t) = z. In that case,
m and c¢ = ¢4 will also not be time-varying. The state equations of the plant
reduce to

filx,m, z)=0, j=1,...,dimx (1.9)

because x(t)2 0, and if we add the equations that are set up by our choice of
the controlled variables

h,(x, m)=c, i=1,...,dimc (1.10)

we have a set of equations (1.9) {(1.10) for which we desire that x, m as the
dependent variables be uniquely determined by c. But we also want (1.9)
and (1.10) to be a consistent set of equations; their number should not
exceed the number of dependent variables x, m, and thus we arrive at the
requirement that dim ¢ =dim m: the number of controlled variables should
be equal to the number of manipulated inputs. Then, from the implicit
function theorem, it is sufficient for the uniqueness of x, m that f, h; are
continuausly differentiable, and

of o,
dx,  omy
det 0. 1.11
UVon o |7 (1.11)
dx,  omy

We leave it to the reader to verify that the system of Figure 1.12 is not
consistent with Eq. (1.11).

We should warn the reader of a possible misinterpretation of our argu-
ment. We have shown the conditions under which steady-state x, m in the
control system will be single-valued functions of ¢, but these functions may
still contain z as a parameter. In other words, we did not say that a certain
value of ¢ will ensure the value of x, m in the plant, irrespective of the
disturbance. If, for example, we are interested in ensuring the value of the
state, we could choose ¢ 4 x. But note that this may not be entirely feasible
if we have too few manipulated inputs (remember that dim ¢ =dim m).

Of course, the structure of Figure 1.11 can be used when the plant state x
is time-varying. In that case, we would write, instead of (1.9) and (1.10):

% () = fi(x(®), m(t), z(1)), j=1,...,dimx (1.9a)
hi(x(1), m(1)) = ¢, (1), i=1,...,dimc. {1.10a)
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The value of the state at time ¢, x(¢), will still be related to the value ¢, (t)
that is being enforced on the system, but x(t) is also involved in the
relationship. This means that in order to obtain a certain state x(t), we
must take into account the initial state x(t,), the disturbance input over the
interval [t t], 2z, and appropriately shape the control decision cy -

If we want to ensure the value of state x(t) in spite of the disturbances and
without dependence on the initial state, we must investigate the follow-up
controllability: is it possible, using the input m, to cause state x to follow a
desired trajectory x,;? The follow-up controllability is a stronger require-
ment than controllability in the usual sense, where we check whether a state
can be reached but do not insist on the trajectory by which it will be
reached.

Assume that the follow-up has been achieved, that is x(t) = x,(t), x(t)=
x4(t), Vt. Then the state equations give, in the linear case,

x4(t) = Ax,(t)+ Bm(t)+ Fz(t).

These equations have to hold for any z(t), at the expense of varying or
adjusting m(t), which has to be done by the controller. The value of m(t)
that is necessary to nullify effects of a disturbance z(t) in order to satisfy the
follow-up condition is

m(t)=-B ™' [Ax () + Fz(t)— x,4(1)]

from which it follows that there should be a dim m =dim x and that B
should be an invertible matrix (a case of redundant controls, dim m >dim x,
could be described as well).

In the more general, nonlinear case we have to write that in the follow-up
condition the state equtions give

fi(xa (1), m(t), z(2)) — x4(¢) =0, j=1,...,dimx. (1.12)

We should note the meaning of Eq. (1.12). If Eq. (1.12) has to hold, we have
to adjust m(t) so as to offset the effect of z(t). This must of course require
certain properties of the functions f;(-) and we also expect to have enough
manipulated inputs. The requirements will be met if the set of equations
(1.12) will define m(t) as single-valued functions of z(t). The conditions for
this are that f;(-) be continuously differentiable and moreover that

of

rank[ ]:dim X. (1.13)
amk

This implies that dim m =dim x. Let us note also that the actual value
m(t), as required by the disturbance z(t), should never lie on the boundary
of the constraint set of manipulated inputs. We must always have the
possibility of adjusting m(¢) up or down in order to offset the influence of
the random disturbance. The actual value of this required reserve or margin
depends of course on the range of possible disturbances.
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Remember that Eq. (1.13) is a requirement related to controllability, that is,
to the properties of the plant itself. Controllability does not give control m
such that x = x,; it tells us only that this control exits. If we decide to build ¢
feedback control system as shown in Figure 1.11, we have to choose the
controlled variables ¢ in an appropriate way. For the dynamic follow-up to
be ensured by the condition ¢ = ¢, the choice would have to be ¢ 2 x, that is,
the state variables themselves (as opposed to ¢ = h(x, m) which was alright
for the steady-state uniqueness of x).

Until now, the choice of controlled variables has been discussed from the
point of view of the uniqueness property: how to choose ¢ in such a way that
when ¢ =c¢, is enforced, some well-defined values x, m will result in the
plant. We have done this for the plant described by ordinary differential
equations (1.6). An extension of this consideration to distributed parameter
plants with lumped manipulated inputs is possible (Findeisen 1974).

We turn now to the more spectacular aspect of choosing the controlled
variables: can we choose them in a way permitting reduction or elimination
of the on-line optimization effort, that is, elimination of the optimization
layer in Figure 1.11, leaving only the follow-up control? To make the
discussion more simple, let us consider steady-state optimization.

For a plant

filx,m,z)=0, j=1,....dimx
we are given the task
maximize Q = f(x, m, z)
subject to inequality constraints
glx,my=bh, i=1,...
Assume the solution is (X, ). At point (X, m1) some of the inequality

constraints become equalities (active constraints), and other inequalities are
irrelevant. Thus at (X, ri7) we have a system of equations

(G z)=0.,  j=1.....dimx
h | ! (1.14)

=b, i=1,...,k=dimm

If it happens that k =dim m then the rule is simple: choose the controlled
variables as follows

h()2g(), i=1,...,dimm

Cq; — b,-.
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This simply says that the controllers should keep the plant variables (x, m) at
the appropriate border lines of the constraint set. Note two things:

e We have assumed that g, (x, m) and not g(x, m, z), i.e., the disturbance,
did not affect the boundaries of the constraint set.

e We have assumed that k =dim m (the number of active constraints
equals the number of controls), and we also did not consider that even in
this case the solution (%, /1) may lie in different “*corners’ of the constraint
set for different z.

Even under these assumptions, however, the case makes sense in many
practical applications, since solutions to constrained optimization problems
tend to lie on the boundaries. For example, the yield of a continuous-flow,
stirred-tank chemical reactor would increase with the volume of chemicals in
the tank. The volume is obviously constrained by tank capacity; therefore,
the design would result in the use of a level controller and in setting the
desired value of the level at the full capacity. The level controller would
adjust inflow or outflow to maintain the level. No on-line optimization
would be necessary.

We have mentioned already in section 1.l that the approach we have
taken, letting the direct controller make continual control decisions and
providing for an upper level to set a rule or goal to which the direct control
must conform, has more than just industrial applications. It is also clear that
a rule or goal does not have to be changed as often as those decisions and
hence a two-layer structure makes sense.

If the solution (x, riv) fails to lie on the boundary of the constraint set, or
the number of active constraints k <dim m, we may still try to structure our
functions h;(-) in such a way as to make the optimal value &, independent of
disturbances z. The way to consider this may be as follows. We have
solutions m =m(z) and £ =%(z). We put them into the functions h;(-) for
j=k+1,...,dimm:

hi(x, m) = h(X(z), m(z)), j=k+1,...,dimm
By an appropriate choice of k() we may succeed in getting
aLl"zO, j=k+1,...
0z

in the envisaged range of disturbances z. We turn now to a more elaborate
example of building up a two-layer system.

EXAMPLE OF TWO-LAYER CONTROL

Consider the stirred-tank, continuous-flow reactor presented in Figure 1.13.
Material B flows in at rate F; and has temperature Ty, material A flows in
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FIGURE 1.13 A stirred-tank reactor.

at rate F, and temperature T,. They mix, and reaction A — B takes place
in the vessel, resulting in composition C, of the product. Heat input H is
needed for temperature T to be obtained in the reactor. Outflow Fp, carries
the mixture of A and B out of the vessel. We want a control structure that
optimizes the operation of this reactor; F, and H are the manipulated
mputs.

Description of the plant
There will be three state variables and state equations:
W=f,()=Fa+F, Fp
CA =£f(*)
T=f:().
We drop the detailed structure of the functions f,(-), f5(+) because it is not
important for the example.

Formulation of the optimization problem

Assume that we want to maximize production less the cost of heating:

maximize Q =

L 0= CoFs —wTl d

2 1+,

where (T) expresses the cost of reaching temperature T.
There will be inequality constraints

w=w,, Cu<=Cupm, T=T,,

and we also have to consider the state equations and initial and final
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conditions. If there are reasons to assume that the optimal operation of the
reactor is at a steady-state, X = a constant, then the plant equations reduce to

fil)=Fa+F3—Fp =0
fz() =0
fs('):()

and the optimization goal is

maximize Q =(1—C)F, —y(T).

Solution of the optimization problem

Assume that the optimization problem has been solved and the results are
(the problem has been solved for a fully detailed example):

W=Ww,

Ca=Can it 2z€Z,; Cu=d(2)<Ca, otherwise
T=¢.(2)<T, if zeZ,: T=T,, otherwise

E, =s(2)

H = ¢,(2)

where z stands for disturbance vector (Fg, Fp, Ta, Tg) and Z, is a set in
z-space, that is, a range of disturbance values. Note that for z € Z, we have
a simple solution C, = C,,, and for z¢ Z, there is T=T,,.

Examination of the solution and choice of control structure

Let us make a wrong decision and choose as controlled variables the flows
F,, H. We would then fail to get a uniquely determined steady-state volume
W in the tank (a check on the matrix determinant condition (1.11) would
show it) and the optimizer that sets the desired F,4, H; would have to know
disturbance vector z and functions ¢,(-), ¢,(-). Note that this would involve
an accurate knowledge of the state equations of the plant.

Inspection of the optimization solution reveals that volume W is the best
candidate for the controlled variable. The optimal W is W, under all
circumstances; no on-line optimization or knowledge of plant state equa-
tions will be required. Since we have two manipulated inputs, we shall have
two controlled variables, and the second choice could be either concentra-
tion C, or temperature T. Let us consult Figure 1.14 for a discussion of the
options. We have displayed there the feasible set in the (W, C,) plane and
have shown where the optimal solution lies in the two cases, that is, when
z€Z, (point 1) and z¢ Z, (point 2). Note that the solution is in a corner of
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FIGURE 1.14 Position of optimal solutions 1 and 2 in the feasible set for the
chemical reactor problem. Note that the curve T=T,, moves in the (W, C,) plane
depending on the disturbances.

the constraint set, but unfortunately not in the same corner for all z. One
may have two choices:

e Take C, as a controlled variable and ask the optimizer to watch
disturbances z and perform the following

Cay=0Cyu, for zeZ,
Cug=d,(z) otherwise

whereby a knowledge of the function ¢,(-) is required.

e Take C, as a controlled variable when z € Z, and then set C,y = Ca,,.-
whereby for z¢ Z, one would switch to T as a controlled variable and set
T,=T,. In this case, the second-layer of control would perform the
switching, that is, it would detect if z € Z;. This may be easier to do than to
identify the function ¢,(-), which was required in the first alternative.

APPLICABILITY OF STEADY-STATE OPTIMIZATION

Steady-state optimization, following the structure of Figure 1.11, is a fairly
common practice. It might be worthwhile to consider when it is appropriate.
If we exclude the cases where the exact solution for the optimal state is X =
a constant, we may think of the remaining cases in the following way. Let (a)
in Figure 1.15 be the optimal trajectory of the operation of a plant over
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optimization horizon (f,, t,). Assume that we control the plant by a two-
layer system, have x as the controlled variable, and choose to change the
desired value x, at intervals T that are a small fraction of {t,. t,). Then (b) is
the plot of x,(t). Note that we have thus decided to be nonoptimal because
x4 should be shaped like (a), and should not be a step-wise changing function.
Note also that the step values of x,; would have to be calculated from a dynamic,
though discrete, optimization problem.

Now let us look at the way in which the real x will follow the step-wise
changing x, in the direct control system of Figure 1.11. In case (c) of Figure
1.15, x almost immediately follows x,. In case (d) the dynamics are appar-
ently slow and it cannot be assumed that x follows x,. It is only in case (c) of
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FIGURE 1.15 Trajectories of operation of a plant.
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Figure 1.15 that we may be allowed to assume that state x is virtually
constant over periods T, thus permitting the setting of x =0 in the state
equations and the calculation of the step value of x, from a steady-state
optimization problem.

When will case (c) occur? By no means are we free to choose the interval
T at will. We must relate it to the optimization horizon (t,, t,); interval T
would be a suitable fraction of this (75 or 5 for example). Here is
the qualitative answer to the main question: if (1, ¢,} has resulted from
slow disturbances acting on a fast system, case (c) may be applicable,
that is, we may perhaps be allowed to calculate a step of x; under the
steady-state assumption. It should be noted that the actual behavior (¢) or
(d) results from two factors: the characteristics of the plant itself and the
performance of direct controls.

The importance of the possibility of replacing the original dynamic optimiza-
tion problem by an almost equivalent static optimization done in the
two-layer system cannot be overemphasized. The reason is of a computa-
tional nature: dynamic problems need much more effort to be solved than
static problems, and for many control tasks, for example, for a chemical
plant, may be practically unsolvable in the time available. There are also
many cases where the dynamic properties of the plant are not sufficiently
known. On the other hand, the operation of many plants is close to steady
state and the optimization of set-points done by static optimization may be
quite close to the desired result.

We devote considerable space in this book to steady-state, on-line optimi-
zation structures, procedures, and algorithms (Chapter 3). We should point
out that the procedures for static optimization are different in principal from
those suitable for dynamic control, if feedback from the process is being
used.

THE ADAPTATION LAYER

Let us come back to Figure 1.4 of section 1.1. We have presented there
an adaptation layer and assigned to it the task of readjusting some parame-
ters 8 that influence the setting of the value of ¢,. Assume that this setting
is done by means of a fixed function k(-):

cq =k(B, 2)

where z stands for the disturbance acting on the plant. We assume, at this
point, that it is measured and thus it can enter the function k(-).

We may of course assume that the strictly optimal value of ¢,, referred to
as &4(z), exists. With ¢,(z) we would get a maximum value of performance
denoted by O(¢&,(2)).

Optimal values of B in the optimizer’s algorithm could be found by
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solving the problem

miniﬂmize E.||Q(&,(2)) — Qk(B. ). (1.15)

We drop discussion of this formulation because we should assume that the
optimizer has only restricted information about z, denoted z* (it could, for
example, be samples of z taken at some intervals). This leads to ¢, =
k(B, z*) and the parameter adjustment problem should now be

minimize E, ,«[Q(¢,(2)) — Q(k(B, z*))] (1.16)
8

which means that the choice of 8 should aim at minimizing the loss of
performance with respect to the best plant operation. An indirect way which
may be easier to perform, but which is not equivalent, would be

minimize E, ,«[\é4(z)—k(B, z*)||. (1.17)
8

Here, unlike in (1.15), we would not be able to get 8 = such that E|| is
zero, since the basis for k{8, -) is z* and not z. It means that even with the
best possible parameters, the control is inferior to a fully optimal one
because of the restricted information.

In formulations (1.16) and (1.17), B8 is adjusted once, and kept constant
for a period of time; it is over this period that the expectations E||:|| in (1.16)
or (1.17) should be taken. In some practical adaptive systems, though, we
try to obtain the values of parameters of the plant, and thus also the values
of B, by some kind of on-line identification procedure. We may refer to it as
on-line parameter estimation. One of the important questions is how often
should the parameters 8 be updated; the obvious answer seems to be the
more often the better. A limit case in which 8 are estimated continuously
may be of interest. Let us consider what this limit case could supply. Note
that for each z, an optimal value $(z) maximizing the performance exists
and yields perfect control. We must assume, however, that we do not have
B(z) but only an estimated value of it, 8(z). With B(z), our optimizing
control would be

ca=k(B(z). 2%

where we assume that only z* is available as current information.
The application of this control gives a loss of optimality which amounts to

Ez,z* [Q(éd(z)) - Q(k(é(z), Z*))]

This value could be discussed with respect to the quality of estimating f3,
insufficiency of disturbance information z*, and so on. In other words, it
measures the overall efficiency of adaptation.
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1.3. MULTILEVEL SYSTEMS: DECOMPOSITION AND
COORDINATION IN STEADY-STATE AND DYNAMIC
CONTROL

In this section we shall consider the multilevel control structures shown in
Figure 1.7 in more detail. We will indicate the practical difference between
steady-state and dynamic control structures, which will be much more
thoroughly investigated in Chapter 3 and Chapter 4, respectively. The
mathematical needlework presented there may, however, conceal the basic
principles and features of the structures. It is easier to make the comparisons
in this section.

THE STEADY-STATE CONTROL PROBLEM

Let us first describe the complex system of Figure 1.2 and Figure 1.3 more
carefully. For the subsystem i, x; denotes the state vector, m; the manipu-
lated input, z; the disturbance, u; the input from other subsystems, and vy,
the output connected to other subsystems. The subsystem state equation
(compare Eq. (1.1)) will then be

x;(t)= d)i[l”.l](xi(t())s M1l Wit Zi[to.!])' (1.18)

In this section we assume that Eq. (1.18) is in the form of an ordinary
differential equation

% () = fi(x(8), mi(t), u; (1), z:(1)). (1.18)
The output y;, will be related to (x;, m;, u;, z;) by output equation
yit) = g (x, (1), m (1), u; (1), z;(1)). (1.19)

Now assume that the first-layer or direct controls are added to the
subsystem such that the following is enforced:

¢ ()= h(x; (1), my (1), w; (1)) = cu(1). (1.20)

See section 1.2, where this equation is introduced. Assume that we are in
steady state, x;(1)=0, Vi, x;(t) =x; = a constant; the functions h(-) have
been chosen properly so as to ensure uniqueness of the state x; and
manipulated output m,(t) in response to the imposed ¢;(t) and (), with
z;(t) as a parameter. Then Eq. (1.18') becomes

filxg, m(), w, (1), 2,(1))=0 (1.21)

and Eq. (1.21) along with (1.20) provide for x;, m,(t) to be functions of
¢;(1). Therefore Eq. (1.19) becomes the following input—-output dependence:

yi(t) = Fi(ci(1), u (1), z,(1)). (1.22)
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Equation (1.22) is a relation between instantaneous values. We have ob-
tained it by assuming that the system is in steady-state, x(t)=x,=a con-
stant.

We can consider the state to be time-varying; then Eq. (1.22) is true only
under the assumption that the actual state x; follows the desired state
trajectory x4 As mentioned in section 1.2, this is possible if the subsystem
conforms to the follow-up controllability condition (see Eq. (1.13)) and if
h.(-) is chosen, for example, such that ¢, £ x;.

In the general case of a time-varying state, we would have to put formula
(1.18) for x;(t) into (1.19), making y(t) dependent on the initial state x{,)
and the inputs m,, u, z; over interval [¢,, t]. The existence of an appropriate
equation (1.20) allows elimination of m; in favor of ¢; and thus we obtain

yi(t) = Fl([t.,.l](xi(to)’ Ci[k,.t]v ui[lu,l]’ Zi[t(,.t])‘ (122’)

The input-output relation in the form of Eq. (1.22') is not very convenient
for notational reasons. We may assume that the initial state is known, or we
can treat x;(f,) as part of the disturbance z,. Additionally, if we use notation
Yi» Cin Wy, Z; tO express time functions, then Eq. (1.22') becomes

y = Fi(c, w;, z;). (1.227)

The difference between Egs. (1.22) and (1.22") is that Eq. (1.22") denotes a
mapping between time functions (i.e., it describes a dynamic system). When
the subsystem is in steady-state, Eq. (1.22) will hold. Its practical meaning is
that the dynamics of the subsystem are suppressed and that is why we have a
static input-output relation. We will usually write Eq. (1.22) in abbreviated
form, dropping the argument ¢ and sometimes also the disturbance input:

v;=Fl(c, ), iel.N (1.23)

Note that the form of Eq. (1.23) is similar to Eq. (1.22") and the notation
does not indicate whether we describe a static or a dynamic system. This is
rather convenient for considerations of a general nature. Below we are going
to speak about the steady state and we consider y;, ¢;, u; to stand for y;(t),
ci(0), u; ().

The interconnections in the system are described by

N
w=Hy=) H;y, sothat u=Hy (1.24)
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We assume that a resource constraint is imposed on the system as a whole

N

Yonlc, u)=r, (1.25)

and also that some local constraints restricting (c;, 4;) may exist

(c,u)eCU, iel,N. (1.26)

We further assume that a local performance index (local objective function)
is associated with the subsystem

Qi(c;, w;), iel,N (1.27)
whereby a global system performance is also defined as
Q=111(Ql, Qz,-~-, QN) (1-28)

The function ¢ is assumed to be strictly order-preserving (strictly
monotonic). This kind of assumption will be made throughout this book. It
eliminates gamelike situations among decision makers from our discussion;
see, e.g., Germeyer (1976).

Note that Egs. (1.27) and (1.28) may result from two practical cases. It
might be that there were already some local decision makers and we decided
to set up an overall Q to provide for some harmony in their actions. But it
also might be that we had an overall Q first and we then decided to
distribute the decision making among the lower-level units.

We are now ready to define the goal of the coordination level: it has to
ensure that the overall constraints are preserved and the overall perfor-
mance maximized. Coordination will be accomplished by influencing deci-
sion making in the local units, and not by overriding control decisions
already made.

COORDINATION BY THE DIRECT METHOD

The simplest way to present direct coordination (also called primal or
parametric coordination) is to assume that the coordinator prescribes the
outputs y; and demands an equality y; = y;. If a resource constraint (1.25) is
present, the coordinator also allocates a value r,; to each local problem. The
local decision problem becomes

maximize Q,(c, u;)

subject to
u;, =Hy,
Fi(c, )=y
(¢, u;)e CU;

ri{c, ) <rg
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When this problem is solved, results depend on (y,, ry). Note that they
depend on the whole y,, not on y, only, because we had u;, = H;y,. We
denote the results as &(y, ry;) and Qi(&(ya ra)s Hiya) 2 Oiyg ).
The coordination instruments (y,, r,) have to be adjusted to an optimum
by solving the problem
maximize Q = Y(Q1(ya, Far)s - - - » On (Ve ran))

(ya,ra)

subject to

ittt g =r,.

The main difficulty of the method lies in the fact that a local problem may
have no solution for some (y,, r,) because of the constraints; an output value
may not be achievable or the allocated resources inadequate, or both.
Therefore, the values (y,, r;) set by the coordinator must be such that the
local problems have solutions

(Yar ra)€ YR.

The set YR cannot be easily determined because it implicitly depends on
local equations and constraints. Moreover, the boundaries of set YR are
affected by the system uncertainty or by the disturbances, since they are
related to local constraints and to the subsystem equations. This has the
implication that the coordinator would have to keep his decisions (y,, r;) in a
‘safe”” region of YR such that (y,, r,) are feasible even in the worst case of
system disturbances. Apart from the difficulty of defining the safe region, we
of course realize that the worst-case approach may force this region to be
very small or even empty. Before trying to find a remedy for this situation,
we shall make an additional remark on the direct method.

REMARK ON THE LOCAL CONTROLS

We should note that by prescribing the outputs we also preset the inputs and
hence, in the local equation we have only ¢; as a free variable:

E(Ci’ Hiyd’ Zi) = Yadi-

Strictly speaking, we should consider the interconnected system as a whole,
where we have

Flc,u,z)=y
u=Hy
and y =vy,, giving
F(c, Hya. 2) = yq

which means that a ¢ must be available such that a system of equations

Kl(c, z)=vy,4
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could be satisfied by adjusting ¢, the control decisions, for any y,, z in their
envisaged range.

The question is: do we have an adequate number of control variables
¢,j=1,...,dimc, and are they appropriately placed in the system equa-
tions?

Let us clarify the implications by using the chemical reactor in Figure 1.13
of section 1.2. The output vector y would in this case be (Fp,, C,, T) since
the outflow from the reactor is characterized by flow rate (F,), composition
(uniquely expressed by C,), and temperature (T). We have only two
manipulated variables, F, and H, and hence two controlled variables, say W
and C,. Therefore, dimc¢=2 while dimy=3. We should be unable to
prescribe an arbitrary value for the output vector. Indeed, the steady-state
equation y = K(c, z) of the reactor inclusive of direct controls would be, in
scalar notation,

Fp =1z,
Ca=Cay
T =Ki(W,, Cay, 7)

where z, stands for the flow rate demanded (imposed) by the receiving end
of the pipe, and z for the whole vector of disturbances. By choosing W, and
Caq, we would be able to steer the output C, and T, but not Fp,. Note that
our control influence on the output T is rather complicated and the actual T
also depends on disturbances. Nevertheless, we can influence it by adjusting
W,, which means that we have ‘“‘adequate ¢ for the purpose.

The question of local controls is vital for the direct method. We should,
however, consider that when this hierarchical structure is applied, the
number of local controls always exceeds the number of outputs that are
being prescribed. Otherwise, we might doubt if it makes sense to use the
structure since the coordinator could make all the ¢; decisions directly.

PENALTY FUNCTIONS IN DIRECT COORDINATION

We can propose an iterative procedure to be used at the coordination level
such that the feasible set YR would not have to be known. The main idea is
to use penalty functions in the local problems while imposing there the
coordinator’s demands. If we use the penalty function for the matching of
the output, the local problem will take the form:

maximize Q! = Q;(¢;, ;) — Ki(y; — ya;)

with the substitutions
w; = Hyy,
yi =F (¢, u)
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and subject to the constraints
(¢, u;) e CU;
ric, wY=ry.

As can be seen, we used the penalty function to ensure the condition
¥i = ¥4 The resource constraint could also be dealt with by a penalty term, if
necessary. Also, the substitution w; = H;y, may be replaced, if needed, by
the penalty term. Interaction input u; would then become a free decision
variable in the local problem. The result of using the penalty formulation is
that the solution to the local problem would exist even for an infeasible y,;.
The demand would simply not be met.

We must now have a mechanism 1o let the coordinator know that he is
demanding something impossible. We let his optimization become:

maximize Q' = (l’[(ol()’d, ra)— K3, —=va))s . - (ON(Yd’ ran)
-~ Ky(Pn _'YdN))]

where the clue is that we introduce the local performances less the penalty
terms. Hence, the coordination iterations will try to adjust y, so as to reduce
the values of the penalty terms, while the local optimizers do the same on
their part by influencing y;.

It is shown in section 2.3 of Chapter 2 that when the iterations reach the
limit where the penalty terms vanish, the values y, obtained there are both
feasible and strictly optimal.

A MECHANISTIC SYSTEM OR A HUMAN DECISION-MAKING HIERARCHY ?

Three clarifications are in order here because the reader of the previous
section may be confused about what our considerations are applicable to.
First, we can obviously think of coordination used in an off-line, model-
based solution of a set of local problems. This would be decomposition and
coordination in mathematical programming. Sections 2.2 and 2.3 of Chapter
2 are appropriate here. If we apply the solution of the optimization problem,
that is, the final control values ¢, to a real system, the feasibility of the result
with respect to the real system must be considered. The problem of
generating feasible controls may arise. Nevertheless, from the viewpoint of
control, this will be an open-loop control structure. Section 2.7 of Chapter 2
deals with this subject.

Second, we can consider that the coordination level acts on local decision
makers who control the real system elements and try to comply with the
coordinator’s demands. Here we may not even know what the local decision
making process is. Let us look at this situation by assuming that the
coordinator works by iteration. At each step of the iterative procedure, the
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local decision makers ‘‘do their best” with respect to the real system
outputs. If we know the algorithm that the local decision maker is using, the
time-behavior of the system from one coordination step to another could be
discussed. Let us only state that the behavior may be unstable because of the
many separate decision makers acting on the same system. If a steady state is
achieved, the coordinator may take his next step to try to improve the value
of his performance function (whether in the penalty form or without it).
Note that in the case where no penalty terms are used, the direct coordina-
tion can in principle be achieved in one step: the coordinator sets values
(yq, r4) that should optimize the system to the best of his knowledge (i.e.,
according to the model of the system) and then the local decision makers do
their job by achieving y; = y,; and complying with the resources constraint.
It is in this case, however, that y,; should be feasible for the real system;
otherwise the expectations of the coordinator may not be realized.

If the coordinator’s demands are feasible for the real system (for instance,
because he knows the constraints exactly, or he has decided to move in the
‘“‘safe region” only), then the demands are feasible in every step of the
iterative procedure of the direct method. Hence, the direct method is
sometimes referred to as the feasible method. In contrast, the direct-penalty
coordination is using infeasible demands in the course of the iterations.
When the local decision maker is trying to comply with an infeasible
demand, his output may violate the constraints related to the input of
another subsystem.

We can also consider a mechanistic decision-making hierarchy of control,
where we attribute certain formal algorithms to decision making at the local
level. We have already mentioned that formal algorithms can be used to set
up an open-loop control structure. This would only very seldom be a
satisfactory and ultimate solution. The performance of the control can be
improved by using feedback information; the human decision makers pos-
tulated above were using such information implicitly. Now we would have to
say very explicitly what kind of feedback information is available and how it
is being used in the formal algorithms. For example, we can assume that the
real subsystem outputs y4; are measured. Then we can consider them to be
used in essentially two ways: in the local algorithm and in the coordination
algorithm. The second possibility has been quite satisfactorily explored and
is the subject of the major part of Chapter 3. We are able to obtain
coordination algorithms that

e End in a point not violating the real system constraints (provided they
are of the form (¢, ;)€ CU; and ye Y),

e Provide for a value of overall performance that is superior to the result
of open-loop control.
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The first possibility, i.e., the use of measured values y,; in the local level
algorithms, is discussed in section 3.4 and some useful results are provided.
We can also make use of yy,; at both levels; one of the price coordination
structures of section 3.3 works in that way.

A MORE COMPREHENSIVE EXAMPLE OF STEADY-STATE OPTIMAL CONTROL

A typical area of application of steady-state optimal control is the continu-
ous chemical processes, where the hierarchical approach was first used. Let
us describe how the multilevel approach could be applied to control of an
ammonia plant.

Description of the process

Figure 1.16 displays the principal processes in the plant. The first is methane
conversion, in which H, comes from the methane and N, from atmospheric
air, and steam is added to provide for stoichiometric balance. The second is
conversion of carbon oxide, in which CO is turned into CQO,, because CO
could not be removed directly. Then we have decarbonization, where CQO, is
removed from the gas stream. At this point there should be no CO or CO,
present in the gas stream—what remains of them is neutralized by conver-
sion into methane in the methanization part of the plant because CO and
CO, are toxic to the catalyst used in the synthesis reactor. The synthesis
reactor is the last essential part of the plant—here the mixture 3H,+ N,
reacts to make 2NH; at high pressure and temperature. A cooled liquid
(essentially pure ammonia) F, leaves the plant. The characteristic feature of
the ammonia synthesis process is that the synthesis reactor works with
recycling, whereby its input flow consists of both the fresh gas and the
recycled gas—the latter with NH; removed (transferred to the liquid F,).
The fresh gas, however, contains not only H, and N, but also some ““inerts,”
i.e., components not reacting in the process. They are mainly argon from the
atmospheric air and CH, from the methanization process used for removing
the remaining CO and CO,. Inerts are no harm, but they would cycle in the
synthesis reactor loop endlessly; as new inerts continuously flow in with the
fresh gas we would have a considerable increase of inerts in the loop gas,

£
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FIGURE 1.16 Principal processes in an ammonia piant.
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leaving no space for the useful H, and N,. Inerts have to be removed. There
is, however, no practical way to remove them selectively, so the inert level is
kept down by a very simple measure: part of the loop gas is blown out into
the atmosphere as the so-called purge, F,.

The optimization problem

Assume that we want to maximize the steady-state production rate Q of
ammonia (in kilograms per hour). We have

Q=F,-F,)r, (A)

where r; is the solubility of component j of the circulating gas in liquid
ammonia. In order to get variables of other parts of the plant involved in the
expression for Q, let us write two mass balance equations. The overall mass
balance of the synthesis loop will be:

F,+F,=F, (B)

where F, is the fresh gas inflow. The mass balance of the inerts in the
synthesis loop will be:

Farin +Fp)}pi = Fs)}si (C)

where r,, is the solubility of the inerts in the liquid ammonia, y,; is the
concentration of the inerts in the purge gas, and y,; the same for fresh gas.
The use of (B) and (C) allows us to arrive at

Q:FS(I—M>(1;Z r,-). (D)
pi — Tin i

At this stage we infer from physical and chemical knowledge that r;, r,, do
not depend on any plant variables, and vy, >y, >r, Under these cir-
cumstances we can see that Q is maximized when F, is maximized, y, is
minimized, and vy, is maximized (please recall the physical meanings). We
thus would have, in terms of local performance indices Q,,

Q= (Q,, Qs O =bE(1-22)

Yoi— a

where a and b are constants. Note i is in this case a strictly order-preserving
function.

There could be three local problems: maximize F,, minimize y and
maximize y,. Since the local problems are of course interconnected, a
coordination will be needed to provide for max Q while preserving all
constraints. In the actual study, it was assumed that F, is given. It was,
however, found reasonable to replace y; by two local performance indices,



43
both to be minimized:
Q, £ )’&L + )’éo» Q.= Yém

and to form three subsystems as shown in Figure 1.17. They have the
performance indices Q,, Q,, and Q;2 vy, respectively.

We denoted by y¢y, the concentration of CH, at the output of the first
subsystem. This CH, directly contributes to the inert content in the gas F;;
therefore, it makes sense to minimize it right away. The same applies to CO
content here, because CO will not be removed in decarbonization. The
performance index Q, for the second subsystem is the CH, concentration
in the fresh gas stream F,. This CH, involves the result of methanization
which had to be done on the CO,. Local control can decrease this CH, by
improving decarbonization, i.e., by decreasing the CO, content of the gas
stream. Operation of the second subsystem is subject to the constraint that
methanization is always complete, i.e., no CO, or CO can be left in the
stream.

In the third subsystem we have to maximize Q; 2 y,;, the concentration of
inerts in the purge gas. This means of course that as little H, and N, is lost
as possible, because in the balance all incoming inerts must be let out. We
then have

F,y,; =a constant.

Note that we could replace the goal maximize y,; by the equivalent minimize
F,

-
Coordination variables and coordination method
For the nonadditive function ¢ in

Q :ll’(ol’“-? QN)

we have to use coordination by the direct method (price coordination,
described below, could not be used here). Let us look at the possible
coordination variables. In principle, they should be all the subsystem outputs
(or inputs). The coordinator would prescribe their values and thus separate
one subproblem from another.

————==—-" ] - — ’____'Fp
| P [ ﬁ
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FIGURE 1.17 The ammonia plant divided into three subsystems.



44

a9 1 - J b
SL'S L SN
- | [ 'r,
= it L
W TT T e w
b)
Maximize
production
/ w:dinaﬁon variables
/
min (UCH,,*UCO) min Yoy, ormnaw)i(ng :,

FIGURE 1.18 Subsystem interactions and the control structure.

Here a serious failure of the approach was encountered. Examination of
the plant showed that there are many feed-forward and recycle links
between parts of the system, not only in the main stream. This was due to
the plant design where the links utilize the heat energy generated in the
plant and thus make the plant self-supporting in this respect. The main links
are shown in Figure 1.18. The failure of the approach consisted in the fact
that to describe a cross section through all links would take about 40
variables (flow rates, temperatures, concentrations and so on); these would
have to be decision variables in the coordination problem. In the actual task,
however, all parts of the plant together had only 22 control variables to be
adjusted (the set points of 22 different controllers). Hence we would replace
a 22-variable problem by a 40-variable problem at the coordination level, in
addition to having to solve the local problems. The two-level problem was
more complex and expensive than the direct one.

An examination of the quantitative properties of the problem and of the
actual operating experience has permitted an approximate solution. Only 5
out of 40 variables were found to be ‘‘essential” and were consequently
chosen as coordination variables:

v,—gas (CH,) flow into the process

v,—steam flow into the system

v;—gas pressure in the gas preparation section
04, Us—two principal heat steam flows
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The other variables were found to be either directly related to the five, or
were assumed to be constant and needing no adjustment by the coordinator,
or their values were almost irrelevant for the plant optimization. Note, for
example, that the coordinator would not have to prescribe the air inflow to
the process. If he sets gas and steam, the amount of air is automatically
dictated by the required N, to H, ratio. The ammonia process has indicated
an important topic for hierarchical control studies: subcoordination, that is,
the use of fewer coordination variables than would be required for a strict
solution.

SUBCOORDINATION

Let us very briefly present the problem of subcoordination for the case of
the direct coordination method. The main point is that the coordinator
would prescribe the output y by using a vector v instead of y,;, where
dim v <dim y. There are two principal ways of using v in coordination. One
way of using v is to set up a fixed matrix R and specify for the local
problems: y, = Ry, that is, y,; = Rv for each subsystem. Note that if we
knew our system accurately, we could construct an adequate matrix R =R
and a value v = 0, obtaining y; = y, (the strictly optimal value), whatever the
dimension of v. This makes little sense, however; the differences between
the model and reality must be assumed.

Another way of using v is to set a fixed function vy (-) and require that the
local problems comply with y(y)= v, that is, v,(y,) = v; for each subsystem.
This makes more sense intuitively, since we are granting the subproblems
their freedom except for the fulfillment of the demands specified in v. For
example, we demand a total production but do not specify the individual
items. However, in this case the subproblems are not entirely separated and
analysis of such a system is much more difficult. The subcoordination
approach is also possible in the framework of the price method, which will
now be discussed.

COORDINATION BY THE PRICE METHOD

Let us recall the description of the system and of the control problem, as
was given by Eqs. (1.23) to (1.27) at the beginning of this section. We have
subsystem equations:

y: = Fi(c, w), iel,N (1.23)

the system interconnection equation:

N
w=Hy=) Hy, u=Hy (1.24)

i=1



46

resource constraints:

N
Z r(c, w)=r, (1.25)
1
local constraints:
(¢, u;)e CU, iel,N (1.26)

and local performance indices:
Q(c.w)., iel,N. (1.27)

Even before we define the global performance index of the system, we can
define the task of coordination, which will be to influence the local decision
makers in such a way that system constraints will be preserved and the
overall optimum will be achieved. Price coordination consists in letting the
coordinator prescribe prices on inputs, outputs, and resources and then
permitting the local decision makers to define their own choices of the
values of these variables. The system is coordinated when the local choices
satisfy the interconnection equation (1.24) and do not violate the global
constraint (1.25). The prices that effect this state of the system can be
termed equilibrium prices, since satisfaction of Eq. (1.24) means an equilib-
rium of the inputs and outputs.

Price coordination brings about an overall system optimum if the global
performance index is a sum of local ones

N
0= 0. (1.29)
i=1
It is worth remembering that the direct and penalty function coordination
methods presented before allowed a more general form of the global
performance index.

The discussion of price coordination that follows omits the resource
constraint (1.25) and focuses on interconnections in Eq. (1.24). Suitable exten-
sions will be mentioned. A full discussion can be found in Chapter 2, section
2.4. See also section 2.5, where the prices (LLagrangian multipliers) are used
along with appropriate penalty terms, and have a broad range of
applicability.

INTERACTION BALANCE METHOD (IBM)

In economic systems, price coordination has been known for a long time.
Prices were called upon to equate supply and demand, that is, equate the
corresponding outputs and inputs. In terms of the system description, the
aim of price adjustment is to provide for satisfaction of the interconnection
equation (1.24).
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Let us look at this in some detail. The local problems, i.e., problems
associated with the individual system elements, can be formulated as follows
(assuming that Q,(c;, u;) has to be minimized):

minimize Q,oq4; = Qi(Ci, ui)+</\i’ u;) —(uy, Fi(cy, ui)> (1.30)
subject to
(¢, w)e CU,

with the results &(A), &;(A), 9;(A)=F;((A), 4;(A)), where X\ is the price
vector.

If (1.30) is related to a finite-dimensional problem (as is the case in
steady-state optimization), then the scalar product

dinlu.,
{A;, u;) means Z Al

i=1

and

dim y,
(i Fi(ci, ;) means Z wiiFy(c ws).
i=1
In probdem (1.30), we assumed coordination by the price vector A,
composed of prices of inputs in the whole system. Hence, A; are prices of
interaction input u;; the prices w; of output y; are defined as well by virtue
of (1.24), namely

N .
i=1

It is therefore right to say that the results of (1.30) are exclusively
dependent on vector A.

The interaction balance or equilibrium prices A will be defined so as to
provide for

a(X)—Hy(XA)=0 (1.31)

where y(A)=F(¢(A), i(A)).

Providing for condition (1.31) is the task of the coordinator. In classical
economics this could be assigned to a procedure at the stock exchange: a
person not connected with the negotiating parties would vary the price A,
watch the responses #(A) and y(A), and stop the procedure at A = A

In order to apply the price method, we need the following:

e Existence conditions for A, the equilibrium price
e System optimality with control ¢(A)
e Procedures to obtain A
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These will be discussed in Chapter 2. They are based upon discussion of
the Lagrangian function of the global problem. After the local minimizations
(1.30) have been performed, the Lagrangian is

dN) =2, Q&) &)+, a(A)—HF(E(N), 4()))

i=1

A

and we require that it has a maximum at A = A:
¢(X) =max $(1).
A

If such a A exists, its further use to determine optimal control is restricted
to the case where (¢, &1), the solutions, are single-valued functions of A. This
requirement appears to be vital for applications. The most simple sufficient
conditions are: (¢, 6i) are single-valued if the functions Q;(-) are strictly
convex and the mappings F,(-) are affine (linear). With A = A, the unique
solutions é(X), ﬁ(X) are optimal.

It may be appropriate to indicate that the requirement of uniqueness of
é(N), ﬁ(X) in response to a change in A has a simple interpretation: since the
prices A aim at providing a match of the outputs to the inputs of other
subsystems, they should have a well-defined influence. In many real-life
problems, the uniqueness of response can be predicted by physical consider-
ations for systems that are far from linear (remember that we do not know
the necessary conditions, while the sufficient ones are too severe to be of
much practical use).

It is easy to provide an example in which the uniqueness of response will
fail to appear. If A is the price imposed by the coordinator on some product
and y(A) the optimal amount produced by a subsystem according to its own
local optimization procedure, y(A) will not be well-defined when the unit
production cost is equal to A. Note that there would be no local gain or local
loss associated with the size of production y, which means that no value of
output y will be preferred and this subsystem will give no single-valued
response to price A.

Let us now turn back to the main stream of our considerations. What
procedures could be used at the coordination level in the search for A? It
will be shown in Chapter 2 (section 2.4) that if Q,(+) are continuous and F;(*)
are continuous, then gradient procedures for A can be used, if we find a way
to deal with the points where the (¢, &i) are not unique and where the
gradient is not defined (subgradients can be considered there). In those
regions of A-space where the (¢, ii) are unique, the following formula holds
for the (weak) derivative of ¢(A): (see section 2.4 for details)

Vo (A)y=a(A)—HF(E(A), a(A)). (1.32)
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Note that this is exactly the input—output difference. the discoordination, in
the system, which has to be brought to zero. The second derivative,
V2¢(A), does not exist in the general case.

Let us mention that the interaction balance method (IBM) described so
far can be applied to both static and dynamic problems. In this method, the
search for A is based on the difference, 4(A)—Hy(A). It is, therefore, a
computational concept rather than a control structure. In a system that is
already in operation, the interconnection equation is satisfied all the time for
any control ¢. We could never find out if A is correct. We could, therefore,
use the method for open-loop control only. It means that we would first
compute ¢(X) and then apply it to the real system. The control result will of
course strongly depend on the accuracy of the models.

Let us now come back to the resource constraint (1.25):

riley, up)+ - Fry(on. un) =ro.

This additive form of global constraint can be incorporated into the price
coordination scheme by using an additional price vector n (the resource
price) and adding to each local problem a value {7, r;(¢. u;)), so that the local
objective function becomes:

Qimoa = Qi(ci, u) +{Ay, ) — (i, Fi(ci, w)) +<{m, ri(c,, w)). (1.33)

By varying m, the coordinator would change the resource requirements of
the local problems so as to satisfy the overall constraint. In mathematical
programming terminology, n would be a Kuhn-Tucker multiplier. The next
paragraphs will discuss some other ideas of price coordination, in which
feedback from the operating system will be used to improve control.

PRICE COORDINATION IN THE STEADY STATE WITH FEEDBACK TO THE COORDINATOR
(THE IBMF METHOD)

In this section we shall consider the optimization problem to be in finite-
dimensional space, i.e., to be a problem of nonlinear programming. This
means that we optimize the steady state in a complex system. We
remember from section 1.2 that steady-state control is an appropriate
technique if the optimal state trajectory of a dynamic system is slow enough
to assume that the value of state vector x is at any time related to control
only. the time derivative of x being negligible.

The mappings F,, Q, are now functions in finite-dimensional space. We
have therefore the following model-based global problem:

N
minimize Q = Z Qi (¢, w)

i=1
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subject to

y; = Fi (¢, ), iel,N
u=Hy
(¢, w)eCU, iel,N.
We have dropped the resource constraint for simplicity. A solution to the
model-based problem yields model-based control ¢, We intend now to pay

considerable attention to the difference between model and reality; let us
therefore formulate the following real problem:

N
minimize Q = Z Qi (g, ui)

i=1

subject to

YI' :F*i(ci’ ui)’ le 1’ N
u=Hy
(¢, u;)e CU,, iel, N.

We should notice that here the only difference between model and reality is
assumed to exist in the subsystem equations, that is, the functions Fy (-) are
different from the functions F;(-) in the model. We shall indicate below some
effective ways to deal with the consequences of this difference.

It must be stressed. however, that differences also may exist in the
performance function and in the constraint set. For example, if a perfor-
mance function is explicitly Q;(c;, u;, y;), then it will reduce to some Q;(c;, u;)
by using the subsystem equation, but this makes it model-based. The real
Qx4 (¢, w;) would be different from Q;(c;, u;). In a similar way, the set CUly,;
may be different from CU,.

The solution to the real problem will be termed real-optimal control éy. It
is not obtainable by definition since reality is not known. We can only look for
a structure that would yield a control better than the purely model-based ¢,
but in principle what we will achieve is bound to be inferior to Cy.

One possible structure is iterative price coordination with feedback to the
coordinator. It is shown schematically in Figure 1.19. The local problems are
exactly the same as in the open-loop interaction balance method, that is, we
have for each i€ 1, N:

minimize Qi(ci) ui)+<Ai9 ui>_<p"i’ E(Ci’ ui )>
subject to

(¢, u;ye CU..
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FIGURE 1.19 TIterative price coordination with feedback to the coordinator.

The controls ¢(A) determined by solving this problem computationally for
the current value of A are applied to the real system, giving some uy and y,.
The coordination concept consists of the following upper-level problem:

find A =X suchthat @(X)—u(é(X))=0. (1.34)

Condition (1.34) is an equality of model-based optimal input 4(A) and uy,
measured in the real system and the product of control ¢(A). Providing for
this equality is the basic idea of the interaction balance method with
feedback (1BMF).

The properties of control based on condition (1.34) have been studied
quite extensively, and are discussed in Chapter 3, section 3.3. The usual
questions of the existence of A, system optimality with control é(A), and
procedures to obtain A have been discussed there and detailed answers have
been formulated. The essence of these answers is as follows.

Solution A exists, if solution A of the open-loop interaction balance
method (1BMm) exists for all s-shifted systems

u=HF(c,u)+s

where s€8, and S is the set of all possible values of the model-reality
difference

HF,(c,u)—HF(c,u)=s
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with (¢, u)e CU=CU, X ... x CUy. When the models do not differ from
reality, ¢(X) is strictly optimal control and A equals the equilibrium prices A
which would be obtained by solving the problem by the interaction balance
method described above. When models differ from reality, the control
based on (1.34) is in the first approximation no worse than the control based
on open-loop value . In the particular case where

Fyilc, u) = F(c, u)+B; icl,N

that is, where the model-reality difference of the subsystems consists in a
shift, the control based on condition (1.34) is strictly real-optimal. The
open-loop would, of course, be much inferior in this case. See section 3.3 in
Chapter 3 for some numerical results.

Control based on condition (1.34) has the very important property of
keeping to the constraints in the real system. Note that this real control ¢,
equals the model-based ¢ for any A, because the result ¢(A) is applied to the
system. For A = A, we also have uy = ii. Since the model-based solution will
keep (¢, &) € CU,, i =1, N, the same will be kept in the real system, but only
at A = A. Note that the open-loop control ¢(A) may violate the constraints in
the real system because at A = A we will generally have u, # @. The control
based on A =X does not violate the constraints (¢ ;)€ CU, if the real
constraint sets equal the model ones, CUy,=CU, icl,N. Section 3.3
shows, however, a modified method (MiBMF) where the case CUy;# CU; is
also covered by appropriate use of feedback information.

As far as the procedures to find A are concerned, iterations have to be
done at a rate appropriate for the real system, i.e., a rate permitting new
values uy to establish themselves after a change of A. Unfortunately, the
expression

Re(W) = 6(A) —uyg(ér)) (1.35)

which has to be brought to zero is not a derivative of any function. The
value of A has to be found by solving the equation Ry(A)=0. It should be
stressed that if there are inequality constraints in the local problems, R4(A)
will in general be nondifferentiable. Suitable numerical methods to find A
are proposed and discussed in section 3.3 of Chapter 3.

We should emphasize that the application of coordination principle (1.34)
means that iterations must be done on the real system, as an on-line control.
This can be performed in a steady-state optimization, but not in a dynamic
one. The only exception is iterative optimization of batch or cyclic processes,
in which various functions of time are applied in each consecutive batch.
The main field of application of the coordination principle (1.34) is, how-
ever, steady-state optimizing control, and this is the framework in which
Chapter 3 has been written.
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Let us add an example to explain what on-line price coordination really
means. Consider the electric power system and its customers. The amount of
power that is produced is matched to the current load. How can we tell
whether the price of electric energy is correct when there is no difference
between demand and supply? From the on-line price adjustment proposed
in this section, we can infer that the price is correct when the production-
load balance of the power that has established itself in the real system (uy) is
equal to the model-based optimal value (&t). Any difference would be used
to change the price of electricity.

DECENTRALIZED CONTROL WITH PRICE COORDINATION (FEEDBACK TO LOCAL DECI-
SION UNITS)

The structure of Figure 1.19, although effective and superior to open-loop,
model-based control, may be criticized because the information about real
system uy is made available only to the coordinator. The local units
calculate their controls and their inputs u; for each A on the basis of models,
“knowing’ that reality is different. The scheme of Figure 1.19 is therefore
suitable for a mechanistic control system, but does not reflect the situation in
which local problems are solved by decision makers with more freedom of
choice.

We can expect that the local decision maker would tend to use the real
value uy; in his problem, that is, he would

minimize Q;(¢;, Us;) +{ A, Us) — (s, Fi(Ciy Uger)) (1.36)
subject to
(Ci’ ui) € C[Jl

Schematically, this is presented in Figure 1.20 as feeding u,,; to the corres-
ponding local problem. Even with fixed A, the control exercised by local
decision makers on the system as a whole remains to some extent coordi-
nated, since the value of A will influence the control decisions. However,
since uy; are used locally, we may call the structure of Figure 1.20 decen-
tralized.

A problem in itself is system stability, or the convergence of iterations
made by local optimizers while trying to achieve their goals. It is obvious
that all the iteration loops in the system are interdependent, since a uy, will
depend on the decisions ¢ ={c,, . . ., Cy) in the previous stage, that is, on the
decisions of all the decision units. If the iterations converge, some steady-
state values ¢(A), fig(A) and y4(A) will be obtained for the given price vector
A. Tt may be predicted that if this A would happen to be A from the previous
paragraph, the result of decentralized control would also be the same as in
the previous structure. This does not say that we should aim at it, since the
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FIGURE 1.20 Decentralized control with on-line price coordination.

results obtained with A are not real-optimal and a better value of A may
exist.

We should look for some way to iterate the prices A in the system of
Figure 1.20. A possibility might be

N
minimize Q = Y, Qi(&(A), fix(A)) (1.37)
i=1
which simply means that we should find a price A such that the overall
result of local controls is optimized.

Two properties of the problem seem predictable. If the models are
adequate, and all iterations converge, they will converge to the strict overall
optimum for the system. If the models differ from reality, then the con-
straints (c;, ;) € CU; will be secured (as in the structure in Figure 1.19), but
the overall result will be suboptimal; in performing the local optimizations
we continue to have an inadequate (model-based) value of the output vy,
Section 3.4 of Chapter 3 is devoted to a more thorough discussion of this
control structure.

DYNAMIC MULTILEVEL CONTROL

The structures of on-line dynamic control using decomposition of the
control problem differ from those applicable to the steady state. The
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differences lie in the use of feedback from the system in operation. In
steady-state control we could use feedback in the form of measured inputs
or outputs of the system elements and provide for an extremum of a current
or “instantaneous” performance index, as described above in this section. In
dynamic optimization, we need to consider at time ¢ the future behavior of
the system, that is, to consider an optimization horizon. Since the future
behavior depends on both control and the initial state, we cannot determine
the optimal control input unless we know the present state of the system; if
we wish to have a control structure with feedback from reality, this feedback
must contain information on the state x(t).

There are three principal ways in which local dynamic control problems
can be formulated and subsequently coordinated by an appropriate master
problem. They are the following:

o Dynamic price coordination, in which time-varying prices on the inputs
and outputs are imposed by the coordinator, who also decides on the target
states to be achieved by each subsystem over the local optimization horizon

e Structure based on the state-feedback concept, in which the local
decision making is reduced to a static (instantaneous) feedback decision rule,
and the coordinator supplies signals that modify either the local decisions or
the local decision rules so as to account for the performance of the system as
a whole

e Structures using conjugate variables, in which local decision making is a
kind of static (instantaneous) optimization, and the optimal dynamic policy
is secured by a vector of prices on the derivatives of the state variables (the
trend of the subsystem state), i.e., the vector of conjugate variables imposed
on the subsystems and readjusted by the coordinator

In this section, which is of an introductory nature, we shall briefly discuss
only the first of these alternatives, and focus on the dynamic features. A
more thorough discussion of the dynamic price coordination structure, as
well as a description of the other two possibilities, are contained in Chapter 4.

Assume that the global control problem of the interconnected system is as
follows

minimize Q = _i Ltrqm(x,-(t), my(t), u; (1)) dt (1.38)
subject to
X (1) = fi(x: (1), m(1), u (1)), iel, N (state equations)
yi(t) = g (x: (1), m(8), u; (1)), ie 1, N (output equations)

u(t)= Hy(t) (interconnections)
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with x(0) given, and x(¢) free or specified. Consider that in solving the
problem we incorporate the interconnection equation into the following
Lagrangian:

L= 3 [ oo mo. w0 de [ 00,0 - Hy(o) at

where (A(t), u(t)— Hy(t)) means

dim u

PIRNOICIORS : (O

Assume that the solution to the global problem using this Lagrangian has
been found and it has provided for

%, i=1,..., N (optimal state trajectories)
m;, i=1,..., N (optimal controls)

i, i=1,...,N (optimal inputs)
y.i=1,...,N (optimal outputs)

(the value of the Lagrangian multipliers
that provides for the solution)

Note that now our Lagrangian can be split into additive parts, thus
allowing the formation of local problems of the kind:

minimize Q; = J, ' [0 (x:(£), m (1), ui(’))"’(&(’)’ u; (1))

(i (1), yi(e))] dt (1.39)
where
yi(0) = & (x (1), my(1), u; (1))
and optimization is subject to
%) = £ (x (1), mi(t), u (1))

with x;(0) given, x;(¢) free or specified, as in the original problem.
In the local problem, the prlce vector )\ is an appropriate part of A, and g,
is also given as a function of A as

N A
i, =), HEX.
i=1

Notice that we have put the optimal value of price vector A into the local
problems, which means that we have solved the global problem before and
that the solutions of the local problems will be strictly optimal. There is little
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sense, however, in solving the local problems if the global problem was
solved before, because the global solution would provide not only A but also
x and 1 for the whole system. To make local solution practical, let us try to
shorten the local horizons and use feedback in the local problems. If we
shorten the horizon from ¢ to t}, the local problem (1.39) becomes

minimize Q, = Jﬂr [qo: (x;(t), m;(t), u, () (A (), u, (1)

= (0), yi ()] dt (1.40)

with x;(0) given as before, but the target state taken from the global
long-horizon solution, x;(t;) = %;(t;). Here we might remind the reader of the
discussion of multilayer hierarchies with the divided time horizon in section
1.2 (see Figure 1.9).

For the local problem (1.40), we must of course supply the price vectors
Ao e It may also be reasonable to use &, that is, the ‘“‘predicted” input
value, from the global solution. The short-horizon formulation (1.40) will
pay off if we have to repeat the solving of (1.40) many times in order to use
feedback information; we would have to solve the global problem only once.
See Figure 1.21, where the principle of the proposed control structure is
presented.

Coordination level
(tong horizon)

T—_/‘ Local level

I (shor-f horizon)

Y
\

i
\
..

FIGURE 1.21 A structure for on-line dynamic price coordination.
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Feedback at the local level consists in solving the short-horizon local
problems at some intervals T, <t} and using the actual value of the mea-
sured state x4 (kT,) as the new initial value for each repetition of the
optimization problem. This gives us something new; we now have a truly
on-line control structure and can expect, in appropriate cases, to get results
better than those dependent on the models alone. Note that we have now
gained from both decomposition (reducing dimension) and a shortening of
the horizon. The feedback algorithm just described would be referred to as a
repetitive optimization scheme.

We should mention disturbances that act on the real system but were not
shown explicitly in the formulations. Disturbance prediction would be used
while solving (1.38) and (1.40), that is, the global and the local problems. It
is indeed because of the disturbances, which in reality will differ from how
they are predicted, that we are inclined to use the feedback structure of
Figure 1.21.

The feedback introduced thus far cannot compensate for the errors made
by the coordination level in setting the prices A. Another repetitive feedback
can be introduced to overcome this problem, for example, by bringing to the
coordinator the actual value x,; at time tf, 2tf,... and asking that the
global problem be resolved for each new initial value. This structure of
control is presented in Figure 1.21. We should note that feeding back the
actual values of the state achieved makes sense if the models used in
computation differ from reality, for example, because of disturbances.
Otherwise, the actual state is exactly equal to what the models have
predicted and the feedback information is irrelevant.

In Chapter 4 we discuss the structure of Figure 1.21 and its different
varieties in much more detail. In particular, we consider there the important
case in which the subsystems are interconnected not only in a direct (“stiff””)
way, but also through storage elements (see Figure 4.1). It is believed that
these kinds of interconnections may be quite common in dynamic systems,
for example, where some subsystem products are stored and other subsys-
tems take their inputs from these stores.

1.4. INFORMATION STRUCTURES IN HIERARCHICAL
CONTROL

As noted earlier in the discussion of Figure 1.1, the functioning of the
elementary control unitinvolves two separate processes: an observation process
and a decision process. The observation process collects information about
the controlled system and its environment. The decision process uses this
information, plus additional information already on hand, to select desirable
controls. The effectiveness of these two processes is judged by evaluating
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results using a performance index g or its integral Q. Note that the
information used by the decision process is made up of two parts: the
observations v(t) defined in Eq. (1.4) and the prior information which we
will denote by the vector p. We will refer to these two items collectively as the
information.

The identification of the two separate processes performed by the elemen-
tary control unit leads to the identification of two separate parts of the
control system design problem:

1. The design of the decision process
2. The design of the observation process

Using notation introduced in section 1.1 we see that the second part
involves the choice of the information function h in Eq. (1.4) where

v(t) = h(x(1), m(t), z(1)) (1.4)

and the first part involves the choice of the decision rule d in Eq. (1.5). We
will modify Eq. (1.5) to show explicitly the dependence on prior data as

m(t)=d(v,.1 P)- (1.5)

Much classical control theory simplifies the design problem by considering
only. the first part: the choice of an optimal control law when the informa-
tion function h is given. This approach is appropriate when h is chosen
intuitively from a limited range of possibilities or when h is given in the
problem specifications. For example, a common assumption is that h pro-
vides perfect information about the state of the controlled system. While this
is clearly simplistic, it is in many cases close enough to reality to yield useful
results.

More generally, a control system design involves a choice of both h and d.
Moreover, in an optimal design they cannot be chosen independently
because m, and thus g, depends on h by way of d. That is, because

q(H)=q(y(1), m(t), v(1)
=q(y(t), d(h(x(t), My, .3 Zpian P> V(D). (1.41)

Thus, in the general case we must evaluate alternative (h, d) pairs to find the
optimal design.

As we move to the consideration of hierarchical control structures, the
informational part of the design problem grows considerably more complex.
In a hierarchical control system, there are several separate decision (control)
units. Each decision unit makes its own independent observations v; and has
its own prior information p, and its own manipulated variables m;. In the
initial design, we might simply maintain this partition of information and
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have each unit choose local controls based only on its local information
(v, p;). This approach to the control of complex systems is commonly
employed in many situations, but particularly those in which the controlled
subsystems (Figure 1.2) are only weakly coupled, either by accident or by
design. However, even in such apparently completely decentralized control
schemes, there is usually some “tuning’ (i.e., some coordinated adjustment
of all the d;) to improve performance. Thus it appears quite reasonable to
expect improved performance through some sort of information sharing
among control units, and we now add a third part to the control system
design problem to allow such sharing.

3. The design of an information distribution mechanism

The fundamental questions to be considered here are what information
should be sent to whom and when. As in the single decision unit case, we
may be tempted to avoid the complexity of parts 2 and 3 by simply assuming
at the outset an observation process and an information distribution
mechanism. For example, we may try to extend the single control unit
approach and simply assume that each decision unit receives all the available
information (observations v; and prior data p, from everyone else). Unfortu-
nately, this simplistic approach is now somewhat dangerous because its basic
assumption is inconsistent with the original justification for a hierarchical
control system presented in section 1.1. There we argued that the decision
process should be divided precisely because of informational constraints.
That is, no decision unit had both access to all the information and the
capacity to process all the information. Thus we might expect to obtain
rather strange results if we eliminate the information constraints by assump-
tion. To avoid inconsistency, it appears that we must explicitly recognize the
information constraints in our design procedure. Yet this is not easily done.
The explicit inclusion of informational constraints in a hierarchical control
system design problem is very difficult, or perhaps even impossible. At the
moment, a fundamental aspect of the design problem cannot be solved and
yet cannot be ignored or eliminated without considerable peril of obtaining
meaningless results. For example, suppose we assume, either explicitly or
implicitly, that all of the decision units can have access to all of the available
information. In this case, any one of them can solve the entire decision
problem and simply direct the actions of the others. All but one is then
superfluous and our design reduces to a single control unit solution. Yet this
type of solution was initially ruled unacceptable!

We are forced to conclude that, where possible, the informational con-
straints must be explicitly included in the hierarchical control system design
procedure. Where this is not possible, we may be forced to design without
constraints, but we must then check the results for constraint satisfaction.
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However, in any case, it is clear that we cannot simply ignore the informa-
tional aspects of the design problem. Unfortunately, these informational
aspects are very complex and at present only poorly understood. We
examine these questions in greater detail in Chapter 5.

INFORMATION STRUCTURE

In the above paragraphs we have argued that there are two informational
parts to the hierarchical control problem: the design of the observation
process and the design of the information distribution mechanism. We now
lump these two parts together as the design of the information structure.

The observation process will be represented by a set of information
functions h; where

v (8) = hy(x(t), m(t), z(t)) iel.N.

We will represent the information distribution mechanism by defining mes-
sages v; and a message generation process

Yi(O) = by (x(1), m(1), z(1), y(1), p)  i€l,N. (1.42)

where y={(vy,,...,vyn). Here v; is the message received by decision unit i.
We now describe the two parts of the hierarchical control system design
problem as:

e The choice of N decision rules d; for a given information structure
e The design of the information structure (h, ¢) where h=(h,, ..., hy)

and ¢ =(dby, ..., dn).

As in the single decision unit problem, the simpler problem is the first,
that is, the problem of selecting an optimal d =(d,, ..., dy) given h and ¢.
However, the complete design requires an optimum choice of the triple
(d, h, ¢). Moreover, the information structures considered in the design
must be consistent with information constraints that originally motivated the
choice of a hierarchical design. We will note three common types of
constraints and indicate some possible procedures for incorporating them
into the design process.

PRIVACY CONSTRAINTS

There is certain information in the individual decision units that is private and
should not be revealed during the decision process. Examples of such
private information might be process models or performance data that is
proprietary. Here we face a problem of designing an information structure
that preserves privacy and at the same time leads to satisfactory decisions.
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This problem has received some attention in the economics literature, e.g.,
Hurwicz (1971). As might be expected, there are some trade-offs to be
made between the degree of privacy and performance of the control system.
In general, problems involving privacy constraints are beyond the scope of
this book and will not be discussed in Chapter 5.

CAPACITY CONSTRAINTS

In many problems, the constraint is on information processing or computa-
tional capacity of the decision units. A typical example is the case in which
the decision makers are human operators who have physiological limits to
the data processing rates they can handle. Such problems have been
addressed in the organization theory literature under the title of bounded
rationality (e.g., see Simon (1972)). Unfortunately, the translation of
capacity constraints into statements about acceptable information structures
is quite difficult. One of the major problems appears to be the lack of a
fundamental theory relating these two topics. Some initial results are discussed
in Chapter 5.

COST CONSTRAINTS

In some problems, the major justification for a hierarchical system arises
from the cost of centralizing the information or providing decision units
capable of processing the centralized information, or both. For example, in a
recent discussion of the design of a hierarchical computer control system for
a large testing process, the designer was asked why there was a hierarchy of
decision units when any one of the installed computers could handle the
decision involved. The reply was that it was actually cheaper simply to buy
three additional computers than it would have been to wire all the required
signals from each location to a single central computer (see Aronson
(1972)). As might be expected, this leads to a cost-benefit approach to the
information structure design: the cost of additional information is weighed
against the benefits in terms of improved performance. The major problem
here is that the benefits, measured in terms of a change in the performance
index, are not immediately comparable with the costs, measured in addi-
tional communication capacity. Moreover, these costs may include tech-
nological coefficients that change significantly with innovations in communi-
cations technology. The basic concepts of benefits (value) and cost of
information are explored in greater detail in Chapter 5. There we develop a
rudimentary technique for investigating cost-benefit trade-offs when infor-
mation costs are dominated by transmission costs. These results suggest that
extensions of classical information theory may provide a useful tool for the
analysis of information costs in hierarchical control system design.
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1.5. FORMULATION OF CONTROL PROBLEMS

In this section we present a few remarks on the way in which control
problems are formulated. We are concerned, in particular, with the role of
optimization, with the question of how the performance indices are defined,
and with the kinds of constraints and their effect on the problem. An
experienced engineer, economist, or systems analyst may find this section
oversimplified, if not trivial. We hope, however, that our simple presentation
will help some of the readers by indicating the important features which
should not be ignored when a problem is being formulated. The importance
of problem formulation could hardly be overemphasized. The formulation
determines the solution that will be obtained; nothing can be more mislead-
ing or confusing than the right solution to the wrong problem.

THE TASKS OF CONTROL

Section 1.1 introduced the basic notions of control. Very briefly, the control
task may be described as follows: there is a system to be controlled, it has
manipulated inputs m, and we are to act on m to bring about a desired
performance of the system. As pointed out in section 1.1, it would be wrong
to assume that the desired behavior as seen by the system user always
involves formulation of a scalar-valued performance index. In fact, there are
many cases in which the user of the controlled system has no preference
with regard to the performance index to be maximized or minimized by the
control. The user is often more directly interested in maintaining certamn
properties such as system stability, in spite of varying external conditions
(for example, maintaining the stability of a power system in spite of varying
loads), or ensuring a satisfactory time response of the system to an external
command, in spite of varying parameters (for example, ensuring the re-
sponse of the airplane to the pilot’s commands at various speeds and
altitudes). A follow-up task attributed to the direct control layer in section
1.2 (see Figure 1.11) would be another example: we do not care very much
about optimization of the follow-up as long as the difference between ¢ and
¢4 is reasonably small.

In all these cases, however, a performance index could be introduced,
perhaps by the designer of the control system himself, in order to reduce
ambiguity, that is, to provide for a well-defined, unique solution to the
problem. A follow-up controller mentioned above may have several alterna-
tive designs, none of which are able to provide for a perfect follow-up
because of physical constraints, measurement errors, etc. If we decide on a
certain scalar measure of the follow-up error, for example, its mean-squared
value, we have a clue by which to choose the alternative design for which
the mean-squared error is a minimum. We can also optimize the design,
formally or by simulation, so as to obtain the least possible error.
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There are also many cases of control tasks in which optimization is
directly relevant, that is, in which the user of the system has a definite
optimization goal in mind. The ammonia production process described
briefly in section 1.3 is such an example. It may be argued that the number
of control problems that are formulated as an optimization problem by the
users will increase as more people learn that optimal control is both possible
and practicable. This conviction is, of course, related to developments in the
area of control computers. in particular to the invasion of microprocessors.
We do not want to say, however, that the limitations in the use of optimal
control have been only of a technical nature. It should rather be said that in
some applications it may not be possible to agree on a rational performance
index. Therefore, it may be more appropriate to formulate the control task
in a different way. For example, in the long-range planning of a national
economy, it may be more reasonable to agree on a certain desired rate of
growth, or even on a growth trajectory (a turnpike), than to formulate an
overall utility function. We will come back to this example later on. For the
moment, let us conclude that an acceptable performance index is possible in
those cases in which the factors that count in our judgment of the system
behavior are of a technical or economic nature. Social values and qualities
are less likely to be measurable and are thus more difficult to include in a
performance index.

THE OPTIMIZATION OBJECTIVES

We know from the previous sections of this chapter that optimization
problems can be static or dynamic. The distinction is important not only for
the methods of solution, but also for the problem formulation. For static
problems (remember they may be time-varying) it is enough to agree on an
instantaneous, or current, performance index. For example, for the steady-
state optimization of the ammonia process, it was appropriate to require that
the production rate in kilograms per hour be maximized. The maximum of
integrated production, over a week, a month, or any other period, would be
obtained if the production rate was maximized at all instants in time.

In a dynamic problem, the optimization does not reduce to instantaneous
values; because of the accumulation properties of the controlled system, the
problem solution has to be defined as a control policy over time. Therefore
the performance index must be appropriately related to the system behavior
over the entire optimization horizon.

In most of the examples that are considered in textbooks, and this one is
hardly an exception, the performance over time is judged by taking an
integral:

Q=f q(...)de

0
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where ¢ is a rate value, for example. a production rate in kilograms per hour,
or a cost rate in dollars per hour.

The integral formulation is appropriate if the user of the system is really
sensitive to the value of the integral and not to other aspects of the time
behavior of the system. A user trying to minimize fuel consumed by a ship
to reach a target harbor would be sensitive to the value of the integral, as
would one who wants a desired temperature and composition of steel in an
electric blast furnace at minimum energy expense.

But the value of the integral may also be inadequate. For example, in a
study of a national economy we could propose that the development should
follow the goal

T

maximize Q = J GNP dt

4]

where GNP means gross national product per year and T is the planning
horizon (optimization horizon).

A solution to such a problem will inevitably say that investments in new
production capacities should prevail in the first part of interval (0, T) and
decrease later on. The consumption will be correspondingly low (or zero) in
these years, and rise considerably when time T is approached. The problem
formulation was evidently not done with an awareness of what the society
needs. The deficiency will not be remedied if we make T shorter or longer or
even if we propose planning with a sliding horizon; the “‘invest now—
consume later” feature will not disappear. No essential change occurs if we
replace the bare GNP by some other and better justified ‘“‘social utility”
function. The error of the formulation lies in using an integral form of
performance measure which ignores the fact that the society using the
system is rather sensitive to what it has each year or each month.

A more adequate formulation of the optimization problem is needed.
Several ways are possible, but all of them involve some arbitrary choice. For
example, we can leave the integral form as above, but add a constraint that
the consumption C should rise at a given minimum rate:

C(t)=C(0)+ kt.

Note that the added constraint will make the solution more reasonable, but
that we have to specify the coefficient k. Its value depends on a judgment of
how much people would be willing to sacrifice of their immediate welfare for
a better but distant future. The introduction of k improves the problem
formulation but at the same time introduces subjective judgment and
arbitrariness into the solution. Another popular method of getting out of
trouble is to use some discounting rate for future benefits; this, however, is
another arbitrary choice in the problem formulation.
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The discussion of the above example should not completely discourage
the use of optimization techniques and optimal control. The big advantage of
optimization is that, once the problem has been formulated, one usually gets
a unique solution. The message of the example is only that we should not
treat the solution obtained by optimization techniques as the single recom-
mended alternative (although the label ‘‘optimization” would suggest it). We
should rather vary the problem formulation and display a range of solutions;
thus the optimization procedure becomes a useful tool for the generation of
alternatives.

However, if the performance index chosen is too far from what the user
feels is important in the system performance, then optimization will generate
inadequate solutions, when much better alternatives may exist. An instruc-
tional example may be given by the design of closed-loop control systems of
the kind shown in Figure 1.11. For some time it was quite popular to design
them as linear—quadratic—optimal, that is, to minimize a weighted sum of the
squares of the deviations of the state variables and the squares of the
manipulated inputs. If we changed the weighting coefficients, a family of
designs emerged differing in time behavior (for example, in the response to a
step change in the external command). Then, if we were interested in a
particular feature of the step response, for example, in the minimal settling
time, the most correct design would probably not be generated by the
method: the quadratic performance to be minimized would be too far from
what we were really after. An entirely different form of performance index,
that includes the settling time explicitly, would have to be used instead.

CONSTRAINTS

To maximize or minimize the performance index of a system without any
constraints would in most cases lead to economically unreasonable or
physically impossible solutions. For example, the time response of a dynamic
system could be made very fast but at the cost of a prohibitively large
control input. To take another example, the maximum production rate of a
chemical installation is constrained by the volumes of the reactors and the
admissible pressures and temperatures.

The above examples concern constraints of a technological or physical
nature; we may have an influence on them in the design stage of the system,
for example, while developing the chemical process installation, but not in
the operating stage. This means that in control problems (that is, in the field
with which this book is concerned) the technological constraints are not
flexible.

There is also another kind of constraint for the optimal control problems,
that is, the constraints which are in a certain sense external to the physical
system. For example, we are told to maximize production rate P of the
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ammonia process, but can we maximize at any cost? We might be given a
constraint: the per unit cost of produced ammonia ¢ should not exceed a
certain value c¢,. A reversed formulation of the problem suggests itself.
Instead of ““maximize production P, subject to cost constraint ¢ =¢,,”” we may
have ‘“‘minimize cost ¢, subject to P = P,.,” that is, subject to the requirement
that the production rate should be no less than a limiting value, P,

In this example, the two elements, cost and production, are in principle
commensurate, that is, both can be expressed in monetary units if a unit
value y of the product is introduced. Then the constraint becomes a
well-justified part of the performance index:

maximize (yP — C)

where C is the total cost of producing P. Such an incorporation is not always
possible. For example, assume that an increase in the production rate of
ammonia increases the rate of environmental pollution, p(P). If a limit value
for p is prescribed, that is, a pollution standard p,, then the problem
becomes

maximize (yP — C), subject to p(P)=p,.

The pollution constraint can hardly be incorporated into the performance
index of the ammonia plant because the pollution affects other users of the
environment, not only the ammonia plant itself. The negative value attrib-
uted to pollution cannot be assessed from the viewpoint of the polluter.
Thus, we must treat p < p,, as an external constraint for the ammonia plant.

It is interesting to note that a simple analysis can reveal how much it costs
us to keep the performance (production rate of ammonia) down because of
the external (pollution) constraint. We can express it in terms of the
marginal benefit with respect to the constraint. For the ammonia plant, it
would be

o[yP—C]

marginal benefit =
dpo

This value is relatively easy to obtain if an optimization computation is being
made. The marginal benefit shows how much of the optimal result is lost (or
gained) per unit change in the setting of the constraint limit (p, in the
example). In that way the marginal benefit measures the importance of the
constraint (the requirement that p =<p,) in the optimization problem at hand.
When the marginal benefit is low, it means that the constraint is relatively
“harmless’ for the system. from the point of view of the performance index
that was considered. If it is high, we should perhaps reconsider the con-
straint setting (that is. the value p,).

Compared with technological constraints, which may have to be observed
strictly at all times, external constraints like cost, production volume, and
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pollution effects are usually more elastic. For one thing, they are as a rule
set up for average values, not for instantaneous ones. A constraint on
pollution, for example, would perhaps be limiting in terms of a daily or
weekly average, even if formally prescribed in a more restrictive way. The
same would apply to other constraints such as cost. This means that we are
somewhat free to violate the value at any instant in time. Secondly, a
violation of the nonphysical constraint usually does not mean any irreversi-
ble damage to the system or to the environment. Consequently, the two
kinds of constraints can be treated differently in the control problems.

It may be worthwhile to give a general warning with respect to formulating
the constraints (in particular the nonphysical ones) for an optimization
problem. If they are too conservative, too much “on the safe side,” the
results, that is, the system performance, may be worse than it needs to be. If,
on the contrary, they are overly loose or even ignored, the problem solution,
that is, the system operation, may have side effects that are both unexpected
and undesirable.

OBJECTIVES IN HIERARCHICAL SYSTEMS

Let us remember the multilayer hierarchy of problems with differing time
horizons described in section 1.2 (see Figures 1.5, 1.8, and 1.9). The
question arises whether the long-term objectives should be the same as the
short-term ones. More precisely, should we have essentially the same
performance index for all horizons, or should they be different. We indi-
cated in section 1.2 that each layer in the hierarchy uses a different model in
the sense that the higher you go the more simple is the model. We want to
point out now that in some cases the performance index itself has to be
different. This is related to the differences between the short-term and
long-term effects of a policy, or to the existence of constraints that hold in
the short run, but may not hold in the long run.

Let us show this by an example. The water supply available in a water
system has to be divided among the users. One of the users is a farming
region. When the water resource allocation is planned at the beginning of a
year, the part of the overall objective function that describes the farm users
is derived by taking into account the possibility of using less water but more
fertilizers, or of changing the crops. In other words, the performance index
for the long horizon is calculated with due consideration for possible
substitutions.

A water allocation schedule for the whole year can be determined
accordingly. Then the system is put into operation and the water dispatchers
are told to optimize over some shorter time periods, as described in section
1.2. But the short-run characteristics of the system are different: if we are
already in late spring, for example, no more crop choices are left for the
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farmers. They will now be much more sensitive to a lack of water than the
performance index used before would indicate. Therefore, the water dis-
patching optimization must use a different performance function to ade-
quately describe the farming region benefits related to water quantity.

Note that this example was not a case of a simple or complicated
performance index used for various horizons. It was a case in which the
short-horizon problem had a different set of constraints, that is, it was more
tightly constrained, than the long-horizon problem. These local constraints
have provided for a difference between the short-run and the long-run
allocation problem.

The following example indicates how, at different levels of a hierarchy,
static or dynamic formulations may be appropriate. Let us consider steady-
state optimization for a sugar plant (Findeisen et al. 1970). The plant is
composed of three principal parts that are referred to as sugar extraction,
juice clarifying, and juice evaporation; see Figure 1.22. For a given amount
of sugar beets to be processed per day, the steady-state optimization can be
reduced to minimizing the cost rate of processing, inclusive of the sugar
losses:

minimize Q(Fg, z), subject to a prescribed Fg

where Q(Fy, z) is in dollars per day, and Fg is the amount of beets to be
processed in tons per day.

The optimization is a steady-state one because the process is a continuous
one and the disturbance z, which is mainly a change in the quality of the
sugar beets, varies slowly in comparison with the dynamics of the processing

~ Production scheduling

min [Q=Q1+Q2+Q3) Steady- state coordination

. . . Local
min Q@ min Qqy min Qj optimization
Water ‘Comrol ‘Comrol ‘Confrol
[ ) F2 Thick juice
Beets Extraction Clarifying [——>> Evaporation —=>
]
Fu T Fo
Pressed pulp Molasses  Steam

FIGURE 1.22 The sugar plant and its control structure.
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system. However, if we ask what Fg, the optimal processing volume per day,
is, a dynamic “‘production scheduling” problem arises. Its formulation is as
follows.

There is a total amount of beet crop B assigned to be processed by a plant
(note that this production allocation is another optimization problem, to be
solved at a higher level of the hierarchy). We want to make sugar, that is, to
process the amount B, with minimal cost and losses. The formulation is

minimize Jf Q(Fg(t), z(1)) dt

Fg 1o

subject to

J‘FB(I) dt<B.
t

0

Note that we have an inequality constraint; it may not pay to process the
beets at the end of the season when they are of bad quality. The constraint
can also be written in the usual differential form, if the inventory variable W
of the beets is introduced. We then have a state equation

W(t)=—Fg(1), with W(1,)=B, W(t)=0.

The function Q(Fz(t), z(t)) describes the optimal steady-state operation of
the plant. It is nonlinearly dependent on Fg(t). The quality of the sugar
beets z(t) depends on the weather conditions prior to time t. The beets
always deteriorate over time and for that reason the solution to the dynamic
problem varies over time and is not Fg(t)=a constant. It is better to lose
some sugar during high-speed processing at the beginning of the season,
than to store the beets too long and lose the sugar by natural processes.

Incidentally, sugar beet processing is an interesting example of optimal
dynamic control where the initial time ¢, can be freely chosen. Indeed, if the
estimated crops are high or the weather forecast is not very favorable for a
long beet season, it pays to start processing the first beets before they are
entirely ripe, that is, to move time .

The steady-state performance index Q was divided into three parts,
associated with the three sections of the plant that were used in the
hierarchical scheme of control shown in Figure 1.22. it may be worthwhile
to look at this example in some detail because of its methodological value.
The optimization problem was to minimize the current rate of operation cost
and sugar losses. This rate is expressed by

19
Q = v FuCrw + v2(Fi61 — Facia) +(v2 = va) B> Z ChiKng

i=1

+Ya(Gobpo)® + ¥s Fo (T, — 100)* + v4q.
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where the following notation is used. F, ¢, 1S the loss due to sugar content
in the pressed pulp, ¢, being the weight concentration of sugar in the pulp
and F,, the pressed pulp flow rate (see Figure 1.22). F ¢, — F5c,, is the net
sugar loss in the juice-clarifying section of the plant. The term v4(qoi,o0)”,
where g, is steam flow and i,, its enthalpy, is the cost of steam used for
evaporation. It is assumed to be squared because the cost of steam rises
steeply with the load of the steam boilers. The term proportional to
(T, —100)? approximates the sugar losses and the losses due to deterioration
of the sugar when the temperature T, in the first section of the evaporator is
too high. The last term <y.q, isthe value of steam loss due to undesirable
condensation in the fourth section of the evaporator. Let us draw attention
to some of the prices v, In the formula, v, is the price of sugar at the
extraction outlet, that is, without the cost of clarifying. vy, is the price of
sugar in the clarified thin juice, and v is the price of molasses. Hence, a
coeflicient (y, —+;) is associated with the term that expresses the loss due to
a transformation of sugar into the molasses. This transformation is as-
sociated with the content of 19 different substances, referred to as non-
sugars, in the clarified juice ¢4, and with the sugar adsorption coefficients
Ky

The global performance index Q is split into local performances in such a
way that their sum is Q:

QI+QZ+Q3=Q.

These local indices are

19
Q. =viF.c +(v2—v5)F, 2. Ko

i=1

19 19
Q= v2(F 6, — F2Ck2)_(’Y2_’Y}){F1 Z vk — Fo Z C;\'ﬁKMi:l’

i=1 i=1
Q;= ’Y4(CInip0)2 +vsFo (T, — 100)2 +Yeda-

The performance index Q, deserves special attention. The loss due to sugar
content in the molasses depends on the concentration of nonsugars ¢}y in
the clarified juice. But the presence of nonsugars results from poor opera-
tion of the extraction section. Therefore, it appeared necessary to consider
these substances in the performance evaluation of the extraction; so the
index Q; contains concentrations ¢,q. These concentrations are then reduced
in the juice-clarifying section and the potential loss is decreased; hence, a
term in Q, has a minus sign.

It is quite obvious that the plant could not operate properly if subjected to
local optimizations only. For example, it is advantageous to use a lot of water
in the extraction because it improves diffusion of sugar from the beets to the
fluid. But more water means that more heat has to be used for evaporation.
A compromise has to be reached by the coordinator, who acts to minimize
the overall Q.
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2 Coordination in
Optimization Problems

2.1. PROBLEM DESCRIPTION

In Chapter 1 we introduced the reader to the complex system as a subject of
control. We have also described the principal ways in which a hierarchical
control structure for the complex system can be created. Chapter 2 will be
devoted primarily to solutions of the system control problem based on
decomposition and coordination. Various methods of coordination will be
presented, and the conditions under which they are applicable as well as
appropriate numerical procedures will be described. The coordination
methods and procedures presented in Chapter 2 involve no feedback from
the real system; they supply, therefore, purely model-based solutions. As
such, they are primarily useful for solving system optimization problems in
the system design stage, for example, for determining the best operating
state for a process before it is put into operation. The model-based al-
gorithms are a basis for on-line optimizing control done in an open-loop
mode. We come to this topic in section 2.7. Moreover, the model-based
solution can be used to great advantage as a starting point for on-line
iterations involving feedback from the real system; such feedback structures
are described in Chapter 3. In this section we describe the complex system
and its control problem a bit more precisely and rigorously than they were
described in Chapter 1.

SUBSYSTEMS

We assume that the complex controlled system is an arrangement of N
subsystems (see Figure 1.3), each of which is described by a state equation

(Vt=t,) x;(t)=f.(x; (1), m (1), u(t), z;(t), t) (2.1)
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with the initial condition x,(t,) = x,;, where

f. is a mapping from Ey X E,, X Ey, X E; X[t, ) into Ey,
x; is the state time function, x; :[ty, ) — Ex,

m; is the manipulated input time function, m, :[ty, ®) — Ep,,
u; is the interaction input time function, u; :[ty, ©) = Ey,

z; is the disturbance input time function, z;:[t,,®)— E,

and an output equation
Vi=t, y,(1) =g (0), m(r), u(t), z.(1), t) (2.2)
where the mapping g; is
g : Ex X Eyy X Ey X Ez X[ t5,®) > Ey,

and y, is the subsystem output time function, y; :[t,, ) = Ey..
Following the discussion in section 1.2, we assume that first-layer {direct)
controllers are introduced so that the following is enforced

Ve=t, ct) = h(x(1), m(0), u (1), y(1), 1) (2.3)

where ¢; :[t,, %) — E is a time function describing the controlled variable,
and h; is a mapping that was chosen by the first-layer control system design
(see sections 1.2 and 1.3),

h; : Ex, X Ep X Ey, X Ey, X[y, ®) > Ec.

The arguments in h;(-) show that we assume that ¢;(t) may be based on
measured values of the subsystem state, the manipulated inputs, the interac-
tion inputs, and the subsystem outputs. Function h;(-) may also be made
time-dependent if it is explicitly programmed or related to a measured
disturbance. In general, though, disturbances z are assumed to be unmeas-
ured and do not enter into k().

A perfect follow-up in the direct control of each subsystem is assumed so
that no distinction between c; (the controlled variable) and ¢, (the desired
value of the controlled variable) has to be made and ¢; can be considered to
be the new control input of the subsystem (input from the second control
layer). With proper choice of h;(*) (see section 1.2) for each t=t, a
functional dependence of y;{t) on ¢/(-), w(-), z;(-) exists. Therefore, there
exists a subsystem input-output equation (compare Eq. (1.22") in section
1.3):

yi = Fi(cy, w, ;) (2.4)
where

i €Y; <{[t,, ®) > Ey} is the subsystem output

c. €€ <= {lt, 00) — E} is the control input

u; €; < {[to, ) = Ey } is the interaction input
z,e %, <={[t,,®)— E,} is the disturbance input
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and
F,: ¢, xau, x%, — %, is the subsystem input-output mapping.

We pointed out in section 1.3 that y; also depends on the initial state x; (),
but we include it in z. If the subsystem explicitly depends on time, this is
also included in disturbance z. Note that we do not yet specify any
properties of the function spaces %, €;, U;, Z;; we will have to do so when
solution methods of the system optimization problem are discussed.

Sometimes it may be convenient or necessary to describe the subsystem in
implicit form

yi = F(c, ui, vir 2) (2.5)

where F? is the implicit subsystem input-output mapping from €; X, X ¥, x
%, into %,

INTERCONNECTIONS
The interconnections between subsystems are described by N linear coup-
ling equations

w=Hy,  i€lN (2.6)
where y & (yy, ..., VN €W, X. . . XYy 2% and H; is interconnection matrix i
composed of zeros and ones. It follows that the couplings are separable:
N
U = Z Hyy;. 2.7)
i=1
When we denote u2(u,,...,un)eU X. .. X2 then
u=Hy (2.8)
where
"H,
H =
| Hy\
CONSTRAINTS

Next we assume that the constraints restricting subsystem inputs have the
following form

(¢, u;)e CU, é{(Ci, u) €€ XU : G, u)e S;} (2.9

where G;:€; XU — & is a constraint function, and S; is a given subset of
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the constraint space &,. Subsystem constraints may also be given in implicit
form

(¢ u, y) € CUY, 2{(c;, w, y) €€, XU XY, : G{(c,, u, y)€ S} (2.10)
where G?:€, XU, XY, —> &,

If we define c2(cy, ..., cn)E€, X...X€xn2%€, then the constraints (2.9)
taken together for the whole system can be written as:
(¢, )e CUR{(c,u)e € xu:G(c, u)e S} 2.11)

where S&S,%...xSy and G&(G,, ..., Gy).
We may have some global system constraints in addition to Eq. (2.11):

(¢, u)e CU, &{(c, u)e €xu:r(c, u)e R}, (2.12)
where r:€xXqy— R, R<R. In the implicit case it would be

(c,u, y)e CUY o2 {(c,u, y)e€xuxy:r’c, u, y)e R}, (2.13)

where r®:€xuxy— R We may also have a constraint on the output

yEY WY, (2.14)
which, when Y=Y X...X Yy, is decomposable into
vieY, €y, (2.15)

and then becomes a simplified version of Eq. (2.10).
For many of the decomposition—coordination solution methods, it is
essential that constraint (2.12) be of a less general form, namely,

N

r(c,u)= Z r(c, u;),

i=1
where Viel, N r,: 6, XU, —R. We also require that the set R of (2.12) be
defined as follows

R={reR:r=ry,

where = is appropriately defined and where rye R. The resulting form of
(2.12),

N
(¢, u) e CU,2{(c, u)e€xXu: Z ric, u) <ro} (2.16)

i=1

will be called the resource constraint.

PERFORMANCE INDEX

We assume that a local, scalar-valued performance index (a local objective
function)

Q: ¢ x4y —>R (2.17)
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is associated with each subsystem, and that it should be minimized. A local
performance index could also be given that explicitly involves the output

Q;:€, XU XY, - R (2.18)
and also the disturbance
Q, € XU xY, x% —R. (2.19)

Note that if the performance index is primarily given in a form involving the
output, that is, in the form of (2.18), we can in principle use the mapping F;
(see Eq. (2.4)) to eliminate y, But then we get a Q, that depends on the
disturbance as Q; in (2.19) does.

A global or overall performance index (a utility function) is assumed to
exist as

Q=¢°(Q,...,0Qn) (2.20)

where the function ¢:RY — R is assumed to be strictly order preserving.

METHODS OF SOLUTION
The overall optimization problem is to find a control for each of the
subsystems, such that the global performance index Q is minimized. As
mentioned at the beginning of this section, we intend to use decomposition;
therefore, throughout this chapter local optimization problems will be
introduced. Each of them will deal with the local performance index Q.
Independent local optimization does not ensure global optimality (except for
trivial cases) and a supremal problem has to be introduced in order to bring
about a coordination of the local problems.

There are various methods of coordination. Each of them uses a different
way of intervening in the local problem. The formulations of the local
problems differ accordingly and that is why they are not being shown here,
but rather in the subsequent sections of the chapter. There will also be
considerable differences in the supremal problem of the various methods, as
well as in the procedures by which coordination is achieved. Various
methods will have different areas of applicability, that is, they will require
differing properties of the mappings and the constraint sets that describe the
system and its optimization problem.

THE STATIC CASE
We should point out that the problem formulation given in this section is
fairly general; in particular, it applies to both static and dynamic optimiza-
tion problems.
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For static optimization only, some elements of the formulation can be made
more simple. The input-output equation is written as before

yi = F(c, w;, ;) (2.4)

but the spaces ¥, 6, %, % to which y, ¢, u, z; belong are finite-
dimensional. Therefore, the mapping F, or the mapping F; (see Eq. (2.5)) are
functions from a finite-dimensional space into another such space. The local
constraints (2.9) are now

(¢, u)e CU; é‘{(Cb u;) € €, x U : Gi(c;, u;)) =0} (2.9)

where G;:€6; xU; —R™, that is, G; is a function with values in m;-
dimensional real space. Similarly, we can get finite-dimensional versions of
implicit local constraints (2.10), global constraints (2.11), (2.12) and (2.13),
resource constraints (2.16) and of the performance indices (2.17), (2.18), or
(2.19). The overall utility function has the same form, (2.20), for dynamic as
well as for static systems.

HISTORICAL NOTE
The complex system described in this section consists of interconnected
subsystems; therefore, its mathematical model has a specific structure, and a
specific (but very general) structure of the performance index was assumed.
Hence, the coordination methods that will be presented in detail in Chapter
2 can be regarded as a class of rather complex, block programming prob-
lems. The attempts to develop specific optimization methods for such
problems were initiated in linear programming; many results and first re-
views can be found in Arrow et al. (1958) and Lasdon (1970). The best-known
method is the Dantzig-Wolfe decomposition. Geoffrion (1970) gives a
review of some decomposition approaches both for linear and nonlinear
cases. A compact review of the most important classes of block programming
problems is given by Pervozvanski (1975). A problem formulation very
close to that considered in this chapter was used by Mesarovi¢ et al. (1970),
Wismer (1971), and Findeisen (1974, 1976). The coordination approaches
suggested and developed in subsequent sections of this chapter (such as the
fixing of interconnection variables and the use of prices) have their own
history; the history can be found in the literature listed above and will be
described in the following sections.

2.2. THE DIRECT METHOD
2.2.1. FORMAL PRESENTATION

In the preceding section, the system control problem was described as the
minimization of the global performance index on the feasible set defined by
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subsystem input-output mappings (2.4), linear coupling equations, (2.6),
local constraints (2.11), and global constraints (2.12, 2.14). Let us describe
this problem more formally. The overall control problem (op) is

Find control ¢ =(¢,, ..., ¢y) giving output ¥ =(¥,,..., ) such that

(¢, y)=arg fgﬂ o (Q,(, H("), ..., On(, Hy (1)) (2.21)

where
CY* &{(c,y)e€xY:ye Y Alc, Hy)e CU,A
Viel,N [(¢. Hy)e CU, ny, =F(c, Hy. z))]}.

The integrated problem defined as above may be too difficult to solve as a
whole. If we thoroughly examine the constraint set CY* we easily see that
by fixing outputs y,,..., yv we can decompose the original problem into a
set (Lp,, ..., LPy) of independent problems (Lp;):

For output fixed at some value, say v, find control
¢;(v)=arg min Q;(-, Hv) (2.22)
C*(v)
where
Ci(v)&{c; €%, : (¢, Hv)e CU, Av, = F(c, Hy, z)}.

It is obvious that when v =¥, the control (é,{(¥), ..., n(7)) obtained by
solving the above set of independent problems is optimal overall. But how
do we find the appropriate value of the output?

Based on the solutions of the problems Lp;, let us define the following
problem (cp):

Find the value of the output

O =arg \I/l”:rvl Yo (Qy(E,(5), Hy(1), ..., Qn(En(), Hy () (2.23)

where
V&{ve¥:ve YA(E(v), Hv)e CU,}
and
V,2{ve®:for each ie 1. N there exists a solution &(v) of problem vLp,}.

In the problems defined above, the disturbance input z is a parameter.
Therefore, the dependence of objects on z will be omitted below for
convenience.
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The following theorem shows the relationships between problems or
and cp.

Tueorem 2.1.  If mapping y strictly preserves order on the set

Q2 (Q(v)x.. . xQu(v)cRY

veV

where
(Vve VNVi Gm Q(v) é{cﬁ eR:3c; e C(v) g, = Qi(c, Hv)},

then

e Solution of the overall problem op exists iff a solution of problem cp
exists.

o (&,(D),...,E(D)) is a solution of overall problem op whenever ¥ is a
solution of problem cp.

Proof. First, we shall show that
Viel, N ¢(v)=arg 21(12 Q.(-, Hv) &
é(v)=argmin y(Q,(-, Hv), ..., Qu(-, Hyv))
C(v)

where C(0v) £ C,(v)X...x Cn(v) and &(v)2(&,(v), ..., é&x(v)). We assumed
that function ¢ is strictly order preserving on {2}, hence

VaeQ q'=q o VqeQ ¥(q)=y(q)
where q'=q means that for all iel,N q!=gq,. Therefore
Viel, N é(v)=arg rCn(ln) Q.(-, Hv) ©
(Viel, N(YVq e (v)) Q(&(v), Hv)<gq &
VgeQ(v)x. .. xQu(v)

Y(Q(C1(v), Hiv), . .., On(En(v), Hy)) =4(q) <
(é,(v), ..., éy(v))=argmin Q(-, Hv).

C(v)

Now, let us notice that the definition of overall feasible set CY may be
expressed as follows

CY = |J C(v)x{v}.

veVv
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Then
(3, ) e CY)V(c, y)e CY) Q(E, HY)=Q(c, Hy) &

3FE §)eCY)Vve VN V,)(Vce C(v)) QE Hy)=OQ(c, Hv) &
A, 9)eCY)Vve VN V,) O, H?)Sr(p(iur} Q(-, Hv) &

(@ye VNV)(Yve VAV,) min Q(, Hj)=min O, Hv) &
@Aye VN V)Vve VNV,) Q(é(y), Hy)=OQ(i(v), Hv). [

In order to have the above relationship between problems op and cp
further on, we shall assume that  is a strictly order-preserving function on
QcR.

From Theorem 2.1 it follows that when problem cp is solved, the obtained
value of output ¢ is such that corresponding solutions &,(?), ..., éy(D) of
problems (LpP,...,LPy) compose a solution of the overall problem op.
On the other hand, in order to solve problem cp, one needs to know how
the solution to problem Lp, depends on a fixed value of output. This
interdependence suggests a sequential mode of solving both problems with
control units arranged on two levels. That is, first an estimate v of optimal
output ¥ is made on the upper level. Next, on the lower level the problems
(Lpy,...,LPy) are solved independently for values &(v), ie1, N. These
values are in turn transmitted to the upper level, where an algorithm for
solving problem cp produces a better estimate of the outputs. The process
is then repeated. Thus, the effort to find the solution of the overall problem
op is divided between the two levels: the lower (first, infimal) level, where

the set (Lpy,...,LPy) of independent problems is solved by the so-called
Coordinator | Upper
—E";b—lt;;—ag (second, supremat)
dependent on level
84), -+ ,8n(Y)

Solution of local
Coordination problem Sn(v)
variable {output) v

Solution of local
problem ¢,(v)

15" local decision N local decision Lower
unit unit (first, infimal)
Problem (LP,) Problem (LPy) level
parameterizedby v parameterized by v

FIGURE 2.1 Two-level solution of the overall problem using the direct method of
coordination.
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local decision units, and the upper (second, supremal) level where the
so-called coordinator solves the problem cp.

This method of producing a decomposed, multilevel form of the control
problem has been termed the direct method of coordination (pm) (Findeisen
1976). The label coordination comes from the fact that the upper level
coordinates the independent activity of the local decision units. Therefore,
the supremal level decision unit is called the coordinator and the variables
(parameters) imposed in the local problems are called coordination variables
(instruments). The term direct comes from the use of variables that were in
the original problem formulation as coordination instruments.

The other name—feasible method (Brosilow et al. 1965)—arises from the
fact that throughout the iterative calculation, all intermediate values of
controls, outputs, and interactions are feasible or allowed. The other
names—parametric method (Findeisen 1968) and model (image) coordina-
tion method (Schoeffler 1971, Mesarovi¢ et al. 1970)—arise from the fact
that decomposition is made possible by adding new equality constraints
yi=v;, and u; = Hyv (parameterization) to the mathematical model of the
subsystem.

2.2.2. EXISTENCE OF AN OVERALL PROBLEM SOLUTION

Before investigating the properties of the direct methods we will show when
a solution of the overall problem exists. Let us assume that

There exists a set C* = € such that for each ¢ in C¥ there exists exactly one
output y in the interconnected system, i.e., there exists a mapping

K : CKX =% such that
VceC¥ [y=K(c) © Yiel,N y,= F(c, Hy)].

It is obvious that in formulating the overall problem, we assume tacitly that
for some controls, output in the interconnected system exists; the assump-
tion requires only the uniqueness of the output in addition. We assume
furthermore that the sets €;, U; and %; are Hausdorff topological spaces.

THeOREM 2.2, If the controlled system, constraint sets, and overall perfor-
mance function are such that

The above assumption is fulfilled and mapping K is continuous
The functions ¢ and Q,, i€ 1, N, are continuous

The sets CU,,ie 1, N are compact

The sets Y and CU, are closed

b NS

then the overall optimal control € exists.
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Proof. It is easy to prove that

¢ =argmin ¢ ° (Q,(-, H,K(")), ..., Qn(-, HWK(")))

where
C2{ce¥:K(c)e YA(c, HK(c) e CU,AYie 1, N (¢, HK(c))e CU,}.

From the Weierstrass theorem, it follows that ¢ exists whenever the
minimized function is continuous and the feasible set is compact. Under
assumptions 1 and 2, the function ¢°(Q,(-, H;K{(-)), ..., Oy(-, HyK("))) is
continuous. Similarly, the set

C=K(Y)ND YCUy)N ﬁ D7YCU)<

i=1
me({(c, u)e€xU:Viel, N (c.u)e CUNECP
where
c—>D(c)=(c, HK(c))
c—>Dy{c)=(¢, HK(c))
is compact because the mappings H;K are continuous and the set C° is

compact. [

The most difficult assumption in the above theorem to verify in an
application is assumption 1. Given that the sets € and ¥ are metric linear
spaces, we can verify fulfillment of assumption 1 by the following theorem
(Opoytsev 1976).

THEOREM (Opoytsev). Let us denote F2(F,, ..., Fy). If mapping F is such
that

1. There exists (c, y) in € X% such that y = F(c, Hy),

2. For each (c,y) satisfying the equation y = F(c, Hy) there exist neigh-
borhoods O, and O, such that there exists a continuous mapping k:0, — @,
such that

Vee O, [k(¢) = F(¢, Hk(O)AVy # k(¢) y# F(c, Hy)].

3. The set {ye ¥ :3Ace Cy=F(c y)} is compact whenever the set C< € is
compact,

then assumption 1 of Theorem 2.2 is fulfilled on €.

2.2.3. PROPERTIES OF LOCAL AND COORDINATOR PROBLEMS

For fixed values of the coordination instruments, the local problems vLp,
are standard problems of nonlinear programming defined in terms of the
original overall control problem op. Consequently, they are well defined and
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the methods of investigation of their properties are the same as in
mathematical programming. But the coordinator problem cp is completely
different because in the definition we used objects that were not in the
original problem formulation. They were the solvability set:

V,={vey:(Viel, NY3é&(v))},

and a function to be minimized that is a composition of the solutions of the
local problems:

V, 50 Q(v) = (Qé(v), Hv), ..., On(én(v), Hyv))eR. (2.24)

Both of the above definitions are nonconstructive, because the solution of
infimal problems &) and Q,((-), H;(-)) are used in them.

2.2.4. PROPERTIES OF THE SET V,

We first consider the properties of the solvability set. Its definition is
extremely nonconstructive. Therefore, to remove at least some of the
difficulties, conditions ensuring the existence of solutions to the local prob-
lems for nonempty local feasible sets are frequently assumed. These
assumptions lead to the replacement of the solvability set V, with the
so-called set V,,, where

Vo2 {ve®d:Viel, N C(v)# O}
Let us write the standard assumptions in the form of a lemma whose proof,

based on the generalized Welerstrass theorem (e.g., Céa 1971), is obvious.

Lemma 2.1, If €, i€ 1, N, are reflexive Banach spaces and for all ve 'V,
and iel, N:

e Local performance function Q,(-, Hyv) is weakly lower semicontinuous
e The set C,(v) is bounded and weakly closed or

lim Q;(c, Hyv) = +oo,
fieltsee
ceC(v)

then
V,=V,.

We will assume that €, 9, and % are reflexive Banach spaces and that the
original control problem op is such that V, = V,. Hence, we will deal only
with set V.

Lemma 2.2, The set VNV, is a projection of the set CY on axis %. If the set
CY is compact (convex) then the set VNV, is compact (convex).
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Proof.
VNVy={veV:Clv)# D}t={ve V:3c e C(v)} = my(CY).

Now, compactness (convexity) of the set VNV, follows from the fact that
the projection is.a continuous linear mapping. [

THEOREM 2.3 (corollary). If € X% is a finite-dimensional space and CY is a
polyhedron, then V NV, is a polyhedron and consequently it is described by a
finite set of affine equations and inequalities. The method of determining the
set VNV, in this case has been considered by Grabowski (1969).

In general, the problem of defining inequalities and equations describing
the set V,, is unsolved. The solution is known in two cases: when the original
problem op has appropriate convexity properties and when we have a
particular partial description of the set V,. However, before we present the
solutions, we will state the conditions ensuring the nonemptiness of the
interior of the set V.

Lemma 2.3. If foralliel,N

1. intCU#J,

2. The mapping

(¢, )~ fi(c, ) = (u;, Fi(c;, u;))

is open i.e., converts open sets on open sets, and

3. 3, 0)(Viel, N[(¢, H;t)eint CU; A §; = F,(c,, H;D)]
then the set V, has a nonempty interior.
Proof. The definition of the set V|, can be rewritten in the following form

veV, & Viel,N C0)*Q &
(Viel, NY(3c, w) [u,=HuonFlc, w)=vr(c;, u) e CU] &
(Viel, N@w) [(u, v)ef(CU)Ay =Hp].
Define for every i€ 1, N the set
Vit {ve¥:Ju [(w, v)efi(CU)Au =Huyl}
From the above chain of equivalences it follows that the definition of the set
Vo, can now be rewritten in the following form
N
Vo= ViH-
i=1
Let j be a fixed number in 1, N. By assumptions 1 and 2, the set
f; (int CU) £ UV, <ty x %,
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is open. Let us denote
uv, é{(uj, V)€U XY: (u, v,)e UV}
Now, from the definition of set V' we have
ma(UV; N{(y;, v): ;= Hoh) £ Q, < VE.

By assumption 3, the point (i;, 0), where & éH,-ﬁ, belongs to the set UV,
This set is open because the set UV is open; hence, there exists € >0, such
that
(1) B, e) X B(D, )= UV,

The continuity of mapping H; implies that
(2) (38(e)>0) (Vv e B(, 8(¢)) Hve B, ¢).
Let us denote n £ min (g, 8(¢)). We shall show that
B0, m)cQ, = VI,

Suppose, on the contrary, that there exists & € %B(%, n) such that 5¢ 8}, i.e.,

3t e B, M)Vy) [(u, 8)¢ UV, vy #Hi].
Because B(ii;, £) X B(D, n) < UV, the above predicate means that

(A0 B(®, MNVy, € B, £)) w# Hb.
Since B (b, n) < B(D, d(g)), we have
30 € B(D, 8(¢)) Ho¢ B, €),

which contradicts 2 above. Therefore B(5, n)< VH.
By assumption 3, € V,= N, V¥, hence the above inclusion means that
int Voo, O

Remark. By the Banach open mapping theorem, the function f;(:, )=
(-, Ai(, ") +y?) where A, :€, X —%; is a continuous linear operator, and
y{ €%, is open whenever A; is a mapping onto %,. The sufficient condition
for the openness of mapping f; in the nonlinear case will be given in Chapter
3, section 3.2 (Lemma 3.1). O

We now consider the problem of finding the constructive description of
the set V, in the convex case. First we state the conditions of convexity of
this set. Recall the definitions of the set CY(cf. Egs. (2.9), (2.11), and (2.14))
and the set C,(y):

CY={(c,y)e€x¥:ye YAr(c, Hy)eR
AViel, N [Gic, Hy)e S ny = Fi(c, Hy)},
Ci(y)=1{c,€%;:Gi(c;, Hy)e S, ny, = F(c, Hy)}.
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Lemma 2.4, If forallicl,N

1. S, is a convex cone in linear-topological space &,
2. The mapping G; is concave with respect to S, i.e.,

(Vx', x"e 6, xU)NV0=a=1)
Gilax'+(1—a)x")—aG,{(x)—(1—a)G(x") e S,
3. Ve, w) Fi(c, ) = Ai(c, ) + Y?

where A, is a linear operator and y? e %y,
then the set V,, is convex.

Proof. Let v',v"€ V,, hence

(Viel, N@Ac!) (G(c}, HvYe S, Av!=Ac!, Hv')+y?)

(3c)) (Gi(cl, Hv") e S nv) = Ai(c], Ho")+ y?).
G; is concave, so for all a [0, 1]
Gi(aci+(1-a)cy, H(av' +(1 - a)v") — aGi(c}, Hv)—(1- a)G(c{, Hv")€ S.
The convexity of S; implies that s',s"€ S, > s'+s"€ S, therefore
(1) Gi(act+(1—a)c!, H(av' +(1-a)v") €S,
Since operator A, is linear, we have
av’'+(1—a)v"=aA(c], Hv') +(1 - a)Ai(c], Hv") Ty}
= A{ac!+(1—a)c!, Hav' +(1—a)v")+y?.
Formulae (1) and (2) show that .
acl+(1-a)cie Clav'+(1 - a)v"),

(2)

therefore Vie 1, N C(av'+(1—a)v”) # & and consequently
av'+{(1—a)v"eV, O

Tueorem 2.4, If for allie 1, N:

1. S, is a proper, convex, and closed cone in Banach space ¥,
2. The mapping G; is continuous, concave with respect to S; and such that
Yy {¢:Gi(c. Hy)eSic= &Y

where C? is convex and compact,
3. (Yo, u) Filc,u)=A(c.w)+y), where A; is a continuous linear
operator, then

Vo={v:Viel.N mig max (ps, Gi(c,, v))=0}
Pier ¢el,
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where
P, &{p, e S¥x¥¥:|pll=1} (S¥ is a dual (polar) cone of S;) and
Ve, v) Gi(cb v) é(Gi(cia Hpw), Ai(c;, Hv) + y?_vi)-

(In the above, (-, ) denotes a duality relation between the given Banach space
and its dual space; in Hilbert spaces it denotes a scalar product.)

Proof. Let us observe that in the notation introduced in the assumptions of
the theorem, the definition of the set C,(y) can be rewritten as follows

Yy C(y)={c:ce C?rGilc, y)eS x{0}}.
We shall first prove that

7€V, = Viel.N min max{p, G.(c.7))=0.

p;eP;, c;eC®

Let ¥ lie in V,. Hence, for each i€ 1, N, there exists ¢ in C? such that
G,(c, D)e S; x{0}. So, from the definition of the dual cone, it follows that for
each p; in S¥xy¥*

<Pi, Gi(éi’ 0))=0.

To prove the converse implication, let us observe that by assumptions 2
and 3 the mapping G is concave with respect to S;x{0}. Then it can be
shown that for each i €1, N there exists ¢ € C? such that G,(¢, ©)e S, x{0},
which means that © lies in V,. 0O

Theorem 2.4 gives a complicated but constructive description of set V;, in
the convex case: in order to verify the membership of an element v in set V|
it is sufficient to solve the collection Apr1,, .. ., Apiy Of the following auxiliary,
linear—-concave, min—-max problems APi;:

find & (v) £ min max {p,, G,(c, v)).
pieP, ceC?
We must next identify the signs of the obtained values a,(v), . .., an(v). If
for all ie1, N:o;(v)=0, then v € V,,; otherwise v¢ V,,.
We shall now present the constructive representation of the set V, if we
have partial knowledge of its description.
We recall that the local feasible set C,(v) is defined as follows

Ci(v) ={c, €%, :(c;, Hv)e CU; rv; = F(c;, Hv)}.
This definition can be rewritten in the following form
C(v) =7 (CU; N F '({vh) N (g x{Hv})) (2.25)

where
F?‘({vi})é{(ci, u,)€€, X : v, = F(c, u;)}
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Ay,
Y; (Vi) [ 2 U; (Vl)
. :
Hiv= I/) CU'
=SVE— w uT(v)
Hiv'
| g t
Ci(v) - -

FIGURE 2.2 The location of sets CU,, F; '({v.}), C.(v), and U, (v,).

and mr,; is a projection from €; X9; onto €;. Now, the condition defining the
set V,

ve Voo (Viel, N)3c € G (v)),
can be stated as follows
veV, & (Yiel,N3c) (¢, Hv)e CU, NF'{uv}).

Consequently
N
VoS X {y €%,: CUNEF (y)# D= X F(CU) 2V,

where F,(CU,) is the image of the set CU,, i.e.,
F(CU)) é{)’a €¥,:3(c, u)e CU, vy, =F(c, u)}.

The location of sets CU,, F; "({v;}), Ci(v), and U;(v;) is shown in Figure 2.2.
It follows from the above formulae that for v lying in V. the set

Ui(v) £ a0 (CU; N F ({v,}) (2.26)
is nonempty and
Yiel,N HveU(v) © veV,.
Therefore we obtain
Vo={veW:ve VeaViel, N Hve U (v)}. (2.27)

Now, let w;: Ve — R be the function defining the distance between the
point H;v and the set U,(v,), i.e.,
v w(v)= inf | —Hpy|. (2.28)
w,eU;(v)
It is easy to see that using this function, definition (2.27) can be rewritten as
follows
Vo={ve¥y:ve VeaViel, N u(v)=0}
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whenever the sets U,;(v;) are closed. To summarize our consideration, we
can state the following theorem.

TueoREM 2.5. If for all i€ 1, N, (a) the set CU; is compact, and (b) the
mapping F; is continuous, then

Vo={v:ve VpAViel,N w; (v) =0} (2.29)

Proof. To complete the proof we must show that for all i€ 1, N and v, in
F,(CU;), the sets U,(v,) are closed; this follows directly from definition
(2.26) and the assumptions of the theorem. [

It is obvious that the representation of the set V given by the distances w;
can be used to verify the membership of an element v in the set V, only
when we know the set Vg resulting from all local constraints and subsystem
input-output mappings. In engineering language, we would have to know for
each subsystem the range of output variation corresponding to the feasible
variation (i.e., belonging to the set CU;) of subsystem inputs (controls and
interaction). For many industrial processes, we can identify or at least
estimate this range. When we know the set Vg, we can verify that a point v
fulfills the remaining constraints describing the set V,, by solving the
collection of problems apz;:

find p;(v) = min |[lu;~H|
w e Ui (vy)

and checking if y,;(v) equals zero for all i e 1, N. In the following lemma, the
representation of the set V, given by the distances y; will be used to prove
the compactness of this set.

Lemma 2.5. If for all ie1,N, (a) the set CU, is compact, and (b) the
mapping F, is continuous and open on CU;, then (1) for each i €1, N mapping
W; is continuous, and (2) the set V, is compact.

Proof. Let us introduce the following mapping

F(CU) 3y, —g(y)=(F ’ CU) '(y.H e CH(CU,),
where (F,|CU,)"{(Y)2{(c, u)e CU,: F{c, u)e Y°c %}.

(For any topological space X : C®(X) denotes the family of all compact,
nonempty subsets of the set X.) Now, the definition (2.26) of the set U,(v,)
may be rewritten as follows

Ui(v) = Wm,(gi(vi))
and it is obvious that this set is compact. In accordance with definition (2.28)
Vve Vep(v)= min ) [l — Hioll,

u; € Ty, (g:(v,)
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where
CP(CU,) 3 X =11, (X) = m, (X) € CP(UY),
U?é'"'aui(CUi)-

The norm and mapping H, are continuous, hence by the Debreu theorem
(see Berge 1963, Theorems 1 and 2 of section 3 in Chapter 6), functional ;
is continuous whenever mapping

(1) H%°gi°HiIVF5VF_’C9’(U?),
where
Y3(vy,...,0 ..., 00— IL(v) =0, €Y,

is continuous with exponential (Vietoris) topology in C#(U?) (cf. Berge
1963, Chapter 6; and Kuratowski 1966, Chapter 1, section 17).

The composition (1) above is continuous whenever the mappings of which
it is composed are continuous. The continuity of II, | V¢ and I1,,, is obvious,
thus only the proof of the continuity of mapping g remains to be shown.

We assumed that the mapping F,|CU; is open. Hence, from Kuratowski
(1966, Theorem 2 of section 17, III) it follows that the mapping g is
continuous, from which it follows that the mapping u; is continuous.

Let us rewrite the definition (2.29) of the set V, in the following form

Vo= VeN MII({O}) n...N IL;II({O})-

It is easy to see that the set Vi is compact. The continuity of w; implies that
the set w; *({0}) is closed, hence the set V, is compact. O

2.2.5. THE PROPERTIES OF FUNCTION O TO BE MINIMIZED IN THE COORDINATOR
PROBLEM

Now that we know the properties and methods of description of the set Vj,
when suitable assumptions about the elements making up the original prob-
lem or have been made, we may investigate the properties of function

v é(v) =(Qy(¢,(v), Hyv), . .., Qn(én(v), Hyv))

that will be minimized in the coordinator problem cp. We start with the
simplest question—the convexity of Q.

LemMma 2.6. If for allie 1, N, (a) the set CU, is bounded, closed, and convex,
(b) Ve, u; Ei(c, w)=A(c, w)+y?, where A, is a continuous linear operator,
and y? €%, and (c) function Q(-, H(:)) 2 o (Qy(-, H,()), . .., On (-, Hx))) is
lower-semicontinuous and convex, then function O is convex.

Proof. 1t is easy to see that for each v and i€ 1, N, the set Ci(v)ﬁis bounded
and weakly closed; hence, owing to Lemma 2.1, the function Q is defined
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on the set V. The convexity of the set
CVE{(c,v)e€xV:ve V,AVi e1,N [(c, Hv)e CU A v, = A,(c, Hv)+ vy}
and the set V, follows from the fact that for all i in 1, N and « in [0, 1]
(ac!+(1—a)cl, aHp'+ (1 —a)Hv") e CUj;
and
A;laci+(1—a)cl, Hi(aw'+(1—a)v")+ y{ = aA(c!, Hiv')
+(1-a)A(cf, Hv") +y? = av!+(1 —a)v!

whenever (c’, v') and (¢”, v") belong to CV.
Now, from the convexity of Q(-, H(-)) and the convexity of CV we have

(VO0=a=1)(¥Y(c, v),(c",v) e CV)
Qlac’'+(1—a)c", Hav'+ (1 - a)v") =aQ(c’, HV)+(1—a)Q(c", Hv").
This implies that for fixed «, v’, and v”
inf Qac’+(1—a)c”, Hv*)

(1) (c’, ¢"MNeC)XC(1")

<amin Q(-, Hv")+(1—a) min Q(-, Hv") = aQ(v")+(1— a)Q(v")

C(v") C(V)

where
Cw)={c:Yiel,N [(¢, Hv)e CU, rv; = Ai(c, Hv)+ y°T}
and
v*2av'+(1—a)v”
Let us rewrite the left side of the above inequality in the following form

2) inf Q(ac'+(1—a)c”, Hv™) = inf Q(-, Hv*).

(c"¢NeCEIXCE" aC)+(1-a)C (")
We know that
(Vc'e CWNVc"e C(v") ac'+(1—a)c"e C(v*)
[C(v*) # & because the convexity of V,, implies that v* € V], so
aC()+(1-a)CH") c C(v®).
Therefore from (1) and (2) we have
aQ(v)+(1-a)Q(v") = min Q(-, Hv") = Oav'+(1-a)v")

which proves the lemma. [
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From the above lemma and properties of convex functions we have the
following result.

TueoreM 2.6 (corollary). If the assumptions of Lemma 2.6 hold, then (1)
function O is continuous on int V,, and (2) for all v € int V,,, there exists non-
empty subdifferential 30(v) of Q at v. If in addition ¥ is finite-dimensional,
then (3) for almost all v in int V,, function Q is Gateaux differentiable.

Proof. The assumptions of Lemma 2.6 imply that the convex function 0]
takes on finite values on the set V,, so in int V, it is bounded. The
application of the theorem of convex analysis (see Ekeland and Temam
1976, Propositions 2.5. and 5.2; and Rockafellar 1970, Theorem 25.4)
completes the proof. [

Corollary 2.6 gives a very important but nonconstructive result—the sub-
differentiability of Q on int V,. The next theorem will have the constructive
character. It will show how to compute the subgradient of Q for each point
veint V.

Tueorem 2.7. If foralliel, N

1. S, is a proper, convex, closed cone with nonempty interior,
2. The mapping G; is continuous, Fréchet differentiable, concave with
respect to S; (cf. Lemma 2.4) and such that the set CU, = G7!(S,) is bounded,
3. Yo, w F(c, u)=A (¢, u)+ Y?,
where A, is a continuous linear operator on %,
4. There exists a pair (¢, D) such that

Viel, N [G.(¢, HD)eint §; A A, (S, HD)+y?— 1, = 0],

5. The function Q(-, H(+)), cf. Lemma 2.6, is continuous, convex, and
Gateaux differentiable,

then subdifferential 3Q(v) of O at v for all v in V, has the form

00(W)={ge¥*:(A¢=(&y,....éx), P1s - > P Ly .., L)(Vie 1, N)
x[&=&(v)nl(p. ) eP(v, &) g=H*V,Q(¢ Hv)

N
+ Z [H.*Gf;k(éi’ Hyv)p, + (Al(¢, Hv)eH, - I@i)*li]]}a

i=1
where Vie 1, N
Pi(v’ é)é{(pn l,-)Eyl*X O‘y:kpl € _S,ik/\<pi’ Gi(éis H,-U))Z 0
AV Q(é Ho)+ G (&, H;v)p; +AX(¢, Ho)l; =0}
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Proof. Let us define the following set and function

CV={(c,v)e€x¥:VYie,N [G,(c, Hv)e S rv, = A(c. Hv)+y!]}
={(c, v):ce C(v)},

Vve Vy €XYXY*3(c,y,A)—>L,(c,y,A)=Q(c, Hy)+{A, v—y)eR.
From Lemma 2.6 and assumptions 1, 2, 3, and 5 above, it follows that
function Q is defined on the set V,, i.e.,

(Vv e Vy)3é(v)) ¢é(v)=argmin Q(-, Hv).
C(v)

We shall show that each ge®¥* satisfying the inequality
(1) V(c,y)eCV L,(c,y, 8)=L,(é(v), v, 8)
is a subgradient of O at v, i.e.,

Vwe V, Q(w)-Qv)=(g w-).

The converse will also be proved.
Let g in &¥* be such that for each (c, y) in CV we have

L.(c,y, g)=L,(¢(v), v, 8),
in other words
V(c,y)e CV Ql(c, Hy)+{g, v—y)= Q(&(v), Hv)+ (g, v —v)= Q(v).
Since for each w in V, point (¢(w), w) belongs to CV, the above implies that
YweV, Q(w)=Q(&(w), Hw)= Q(v)— (g, v—w)

which proves the first part of our assertion.
To prove the converse, we let g in ¥* be any subgradient of Q at v, and
let (c, y)e CV. Since ¢ e C(y), we have

L,(é(v), v, 8)=0w)=0(y) (g y-v)=Qlc, Hy)+(g, v—y)= Ly(c, y, g).

Point (c, y) in CV was chosen arbitrarily, so the above inequality implies
that subgradient g together with (¢(v), v) satisfies (1).
Thus, we have shown that for each v in V,

3Q(v)={ge¥*:(V(c, y)e CV) L,(c,y, g)=L,(¢(v), v, g)}

={ge¥™: L, (¢(v), v, 8) =min L,(-, -, &)}

={ge¥*:(é(v),v)=arg min [Q(c, Hy)+(g v—y)]}.
(e,y)eCV
From assumptions 1. and 4 it follows that the set CV fulfills the
generalized Slater regularity condition (see Gol’shtein 1971, p. 89). We infer
from assumptions 2, 3, and 5, that there exists arg mine, L, (-, -, g) for each
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(v, 2) in ¥ X ¥*_ Now, combining Theorem 2.1 of Chapter 3, section 2.2, and
Theorem 4.3 of Chapter 4, section 4.4 in Gol’shtein (1971), we obtain

(é(v),v)=arg min [Q(c, Hy)+{(g, v—y)] &

(c,y)eCV
(Viel, N3(p, L) € (—SF)x ¥¥) [(VCO(é(v), Hv), H*V_Q(é(v), Hv))
N
—(0, g)+ Y. [(G7¥(&,(v), Hp), H*G/*(¢,(v), Hv))p,
ji=1

+ (A],c*(éj(u)7 I“Iju)a (A;u (éj(v)9 va) ° Hj _I@,)*)lj] =0

AVjel, N {p, G;(¢(v), Hv)= 0]
from which, after algebraic transformations, the theorem is proved. [

Theorem 2.7 and the properties of convex functions suggest the following,.

THEOREM 2.8 (corollary). The function Q is Gdteaux differentiable at v € V,,
whenever (a) the assumptions of Theorem 2.7 hold, and (b) for all i€ 1, N,
the solution ¢é,(v) of local problem (Lr;) is unique and the set P;(v, é(v))
contains a single element.

One can infer from the above corollary that in the convex case the
nondifferentiability of Q in int V, is due to the nonuniqueness of the solution
and Lagrange multipliers in the local problems. The sufficient conditions for
the uniqueness of the solutions of local problems, and multipliers are, e.g.,
the strict convexity of Q;(-, u;) for all u; and the linear independence of
gradients of constraints.

The assumptions of Theorem 2.7 ensure the convexity of V,, (Lemma
2.4), and the convexity, continuity, and subdifferentiability of Q (Lemma 2.6
and Theorem 2.6). The representation of subdifferential 9Q(v) is also
obtained. The ““price” that is paid for these strong results is the assumption
that the input-output equations of the subsystems are affine. In the general
case we can only prove that Q is continuous.

THEOREM 2.9. If forall ie1, N

1. The set CU; is compact,
2. The mapping F, is continuous and such that the mapping

(Cb ui)'_)fi(ci’ ui) = (ui’ E(Civ ui))

is open on CU,,
3. The functions Q. and { are continuous,

then Q is continuous on V,.
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Proof. From assumption 1 and the continuity of F,, we infer (cf. Eq. (2.25))
that
Vve V, C(v)e CH(¥%,),
hence the continuity of Q,(-, Hyv) implies that
V,=V,.
The definition (2.24) of the function Q can be rewritten as follows

o:l!/°(ola- ey QN),
where
Viel, N V(,aunaéi(v):g](ir% Q.(-, Hv)eR.

So, Q is continuous whenever ¢ and Q are continuous. The function ¢ is
continuous by assumption 3. From the continuity of H; and Q, it follows
from the Debreu theorem (see Berge 1963, Theorems 1 and 2 of Chapter
VI, section 3) that function , is continuous whenever mapping
Ci(+): Vo— CP(%;) is continuous with exponential topology introduced in
C%(%€;). The proof of this continuity follows.

It is easy to observe that the definition of mapping C;(-) may be rewritten
as (cf. Eq. (2.25))

v Ci(v) = g (CU; N7 ({(Ho, L (v))})
where
Y3(Vy, .., Uy .., O lL(W) =0, €W,

For convenience we employ the following notation
fi(CU) 3 (u, Yi)'_)fz(“i, yi)=(f; ‘ CU)y I({(Hi, yoh) € CP(CU,).

Thus, mapping C;(-) is the following composition

(1) C() =Tl o f o (H, IL;| Vy)
where
C#(CU,)> CUn—>IL€i (CU)= T, (CU)e C#(%€;).

Assume that in the sets CP(CU;) and CP(%,), exponential topology is
introduced. The projections 1I; and Il are continuous; the mapping H; is
continuous by definition. The continuity of mapping f. remains to be proved.
We assumed that the mapping f, is open on CU;. Hence, from Theorem 2 of
Chapter 1, section 17, III in Kuratowski (1966), it follows that the mapping
f. is continuous, so composition (1) above is continuous. [

The crucial assumption in Theorem 2.9 is the requirement that the
mappings (¢, u;)—(u, F;(¢, w;)) are open on CU, Unfortunately, an exam-
ple (Wozniak 1976) can be constructed that shows that when this assump-
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tion is dropped, function Q is not even lower-semicontinuous. In section
3.2.2. we shall discuss this question extensively (cf. Lemma 3.1).

TueoreM 2.10 (corollary). If (a) the assumptions of Theorem 2.9 hold, and
(b) the set Y is closed and the set CU, equals € X, then the solution of the
original overall problem ov, definition (2.21), exists.

Proof. By Lemma 2.5 and Theorem 2.9 the set
VvAv,=YNYV,

is compact and function Q is continuous. Therefore, by the Weierstrass
theorem a solution of the coordinator problem cp exists. The theorem then
follows from Theorem 2.1. 0O

2.2.6. THE OVERALL PROBLEM WITH A GLOBAL RESOURCE CONSTRAINT
If the global system constraint
(c,u)e CU, (2.30)

has the form of a resource constraint

N

(c,u)e cy, & Z ri(c, w)=r,

i=1

where
Vicl.N r.: 6 XU — R,

[% is a linear space ordered by relation=, and r,e R (see Eq. 2.16)], then
the original overall problem op may be equivalently transformed into the
following form in which the global constraint is not present.

The overall problem with resource constraint (opr) is

Find control é =(¢,, ..., €y) giving output ¥y =(¥,, ..., yy) and distribution
of resource ¥y = (¥44, ..., I;n) such that

(65 5;’ ;d) = arg min (Ql(Ch Hly); B ON(CN3 HNY))
(c,yr)eCYR
where

N
CYRA{(c,y, 1) e €XUXRN :ye YA Y, ry=rq

i=1
AViel, N [(c;, Hiy) € CU, ~y; = F(¢;, Hiy) A ry, = ri{c, Hiy)l}.
When we denote
YXRNEW s wE(y, 1,)
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and
€: x> (¢, ui)HE(Ci5 w) = (F(c, ), r(c w) €Y, X REW,
W(y, ry)—H(y, ry) = Hy e, iel,N,

N
YRE{(y,r)eW:yeYn Z Ty <ro}
i=1
then the definition of constraint set CYR will have the same form as the
definition of the set CY:

CYR ={(c,w)e € X W:we YRAVie1,N (c, Hw)e CU, Aw,=F,(c, Hw)]}.

Therefore, the investigation of the properties of problem (opr) may be
carried out in the same manner as for overall problem or; it is, however,
more complicated since there are more local equality constraints and more
coordination variables and constraints.

2.2.7 METHODS OF SOLVING LOCAL PROBLEMS AND COORDINATOR PROBLEMS

With the background provided by the above study, we can discuss briefly the
choosing of methods of solving the local problem 1p; and the coordinator
problem cp. We recall that for fixed values of the coordination variable, the
local problem Lp; is a standard problem of infinite-dimensional nonlinear
programming. Hence, the choice of numerical procedure depends on prop-
erties like the differentiability of the performance function, the linearity
of subsystem input-output mappings, and the convexity of subsystem con-
straints.

The coordinator problem cr has a special structure. We do not know the
analytical form of the minimized function or in most cases of the feasible set
because they are defined in terms of the solutions of the local problems. It is
the cost that we must pay for dividing the effort in finding the solution of the
overall problem op between units arranged on two levels. In such a
situation, the choice of the method of generating an optimal coordination
variable, the so-called coordinator strategy, is a rather hard problem.

2.2.8. COORDINATOR STRATEGY

In the simplest case considered in sections 2.2.4 and 2.2.5, when local
constraint sets CU; are convex, subsystem input-output mappings are affine,
the global performance function is convex (i.e., in the case of convexity), and
we know the analytical description of the set V|, the coordinator strategy
can be chosen on the basis of Theorem 2.7 as a subgradient minimization
method. The problems and difficulties that arise in this approach are
discussed by Malinowski and Szymanowski (1976).
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In the second case, we assumed that we had a partial description of the set
Vo, 1.€., we know the set Vi, and we can construct the functions y; (see Eq.
(2.28)) giving a representation of the set V. As we recall

for v in V,
Viel, Nm(v){>0 for v in VF\VO

So, the sum of these functions mulitiplied by a positive constant can be used
as an exterior penalty function related to the set V,,. Let us describe this
approach more carefully.

First, we have to consider the problem of continuously extending function
O, primarily defined on set V,, on set V. In order to solve this problem, for
each i€ 1, N, we define the following modified local problem (mvp;)

For given v in Vg, find ¢(v) and u[™(v), such that

u™v)=arg min | —Hul|
u;eU, (v)
(2.31)
éM™(v) =arg min Q;(-, Hv)
C'(v)
where

U;(v,)={u; €U; :3c [{c,u;))e CU, ~v, = Fc, w)]} (cf. Eq. (2.26))
Cr(v) £{c; €€, :(c;, uv)) € CU, Av; = F(c, ul(v))}.

It is easy to observe (see Eq. (2.27)) that from the above definitions it
follows that for each ie 1, N

i (v)=|u"(v) - Hol| and VYveV, u(v)=Huy,

consequently
Yve V, Cv)=C(v).

Now “we can define the following function
v> Q™ (v) = $(Q,(E7(v), Hyv), . . ., On(E5(v), Hyv)).
The proof of the following lemma is obvious.

Lemma 2.7. If for all ie 1, N: (a) the set CU, is compact and mapping F, is
continuous, and (b) for all v function Q;(-, Hv) is continuous, then (1) for
each ve Vi and i€ 1, N there exists solution (&"(v), u"‘(v)) of problem
mip, and (2) the domain of function Q™ is the set V. and O™ | Vo=0Q. [O.

Therefore, we obtain the needed extension of function Q. The following
theorem gives the conditions of continuity of function Q™.

THEOREM 2.11. If we assume that (a) the assumptions of Theorem 2.9 hold,
(b) the mapping F; is open on CU,, and (c) for each ve Vg and i€ 1, N there
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exists no more than one

u™v)=arg min |u,—Hu|,

u; € Ui (v)
then the function Q™ is continuous.

Proof. As in the proof of Theorem 2.9 from the definition of function O™,
we have

O™ =yo(QF,..., 0%,
where

Yiel, N VFavb—)CA),-"‘(v)= min Q,(-, Hv)eR.

CMw)

Therefore, Q™ is continuous whenever the mapping Ci"(-): Ve — CP(%,) is
continuous for each i € 1, N with exponential topology introduced in C#(%€; ).

Let us rewrite the definition of C"(-) in the following form (cf. the proof
of Theorem 2.9)

v (V) = 7, (CU N f {ui™(0), TL(o)D)
= (I, © f, o (), T [ Vie))(v)
where
fi(CU) 3 (w, yi)"_)ﬁ(ui’ v ={f, ‘CUi)il({(ui’ v} e CP(CU,).

An argument similar to that used in the proof of Theorem 2.9 shows that
C"(-) is continuous whenever the mapping

Vesv—u(v)=arg min |y, —Hpylle U211, (CU,)
weUi(w)
is continuous. The proof of this continuity follows.
Let us define for every i € 1, N the following mapping
Veavs W (v)={u, e U?: w;(v)—|lu, — Ho||=0}e CHU?).

We assumed that the mapping F; is open on CU,. Therefore, by Lemma 2.5,
the function y; is continuous. Norm and mapping H, are continuous as well.
So, the set

{(v,u) e Ve x UP: u; € Wi (0)} ={(v, u): ps (v) ~ ||lu; — Hl| = 0}

is closed. The set UY is compact; hence, by Theorem 4 of section 43, I in
Kuratowski (1968), the mapping W, is upper semicontinuous with exponen-
tial topology introduced in C@(U?).

Let us observe now that for each v in Vg

Ui (v) N Wi(v) ={u; € UY: w; € Uy (v) Ally; — Hool| = i (0)}

=Arg min |y —Hyv|2U"v)e CHU?).

w e Ui(y)
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In the proof of Lemma 2.5 we showed that the openness of the mapping F;
on CU; and the compactness of the set CU; imply the continuity of
mapping Vg3 v U,(v,) e CP(U?). Hence, by Theorem 1 of section 18, V in
Kuratowski (1966), the mapping v Ur(v) = U (v,)N W, (v) is upper
semicontinuous.

Because our assumptions imply that for each v in Vg the set U{"(v)
contains exactly one element U(v)={u"(v)}, the upper semicontinuity of
mapping U!" means that mapping v+ u™(v) is continuous. [J

We are now in a position to approach the choosing of the coordinator
strategy. Let O, : VeXR, — R be defined as follows

(v, p) = O, (v, p) = Q™ (v) +p_Z i (v).

THEOREM 2.12.  If we assume that (a) the assumptions of Theorem 2.9 hold,
(b) the mapping F; is open on CU, (c) for each ve Ve and i €1, N there exists
no more than one u(v), (d) the set Y is closed and the set CU, equals € X U,
and (e) the sequence {p"};.-, of positive real numbers tends to infinity, then (1)
the sequence

{arg min Opty(', p")}:zlé{ﬁn l:10=1
YNVe

has an accumulation point, and (2) anv accumulation point of this sequence is
the solution © of the coordinator problem cp. If, in addition, coordinator
problem cp has no more than one solution, then

lim 0" = 1.
Proof. The proof consists of a direct application of the main theorem for
the exterior penalty function method, e.g., Theorem 35 of section 4.1 in
Polak (1971). OO

If a given system control problem satisfies the assumptions of Theorem
2.12, one can quite readily propose a coordinator strategy. It ought
to consist in minimization of function é,,,v(',p) on the set YN V. with
increasing value of the penalty coefficient p. Figure 2.3 shows a diagram of
information flows in this case. The main difficulty in this approach is
connected with the possibility that the function Q,, may be nondifferenti-
able at some points. We recall that in the case of convexity, O,,,y lint V, has
a subgradient that can be used in the minimization algorithm. In the
nonconvex, finite-dimensional case, the direct search methods can be prop-
osed as the minimization algorithm. The detailed discussion of this approach
can be found in Wozniak (1975).
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Coordinator strategy: Adjustment of p
mlnlmlzahon ~--

of thg

(.p)
¢ (V)
pr(v) v \\-’N

Problem (mLP) Problem ( mLPN
at first uy(v) | -+ - ¢ | at first U} (v)
and next &q(v) and next &y(v)

FIGURE 2.3 Information flows within the chosen coordinator strategy.

2.3. THE PENALTY FUNCTION METHOD
2.3.1. INTRODUCTORY PRESENTATION

The direct method has its advantages and drawbacks. Troubles connected
with set V, and the impossibility of applying the method when there are
fewer controls than outputs in some subsystems (stiff subsystems) create the
most significant drawbacks. These drawbacks can be significantly decreased
or eliminated when penalty functions are used (Pearson 1971, Findeisen
1974). Findeisen also noticed the significant role that local constraints could
play in applications of the direct method.

The use of penalty functions as the coordination mechanism will be called
the penalty function method (prM); it will be introduced below for the overall
system optimization problem:

Find control é giving output §, such that
(¢, §) =arg min Y(Q;(cy, Hyy), . .., Onlcn, Hay)) (2.32)
subject to
=F,(¢, Hyy, z), (¢, Hy)e CU;, iel, N, yeYy.

All considerations of this section can be easily extended to the more general
case, with various types of overall system constraints (2.13). This will be
discussed later in this section.
The disturbances z;, i€ 1, N, are assumed to be constant throughout the
optimization and will be omitted for convenience.
Note that the drawbacks of the direct method are caused by the require-
ment to fulfill strictly the output-structure equations

v, =Fl(ce, Hv), i€l,N (2.33)
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after each minimization of the local decision problems. In pFM we eliminate
this requirement and try to fulfill Eqs. (2.33) using penalty functions, which
are introduced locally regardiess of the form (possibly nonadditive) of the
utility function . Thus, local decision problem i (Lp,,) is

For given coordination variable v €% and penalty coeflicient p, e R, find
control
é.(v, p)=argmin Q,,;(*, v, p;) (2.34)
Gi(v)

where
Vci € <gi Qpryi(ci, U, p:) é Qi(ci, I_I,U) + pi”vi _E(Ci’ PIiU)”z’
C(v)2{c e %:: (¢, Hv)e CU,}.

The above quadratic penalty functions are used in this section. Other types
of penalty functions are also possible. We continue by defining

épryi(v, pi)éoptyi(éi(v’ pi)’ v, pi)9 ie 1» N’
épty(va p)élb(éptyl(v’ P1)~ DRI QﬂpryN(U» pN))a P é(pla LRI pN)ERT

Coordination variables v in PFM are the same kind as those in the direct
method, and the coordinator problem (cp,,) takes the form

Find the value p (called the coordinating value) of p € RY and coordination
variable
#(p) =arg min Q,,, (v, p), (2.35)
YNv,
where Vi={ve¥: Viel, NC (v)# J}, such that (¢(H(p), p), 6(H)) is a satis-
factory approximation to the solution of the initial problem (2.32).

If p is fixed, then local problems Lp,,,, together with the problem of finding
0(p) create the two-level optimization problem that will be called the
parametric problem (with parameter p) below. The parametric problem can be
regarded as a two-level optimization problem of the direct-method type, but
with an extended performance index when compared with the two-level
problem of the direct method from the previous section, and no output
equations. Thus, it is better-suited to two-level optimization: there is no
problem with “stiff’”” subsystems and the only troubles may be caused by the
dependence of the constraint sets of the local problems rp,, on the
coordination variables v. Hence, troubles with the set V/ may occur, but it is
generally much easier to handle V) than the set V,; (see Eq. 2.27).
Moreover, for the important class of applications with separable local
constraint sets, i.e.,

CU =CxU, iel, N, (2.36)
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the set V} reduces to the precisely known set

V. ={ve¥%: Hve U:i;,I U}.
In this case, the constraint sets in local problems Lp,,; are C (v)=C,—they
are not dependent on the coordination variables—and the coordinator
constraint set YNV, for the variables v is well defined.

However, one should realize that all the advantages of this approach are
obtained at a cost: the coordinating values of the penalty coefficients p must
be effectively chosen. To ensure that the parametric problem can be solved
using two-level optimization, the values of the parameters p should be
constrained to the set

D,, ={peR}:VveV \Qp,yl(v, P OP,YN(U, o) e}, (2.37)
where V=YNV}, and Q<R is the set on which function ¢ strictly

preserves order. (Precisely speaking. (O,,lyl(v, OV QAMN(U, pn)) should
belong to £ for all values of v that are sent from coordinator cp,,, to local
decision problems Lp,,;. The choice ve V in Eq. (2.37) is proper when the
coordinator strategy does not use infeasible values of v.) The above
requirement follows from the standard requirements of the direct method
(see section 2.2.) and assures that two-level minimization of the parametric
problem is equivalent to minimization of the overall penalized performance

index

thy (Cv v, p) éllj(opryl(cl’ v, p1)9 MR ] thyN (CN, v, pN)) (238)
on the set

CV2 U (X Go)x{oh={(c.v)e4x ¥ (c, Ho)e X CU, ve VY.

veV =

The penalty function method will be analyzed within the framework of
duality theory; the analysis will use the methodology introduced by Roc-
kafellar (1974). To consider the method as a dual one, let us define the
primal problem (P)

minimize sup Q,, (¢, v, *)

bty

(2.39)
subject to (¢, v)e CV,

and the dual problem (D)

maximize inf Q,,, (-, -, p)
cv

(2.40)
subject to pe D,,,.
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It can be easily shown that relation
sup (D)=inf (P)=pn

always holds, where sup (D) and inf (P) denote solutions (i.e., the perfor-
mance index values) of the dual and primal problems, and g is the solution
of the initial system optimization problem (2.32). Thus, the coordinating
values of p are simply values solving the dual problem—hence, the method
can be regarded as a dual one and penalty coeflicients p as dual variables.

To complete the introductory presentation of prMm, we observe that the
overall penalized performance index (2.38) used in it ditters from the
function commonly used in penalty techniques

N
'l’(Ql(Cl’ H,v), ..., Qnlcy, Hy)) + Z (¢ “Ui _E(Civ Hiv)“2
i=1
which in general (i.e., when utility function ¢ is not necessarily additive) is
nondecomposable.

2.3.2. APPLICABILITY CONDITIONS

One can see intuitively that the larger the values of the penalty coeflicients,
the closer the solutions of the parametric problem will be to the minimum of
system optimization problem (2.32) that we are trying to find. The theory
confirms this supposition as long as some conditions are satisfied; these
conditions will be formulated in this section.

Let us assume at the beginning that the following rather moderate
requirements concerning utility function ¢ and the set €} on which ¢ strictly
preserves order are satisfied:

lim [la"| =2 = lim ¢(a")>y(a), (2.41)

where a is any element from (Q, and {a"} any sequence contained in () and
bounded from below;

(VaeQ)(Va' eRMa'=a=>a' e 2.42)

Conditions (2.41) and (2.42) are assumed to be satisfied in this section. They
define a very broad class of nonadditive performance indices, including the
most frequent cases as additive, multiplicative, or a mixture of the two.
Wozniak (1973) gives some examples of functions that strictly preserve
order. Recall that all spaces considered here are assumed to be Hilbert
spaces. though the main results are true for more general spaces.

The first question to be answered concerning the applicability of prm is
whether the dual admissible set D, is nonempty and sufficiently ‘““large.”
That and even more is ensured by a typical condition of boundedness from
below, which we now introduce.
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THEOREM 2.13. If condition (2.42) is satisfied and
FpeRNFacQ)(V(c,v)eCV)  Q,,(c,v,p)=a, (2.43)
where
Vic,v) e € XY (jp,y(c, 0, p) 2 (Quui(C1, 0, P1)s - -+ Queyn(Crs U, P )5
then

(1) [p, t)e D,,,,
(2) lim d{(p)=sup (D),

where d(p)=infcy Q,, (-, *, p) is called the dual function and p — +o means
that all components p, cR. of peRY, i€ 1, N, tend to plus infinity.

Proof. (1) Tt follows directly from (2.43) that pe D,,. Take any p=p
and denote p, = p;, +Ap,, i€ 1, N. For every ve V

éptyi(va p:)=inf [Q(-, Hv)+p, “vi -F(, Hv)||2
Ci(v)

+Ap; ”Ui -F(, HU)“2] = inf [Q,(-, Hv)+p; “Ui -F(, Hiv)llz] = éptyi(v, p:),
Ci(v)

because any norm is non-negative. Hence, it follows from condition (2.42)
and definition (2.37) that p € D,,,, which implies that [p, +«) € D,,,.
(2) According to (2.42) it follows from definition (2.37) that

peD,, = V(c,v}eCV (jp,y(c, v, p)fl.
Arguing analogously to the proof of (1) we get
p1=p, > Vi v)eCV ép,y(c, v, pl)z(jp,y(c, v, po).

Hence, the dual function is nondecreasing on D,,,, which implies relation

(2. Od

Theorem 2.13 shows that large penalty coefficients (dual variables) are
admissible (part 1), and that they should be coordinating if the duality
relation sup (D) =inf (P) = u is to be satisfied (part 2). Conditions ensuring
this relation will now be presented.

Lemma 2.8, If we assume that
1. Conditions (2.41), (2.42), and (2.43), with a<int(}, are satisfied,

2. Functions Q,, i€ 1, N are (weakly) lower semicontinuous on (weakly)
compact sets CV, = | ), (C,(v) X {Hv}),
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3. Mappings F; are (weakly) continuous on CV,, i€, N,
4. Function ¢ is lower semicontinuous on Q*(CV) and order preserving
on Q°, where:
V(Cv U) € (6 X O‘y GH(C’ U) é Q_(Ca HU) é(Ql(cla Hlv)» L ) QN(CN’ HNU))7
Q°={aeR": (¢, v)eCV a=Q"(c, v),
then
sup (D) = u.

Outline of the proof. The proof is based on the following partial results A,
B, and C. First, we introduce some definitions:

Vid(t,...,t)€ey X 2{(c,v)e CV: v,—F(c, Hv)=1t,i€1, N},
Ti{te¥: X,# &),
VieT  O@)2inf QH(, ).
X,

The function Q:T—R is usually called the perturbation function; see
Rockafellar (1974). Notice that the optimal value p of problem (2.32) is
equal to Q(0).

A. If assumptions (2.41), (2.42), and (2.43) with aeint{) are satisfied,
then

sup (D) =lim Q).
t—0

The arduous proof of the above inequality can be found in Tatjewski (1976,
1978).

B. If the function d;o(_)” is (weakly) lower semicontinuous on CV,
mappings F; are (weakly) continuous on CV,, i € 1, N, the set CV is (weakly)
closed and

(1) (Fe>0)38,>01Vs€]0, 8] (Cs={(c,v)eCV:

$(Q%(c,v))=¢ A |lv—F(c, Ho)|<8} is nonempty and bounded),
then

lim Q(t)= Q(0) = ..

t—0
The above result is based on an inf-stability theorem given in Wierzbicki
and Kurcyusz (1977).

C. If the functions Q,; are (weakly) lower semicontinuous on CV,
ie1, N, the function ¢ is lower semicontinuous on Q"(CV) and order
preserving on Q, then the function ¢ o Q¥ is (weakly) lower semicontinu-
ous on CV,
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Using the above results, proof of the lemma can be easily derived: The
inequality sup (D)= u always holds and sup (D) =1im,_ Q(1) from A, so the
proof amounts to establishing that the assumptions of B are satisfied. The
set CV is (weakly) compact since all sets CV; are (weakly) compact, hence,
it is (weakly) closed and for every 8,>0 and 8¢€[0,§,] the sets X2
{(c, v)e CV:|jv — F(c, Hv)|| = 8} are bounded. Choosing any &> u, we con-
clude that assumption (1) is fulfilled, and by virtue of C all other assump-
tions of B are also true. [J

Remark. In the most typical cases, the sets () are open; hence, assumption
(2.43) alone ensures that aeintQ=Q. 0O

The results obtained in Theorem 2.13 and Lemma 2.8 make it now
possible to formulate applicability conditions of PFm.

THeEOREM 2.14 (applicability conditions of prm). Denote by {p"} any se-
quence of penalty coefficients tending to +o and by {a"} any sequence of positive
scalars converging to zero. If we assume that (a) the assumptions of Lemma
2.8 are satisfied, and (b) function s is lower semicontinuous on (), then for
sufficiently large n there exist points (c", v") satisfying

Q, (c™, v", p")=inf Q,, (-, -, p")+a" =d(p")+ "
Ccv

and

lim pf |lof = Fi(c}, Ho")|P =0, i€, N,

lim Q,(c", v™, p") = lim Y(Q(c", Hv")) = g,
and any (weakly) convergent sub-sequence of the sequence {(c", v")}
(weakly) converges to the solution of problem (2.32).

Proof. By Theorem 2.13 [p, +<)< D,,,. Thus, we can assume, for suffi-
ciently large n, that p” € D,,, +¢, € €RY. We have ¢(a) >~ since a € int )
and ¢ strictly preserves order on (). The above results together with
assumption (2.43) imply that for sufficiently large n there exist finite lower
bounds of the function Q,,(-,, p"), and hence points (c", v").

Since for every (¢, v)e CV the function Q,,(c, v, ) is nondecreasing on

[p, +), for sufficiently large n
d(p")+a"=Q,,(c", v", p") = Q, (c", V", p" —&)=d(p" —¢).
By Theorem 2.13

lim (d(p")+a")=1lim d(p" —¢) =sup (D),

n—x
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and therefore by Lemma 2.8

(1) lim Q,,(c", v, p") = .
We now demonstrate that lim,__. |[vF — F,(c?, Hv")||= 0 for every i€ 1, N,
since in the opposite case

Jje1, N lim o} —F(c?, Ho™)|>0,
which implies that

lim p} o} — Fy(c}, Ho™)|? = +°.
e

The sequence {Q,ty (c™, v, p™)} is contained in the set ) and is bounded
from below; hence, by assumption (2.41)

lim Q,,(c", v, p™)>¢(Q(E HD)) = p,
where (¢, ) is any point belonging to CV and satisfying the output equa-
tions (2.33), i.e., (¢ 0)e CVNCVF, CVF2{(c, v)e€x¥: v=F(c, Hv)}.
This strict inequality contradicts (1).

The set CV is (weakly) compact and therefore the sequence {(c", v")}
consists of its (weakly) convergent sub-sequences. Denote any of them by
{(c"™', v™)}, and its (weak) limit by (¢, ©) € CV. Since the output mappings F;
are (weakly) continuous and we have shown above that |v!— F,(c?, Ho™)||—
0, ie 1, N, we know that (¢, 5)e CVNCVF,

It is not possible for any je 1, N that lim,. .. p/' v} = Fi(c}', Hp")|F = +o,
since it leads to contradiction with (1), as we have shown above. Let us
examine, therefore, if it is possible that

jel,N  lim p}'[lo}'— F(c}', Hv")F =8 >0,
and assume, without loss of generality, that

Tim o[ o'~ F (¢}, Ho")|? = lim pf o} = F(c}", Ho™)|.
n'—soc

n’—ox

Denote by {(c™, v™)} a sub-sequence of {(c™, v™)} such that

al = ll_m Ql(c'li/’ HIU"’)Z lim QI(CTla Hlvnl)’

n'—w n;—=o

by {(c™, v™)} a sub-sequence of {(c™, v™)} such that

ay = lim Q,(c%, H,v™)= lim Qx(c32, Hyv"™),

n;—« n,— o
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and so on up to sub-sequence {(c™, v™)}. (¢, 0)e CVNCVF implies, by
assumption (2.43), that Q(¢, H) € Q). Since the functions Q, are (weakly)
lower semicontinuous a = (ay,...,an)= Q@ Ho) and (2.42) implies
that « € ). Taking into account that  is lower semicontinuous and strictly
preserves order on () and that penalty functions are non-negative, we get

(2) w=lim Q,y(c™, v™, p™)=(ay, ..., -1, 4+ 8, &y, ..., AN)

N

>y(Q(¢, Ho)) = p,
which is, of course, impossible. Hence, for any je 1, N
(3) lim p} |} — E(c}, HvM|? = 0.

Equality (2) implies therefore that ¢(Q(¢, HD))=pu. Thus, any (weakly)
convergent sub-sequence of {(c", v")} (weakly) converges to the solution of
problem (2.32) since (¢, 5)e CVN CVE,

We need only show that lim, ... ¢(Q(c", Hv")) = u to complete the proof.
It follows from assumption (2.43) with a eint () that

IB>0 G =(a—B.....au—B)eQ

By virtue of Eq. (3), for sufficiently large n the values of penalty functions
are not greater than B. Thus, for such n, Q(c™, H")eQ, and
Q,,(c", v", p")=¢(Q(c", Hv™)). Using now the lower semicontinuity of
¥ o QM (see the proof of Lemma 2.8) and Eq. (1), we get finally

p=lim Q,,(c", v", p")=1lim Y(Q™(c", v")) = y(Q(c, HD)) = p,

n—wo

which completes the proof. [

Remark. If in Lemma 2.8 above (and hence also in Theorem 2.14) lower
semicontinuity of Q, and ¢ is replaced by continuity, then the requirement
for order-preserving on ° is superfluous because it was used only to ensure
lower semicontinuity of ¢ o QY (see the proof of Lemma 2.8, part C). This
remark is important especially in finite-dimensional spaces, when continuity
is a natural assumption. [

It is always the case that CV; = CU,, because the sets CV; consist of such
points (¢, y;) € CU; that u, = Hyv for some ve V, and hence it is advantage-
ous to make assumptions about CV,; and not CU,, i€ 1, N. In the case of
separable local constraints (2.36), CV,=C, xH;(V)c CxU, i€l, N, and
they are (weakly) compact if G, U;, i€ 1, N and V are (weakly) compact.
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The applicability conditions of prMm, formulated in Theorem 2.14, are all
natural and weak (boundedness from below, continuity of mappings, com-
pact sets, and so forth). Therefore, the method is applicable to many areas.

2.3.3. COORDINATOR STRATEGIES

Coordinator strategies are algorithms for finding a solution of the coor-
dinator problem cv,, i.e., algorithms for finding the coordinating values of
penalty coefficients p and for using those values to solve the parametric
problem.

It was shown in Theorem 2.14 that values of dual variables p are
coordinating if they are sufficiently large. Therefore, it is possible at the very
beginning to take very large penalty coefficients p and to solve the paramet-
ric problem with them only once. But we have found that to solve the
parametric problem once with large values of the penalty coefficients is
reasonable only if the initial point in the numerical procedure lies very close
to the required minimum. In other cases, it is more efficient to solve the
parametric problem repeatedly with increasing values of the penalty coefhi-
cients and a rule for choosing the solution of the parametric problem, for the
small value of p, as a starting point for the next two-level optimization. This
strategy has three levels: two-level parametric problem and a higher level
for adjusting p. Observe also that we are interested in the solution of the
parametric problem only for one coordinating value of p. Therefore, solving
that problem precisely for every succeeding p could lead to an unnecessary
increase in computation; it is advisable to start with low accuracy and to
increase it as p increases. This method coincides perfectly with the theoreti-
cal results given in Theorem 2.14: a" — 0 means that the accuracy of the
optimization increases.

A heuristic approach toward better efficiency, proposed by Franz et al.
(1975) consists in modification of the parametric problem. It is solved
repeatedly with increasing p, but local decision problems rp,,; are solved
only one during one parametric problem minimization—only for the first
(initial) value of v—and local solutions are then kept constant until p
increases.

It should be noted that the aim of all the above strategies is first to get a
satisfactory approximation of the optimal point of problem (2.32) with small
values of the penalty coeflicients. With larger values of p, the parametric
problem becomes poorly conditioned and hence numerical procedures are
less effective, which is well known in any application of penalty functions.

To make the coordinator strategy eflective, it is also very important to
evaluate the coordinator problem performance index Q,, (-, p) only rarely
since each evaluation requires minimization of all N local decision problems
LP,. That is why the properties of the performance index should be
carefully taken into account. Theorems and comments concerning properties
of function Opry(-, p) can be found in Appendix A at the end of the book.
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2.3.4. FURTHER APPLICATIONS OF PFM

It was noted in section 2.3.1. that pFM can be also applied to a more
general form of the system optimization then problem (2.32). The overall
system constraints of the type (2.12):

CUy={(c,u)e € xU: r(c, u)=wl(rc, uy),....rvlcn un))€ERY (2.44)

where for every ie 1, N
r6 XU —R, W:-;l%_)%’ Rc®R

can be easily handled by prm. In this case, the local decision problems are

formulated as follows and denoted P,

For given coordination variable x; = (v, r;)€ % X %; and penalty coefficient
p; €R, find control

éi(xiv pl) = arg I(‘:n(l'?) Qplvi('9 xi7 p:) (245)

where
V¢ €€ Qprilei xi p;) & Q(c;, Hv)+
pi(“vi —F(c;, Hiv)“2 + “rdi —r(c, Hiv)l\z)-

Coordinator problem cp,, should be formulated as follows

Find the value p of p={(p,,..., pn)eRY and the coordination variable
£(p) =argmin Q,,, (", p), (2.46)
where
X={x&(0r)=0r4.....ran)EYUXR: veVaw(ry, ..., rueR],

such that (¢(X(p), p), v(p)) serves as a satisfactory approximation of the
initial problem solution.

All the results obtained until now for problem (2.32) are true, even with
additional constraint (2.44), provided that mappings r, satisfy assumptions
analogous to those concerning F,, i€ 1, N. Suitable modifications of all
formulations are rather obvious.

The penalty function method can be further generalized to completely
eliminate the dependence of local decision problem constraint sets on
coordination variables; troubles with the set V} are thereby avoided and the
coordinator problem functional is made easier to differentiate. However,
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this can be done only at the cost of higher dimensionality of local decision

problems, which should be formulated as follows and denoted L}, ;

For given coordination variable ve€® and penalty coefficient p,eR,, find
control and interaction

(& (v, py), (v, p;)) = arg rgin Qi (-, 7, v, ), (2.47)
U

where

Y{(c, u;) €€, X, Qpryi(ci’ U, v, pi)é Q¢ )
+pi(||vi —F{c, ui)”2+“ui _Hivl|2)'

Of course, two different penalty coefficients for output and structure equa-
tions can also be used instead of one p;. Having defined local problems Lp,;,
we formulate the coordinator problem asfollows and denote itby cpy,

Find the coordinating value p of p =(py,..., pn)€RY and the coordination
variable

5(p) = arg min Q,, (-, p), (2.48)
v
where V=Y and Q,,(-, p) is defined analogously to its definiton in cp,.

All results obtained until now for the best case of separable local
constraint sets (2.36) remain valid for the above formulation. We must only
use, as it follows from L, x; =(c, ;) as local decision variables instead of
¢;, and the sets X; = CU; instead of C, ie 1, N. It is also important not to
increase local problem dimensions higher than necessary. For example,

consider a subproblem with

A A
w; = (U, Uio, Uy3) ER, ¢, =(ci1, Gias Ci3)€R3’
CU, é{(Ci, u;): Oscij =a,¢,Hu;=b, co—vVe, U =c},

where a, b, and ¢ are scalars, and where the i-th structure equation is

Uiy H;,
u=| u | =| H> |v=Hp,
Uis H;,

It is reasonable to assume that x; 2(c, u;,)€R* instead of the general
formulation x; £ (c;, u;) €R®, because taking only u;, as the additional local
decision variable fully eliminates the dependence of local constraint set CU,
on coordination variables v; u;, and ;5 do not enter the description of CU..
Therefore, u;, and u;; can be kept constant at the values given by the
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structure equations, and the following local problem arises

Flnd (61‘(0’ p)* ail(v’ p)) = arg min Qpryi(. » T, 0, 0)7 Where
Qpryi(civ Ui U, P)
= Q;(¢;, wiy, Hppv, Hizv) + P(“vi - Fi(c;, u;1, Hppv, Hi3v)||2+ ||ui1 - Hi117||2)-

The general formulation (2.47) is defined for “the worst case,” i.e., when all
u;, jel,dimu, enter the description of the set CU;; the above example
explains how to adopt this formulation when the actual case is better than
“‘the worst.”” Observe that the constraint set V of cp,,, is extremely simple,
consisting only of the admissible output set Y.

2.4. PRICE COORDINATION—THE INTERACTION BALANCE
METHOD

In this section we will discuss the basic properties of the interaction balance
method (1BM) (see Chapter 1). The problem statement and formalization of
the method will be followed by some general comments. Next the pos-
sibilities for application of 1BM will be presented together with the approp-
riate coordination algorithms. Finally, some different methods using the
price mechanism will be presented.

2.4.1. STATEMENT OF THE PROBLEM

The interaction balance method has been introduced in Chapter 1. Here we
will use the following formulation of the system optimization problem (op):

Find control ¢ and interaction & such that
Q(¢, i) =min Q(c, u) (2.49)
subject to

1. Subsystem equations (2.4), i.e., y;=F;(¢, u, z;), ie 1, N, or, in com-
pact notation, y = F(c, u, z)
2. Coupling equations

N
P(u,y)= Y, P(u,y,)=0; (2.50)
i=1
Eqgs. (2.6) represent a particular form of these couplings
3. Local constraints (¢, u)e CU, i€l,N; (¢c,u)eCU=CU,;x---X
CUjy—see Eq. (2.9)
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We assume, that Q(c, u) =Y, Qcu,), P, : & XY, — P and that €, U, Y,
@ are real Hilbert spaces. Some considerations and results presented in this
section can be generalized to Banach spaces (or even linear-topological
spaces). However, it seems to be reasonable to restrict the considerations to
real Hilbert spaces. We denote ¢ 2(c,,...,cn), Flc u, 2)2(F(cy, uy, z1),
..., Fylen, Uns 2,)) etc. It should be noted here that Q, F, can
be defined only on some appropriate subsets of €; x4, and 6, X €, X Z..
Let us define the Lagrangian:

Lic,u, A, 2)=Qf(c, u)+{A, P(u, Fc, u, 2))), (2.51)

where A € ?. In most of the following discussion, the distinction between ¢
and u will be not necessary; thus to simplify the notation we will introduce
the following definitions:

w(c,u), iel,N (w2(cu))
Qlc, u)=O(W)=§ Q(w) (2.52)
V(w, 2) = P(u, F(cl u, z)) (2.53)
L(c,u, A, z)=L(w, A, 2)= i Li(w, A, z;) (2.54)

Now we can formulate the infimal (lower-level) problem (1p) of 1BMm:
For given A € ® find w(A)=(é(A), i(A)) such that

L(W(A), A, z)= min L(w, A, 2) (2.55)
weCU
Remark A. The notation w(-) may suggest that w(A) is a point-to-point
function of A. However, this notation is used here only to denote the
dependence of solution w(A) on A. An assumption about the uniqueness of
w(A) will be introduced later (w;, and other notations in this section, should
be interpreted in the same way).

The infimal problem 1P can be solved as N independent local problems

(Lr,):
For given A €® find w;(A)=(¢(A), &;(A)) such that
LW, (A), A, z)= min Li(w, A, z,) (2.56)

w; e CU,

The set of solutions of 1p, or the set of solutions of rp, for gi_ve_n A are
denoted by CU (X) or CU;(A). Of course, CUA) = CU{(A) X+ - - X CUy(A).
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The coordinator problem (cp) may be now defined as follows:
Find X €® such that the set CU(X) is nonempty and for every

we CUX) we have V(w,z)=0. (2.57)

The formulation of 1BM originated in mathematical programming (Lasdon
1968, 1970). It was introduced in a slightly different form for system
optimization (Mesarovi¢ et al. 1970) where the coordinator problem was
stated in the following general but not very practical form:

Find A €® such that there exists

we CURX) for which V(w, z)=0. (2.58)

It is evident that since we are not able to distinguish the different solutions of
1P at the lower level, the solution A of problem (2.58) may not provide us
with a feasible solution of op.

Problem 1p can be formulated differently; instead of solving the minimiza-
tion problem one may solve the the set of necessary optimality conditions
(Titli 1972) under appropriate differentiability and regularity assumptions.
Such an approach has been used for dynamic optimization; see Pearson
(1971), Singh et al. (1975), and Tamura (1975). It may be shown that if we
are able to choose an appropriate solution of the necessary optimality
conditions, then the price method may provide us with an optimal solution
of op even when 1BM—as presented above—fails (Ostrovskii and Volin
1975). However, it is not yet possible to specify the rule for choosing the
“proper” solutions of the necessary optimality conditions. Moreover, if a
solution is unique, then—at least for problems of practical interest—it
reduces to the solution of 1r. On the other hand, the above formulation of
1BM is more natural for decision-making hierarchies and does not require the
differentiability and regularity assumptions for op.

2.4.2. APPLICABILITY OF THE INTERACTION BALANCE METHOD

In this section, z will be eliminated from all mappings for convenience, since
it is not involved explicitly in any assumption; thus, the assumptions are
assumed to hold for every z of interest. The following proposition is essential
for applications of iBMm.

ProposiTiON.  If there exists X, a solution of cp, then every Ww(X)e CU) is a
solution of opr. [J

The proof is elementary and results from definitions of 1p and cp, and from
Eq. (2.51).
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DerINITION.  We say that 18M is applicable to op if there exists at least one
solution A of cp.

THeOREM 2.15. if 1BM is applicable to op then there exists a saddle point
(w® A% of Lagrangian L(-, -) on CUX P. If (a) there exists a saddle point of
L(-,-) on CUx® and (b) every point (w* A™) such that L{w* A*)=
max, e Mmin,,.cy L{w, A) is a saddle point of L(-,-) on CUX®, then 1BM is
applicable.

Proof. 1f iBMm is applicable, then any point (X, W(X)), where w(X)e CUL), is
a saddle point of L(-,-) on CUX® since Ywe CU, A €®:

L(w, )= L(W(X), )= L(W(X), A).

On the other hand, it is well known that if (w°, A°) is a saddle point of L(:, -)
on CUX@, then w° is a solution of op. So let us assume that (w°, A°) is a
saddle point of L(-, -) on CU (according to assumption (a) at least one such
point exists). Then every (w*, A°) such that

L(w*, A% = min L(w, A°),
weCU
i.e., every solution w* of 1p for A = A° has to satisfy

L(w® A9 =L(w* A% =L{(w° A°.
Hence

L(w*, A% =L(w° A% =max min L{w,A)
Ae® weCU
and according to assumption (b) (w* A°) is a gaddle point of L(-,-) on
CUx®. So w* is a solution of op. Therefore, A =A% is a solution of cp;
CU()) is nonempty since we CU(A). O

We will now present some theorems and lemmas giving more insight into
the applicability of 1BM and more constructive sufficient conditions for this

applicability.
Let us define first the dual function ¢,:2? —R as follows
¢@(A)= inf L(w,A) (2.59)
weCU

One of the most general results is given by the following theorem:

THeOREM 2.16. (applicability conditions of 18M). If we assume that

1. Set CU is (weakly) compact, P is (weakly) continuous on € x9%
(usually P is an affine mapping—see Egs. (2.6)), F is (weakly) continuous on
CU, and Q is (weakly) lower semicontinuous on CU,
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2. There exists A € P. such that

@, (X) =max ¢,(A).
AeP

3. Set V(CU(X)) consists of a single point,

then A is a solution of cp and w(X) is a solution of op.

Proof. It is easy to show that ¢,(A) is concave on 2. Indeed, VA', A’ @,
VYwe CU, VYpel0, 1] we have

L(w, pA'+(1—p)A?) = pL(w, A")+(1—-p)L(w, A?).

Therefore
@1(pA'+(1=p)A%) = inf L(w, pA'+(1—p)A?)
weCU
=p inf L(w,A)+(1~p) inf L{w,A%)=pe,(A")+(1-p)e,(A?).
weCU weCU

From assumption 1 it follows that YA e @ set CU(A) is nonempty and
¢@(A)>—cc. Thus, function ¢(A)=—¢(A) is convex and continuous on P
and ¢{A) has a nonempty, weakly compact and convex subdifferential a¢(A),
VA e® (loffe and Tikhomirov 1974). The representation of d(A) can be
obtained from the following:

Tueorem (loffe and Tikhomirov 1974). Suppose that ¥ is a linear locally
convex topological space, & is a compact topological space and f: X ¥ —R.
Assume that Vse& f(s,) is convex on X and Vxe& f(-, x) is upper
semicontinuous on ¥. Let us denote

folx)= sup f(s, x), So(x) ={se L f(s, x) = fo(x)}.

Then Vxe % we have

W( g%J( )afs(X)) < 3foxo)-
If Vse& f(s,-) is continuous in x = x,€ & then

wome [ U afil) = htx)
where f.(-)=f(s,*) and conv A is a weak™® closure of the convex hull of
AeX* in I*.

From the above theorem and assumption 1 it follows that VA €2

a@(A) = conv (— V(CUZ))). (2.60)
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<p(/()=min)\€g<p(/\) (assumption 2) and ¢(A) is convex, so 0eap(X). But
according to (2.60) and assumption 3 we have

de(X) = — V(CUQ)).
Therefore Yw e CUX), V(wA) =0 and CU(A) is nonempty. So X is a solution
of cp and of course any w(A) is a solution of op. [

The following lemma follows directly form the proof of Theorem 2.16.

Lemma 2.9.  If assumption | of Theorem 2.16 holds and VA e P, <P the set
V(CU(M)) consists of one point (which is true, of course, if CU(X) consists of a
single point), then ¢,(-) is weakly differentiable YA € P,. Moreover, if P, is
open and V(CU(+)) is continuous on P, then ¢(-) has a Fréchet derivative

@(\)= V(CUN)) YAe®P,.

Remark B. Assumption 1 of Theorem 2.16 is restrictive in the norm
topology ‘version with respect to the compactness requirement of CU. This
requirement is difficult to relax. After modifying the proof of Theorem 2.16,
one can see that it is enough to assume that VA € @, where 2, is such that A
defined in assumption 2 belongs to it, and #, is open and convex, the
solution set CU(A) is nonempty and belongs to some compact set A <€ XL
In the weak topology version we would like to relax the assumption about
the weak continuity of F on CU (the assumption that CU is weakly compact
is not a very restrictive one). It is enough to demand that the functional
L(-,A) be weakly lower semicontinuous VA e®, (2, such that Xeg’o is
convex and open).

The key assumptions of Theorem 2.16 are 2 and 3. The following lemmas
specify some sufficient conditions under which 2 and 3 hold.

LemMa 2.10.  If we assume that (a) assumption 1 of Theorem 2.16 holds and
Q is bounded on U, and (b) for all he P, ||h||=k,>0 there exist h,, |h,|=
k,<k, and we CU such that V(w)= h+hy, then assumption 2 of Theorem
2.16 holds and ||A|=r, where

1
kﬁ_ko

TRk,

k! = sup Q(w), ks =min Q(w).

Ccu Ccu
Proof. It was remarked before that ¢,(-) is concave and continuous on 2.
Therefore, ¢,(-) is also weakly upper semicontinuous on 2. Now, for every
Ae® we can find h,|h|=k,, such that (A, h)=—k,||A|l. Then, from the
assumptions we have

@ (A)=L(w, A) = Q(w) + <A, V(w)),
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where we CU and V(w)=h+h,, |h|=k,. Therefore
@A) = kb= ky[|Afl+ Kl|Al

Thus for ||Al|>r ¢, (A)<¢,(0)= k{. This means that

sup ¢(A)= sup ¢,(A)

Aeg AeRB(O;r)
B0 ry={reP:|A[|<r}, BO; 1) is a closure of BO; ).

But ball B(0; r) is weakly compact and since ¢4(*) is weakly upper semicon-
tinuous then there exists A such that

@1(X) = max @;(A)
AP
and [[X|=r. O
LemMa 2.11. If we assume that

1. Set CU is convex and weakly compact,

2. There exists A such that ¢,(A) = max, o ¢;(A),

3. Xeg’ocg’, where P, is an open and convex set, and VY A€ P, the
functional L(-, A) is strictly quasi-convex on CU,

then assumption 3 of Theorem 2.16 is satisfied and ¢, is weakly differentiable
on P,.

The simple proof of the above lemma is omitted.

Remark C. If Q is strictly convex on CU, and F and P are affine
mappings, then L(-, A) is strictly convex (and thus strictly quasi-convex) on
CU for all Ae?.

When L(-, A) is convex on CU for A € P, but is not strictly convex, we can
make the local performance criteria in Lp; strictly convex by adding to them
“small” terms el|w;|* (¢>0). It can be shown then, that by using this
modification we obtain an auxiliary optimization problem to which 1BM is
applicable. Moreover, for sufficiently small & the solution of this auxiliary
problem is very close to a solution of op. It is widely known (Hestenes 1969,
Polyak and Tretyakov 1973, Bertsekas 1976a) that in some cases the
desirable convexity properties of a modified performance may be obtained
by adding the following term to Lagrangian 2.51:

p{Viw), V(w)), p>0 (2.61)

to make it an augmented Lagrangian. However, such modification cannot be
directly used in 1BM because it is not decomposable; if we have to use an
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augmented Langrangian then methods different from 1BM must be applied.
These methods will be considered in detail in section 2.5.

The sufficient conditions of applicability of 1BM (mainly the conditions that
guarantee the uniqueness of the 1p solutions) are given in general, more or
less implicit forms. Lemma 2.11 together with Remark C gives of course the
concrete but restrictive conditions (F is assumed to be affine). However, it is
well known from practice that with 1BM we can solve nonlinear problems.
For a certain class of these problems we can formulate more concrete
applicability conditions:

Let us assume, that performance index Q and system operator V (see
Eqgs. (2.52) and (2.53)) have the following form (with appropriate separabil-
ity properties):

Q(w) =(w, Q'w)+(q, w) (2.62)
Viw)=B(w,w)+ Aw+a=0, (2.63)
where QT : XU —>E XU, qe€xU, and B:(€X U)X (€ XU)—P: B is a

continuous bilinear mapping, and A : € X U — ¢ is a continuous linear oper-
ator, aeP.

Tueorem 2.17. If we assume that

1. di|wlP=(w, Q'w)=d,|w|? d,=d,>0,

2. Set CU is closed and convex,

3. There exist constants kq, k,, ks€R, k> k,=0, k3> 0, such that for all
he®, |h||=k, there exist h,e @, |[h,||<k, and we CUNB(; k3) such that

B(w,w)+Aw+a=h+h;

in other words, set V(CUN B(0; k3)) contains a k,—net of sphere $(0; k;)=
{h:||hl| = K4},
4. ||B(w, w)=d,|wl?,

1
2+ 4+ 2

d(k3)* + ks|qll 24, Il d,

5. ko= <—,

kl - kz d3
then 18M is applicable to the system optimization problem (where Q and V are
given by Egs. (2.62) and (2.63)). Moreover, |Al|<k,, where A is a solution of

cr. [

The proof is given in Malinowski (1977) together with the simple examples
of applications of the theorem.

Assumption 5 of the above theorem plays an essential role and restricts
the nonlinearity of operator B. In some cases we can avoid (or relax) this
assumption. For example, the following result may be obtained.
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LemMma 2.12.  If we assume that

1. €xu=R", CU=%€Xx,

2. Assumptions 1, 3 and 4 of Theorem 2.17 are in effect,

3. Forevery A €@, ||A|| =k, (where k is given by formula from assumption
5 of Theorem 2.17) such that the quadratic term of L(-, A) is positively
semidefinite, the following condition holds:

if ker (-, Q'(-))+(A, B(+, -))) #{0}
then ker (-, Q' (")) +(A, B(-, ‘W) \ker (q+ A*A)##{0},

then 1BM is applicable to the system optimization problem op with Q and V
given by Egs. (2.62) and (2.63), and ||A|| =k, (where X is a solution of cp).

The proof is given in Malinowski (1977) with applications of the lemma.

To summarize, in this section the conditions were given under which the
price mechanism in the form of 1BM can be used for system optimization
problems. The most important practical condition is the uniqueness of 1p
solutions for A belonging to some appropriate subset &, of .

2.4.3. COORDINATION ALGORITHMS

If 1Bm is applicable to op, then to find A, a solution of cp, we must have
appropriate algorithms or coordination strategies; at the same time, the
local decision units have to use appropriate, efficient, classical numerical
algorithms for solving local problems vrp,. In this section we will only
consider the coordination algorithms for solving cp. Following the results of
the previous section, we make the practical assumption that VA e #, =@, the
solution of 1 is unique. As before, we will omit z in all mappings. We
assume that all assumptions hold uniformly for every z of interest.

From Theorems 2.15 and 2.16 it follows that if 1M is applicable (and this
is assumed in this section), then A = arg max, . ¢(A). From the assumption
that w(A) is unique for A €@, it follows that Vo,(A)= V(W{A)) YA eP, (see
Lemma 2.9). Therefore, we can use the gradient numerical optimization
procedures for solving cp; e.g., the steepest ascent or conjugate gradient
algorithms may be applied. Such coordination strategies are used very often
and—especially when @ is a finite-dimensional space—this approach gives
good results. If w(X) is unique (or if only V(W(X)) is unique—see Theorem
2.16) but ¢() is not differentiable at some points in an interesting neighbor-
hood @, of X, then we may apply subgradient techniques (Auslender 1970,
Shor 1972, and Wolfe 1975) to solve cp. Usually, especially when & is an
infinite-dimensional space, it is difficult to prove the convergence of the
subgradient algorithms, unless a special choice of step length is made in the
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subsequent iterations (the small-step step method). With this choice of a
step length, the algorithms are known to converge slowly. We will not
discuss the subgradient procedures here but will retain our assumption,
justified in practice, that w(A) is unique for all A in &,, where the set &, is
such that A eint @,. It should be noted that if the optimization procedures
are used by the coordinator, then the values of ¢;(A) become the main
information for the coordinator. Therefore, these values have to be sent to
the coordinator from the local decision units along with the values of
Vi(w;(A)). This is not an essential drawback, but there are two important
difficulties connected with the application of optimization procedures as
coordination algorithms.

First, convergence properties of the coordination strategies depend on
whether @ is a finite-dimensional space or an infinite-dimensional space. If
P is a finite-dimensional space, then the uniqueness of w(A) and concavity
of ¢,(-) imply that ¢,(-) is Fréchet differentiable. This follows from Lemma
2.9 and the well-known fact (Rockafellar 1970) that a concave or convex
function that is Gateaux differentiable on an open set in R" is also Fréchet
differentiable on that set. In most cases (e.g., under assumption 1 of
Theorem 2.16), the uniqueness of W{A)VA € P, =R" implies the continuity of
V(w(+)) on ?,. From this we can prove the convergence of the steepest
ascent algorithm (applied as a coordination strategy) if the level sets of ¢,(-)
are compact (which is true, for example, under the assumptions of Lemma
2.10). In many interesting cases the dual function ¢,(-) is not differentiable
twice, and it is therefore difficult to prove the convergence of a conjugate
gradient algorithm, for example. In most cases, though, this algorithm gives
good practical results. If 2 is an infinite-dimensional space, then it is difficult
to obtain and prove the strong convergence of maximizing sequences
produced by the numerical procedures for dual function maximization. The
assumptions that are necessary to demonstrate such convergence allow also
for proving the convergence of more general coordination algorithms which
will be examined later in this section.

Second, in some situations we want to use the coordination algorithms not
only for solving cp, but also as an on-line coordination strategy in various
control structures (see Chapters 3 and 4). In those cases we often do not
want the coordination algorithm to solve the equation

W(A)=0 (2.64)

where
W)L - V(w(A)), (2.65)

but to solve the modified equation

T(A)=0 (2.66)
where

T(A)= W(A)+s(A), $:P—>P. (2.67)
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The meaning of function s(A) will be explained in Chapter 3; if cp is being
solved, then s(A)=0 and algorithm (2.68) below reduces to a gradient
algorithm that performs, of course, the maximization of the dual function.
Also, in many cases we want the value of an appropriate norm of W(A™), or
T(A™), to be decreased for each subsequent value of A" generated by the
coordination algorithm.

Because of the above reasons, but mainly the second one, we will present
and examine one possible coordination algorithm for solving Eq. 2.66 in set
P,. Let us consider the following algorithm, which generates a sequence
{A™} of values of the coordination variable A:

AP = g AT(A™), (2.68)

where ¢,>0, and A:®— @ is a linear continuous operator. When we use
algorithm (2.68) to solve Eq. (2.64), we should set s(A)=0. The following
lemma is of basic importance.

LemMma 2.13.  Assume that
1. VM A+he® P, the following conditions are satisfied:
@) W +h)= W)l =g,
(i) (W(A+h)— W), h)=al|h|? (of course o, = a),
(iii) fls(r +h)— sl = oylih.
2. Operator A in Eq. 2.68 is self-conjugated and VA e
il AP=, AD=wlAP,  u,>0
In other words, A is strongly positive definite.
3. ow,>oygu.; this assumption is always satisfied when s(A)= 0.

Let us define a new norm |||, in ®:

IAlla £V4x, AX)

There exists, then, a nonempty set [qo, 1) <R, such that for any q€[qy, 1)
there exists set [¢',, e/ <R, such that if €, €[€,, 7] and A™, A™*" given by
Eq. (2.68) belong to P, then

T D)4 =gl T a- (2.69)

The proof is given in Appendix A, section A.2. Lemma 2.13 can be used
for proving the convergence of algorithm (2.68).

THeoreMm 2.18. Suppose that the assumptions of Lemma 2.13 are fulfilled
and that the starting point \'” for algorithm (2.68) has been chosen in such a
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way that for some q€[qq, 1) we have

B=BO; eua 7 ||T(/\(°’)||) <P

The sequence {A™Y;_, generated by algorithm (2.68) belongs then to B,
and converges (in norm topology) to A, a unique solution of Eq. (2.66) in ®,.

THEOREM 2.19.  Suppose that the assumptions of Lemma 2.13 are satisfied,
there exists coordinating price A for which T(A) = 0, and the starting point A¥
for algorithm (2.68) has been chosen in such a way that for some q€|[qq, 1

we have
B,2 @( [max (ﬂ\/& , l) + EZMZ]HT()\“”)ID c o,
&V

(where 8 = 0 —oy;).

Then the sequence {A —o generated by algorithm (2.68) belongs to B,
and converges (in norm topology) to X (and X is a unique solution of (2.66) in
2. O

(n)e

The proof of Theorem 2.18 is given in Appendix A, section A.3. The proof
of Theorem 2.19 is left to the reader.

Remark D. In the assumptions of Theorem 2.18 the existence of A is not
explicitly required. However, the existence of A is implicitly required to be
able to make the assumption that %, =#,. In the most important case, when
s(A)=0, we have A=A and the results of the previous section, which
concentrate on the conditions that guarantee the existence of A, may be
used. These results have a global character. The above convergence results,
are, however, only local.

The above results reveal an appealing feature of the proposed algorithm:
in each iteration, the value of | T(A)|4, or [|[W(A)||a, is reduced (see Eq.
(2.69)). Therefore, we can estimate before we begin, if we know the
appropriate constants, the number of steps (iterations) required to reduce
T(A)|| beyond a desired threshold.

Now we will establish some conditions that guarantee the fulfillment of
assumptions 1(i) and 1(i1) of Lemma 2.13.

LemMma 2.14. If we assume that

1. There exists a convex set P, =P,, such that YA € P, the solution of 1p
w(A) belongs to a convex set D < CU.
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2. Mapping V(-) is Lipschitz continuous on D, i.e.,
Yw', w?e D:||V(w')— V(w?)|[= o, lw' = w?|,

3. VAL A%e?) WA - wA|= oAt =A%), o, >0.
4. Lagrangian L(-,-) satisfies the following condition:

Vie®,, VYw!, w?’eD, and Vpe[0,1]

pL(w', M)+ (1—p)L(w*,A)=L(pw'+(1—p)w? A)
+ap(1-p)lw' — w?|]?, 035>0

(This means that L(-, X) is strongly convex on D uniformly in A € P,),

then assumptions 1(i) and 1(ii) of Lemma 2.13 are satisfied on P, with
constants oy, o (o>0).

The proof is given in Appendix A, section A.4.

Fulfillment of condition 1(iii) of Lemma 2.13 has to be examined
whenever a nonzero term s(A) is introduced.

In Lemma 2.14, the essential assumption is the third one. In some cases,
we may formulate the conditions under which this assumption is satisfied.

Lemma 2.15. If we assume that

1. Set S=S8,x---x8,, where CU={(c, u)e€xaU:G(c, u)e S} (see Eq.
(2.9)) is a closed, convex cone in &, G is concave with respect to ¥ on € XU,
and int S# O,

2. Performance function Q and mappings V and G are twice continuously
differentiable (with bounded second derivative) on a convex open set Dy<
€ XU,

3. VYAe@,, the solution w(A)e D, where D< D, and D is a convex set,

4. VweD, VAeP,, Vxec€ XU

M3|IX||2S<X, La'w(w’ /\)X)SFL4HX|2, #’3>07
5. VYweD, Y(v,, v,) €U x(—8%*) the following condition is satisfied:

ILVL (W) o, +[GL(W)TFu, ||z vlv,, v>0
and |[GL(w)T*v,||= v,|lv,]l, v, >0. (2.70)

then the assumptions of Lemma 2.13 are satisfied on $, with constants gy, o
(o>0) (if oy is sufficiently small).

The proof is given in Appendix A, section A.5.

Remark E. If CU is given in the form (for ¥ =R"):
CU={(ccu)eexU:glc,u)=0,j=1,--,n, 2.71)
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where g;: € XU —R, then in condition (2.70) it is enough to consider only
those constraints g that are active in 1 for A €2,.

Let us now consider a case of system optimization. Suppose that we have
a problem with a quadratic (strongly convex) performance index, linear
system equations, and convex set CU. In such a case, the restrictions on set
@, are imposed only because of assumption 3 of Lemma 2.14. It is possible,
of course, to satisfy this assumption on the whole space 2, but only if set CU
is unbounded. If CU is bounded, then assumption 3 can be satisfied only on
some bounded subset of ?. In a general case, this assumption may be given
the following rather rough but practical interpretation: from Eq. (2.70) it
follows, that the number of active constraints in 1p cannot be too large. If
ExU=R"xR™ and ¥=R"™, then this number should not be greater
than n..

In this section we have considered algorithms which may be used as
coordination strategies (for solving the cp of 1BM). The detailed analysis was
done for the very important algorithm (2.68). The conditions which guaran-
tee the convergence of this algorithm are not very easy to satisfy. Neverthe-
less, it should be noted that the differentiability of w(A) is not required ; nor
is it necessary to fulfill the strict complementarity condition in w{A) with
respect to active constraints in 1p in a finite-dimensional case. Operator A in
algorithm (2.68) may be chosen as A =I; a more sophisticated and some-
times more effective choice of A is presented in Appendix A, section A.6.
In section 2.6.4 we will present some computational results to illustrate the
behavior of the coordination strategies described above.

2.4.4. GLOBAL SYSTEM CONSTRAINTS AND IMPLICIT SUBSYSTEM EQUATIONS

Let us assume now that in addition to the local constraints (3) in op we have
a global system constraint (see section 2.1):

N
(e, u)= 3, ric, u)=r, (2.72)
i=1
where
r(c, u), roeR™.

It is possible in such a case to apply 1M to the system optimization problem
if instead of Lagrangian (2.51) we use the following extended Lagrangian:

L.(c,u, A, A)=L{c, u, A)+{A, r(c, u)—ry) (2.73)

where L is given by Eq. (2.51), A, eR’, and z is omitted for convenience.
The infimal problem will remain the same as the 1p of 1BMm, with L{w, A)
replaced by L,(w, A, A,), where w = (c, u), but the coordinator problem will
have to be redefined in the following way, where by CU(A, A,) we denote the
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solution set of the new infimal problem:

cp,: Find A €P, XLGR:' such that the set CU(X, A,) is nonempty and for every
w={(c,u)e CU (A, A,) we have:

V(iw)=0
r(w)—r,=0 (2.74)
(X 1(W) = 1) =0

The applicability conditions of the method may be established
(Malinowski 1974) in the same way that the applicability conditions for the
basic version of 1BM were established in section 2.4.2.

It should be remarked that constraint (2.72) creates less severe problems
than equality constraint V(w)=6. For example, the simplest sufficier.c
conditions that allow L, (-, A, A,) to be strictly convex on CU (compare with
Remark C) are the strict convexity of Q, linearity (or affinity) of V, and
convexity of r on CU.

On the other hand, the coordination strategies will become more compli-
cated when we want to solve cp,: the numerical procedures for maximization
of the dual function will have to deal with the constrained problem (A, eRY")
and there is a need to suitably modify algorithm (2.68) in order to handle
this case.

Very often the subsystem equations are given in implicit form as in Eq.
(2.5)

Yi = F(i)(civ u;, Yi)a (y = FO(C’ u, y)) (275)

instead of the explicit form of Eq. (2.4) that we have been using in this
section. We assume of course that VY(c, uy;)e CU; (V(c, u)e CU) Eq. (2.75)
has a unique solution:

i = Fi(c, u),(y=F(c, u)).

If we use 1BM to solve the system optimization problem, then the necessity
to solve Eq. (2.75) for every (¢, u) e CU (these equations are not ‘““‘cut’”’) may
create additional computational difficulties. However, if we use methods
presented in section 2.5, where the subsystem equations are “‘cut” (despite
their form), then we can deal with Eq. (2.75) as easily as with Eq. (2.4).

2.5. MIXED METHODS

2.5.1. THE CONCEPT OF THE AUGMENTED LAGRANGIAN

The extensive theoretical research on penalty function methods, which was
stimulated by the many possible applications, has led to the equivalent
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concepts of shifted penalty function (Powell 1969) and augmented Lagran-
gians (Hestenes 1969). Theoretically, the augmented Lagrangian has proved
more convenient and is therefore more often used. The augmented Lagran-
gian for the optimization problem

minimize f(x)
subject to g(x) =0, where f: ¥ —R, g: & —> 4,
and & and ¥ are Hilbert spaces,

is called the function L,:¥x ¥*xR, —R
L.(x, A, p)=f(x)+ (A, gD +2pl8 (0P,

where A € 9* and peR. is the penalty coefficient. Functional L, could
appear as an ‘“‘augmentation’ of the functional used in the penalty function
method by addition of the linear term (A, g(x})). On the other hand,
however, functional L, can be regarded as an “augmentation’ of the normal
Lagrange functional because of the addition of the quadratic penalty term
(to convexify the problem).

The applicability conditions of the methods based on augmented Lagran-
gians are only slightly less general than those for penalty function methods,
and the optimum is achieved by small values of the penalty coefficient; the
need to use large coefficients, the most important defect of the penalty
function method, is thereby eliminated. But these applicability conditions
are much weaker than those of the pure price methods using only Lagran-
gian multipliers because the quadratic penalty term convexifies the problem.
For a large class of nonconvex problems, normal Lagrangians do not yield
suitable saddle points, which correspond to the optimal solution of a
problem and characterize the optimal conditions for its solution. But be-
cause of the convexification, augmented Lagrangians yield saddle points for
these noncorvex problems if p is chosen appropriately. These saddle points
are of local or global nature depending on the properties of the problem.
Thus, optimization techniques based on the existence or search for saddle
points can be applied for this class of nonconvex problems; note that the
applicability of the interaction balance method described in the previous
section requires the existence of the saddle point of the normal Lagrangian
(Theorem 2.15).

The most important drawback of the augmented Lagrangian approach
used for coordination purposes is the loss of full separability of the addi-
tively decomposed optimization problems because of the quadratic penalty
term. This problem will be presented more thoroughly in the following
sections, together with some efficient strategies to handle it.
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2.5.2. THE LINEARIZED AUGMENTED LAGRANGIAN METHOD
Throughout this section, the following additively decomposed overall op-

timization problem will be considered

Find control ¢ giving interaction input &, such that

N
(&, @)=argmin ). Q.(c, u;) (2.76)
i=1
subject to

yi = Fi(ci’ uiv Zi)a ui = Hiy, (Ci7 u,') S CUi’ iE I, N.

where ¢; €€, u; €U;, y; €¥;; the spaces €, U;, Y, will be described later. The
disturbances z;, i€ 1, N are assumed to be constant throughout the optimiza-
tion and will be omitted for convenience. We will denote €= X, €,
YU=xN U, ¥=xN,¥, Flc,u)=(F,(c;,uy),...,Fnlce uny)) and CU=
x L, CU,. We will use an approach similar to that used for the interaction
balance method (iBM) for problem (2.76), but we will use the following
augmented Lagrangian:

L.(c, u;A, p)2 Q(c, u)+{A, u— HF(c, u))+5pllu = HF (c, w)|?. (2.77)

The function (2.77) is not decomposable like a normal Lagrangian because
of the nondecomposable quadratic penalty term:

lu — HF (¢, w)|]* = ||u|]* + | HF (¢, w)|* — 2{u, HF (c, u))

= L (lP+1Few w)lP) =2, HF (¢, ),

and the cross-term {u, HF(c, u)) cannot be directly transformed into a
summation of “local” terms, each of which is dependent only on (c, ;) for
some i€ 1, N. To overcome this difficulty, Stephanopoulos and Westerberg
(1975) proposed the following expansion of the cross-term (u, F(c, u)) into a
series around some point (¢, u)e CU:

(u, HF(c, u)) = (u, HF (¢, w)) +(u,~u, HF(¢c, u)) +(u, HF(c, u) - HF(c, u))

= —(u, HF(¢, u)) +(u. HF (¢, u))+{u, HF(c, u)). (2.78)
Observe that the linearization is done with respect to subsystem functions,
not variables. That is justified by the fact that nonlinearities belonging to

one subsystemn should be taken into account locally while one is solving the
local problem corresponding to this subsystem. Denoting by A the function
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(2.77) with the expansion (2.78), we get
Alc, u, ¢, u, A, p)2 Q(c, u)+ (A, u— HF(c, u))
+3pllul? +3pllFle, w)lP
+p(u, HF(c, u))—{u, HF(c, u))—(u, HF (c, u)))
= il [Q,-(ci, u)+{A, uy— i (A, HyF(c;, u))

i=1

+3pllu|? +3p||F(cio u)lP + pQus HiF(c, u))

~(u, HF( w)= Y, G, HiFi(G, )]

1Dz

Ai (Cn u;,

LU, A, p). (2.79)

i

Thus we can approximate augmented Lagrangian (2.77) by the function
(2.79) in some neighborhood of a point (c, u), and function (2.79) is
decomposable like a normal Lagrangian in the interaction balance method.

To present properly the two-level optimization method based on Eq.
(2.79), together with its informational structure, the functions A; should be
reformulated as follows

Ac, u, ¢, u, A, p)= Z [O.(c;, u)+ (A, u)— Z (A, H;F(c;, u))

j=1

zp!lui||2 2pl|File, wlF +p(u, Hy)
=y Hy)= L, (uy HiFilci, )]

= Aui(C y U, y. X, p), where y£F(c, u).

Each local function i depends only on the i-th subsystem model (Q, F,), and
information concerning other subsystems consists of the outputs of the
whole system y = F(c, u) evaluated at the expansion point (¢, u); or, more
precisely, only those components H,y of y that are connected to the inputs
of the subsystem. T

The algorithm is a two-level one; the lower level or infimal problem
consists of the following local decision problems (LpX):

For given values uf, y*, A*, and p find both control and interaction

(Ck+l k+1)_argmln Aal( > 7y ulv )’ /\k p) (280)
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The main job of the upper level or coordinator is to adjust the multipliers
according to the formula

A= \k4 2o(uk— Hy*), y*=F(c*, u*), iel,N. (2.81)

Formula (2.81), similar to the multiplier rule of Hestenes and Powell, was
proposed and justified by Stoilov (1977). Without a delay, formula (2.81)
would be A** =A% +1p(u*+t + Hy ™).

Formula (2.81) is efficient only for sufficiently large values of penalty
coefficient p, which will be shown by the theorem given below. To prove this
theorem, the following form of the constraint sets CU, will be assumed

CU ={(c, u) €€, xU;: Gi(c, u)<0}, G;: €, xuU —>R", ieL—Z\[_-
(2.82)

The constraints (2.82) are in the form of Eq. (2.9), with finite dimensional
spaces 4 =R™ and closed negative orthants as cones S.

Recall that for the optimal point (¢, i), &i = HY, of problem (2.76) second
order sufficient optimality conditions with strict complementarity are satisfied if
(a) first order necessary conditions are satisfied at (¢, u) i.e., there are
multipliers A= (/\1, AN EYE A=, .. ., In) ERT = XN R™ such that

L(c u)(c ’\ 71) 0
(M, Gi(6, 4 =0, i ELTV,

where L(c, u, A, )= Q(c, W)+ i1 (A, u;— HF (¢, u)y+{(m;, Gic, w))) is
the normal Lagrange function; (b) Q. F, G, and hence the functional
L(-,-, A, n) are continuously differentiable twice in some neighborhood of
the optimum, and there exists § >0 such that

<L";c,u)(c,u)(é5 aa /{v ﬁ)(a, ﬁ), (E’ a)>2 8”(65 ﬁ)”2

for every point (C, i) € 6 XU satisfying
al —Hi(E)(c,,u,-)(éi’ a‘])(E, L_‘) = 01 ie 17 N7

(Gij)ZCi,u.-)(éi’ ﬁi)(éi’ ﬁ.‘):O, j€Ai Z{]'Eml G,-,—(é, ﬁ)=0}, ieT,TV;

and (c) forevery je A, and i€ 1, N, 7, >0, i.e., all multipliers corresponding
to active constraints are positive (the strict complementarity condition).

THEOREM 2.20. (convergence theorem). If we assume that

1. Spaces €= XL, €, U=X, U, are finite dimensional,
2. Functions Q, F,, G; are continously differentiable twice, i€ 1, N,
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3. Gradients of the active through all constraints (i.e., u;-HF,(c,u)=0
and G;(c, u;)<0,i€1, N) are linearly independent at the optimal point (¢, i)
of the initial problem (2.76),

4. Second order sufficient optimality conditions with strict complementarity
are satisfied at (¢, i),

5. For every sufficiently great p and any point (c*, u*, A*) from some
neighborhood of (¢, i, X), there exist solutions of problems (Lp%), ie1, N,

then there exists p €R, such that for every p =p the algorithm (2.80), (2.81)
is linearly convergent to the optimal point.

The proof is omitted here, but it can be found in Stoilov (1977).

Theorem 2.20 was proved for the finite-dimensional case, and is probably
true for the more general case as well.

Based on the results of Theorem 2.20, the coordinator should adjust
multipliers according to rule (2.81) and ensure that the penalty coefficients
are sufficiently great. This can be done by the following algorithm (2.83):

1. Set initial values k=1, ¢', u’, y', A", p', &, £, &, &;.
2. Evaluate (cf™', uf*"), ie 1, N, as a solution of local problems (rp%,);
denote yi*'=F(c¥*', uk™"), iel, N.

3. If

(le“' = cHll=enn(lu ' - ut< ) a(lu*"' = Hy ' <e;)

then stop.
4. Calculate

A =Ab+dp(ui—HyY), i€l N,
and

pk+1:(”Ck+l_ck”2_+_||uk+l__uk||2_+_||Ak+l_Ak|l2)%.

5. If k=1or p**'<p*, then go to step 6.
Sa. 1If p* = p**! then set p**' = 8p*, k =k +1, and go to step 2.
6. Setpc*'=p* k=k+1,and go to step 2.

The initial parameters of the algorithm must be arbitrarily chosen from
experience. The value of p' should not be chosen too large because we
would like the local decision problems to be numerically well conditioned. If
it is too small to achieve convergence, the algorithm will increase it automat-
ically; multiplying by 8>1, and setting the value of §=5,...,10 is
recommended from experience.
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2.5.3. THE INPUT PREDICTION AND BALANCE METHOD

The direct coordination mechanism used in the so-called interaction predic-
tion method (see Mesarovi¢ et al. 1970) can be combined with the price
mechanism used in the interaction balance method. The combination (see,
e.g., Smith and Sage 1973, Singh et al. 1975, and Singh 1977) will be
referred to as the input prediction and balance method (1p8M) and can be
based on the normal Lagrangian only, as in the literature cited above.
However, we will use the more general augmented Lagrangian in order to
make 1PBM more universally applicable.

irBM will be presented for the optimization problem (2.76), with distur-
bances z omitted as before. It will be assumed throughout this section that
€., U, Y; are real Hilbert spaces. To formulate 1pBM, we define the following
infimal (lower-level) problem (ip,):

For given input prediction u, multiplier A € %* and penalty coefficient peR,
find control

¢(u, A, p)y=argmin L,(-, u, A, p), (2.84)
where o
C(u)é_>N< (G 2{c €%€:: (¢, u)e CUY
and -

L,(c, u, A, p)= Q(c, u)+(A, u — HF (c, u))+3p|lu — HF (¢, w)|?

is the augmented Lagrangian.

Since

N
Lc,u, A p)= Z [L(ciu, A, p) = Qi(c;, u) + (A, wy)
i—1
N
- Z </\,’a I_Iji}:i(ci’ ui)>+%p(||ui||2+”E(civ “i)”z
i=1

N
- Z <“,'7 I'IjiFi(Cia u N,
j=1
the infimal problem ip, can be solved as N independent local problems (Lp,;):

For given input prediction u, multiplier A, and penalty coefficient p, find
control

&(u, A, p)=argmin L,;(-, u, A, p). (2.85)

Ci(u)



137

Let us denote the set of solutions of 1p, by Clu, A, p)ExN, C‘i(u, A, p) and
the set of admissible input predictions by

Uy2{ueu: Clu)# I} (2.86)

Being rigorously precise, we should restrict our attention to the subset
U, = m,D of the set U,, where

D={(u A, p)euxu*xR,: C(u, A, p)# D}

We will, however, equate U, with U, for convenience, since this equality
can be ensured by assumptions that are easily satisfied; e.g., when L(-, u, A, p)
is (weakly) lower semicontinuous and C(u) (weakly) compact. We can now
formulate the following coordinator problem (cp,):

Find a saddle point (i; X) of the primal-dual function ¢(-, -, p) on U, x U*,
where

e(u, A, p)érél(ir; L., u A, p), (2.87)

such that the balance condition Vée C(g, A, p) u-HF(¢ ) =0 holds.

The saddle point in cp, is of course understood as a minimum with respect
to primal variable u, and a maximum with respect to dual variable A, i.e.,

Y(u, AN e UpxU* oA p)<e(@ A p)=¢(u A p).  (2.88)

It should be noted that we must require in cp, the condition #-HF(¢ ) =0
to be true for all ¢e C(i, A, p) because we are not able to distinguish
between various ¢ € C(4, A, p).

LemmAa 2.16.

1. If (4, X) is a solution to cp,, then for any ée Ca, A, p), (&G X) isa
saddle point of L (-, -, p) on CUXxU*.

2. If (& a; X) is a saddle point of L, (-, -, -, p) on CUX%U* then (ii; A) is a
saddle point of ¢(-,-,p) on Uy,xU* and is also a solution to cp, if
Vce C(4, A, p) u-HF(c, &) =0.

Proof. (1) Since u-HF(¢ u)=0,
Viea*  L,(é oA p)<L,(éa A p).
On the other hand, we have
(Vu e Up)(Vé(u, X, p)e C(u, X, p) La(é i X, p) =L, (&(u, X, p), u, A, p),

hence
Vi, u)e CU L (& i, A, p)=L,(c, u A, p).
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(2) If (& d;A) is a saddle point of L,(-,-,-,p) on CUx%* then i-
HF(¢, @)= 0, since in another case it would be possible to choose such
X eq* that L,(& i, A, p)>L,(& i, X, p). Then the proof follows from the
relations

VA eu®* e, A, p)= L, (¢(i, A, p), 4, A\, p)=L,(¢, 1, A, p)
VueU() <P(':‘, /{7 p):La(éa '2’ Xa p)SLa(é(u’ ):* P), u, A7 P):<P(“, )\Av P) D

COROLLARY. If (i: X) is a solution to cp,, then for any point ¢ € (7 P),
the point (¢, ) is a solution to the initial problem (2.76).

Thus, we will say that 1pBm is applicable if at least one solution to cp,
exists. The formulation of the coordinator problem in the form cp, is not a
common one for pBM. Usually, only specific coordination strategies are
defined, i.e., a specific algorithm for finding & and A (see Smith and Sage
1973 and Singh et al. 1975). Therefore, it may be that formulation cp, is too
strong—if one can find 4, the optimal input in problem (2.76), some other
way, then the existence of a saddle point of only L, (-, i, -, p) on C(i)x U*
satisfying the balance condition would yield the desired solution (and not
a saddle point of ¢(-, -, p) on Uyx¥U* or, equivalently, from Lemma
2.16, a saddle point of L,(-,-, -, p) on CUX%U*). However the question
of reasonable coordination strategies arises immediately. Some of them will
be discussed later; but there is no strategy known to the authors that would
be able to choose #@i independently of the existence of a saddle point of
L,(-, -+, p). Singh et al. (1975) are of the same opinion.

Summarizing the above discussion, we would like to point out that in
using the normal Lagrangian (i.e., p = 0) in 1pBM, we require the existence of
the saddle point (¢, it; A) of this normal Lagrangian for its applicability. This
implies the applicability of the interaction balance method (1BM-section 2.4)
if only the balance condition of this method

V(& a)e CUX) 4-HF(é, i) =0

is satisfied; this condition is only slightly stronger than the one used in cp,.
Observe, however, that 1pBM, but not 18m, can be applied to system optimiza-
tion problems slightly more general than (2.76), namely, with Q(c, u)=

N, Qi(c;, u), and it has lower-dimensional local problems than Bm.

The situation looks quite different when we use the augmented Lagran-
gian (p >0) in 1PBM. As was mentioned in section 2.5.1, there is a large class
of nonconvex problems for which suitable saddle points ((¢, @i; X), where
(¢ 4) is a solution to (2.76) and A is a normal Lagrange multiplier) do not
exist for normal Lagrangians, but do exist for augmented Lagrangians if p is
appropriately chosen. Thus there is a large class of problems to which peMm
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with p>0 is applicable. We will formulate below the conditions under
which saddle points exist as solutions to cp,; these are the applicability con-
ditions of ipBM. We first define the following quadratic growth condition
(Rockafellar 1974)

3p eR.,)3a eR)(V(c, u)e CU) L.(c,u0,p)=aq,

and recall that a point (¢, &) is the unique solution in the strong sense to the
problem (2.76) if for every neighborhood N of (¢, i), there exists & >0 such
that

(V(c, u)e CU) [(Qc, u)— Q¢ a)=e nllu-HF(c, u)|<e) = (c,u)eN].

If we assume that the constraint sets CU, are defined by (2.82), the
following theorem can be formulated.

THEOREM 2.21 (applicability conditions of 1pBM).  If we assume that

1. At the optimal point (¢, 4) of the problem (2.76) (with
CU 2{(c, u):G(c, u)=<0}, and Q(c,u)=YN, Qc,u) also admissible)
second order sufficient optimality conditions with strict complementarity (for
definitions, see section 2.5.2) are satisfied and Fréchet derivative h{. (¢, &)
of the operator h(c, u)2 u-HF(c, u) has its image closed in U,

2. Problem (2.76) satisfies the quadratic growth condition and (¢, i) is its
unique solution in the strong sense,

then there exists p€R. such that for every p=p
V(u, A e UgxU* (it A, p)=p(i, A, p)=o(u, A, p)

and the set C(ii, X, p) consists of a single point & (X is the normal Lagrange
multiplier for the constraint h{c, u)=0).

The proof follows the argument given in Rockafellar (1974) for the finite
dimensional case (assumptions about strict complementarity and closed
range of h'(¢, &) are then superfluous); for Hilbert spaces, the theorem can
be proved analogously to the more complex Theorem 2.22 from the next
section.

Since -HF(¢, i1)=0, Theorem 2.21 states conditions under which a
solution of the coordinator problem cp, exists. One of the most important
results of the theorem is the easy manner of ‘‘adjusting” the penalty
coefficients—they should only be sufficiently large; these sufficiently large
values of p have been found to be moderate or even small in practice and by
no means comparable with the large penalty coefficients needed in the
penalty function method described in section 2.3. An aribtrary choice of one
fixed value of p for the whole optimization process is a common technique
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that is almost always successful. That is why we treated p as a given, fixed
parameter in formulating the coordinator problem cp,. If p happens to be
too small, which can be easily observed from the rate of decrease of
lu-HF(c, u)||, it should be increased, e.g., by multiplying by some constant
greater than one. Such simple protection can be easily placed in every
coordinator algorithm, as it was done in algorithm (2.83) in the previous
section.

Algorithms for solving the coordinator problem cp, are called coordinator
strategies. They can be roughly divided into two groups: two-level strategies
and one-level strategies.

Two-level (double-loop) coordination strategies

For a given A, the minimum of ¢(-, A, p) is sought and A is adjusted so as to
approach the balance condition, and so forth. Lambda can be adjusted by
using, for example, the following step formula

AKT = Ak 4 o[ — HE(E(i%, A¥, p), )], (2.89)

where 4% = 4(A*, p) is a point minimizing ¢(-, A*, p). To justify (2.89), we
rewrite the formula for the gradient of the functional ¢(u, A, p) with respect
to u, assuming that CU = C x U, the gradient exists, and using the results of
Appendix A, section A.l

euu, A, p) = (L)L(E(u, A, p), u, A, p) = Q(E(u, A p), 1)
+(I— HF(&(u, A, p), w)* A+ p(I— HF(é(u, A, p), u))™(u— HF(&(u, A, p), u))
= Qi(E(u, A, p), w)+(I-HF(¢(u, A, p), w)* (A + plu-HF(E(u, A, p), u))).
If we could find a fixed point A of the adjusting rule (2.89), we would have
u-HF(é(a, A, p), 1) =0,

where @ = @i(A, p) is the point minimizing ¢(-, A, p). Assuming that & €int U,
we would therefore get

@@, A, p)= QE(@, A, p), &)+ (I-HF(&(&, A, p), @))*A =0,

and A would be the normal Lagrange multiplier X and (é(a, \,p), i) would
be the solution (¢, &) of the intial problem since it minimizes L, (-, -, X, p) on
CU. The argument mentioned above was first presented by Hestenes (1969)
for the optimization problem discussed in section 2.5.1 and formula (2.89) is
usually called the Hestenes multiplier rule. The restriction uecint U was
only used to simplify the above discussion and can be easily removed
without changing formula (2.89). Moreover, the result can be shown to be
true for the general case of the set CU, i.e., the condition CU = Cx U is not
necessary. An application of strategy (2.89) can be found in section 2.6.
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One-level (single-loop) coordination strategies

The saddle point of ¢(-, -, p) is found by making simultaneous iterations of u
and A: if, in the k-th step, a point ¢* = &(u*, A*, p) minimizing the infimal
problem 1p, is found, both u* and A* are adjusted using some step
formulae, and so on.

The single-loop adjusting formulae for u and A can be derived from the
necessary conditions for a saddle point. If ¢(:, -, p) is differentiable and
CU = Cx%, and % is the whole space, then these conditions are

@3, A, p) = (L3 (E(y, A, p), u, A, p) =0 (2.90)

eu(u, A, p)=(L,).(e(u, A, p), u, A, p)=0, iel, N.
Formulae of derivatives of upper-level functions are discussed in

Appendix A.
The ordinary gradient strategy would have the form

A;(+1:A:(+E:(l .(P:\,(uk)Akv p)7 8:(]>0’ (291A)
u:(+l u i2.(P:4,(ukaAks p)3 8:(2>0, ie 17 Na (291“)
and the main application difficulty is choosing the step coefficients £f, and

£k see, e.g., Smith and Sage (1973). Using the multiplier rule of Hestenes,
we will derive an efficient version of the above strategy. Recall that

L.(c.u, A, p)£ Q(c, u)+ (A, u-HF(c, u)y+3p|lu-HF(c, u)|?

il
u 1z

(Q (¢, w)+ (A, u;— HF(c, u)) +3pllu; — HF(c, w)|)

)

N
- Y HyF (cu)
k=1

I
H Mz

(o(c,,u>+<A,, u— Z H, F, (co, )+ 3l
=1

i

Therefore, the formula for the derivative with respect to u, is

(La)u(c, u, A, p) = (Q)). (¢, w)+ A+ p(u; — HF(c, u))

- Y (Hy(E).(c, w) [\ + p(u,— HF(c,u)], iel,N.

Demanding (L,),{(c, u, A, p)=0 and using the Hestenes multiplier rule for
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adjusting A, we get the following adjusting formulae

A = Ak p(ub— HF(c*, u")), (2.92A)

us"'=HF(c*, u )——(Q)'(C“ u¥)+ Ak

—Z(H (F)n(ck, uky)*Ak*Y), iel,N. (2.92u)

The coordinator strategy (2.92) will be called the multiplier strategy. Since
(Ly)i(c, u, A, p)=u—HF(c, u)

it can be easily observed that this strategy is a special case of the ordinary
gradient with e, =p and &}, =1/p. The above choice of step coefficients
coincides with a known property of augmented Lagrangians: the larger the
value of p, the better conditioned the maximization, with respect to dual
variable A, and the the worse conditioned the minimization, with respect to
primal variable u. In (2.92), the larger the value of p is, the greater the
stepsize for A and the smaller the stepsize for u.

Another, more sophisticated algorithm was derived from the necessary
conditions for a saddle point (2.90) by Wierzbicki (1976). He built two
variable matrices based on appropriate gradients for variables u and A.
Generally, the algorithm requires directional minimization with respect to u
for each adjustment of A, which places it between single- and double-
loop strategies.

It should be realized that of the coordination strategies discussed, only the
two-level ones are global in nature, i.e., a global saddle point of ¢(-, -, p) can
be found by using them. But to ensure the existence of a global saddle point, a
global minimization of infimal problem ip, for every u and A sent from
coordinator, and a global minimization of ¢(:, A, p) in the coordinator must
be performed. In another case, the strategies could optimize locally like all
single-loop strategies. These strategies seek a saddle point or, more pre-
cisely, the point satisfying the necessary conditions for a saddle point, in the
neighborhood in which the initial values of the primal and dual variables
were chosen. Of course, it does not matter if, besides the global saddle point
that exists as a result of the assumptions of Theorem 2.21, there are no
other local saddle points of the primal-dual functional ¢(:, -, p). Such a
situation is typical if the initial problem does not have local minima. By a
local minimum of (2.76), we understand a point (¢, &) e CUNCU”" such that
for every (c, u)e CUNCU NN QO #)=0(c,u) and Q( it)>Q(¢, i),
where (¢, 4) is the global minimum of (2.76), CU"#&
{(c, ):u—HF(c,u)=0} and N denotes some neighborhood of (¢, ). If
problem (2.76) has a local minimum (¢, &), then this point can be found by
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every local coordinator strategy. This fact results immediately from
Theorem 2.21, which can be formulated for point (¢, &) instead of (¢, i) if
the set CUNN instead of CU is considered.

The proof of Theorem 2.21 consists of two parts. The first, using only
assumptions (1), shows, that there is a neighborhood N of (& @) such that
(i1; ) is the saddle point of (-, -, ¢) if the set CUNN instead of CU is
considered; then, using additional assumptions (2), the saddle point is
extended to the whole feasible set. Recall that all the valuable ordinary
optimization procedures, such as conjugate gradients or variable metric
methods, are, as a rule, local procedures.

The necessary conditions for a saddle point, Eq. (2.90), and the resulting
strategies (2.91) and (2.92) were formulated for the case when CU = CxaL.
If CU= Cx U then formulae (2.90) remain valid for derivatives of ¢(-, -, p).
Only the necessary condition ¢’(u, A, p)= 0 and the adjusting rule (2.92u)
resulting from it must be appropriately modified to take the constraints
given by the set U into account; e.g., when these constraints are linear we
can use the projected gradient. The situation is more difficult if CU# Cx U,
i.e., if the lower-level constraint set C(u) really depends on u. The existence
conditions of the gradient ¢/(-,, p) are then stronger and the formula
describing it is more complicated (see Appendix A for formulae for deriva-
tives). Moreover, set U,, Eq. (2.86), can be extremely difficult to identify
(compare with the identical set V{ in the penalty function method, section
2.3.1). Formulae for adjusting u in single-loop strategies are then difficult to
derive, since U, cannot be violated (the set C(u) cannot be empty; in the
previous case when CU = Cx U we always have C(u)= C# ).

When the global constraint in the form of Eq. (2.16)

N
r(c,u)= Z r.(c, u)=r,, roeR™, (2.93)

i=1

is added to the initial problem (2.76), it may be handled by using 1pBMm.
Constraint (2.93) should then be reformulated as constraint (2.44) was
reformulated in prm (section 2.3):

N
r.(c, u)=rgy, iel, N, Z e, =Trg,

where r, é(rdl, ..., 1, )JERN™ are additional coordination variables. The
equality constraints can now be used in the augmented Lagrangian L, in the
same way that the interconnection equations u — HF(c, u) =0 were, and the
inequality constraint should be taken into account in the coordinator. A
similar approach to constraint (2.93), also based on the use of agumented
Lagrangians, can be found in Telle (1975).
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2.5.4. THE OUTPUT PREDICTION AND BALANCE METHOD

We return now to the most general form of the system optimization
problem:

Find control ¢ giving output y (and interaction input # since it = Hy), such
that

(¢, 9)=argmin Y(Q,(c,, uy),. . ., Onlen, un)) (2.94)

subject to
yizFi(Ci’ ul); ui:I{iy7 (Ci7 u()ecu, lelaN’ ye Ya

where :RY — R is a function strictly preserving order on some set 1 <R".
The disturbances z; are omitted since they are assumed to be constant
during the optimization process.

The direct method of coordination, together with various versions of it,
was discussed for the optimization problem in the form of (2.94) in section
2.2. Let us briefly summarize the advantages and drawbacks of this method.
The pure direct approach preserves all the constraints during the coordina-
tion process; its application is however limited to the cases with no fewer
controls than outputs in each subsystem, and to cases in which it is possible
to determine and preserve set V, (V, is defined in section 2.2.). The
modified direct approach in which one knows only the subset Vi of V, has a
complicated structure and restrictive applicability conditions. On the other
hand, the penalty function method (section 2.3) has very weak applicability
assumptions, but may need large values of the penalty coefficients, which
can make it ineffective. The method presented in this section can be
regarded as a generalization of the penalty function approach, where linear-
quadratic modifications are used instead of pure quadratic modifications in
order to create an appropriate augmented Lagrangian.

The augmented Lagrangian cannot be introduced for problem (2.94) in a
classical manner, i.e., as

$(Qi(er, uy), .- -, Onlew un))+ X (Ao w — HF(c, w)
+3pllu — HF(c, w)|P). (2.95)

the way the augmented Lagrangian L, was introduced in 1pB™ in the previous
section. Nor can it be introduced as

B(Q,(cy, Hyv), . .., Onlen, Hyo))+ Y, (A, v,— Fi(c, Hiv))

i=1

+3p[lvi — Fi(c,, Ho)l"), (2.96)
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where v e are in the nature of predicted outputs identical to those in the
direct approach described in section 2.2. If the augmented Lagrangian is
introduced in these ways, the resulting functions (2.95) or (2.96) are
nondecomposable if ¢ is nonadditive. Therefore, we will introduce aug-
mented Lagrangians locally and construct the following augmented -
Lagrangian (Tatjewski 1977)

L,(c, 0, A, )2 (Q, (cy, 0, A1, p)s - .-, Qunlen, U, ANy p))s (2.97)
where Viel—,l—\l
Q.i(c, v, Ay, p) 2 Qi Hu)+(X;, v, — F(c,, Hv))
+3plv; — F(c,, Ho). (2.98)

The coordination method based on the augmented -Lagrangian (2.97) will
be called the output prediction and balance method (opem). It will be
assumed throughout this section that all spaces €;,ie 1, N, 4= X, 4, and
y=xN % are real Hilbert spaces, as they were for problem (2.76) in
section 2.5.3.

Formulating opem, we define the infimal (lower-level) problem as the
minimization of the following N local problems (Lp,,)

For given output prediction v €%, multiplier A, e%¥ and penalty coefficient
peR,, find control

éi(v7 Ah p) = arg min Qai('v v7 Ai’ p)’ (2'99)

C,(v)
where
G(v)£{c €¥4.: (¢, Hv)e CU}.

Let us denote the set of solutions of each local problem rp, by
C(v, A, p) and hence the set of solutions of the infimal problem by
Clo,\, )2 XN Clv, A, p), A=Ay, ..., Ax). By V=YNV,, we will de-
note the set of admissible output predictions, where

N
Véé{ve@: C{v)= X C,»(v)#@}.
i=1
Let us denote also

CVA | (Clo)x{vh)={(c,v)e€x¥: (c, Hn)e CUAy€e Y}, (2.100)

veV
Qa(C’ U, A’ p)é(Qal(Clv v, Alv P)’ LA ] QaN(Cl\h v, AN* P)) (2~10]—)
and define

Alp) 2 {A eW*:V(c,v)e CV  Q,(c, v, A, p)e Y}, (2.102)
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where Q<R" is the set on which the function i strictly preserves order. We
will assume for every ve V, peR,, and A € A(p) that C(v, A, p) # .
The following coordinator problem (cp,) can now be formulated:

Find a saddle point (; A) of the function J/(~, -, p) on VX A(p), where

ll;(vv /\7 p)é l”(mln Oal('a U, /\1’ p)v LR ] min OaN(.v U, /\N) P)>7 (2103)

Ci(v) Cn(v)

such that the balance condition Vée C(4, A, p) © — F(é Ho) =0 holds.

The saddle point in cp,, is of course understood as the minimum with respect
to v and a maximum with respect to A; i.e.,

Y(v, \)e VXA(p) (B, A p)<(B, A, p)=ilv, X, p).

The condition 8 — F(é, HD) =0 is required in cp, for all ¢ C(o, A, p) since
we are not able to distinguish between various ¢ e C(, X, p) and hence all of
them should be equally good.

The connections between the solutions of cp, and the initial problem
(2.94) result from the following lemma.

LemMma 2.17.

1. If (v; X) is a solution to CP,, then for any ée C(o, X, p) (¢, D; X) is a
saddle point of L,(-,, A, p) on CV X A(p).

2. If (&0;X) is a saddle point of L,(-,-,",p) on CVxA(p) and
b —F(&, H0)=0, then (;A) is a §addle point of J/(-, -, p)on VXA(p) and is
also a solution to cp,, if Vc e C(o, A, p) ©—F(c, H3)=0.

The proof is identical to the one for Lemma 2.16 in section 2.5.3.

CoroLLary. If (¥; X) is a solution to cp, then for any point ¢ € C(, X, o),
the point (&, ii), & = HY, is a solution to the initial problem (2.94).

Thus, we will say that opem is applicable if at least one solution (5; A) to CP,
exists.

The way that the function § is defined is interesting and important for
further discussion. Observe that if ve V and A € A(p) then

B(v, A, p) =0, (v, A, p), (2.104)

where

‘pw(va ’\7 P) émln Lw(.’ v, /\a P)
C(v)
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is the primal-dual function. The equality (2.104) holds for ve V and
A € A(p) because for all ce C(v), Q,(c, v, A, p) € and ¢ strictly preserves
order on €; hence ming,, ¢(Q,(-, v, A, p))=yY(minc ., Q,,(, v, A1, p),
..., MiNe ) Qun(', U, Ax, p)). Thus, instead of evaluating ¢, (v, A, p), which
cannot be done directly using decomposition, we evaluate (v, A, p), which
is equivalent to evaluating ¢,(v, A, p) if (v,A)e VX A(p) and can be done
using decomposition. But is the set A(p) ‘‘sufficiently large,” i.e., does it
introduce any essential restrictions on the existence of the solutions of cp,?
The following theorem is of great value here.

THEOREM 2.22. If the set Q<=RY on which the utility function ¢ strictly
preserves order is such that
(VaeQ)(Va' eRY) a'za > a'e, (2.105)
and problem (2.94) satisfies the following boundedness condition
3peR,)PRaeint Q)(V(c, v)e CV) Q.(c,v,0,p)=a, (2.106)
then for every bounded subset A of Y* there exists p*€R, such that
Vp=p* Ac Alp).
Proof. Condition (2.106) states that
(V(c,0)eCV)(Vie1,N) Qic, Hv)+p|lv; - Fi(c, Ho)lP=a. (1)
Since a =(a,, ..., ay)<€int ), there exists € >0 such that
a. 2@, —¢,...,ay—¢e)ell
Denoting
I max (sup o)
we get
(VA€ A)V(c, )€ CV) <A, v~ Fi(c, Ho)y+3p' o~ Filc, Ho)P)
Y |12
= = |A[|[lv: — Fi(c,, Ho)ll+3p'llv: — Fi(c, Ho)P= —e, if p’?é\—ﬂ, iel, N.
Hence, using (1) and taking p*=p+ p’ we obtain
(VA eA)V(c, v)e CV) Q. (¢, v, A, p¥)=a e,
which implies, because of (2.105), that
(VA€ A)(V(c,v)eCV) Q.(c, v, A, p*eQ.

Finally, we note that V(¢, v, A\)e CV X ¥* functions Q(c, v, A, *) are non-
decreasing, ic 1, N. [
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Theorem 2.22, proved under weak assumptions, states that every A e y*
together with any member of its neighborhood can be made feasible for cp,,
by choosing p sufficiently large. Hence the set A(p) need not be evaluated at
all; if at some coordination step the value of Q,(é(v, A, p), v, A, p) does not
belong to €, p should be increased and the solution of the local problems
repeated as long as the optimization results do not belong to €. Such
protection can be easily placed into any coordination algorithm.

To formulate applicability conditions of opBMm, formula (2.82) of the sets CUj

CU, ={(c;, u) €€, xU;: G{(c;, u;) =0}, G 6, xu — R, iel,N,

and the following form of set Y
Y ={ye¥: G,(y)=<0}, Gy Y—R"™,

will be used. We denote R” = X R™ and rewrite the second-order sufficient
optimality conditions with strict complementarity for the optimal point (¢, 9),
b =79=H "4, of problem (2.94):

o First-order necessary conditions are satisfied at (¢, ¥), i.e., there are
multipliers A, =(A; 1, ..., An) ENF, 1= (Ao, W15+ - -, M) €RY such that
L:c,u)(éa ﬁ’ AL’ ﬁ) = Os

(Mo Go(0))=0, (W, Gi(¢, Ho)=0,  iel,N,

where

L(c, v, A m)2 Qle, Ho)+ ), (A, v~ Filc, Ho))

i=1

+{M. Gi(c, Hv))) +{ng, Gy(v)) (2.107)

is the normal Lagrange function;

e Q,F, G, ¢, and hence the function L(-, -, A;, 1), are twice continu-
ously differentiable (in the neighborhood of the optimum), and there exists
8 >0 such that

(Lt e & B, A, D(E D), (& 5)y=8II(E, D) (2.108)
for every point (¢, 0) €€ XY satisfying

v, —(F, Ne., Hiu)(éi’ Hp)(¢, Ho)=0, iel, N,

(GiVle, (G HONG, HH)=0, je A 2{jeln: G, Hd)=0}, iel,N,

(Go)u0)5=0,  jeAo2{je 1, ny: Go()=0};
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e Forevery je A and i€0, N, 7;>0. i.e., all multipliers corresponding
to active constraints are positive—the strict complementarity condition.

THEOREM 2.23. (applicability conditions of opem). If we assume that

1. For optimal point (¢ 6) of problem (294), with CU, =
{(c;, w): Gi(c, u)=0}, Y=\{y: Gy(y)=0}, (and Q(c, u)=¢(Qylcy, u) ...,
On(cn, u)) also admissible), second-order sufficient optimality conditions with
strict complementarity are satisfied, partial derivatives of ¢ taken at
Qe Hﬁ)é(ﬂc,, H,9), ..., Qu(én, Hy0)) and denoted by /(Q(é, H?)) are
positive, i€ 1, N, and Fréchet derivative h. (¢, ©) of the operator h(c, v)£
v—F(c, Hv) has its image closed in %;

2. The assumptions of Theorem 2.22 are satisfied along with conditions
(2.109) and (2.110):

(Via"}c Q)(Vae®) lim fla"|= > lim ¢(a")>y(a), (2.109)
where {a"} is any sequence from Q bounded from below,
(VNcEx¥)Pe>0)(Vez=a>0)(V(c, v)e X))

$(Qy(cy, Hiv)—a, ..., Qulcy, Hyv)— @) =y(Q(¢, Hb)) = (c,v)eN,
(2.110)

where X, 2{(c, v)eCV: |lv—F(c, Hv)||=«a}, and N denotes some neighbor-
hood of (¢, 0);
then there exists peR, such that for every p=p
V(v,\)e VXA(p) (8, A, p)<d(5, X, p)<ii(v, A, p)

and X =(A,, ..., AN) € A(p), where

X =AW (O(E HD), iel,N, (2.111)
and X, = (A, ..., Arn) is the rzormgl Lagrangian multiplier for the constraint
h(c, v) = 0. Moreover, the set C(, A, p) consists of a single point é.

Proof. In the major part of the proof, the distinction between ¢ and v will
be superfluous, so we denote (c,v)£xe X=CV, XS Z=%x%. By Q.(x),
h;(x), Gix),..., we will understand Q,(c;, Hv), h;(c;, v), Gi(c, Hyv), etc.
We will also simplify the notation of derivatives in the proof; in cases of one
argument only we will use G'(x), Q!(x), etc., instead of G'(x), (Q,).(x), etc.
Let us expand L(x, ., %) into a Taylor series around the point £ = (¢, ):

L(x, A, 7) = Q&) (L% X, 4), )+ (L (% Ap, DX )+ o(|x]),

where x =x— %,

(L& Ky 1), )= L, [WHQERINQUR), R+ (R, hUDD]+ (R, GR)D)
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where

G2(Gy, Gy,...,Gy), h&(hy,. .., hy), hi(x)2v,~F(c, Hv),

(Liu(% AL 5 8 = L [HQENQIDE, 2 +(Kyiy IR, £)

+ Z ¥ (QRKQ;(%), XXQI(R), %)+ (4, G (X)X, X)).

We have assumed for every i € 1, N that the partial derivatives /(Q(%)) are
positive; hence, the multipliers (2.111) X=(X,...,An) are well defined. Let
us formulate the normal Lagrangian for the augmented y-Lagrangian (2.97)
L,(, A, p) with the constraints G(x)=0:

L(x, A, p, )ALy (x, A, p)+{(n, G(x)).

Let us take n =% and expand £(-, A, p, 1) into a Taylor series around the
point X

L(x, X, p, 1) = QR)+(LUEK X, p, 1), Ty HELLE X o, DE T ofl|Z]P),

where
(L2 K p, ), )= L YHQEIKQIR), ) +(K, DD+, G'(%)5),
(LLE X X = ) $UOED(QIDE £)+(X, KR, 1)

N
+ Y YHOERNCQIUR), B)+ (X, hI(R)INCQUR)E)
i=1
(A, hUR)T)) + p(hi(R)X, hU(R)E)]+(H, G'(R)(X, %))
Looking at the second-order derivatives of L and %, we can see that
(L (R, K, p, MX, )= (L1 (%, A, 1), )+ k(%) + B(%, %),
where

k(z)= p Y. y1(Q)) [|h(2)xIP,

i=1

B(% %)= ), L i(QENKQIE), xXA, hi(£)%)

+(A;, RIDDCQUR ) +(X, hI(R)E)).

Let us denote by G, the active part at point x of the constraints G, G, =
(Goa, Giay - -+, Guna)- The kernel of the operator G’(X), being a closed
subspace of the Hilbert space %, is also a Hilbert space. Denote it by
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Z A, X4 =ker G'4(X). The operator h'(X) has, by assumption, its image
im h'(X) = h'(X)(Z) closed in ¥. Hence, the image h'(X)(%,) is also closed in
9. All further considerations will be in space Z4; by h'(X), the restriction
h'(%) | 4 should be understood. The kernel ker h'(%) is a closed subspace of
the Hilbert space Z,; hence, owing to the orthogonal projection theorem
(Dunford and Schwartz 1958)

(VxeZ,)3A! x"e(ker h'(%)))3A!x"eker h'(X)) x=X"+X".
The fact that im h'(%) is closed implies that (Dunford and Schwartz 1958)
@E>0)VxeZy) W= &%,
Let us denote
¥, = min {Y(QR)), . . ., Y QR))},
from the assumption that ¢, >0, since all P(Q(x)) are positive. Combining

the above relations, we get for e =4¢,, - €

Fe>0)(VieZ,) k(D)=p _Z el HEIF

= pihn Z I DX = [0 (2)%[* = pel ||

Observe that
Vx"eker h'(%) B(x",x" =0,

VieZ, k(x)=k(x'+x")=k(x").
Denoting y =||x"|*/||x|]* and using inequality (2.108), we get
(L&A, p AE XY= (LU (% A, #)E + X, (X + %)
+Bx'+x", '+ x")+ k(x'+x"
= L A, MNP = 2L 5 & A DI e+ 8]11P
=Bl = 2IBI =] 1"+ pellx'|
= [%1P(8y* —2(IL Y% (& Ar, DI+IBDy — 1LY (£, Xy, 7
=[|X*(8y* - By — 8+ pe) = |Z[Pe' (1 + ) = X[

only if

BZ+4(8— )8 +¢)
4e(8—¢')

0<e'<8 and p=

We have proved the following result

Be'>00FpeR,)(Vp=p)(VxeXa) <LL(% A p, X 5= e|x|P.
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From the necessary optimality conditions
L% A 4)=0,
hence, from equality (2.111)
LR A p, 7)=0.

Because the strict complementarity condition is satisfied at point X, the
relations that have just been proved mean that at point X the second-order
sufficient optimality conditions for the minimum of function L,(-, A, p)
subject to constraint G(x)<0 are satisfied. Hence, there exists neighbor-
hood N of point % such that

Vp=p)(Vxe XNN)  L,(x, A p)= L,(% X, p)=$(Q(x))

and the equality can be obtained only for the unique point x = £ (remember
also that h(zx)=0).

Let us observe that we have used only assumption (1). Using assumption
(2) as well, we will show that % is the unique global minimum point of
L,(-, X.p) on set X. By virtue of (2.106) there exists >0 such that

as=(a,—B..... an - B)eq.
From assumption (2.110) there exists «, 0 <<« =< /2, such that
(xeX, Ap(Qi(x)—a...., Qux)—a)=W(O(®) > xe(NNX).
Therefore, if x¢ NN X then xe X, or xe X,, where
X, ={xe X: [h(x)]=a},
X, ={xeX,: $(Qi(x)—a, ..., Oy(x)—a)> (Q(%))}.

We will now show that if p is sufficiently large, then for every x from X, or
Xo Ly(x, A, p)>L,(%, A, p). Let us suppose first that x € X,. Arguing as in
the proof of Theorem 2.22 (for A ={A}), we obtain from (2.105) and (2.106)
that

@p*=p)(Vp=p*)(VxeX)  Q.(x, A p)=deQ,

which implies that
(1) (Vy>0)3p, eR.)(Vp=p,)(¥xe X,) |Q.(x, A, p)l|=,

since Q,(-, A, p*) is bounded below by d, and ||h(x)|=a on X,.. Thus, by
enlarging p = p™ + Ap we can make at least one penalty term

pll ()| = p* [ ” + Aplh (o)l

as large as we want on the set X,. Let us denote by x a point from the set
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X, =1{xe€ X: ||h(x)|= 0} and suppose that

2) lim inf L, (-, X, p) < L, (% X, p) = (O(%)),

pox X,

which means that
(Ve>0)A{(x". p"}e X, xR, . p"—>x)

Fne=1D(Vn=ny) L,(x" X, p")<L,(% X, p)+e&.
On the other hand, (1) implies that

|Qu(x", X, p™)| o=
Since the sequence {Q,(x", X. p™)}is for p=p* bounded below by a, € Q and
contained in 2, and Q(x)e Q, by virtue of (2.109):

lim L,(x", X, p")>(Q(2)) = L, (%. X, p),

n—sx

which contradicts supposition (2). The reversed inequality (2) means that
@p' eR)Vp=p)(Vxe X,) Ly(x, A p)>L,(% X p).

Let us suppose now that x € X,. If we take p=p” =| A2« then

(Vxe X)Vie I, N) (X, h(x)) +ip|h ()| = —a.

Since a=p/2, Q(X,)~acQ, where @2 (a,...,a)eRY. Hence, because
the function ¢ strictly preserves order on {1, we get

(Vp=p")(Vxe X)) L,(x, X p)>L(Z X p)=d(Q(x)).
Taking p =max {p, p’, p”, p}, we get finally
(Vp=p)(VxeX,) Ly(x X p)>L,(% A p).

and the equalAity can be obtained only for the unique point x = (¢, ). Since
h(x)=0, (x; A) is a saddle point

(Vxe X)(VAeW*) L, A p)=Ly(X A p)=Ly(x A, p).
We have also
Vp=p  KeAlp)
since k(%)= 0 implies that VpeR, Q,(% A, p)= Q,(%,0,p) and Q,(%,0.p)e
{1 by virtue of (2.106). Returning now to the distinction between ¢ and v, we
see that the uniqueness of % = (¢, ©) implies that the set C(%, A, p) consists of

a single pont ¢é. To complete the proof it is sufficient now to apply Lemma
2.17, part 2, since Vp= yA(p)c¥*. O
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Some of the assumptions of Theorem 2.23 need comments. Let us notice
first that the requirement that the partial derivatives P(Q(¢, HD)) be posi-
tive, and conditions (2.109) and (2.105) are needed only for general,
nonadditive functions ¢ (they are satisfied if =Y ,). It can be easily
shown that it is a common feature of the functions that strictly preserve
order on some set ) that their partial derivatives are positive on ) (and
Q¢ Hb)eQ is guaranteed by the boundedness condition (2.106)). On the
other hand, assumption (2.109) means that any local function Q, cannot
override the others, which seems to be true in practice. Also, assumption
(2.105) is commonly satisfied by a wide class of important functions ¢, for
example, multiplicative and mixed multiplicative—additive functions.

Assumption (2.110) also looks complicated and needs further discussion.
This assumption is in fact a generalization to the nonadditive case of the
requirement that ¥ be the unique solution in the strong sense to the initial
optimization problem (see the previous section just before Theorem 2.21).
Assumption (2.110) can be ensured by some more immediate conditions.

Remark. 1If (¢, 0) is the unique point minimizing problem (2.94) globally,
Q, are lower semicontinuous and F; continuous, set CV is compact and
function ¢ is continuous, then (2.110) is satisfied.

Proof. If (2.110) is not satisfied, then there exists neighborhood N of (¢, )
such that

(Va">0)3(c", v")eCV) (p(Q,(ct, Hiv™)—a", ..., On(ch, Hyo")—a")
< Y(Q(é Hb)) Alc", v™) ¢ N).

Let us take «" =1/n. Owing to the compactness of CV\NY it can be
assumed without loss of generality that (c", v")— (c’, v°) e CV\N°. Because
of the continuity of F, we get v°— F(c’, Hv®) = 0. Taking into account the
semicontinuity of Q, and the continuity of ¢, we have Y(Q(c’, Ho')) =
Y(Q(¢ Hp)), which contradicts the assumption that (é 0) is the unique
optimal point. [

Theorem 2.21, which was formulated in the previous section, is like
Theorem 2.23 (it is in fact a special case of Theorem 2.23 with =3 and
operator u— HF(c, u) instead of v — F(c, Hv), which does not introduce any
trouble). Thus, all the comments following Theorem 2.21 and concerning
1PBM are also true for opsM (the discussion of the adjustment of p performed
just after Theorem 2.21 is an example). The theorems are similar because
the coordinator problems cp, and cp, are similar. Thus, the discussion of
coordinator strategies of 1pBM also applies to opBM, with the obvious modifi-
cations resulting from the different forms of the performance functions.
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The coordinator strategies of opem can be roughly divided into two groups:

Two-level (double-loop) coordination strategies

For given A the minimum of l,(A/(', A, p) is found and A is adjusted in order to
approach the balance condition, and so on. The adjustment of A can be
done using Hestenes multiplier rule

A=A 4+ p[oF — F(é(%, A%, p), 6%)], (2.112)

where #* is the point minimizing §(-, A*, p). The multiplier rule holds in its
classical form (2.112) also for the augmented -Lagrangian since A are
distinct from the normal Lagrangian multipliers A; and connected with them
(in the optimum) through relation (2.111). Assuming that CU=CxU
(hence CV=CxYV) and A€ A(p) (hence 2.104 holds) we have, using the
derivative theorem from Appendix A,

@, (0, X, p) = (Ly),(¢(v, A, p), v, A, p)
= L ¥(Qu(&(v, A p). v, X, )+ LY (v, A, p). Hip)

+(8,1 = (F), (v, A, p), H)*(\; + pl(v, — F(¢(v, A, p), Ho)))],

where §; is the Kronecker delta and_tp{(-)éaw/a()i(-), ie1, N. Observe now
that if we could find a fixed point A of the adjusting rule (2.112) then we
would have

5, — F(&(o, A, p), HD)=0, jel, N,
where §=(D,,..., Dy)=0(A, p) is the point minimizing J(-, A, p). Hence
P(Q,(E(T, X, p). v A, p) = W Q(E(B, A, p), HB)),  jel,N,
and, assuming v €int V, we would get
N
i, (B, K. p) = ), W(QE(B, A, p), HD)) - (Q),(&(B, A, p), H;)
1

1=

+(8,1— (F),(&,(B, A, p), HD)*X1=0, jel,N.
Therefore,
A=(Arn - Aw), Ay = WHQE(D, A, p), HD)) - A,
for every jel,—N, would be the normal Lagrangian multiplier A, and
(é(D, A, p), D) would be the solution (¢, ©) of the initial problem since it

minimizes L, (-, -, X, p) on CV. The above argument can also be made when
veint V and CV=CXx YV are not necessarily true, but it becomes more
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complicated. The result, formula (2.112) for the adjustment of A, remains
unchanged, however. The strict proof of the convergence of the algorithm
created by this formula can also be performed, but is rather arduous
(Tatjewski 1976).

One-level (single-loop) coordination strategies

The saddle point of $(-, -, p) is found by making simultaneous iterations of v
and A: if, in step k,c*=¢(v, A%, p) is found, then both v* and A* are
adjusted using some step formulae, and so on. The single-loop adjusting
formulae for v and A can be derived from the necessary conditions for a
saddle point as formulae (2.91) and (2.92) were derived from (2.90) in the
previous section. However, now

(Ly)i(c, v, A, p) =i (Q,(c, v, A, p)(Q,), (¢ Hv) + A + p(v; — Fi(c;, H))]
+ Z Q. (c, v, A, PNQ,ulc;, H)
- B
—(F)¥(c;, Ho)(\ +p(v; ~ Fi(c, Hv)))l, i€l N,
and the multiplier strategy takes the form

A = A+ p(ok— Fi(ck, Hv)), (2.113X)

k+1 _ dl(k) ’ k
= E(ct, Ho") (Z e (Qulet )l
'*l’(k) ,* kyy k+1 - 1N
Zw(k) *(ck, Hu )\ ) ie LN, (2.113v)

where

k) 2 PQ, (ck, vk, A, p))——dj(Q (c*, v , A% p)h iel.N.

Formulae (2.113A) and (2.113v) are a special case of the ordinary gradient
with variable step coefficients e}, = p/¢/i(k) and el =1/p - Y(k), respec-
tively; i.e., they are equivalent to

k+1 __ k
AR =k w'(k)d’* (v*. A*. p).
1 S
pEtl=pk~ Lll'(k)djl(v AR p iel, N

The two-level strategy based on (2.112) and the multiplier strategy have
been applied, and the results are presented in section 2.6.
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The discussion concerning the global and local nature of coordinator
strategies made for 1pBM in the previous section remains valid here for opBm,
especially the discussion of the constrained choice of v for various cases of
the set CU (notice that the sets V) and U, are equivalent). However, we
can always formulate the local problems of opeM to obtain the case V4, =%
(the whole space) as we did for the penalty function method in section 2.3.4;
the cost, however, is an increase in the dimensionality of the local decision
problems where the controls and all or only some of the interaction inputs
are treated as local decision variables. We obtain then the case CV=CXV,
and V can be treated in any standard way: e.g., by using projected gradients
when possible, or generally forming an additional augmented Lagrangian
term for the constraints describing V. The reader is referred to section 2.6,
where some aspects of these problems are illustrated.

2.6. SIMULATION RESULTS

2.6.1. SAMPLE PROBLEM

Let us consider the steady-state system shown in Figure 2.4. The subsystem
models are as follows:

Subsystem 1
yi=F(ci, uy)=cii— ¢+ 2u;, where c¢;=(cy, €y2),
Ql(Cl,“1)Z(“1_1)4+5(C11+C12_2)2,
CUIZ{(Cla“1)€R33(C11)2+(C12)2$1A0$“1$0-5}~

Subsystem 2
€2 = (a1, €225 C23), Uy = (Upy, Upa)s y2= (Y21, y22),
Y21 = F21(cp, Up) = €31 = oot Uz — 3y,
Y22 = F2a(€, Up) = 2¢05 = Co3— Uy + Uy,
Qy(Ca, Up) = 2(¢51 = 2)7 +(C20)" +3(¢23)% + 4150 + (uz,)?,
CU,={(Cs, U) € R°:0.5¢5, + €3, +2Co3 < 1A 4{cy)?
+2¢y Uz + 041Uy + €1 €3+ 0.5(c55) + (1) < 4).

Subsystem 3
s = Fylcs, u3) = ¢5, +2.5¢3, —4u;, where  ¢;=(c3y, ¢32),
Qs(cs, uz) = {3y + 17+ (U3 — 1)* +2.5(c3,)?,
CU,={(cy, u5)€R?: ¢35, +u3+0.5=0A0=<c,, <1}
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Cqy Cr2 321 Ca2 Cf'a Cas Ca2
Subsystem |, u; Su bst_.zgsfem Un Subsgsfem
Uy 1 - 93
Uzz2 Yzz | U

- |

— el
-

FIGURE 2.4 System structure used in the example.

All of the subsystem output equations are linear and all of the subsystem
performance indices are convex, though not strictly in the first subsystem.
The subsystems constraints are nonlinear in the first and second subsystems.
The goal of the optimization is to minimize the overall system perfor-
mance index Q(c, u) subject to subsystem outputs and constraints, where

Qlc, u)= Q(cy, uy)) + Qylcy, uy) + Qsl(cs, us), (2.114)
Qlc, u}= Q\(cy, uy) - Oy(cy, uy)+ Qs(cs, uy), (2.115)
i.e., some methods will be tested using the overall performance index
(2.114), and some using (2.115). In both cases Q is composed of Q,

i=1, 2,3, through the following function s that strictly preserves order on
some set :

3
#(Qy, Qy, Q)= ), O, hence Q=R3 for (2.114),
i=1
$(Q, Qp, Q)=0, - Q,+Q;, hence N=R2. xR, for (2.115),
where
R2.={(a,, a,)eR?*:a,>0, a,>0}.

Of course, the structure of the system must also be taken into account in the
optimization. It can be easily seen from Figure 2.4 that the structure matrix H,

where u=Hy (42 (u,, u,, u;)€R* and y£(y,, y,, y;) €R*), has the form

D10 00 | H
T L I
H=10 0 0 1|7 |
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The optimal solutions of the above optimization problem for (2.114) are:

¢;=(0.53054,0.84766)
¢, =(0.99094, —0.14728, 0.00307)
¢, =(-0.50504,0.34261)
a=(0.17288,0.02864,0.33133, 0.00504)
Q¢ 0)=6.10075,
and for (2.115):

¢,=1(0.53160, 0.84699)
¢,=(0.99710,-0.15238,-0.01001)
¢, =(—0.52438,0.38192)
i =(0.16456,0.01374, 0.33288, 0.02438)
Q(¢, 1) =6.73310,
where  Q,(¢,, ;) =2.41784, Qs(é,, i) =2.14671; hence, (Q,(¢), i),
Q4(&y, 1), O4(é5, fi3)) €int Q.

The problem was solved on an opra-1325 computer using various mul-
tilevel methods described in the previous sections. All local-level problems
and coordinator problems were solved numerically with specified but not
high accuracy. Therefore, the approximations of the accurate optimum,

especially the values of the optimal controls ¢, differ slightly among the
various methods.

2.6.2. THE DIRECT METHOD

In the direct method, the output variables y are taken as coordination
variables v, 1.e.,

A 4
v={(vy, Uy, V22, V3) = yeR".

The local decision problems of the pure direct method are as follows:

First local problem
minimize [Q,(¢;, H,v) = (vs; — 1)*+5(c; +¢;,—2)°]
subject to ¢, € Cy(v) ={c, eR*:v,~ F (¢, Hv)
=0,— € —C 20 =0A(c; P+ () =1}
Second local problem

minimize [ Q(c,, Hov) = 2(Ca1 — 22 +(C20)7 + 3(c23)> + 4(v,)? + (v5)°]
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subject to ¢, € Co(v)={c, eR*: 05, — F,,(c,, Hyv)
=Us —Cot =0, +30,=0A
Voo — Fou(cy, HyU) = 035 —2Co5 + Co3+ 0, —03=0A
0.5¢,, + o+ 2¢m =14
4(Cy)*+ 20,0, +0.40, + o103+ 0.5(cy3)* + v <4}
Third local problem

minimize [Qs(c;, Hyv) = (¢35, + 17+ (050~ 1)>+2.5(c3,)°]
subject to

c3€ Ci(v) ={c e R*: v3— F5(c,, Hyv)
= 03— Cy; —2.5¢5 405, =04
3t U, +t0.520A0=s <1}

1t is possible to solve the above local decision problems analytically for given
values of coordination variables v; the solution is difficult. though, especially
in the second problem. The local decision sets C;(v) depend strongly on
coordination variables v, hence, the set V,,

Vo={veR*: C(v)#,i=1,2,3},

must be taken into account in the coordinator problem. Because local
problems have explicit analytical solutions, set V, may be determined, but it
is not a simple job:

Vo={veR*:0=<1,,<0.5A20,,— v, —vV2<0n
—20,,+ 0, = V2= 0A v, < 5(—0.8+v0.64+329) A
A=0r-D-JA<OA —4v,,—2v;— 0.5 0},
where
A=D?*-32FE, D=10x,,+2v,+3x;,,
E =4x3},+2x,,0, +0.40, + x,,X;, +0.5x3,,

1
Xip :”53 (—SA —-2B+1).

1
= - . A__2 + P
XZP_S.S(OS B+1)

1
X3y =5z (A+15B+2)

A=v,-3v,— vy, B=—v,+ 05— 0,,.
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The coordinator problem is therefore as follows

minimize [Q(v) = $(O,(v), Ox(v), O5(v))]

subject to veV,,

where Q,(v), i = 1,2, 3, denote the solutions of local decision problems for a
given value of v, =37, for (2.114), and ¢(Q,, O,, 0)= O, - O, + O, for
(2.115).

Since the set V,, cannot be violated during the optimization run, the
coordinator problem was programmed using the interior penalty function
technique (barriére function method), with the Powell procedure for uncon-
strained minimization. The gradient procedure would not be used here since
the function Q(-) is not differentiable. The point v = (0, 0, 0, 0) was taken as
a starting point.

The unconstrained minimization of the barriére function was performed
only once with the penalty coefficient p = 1077, which was satisfactory since
the optimal point happened to lie in the interior of the set V,. The final
results for (2.114) are as follows:

¢,=1(0.51322,0.85825)

¢,=1(0.98530,-0.13116, 0.00521)

¢;=(-0.50863, 0.34620)

i =(0.19559,0.04615, 0.32234, 0.00863)
Q(¢, 0)=6.1076

and for (2.115)

¢,=1(0.53604, 0.84418)

¢, =(0.99841, —0.15653, —0.01044)

¢;=(—0.05230, 0.38009)

i =(0.15886, 0.00958, 0.33522, 0.02300)
Q(¢, 0)=6.7347

The optimization runs up to the tenth Powell iteration (the computations
were continued but without improvement of the results) are presented in
Table 2.1. The columns of the table are the Powell procedure iteration
number k, the value of the performance function after iteration k (Q¥ for
(2.114) or QF for (2.115)), and the number of iterations of the coordinator
algorithm including iteration k (nk for (2.114) or nj for (2.115)). The number
of iterations of the coordinator algorithm (i.e., local-level calls) is one of the
best measures of the computational effort when multilevel methods are
used.
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TABLE 2.1 Simulation Re-
sults for the Direct Method

K K
k Q5 nk Qs ny

6.4242 27 7.0319 28
6.2840 44 6.8415 416
6.2499 65 68270 65
6.2225 85 6.8266 86
6.1245 108 6.7370 111
6.1227 124 6.7366 126
6.1221 143 6.7364 145
6.1220 161 6.7363 161
6.1079 188 6.7348 186
6.1076 201 6.7347 200

[eBiNo e S Be NV I L S

—_

2.6.3. THE PENALTY FUNCTION METHOD

In the penalty function method, as in the direct method, output variables vy
are taken as coordination variables v, 1.e.,

v =(vy, Uz1, Vaps U3)€R4~

Three local problems should be formulated, and we are free to choose the
variables that will be the local decision variables. We can formulate the local
decision problems in the form of 1p,, from section 2.3.1. It is the only
reasonable way to formulate the first local problem, since CU, is separable

CU,=C,xU,={c,eR%:(c,;)*+(c;.) =1 x{u, eR:0=<u,=<0.5}.
Thus we obtain
First local problem

minimize [Qplyl(clv v, p1) = Qylcy, H10)+P1“01 — Fi(cy, Hlv)“2
= (v, — 1)4+5(C11+C12_2)2+P1(Ul — ¢t 205,)]

subject to ¢, € C,.

The formulation is not so evident with the second subsystem, since the set
CU, is not separable. If we formulate the second local problem according to
LP,,, (i.e., with ¢, as local decision variables only), we would get a local
decision set dependent on v, and the nice properties of the coordinator
problem are thus lost (see Appendix A). Therefore, we will formulate the
second local problem according to Ly, (see section 2.3.4), and take only
one interaction input {namely u,;) as the additional local decision variable to
get the desired separability.
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Second local problem

minimize [thy2(c2’ Uzps U, Pa) = Qs(Cy, Uy, 0) + Pz(”Uz_Fz(Cza Uszg, U)”2
Hua = 01]7) = 2(csy = 2)* + (220> + 3(c23)?
+4(uy ) + (03)* + po(v51 — €3
+ Con— Uy + 303"+ (03— 2¢55
+ 03t Uy = 03)? + (U — 0,)%)]

subject to (¢,, uy;) e CUs,.

"o

The third local problem will also be formulated according to LP},;:

Third local problem
minimize [Q,,3(C3, Uz, 0, p3) = Qs(c3, uz)+ psll|lvs — Falcs, ws)|?
+lus — 020y = (c31+ )2+ (U3 — 1) +2.5(c3,)°
+ p3((03— €31 = 2.5C32 F 4us) + (U3 — v55)H)]
subject to (c5, us) € CU,.

Observe that taking u; as the decision variable in the above local problem
only endows the coordinator problem function with simple differentiability
properties (see Appendix A). Defining the third local problem in the form
of Lp,,; (with ¢, as the local decision variable only) does not create any
additional constraints on the coordination variables because

(VveRY) Cyv)={c;€R?*: ¢3; T 1, 10.520A0=<cp, <1} # .

Having defined the local decision problems, we get the following supremal
problem

minimize [Oply(vﬁ P) = l!/(éplyl(v’ p1)7 Op1y2(v’ p2)a Oply3(va p}))]
subject to ve V4=V, ={veR*:0=<v,,=<0.5},

where Op,yi(v, p;) denote the results of local problem minimizations for given
values of v and p,. The constraint set Vj can be violated during the
optimization runs and is therefore denoted by V, (see section 2.3.1); hence,
it can be treated by any standard method.

The sample problem was solved numerically using the penalty function
method with local and supremal problems formulated as above. The values
of the penalty coefficients were the same in each local decision problem, i.e.,
p1=p,=p3=p and only Eq. (2.115) was considered, i.e., ¢(Q,, Q,, Q;)=
Q, - Q,+ Q,. The optimization of the supremal problem (see section 2.3.1)
was performed for increasing values of p, which gives a good insight into the
nature of the method. Local problems were solved numerically using the
shifting penalty function method (see, e.g., Wierzbicki and Kurcyusz 1977),
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and in the supremal problem the derivative evaluated according to formula
(A13) (Appendix A) was used to build conjugate gradients. The main
results are shown in Table 2.2. In the rows of the table are optimization
results corresponding to increasing values of the penalty coefficient p = p*,
k=1,23,4. Only the first row (k =0) is different—it shows the starting
point. The other columns of the table are:

Q*—The optimal value of the performance index of the supremal prob-
lem with p = p*

Of—The optimal value of the nonpenalized performance index (the
penalty terms are set to zero)

n*—The number of solutions of the local problems (number of lower-level
calls) during the minimization of the supremal problem with p = p*

bh = (%, b5, 8%,, 5,)—The optimal values of the coordination variables
obtained by p = p*

lle*|—The norm of the coordination error at the optimal point for p = p*

The optimal value ©* obtained from optimization with p=p* (k=0,1,2, 3)
was taken as the starting point for optimization with the next larger value of
p. The coordination error is as follows:

ey(c, v)= v~ Filey, Hio)=v, - ¢+ ¢ 2= 20y,
[ 021 = Fo1(Cp, Upp, V) = 0y — oy + €~ Uy + 30
€5(Cay Upps ) = | 02— Fpo(Cy, Upy, 0) = 03— 2C50+ €yt Uy — U5 |,
L U1 — Uy

[ 03— F5(c3, U3) =03—C31—2.5¢c+, +4u
63(C3, u3, U) — L 3 3( 3 3) 3 31 32 3:|’

Uz = Uy

el(C], U)
e(c, u, v) = | e5(Cy, Uny, V) (2.116)

63(635 Us, U)

TABLE 2.2 Simulation Results for the Penalty Function Method

k pk Ok ok n o} ik ik o lle*|

0 10 16.698 11 0.0 0.0 0.0 0.0 0.3289
(initial

point)

1 10 6.6382 6.44443 33 0.06260 0.20077 —-0.03799 0.32029 0.0993
2 107 6.7609 6.7325 24 0.04337  0.17502 —0.03149 0.34165 0.0124
3 10° 6.7899 6.7869 28 0.03042 0.17140 —0.04335 0.34220 0.00125
4 10* 6.7933 6.7933 34 0.03040  0.17140  —0.04448 0.34195 0.00012

“ The line search was performed succesfully only in one direction, the first.
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Looking at Table 2.2, we can see the main features of the penalty function
method: the greater the penalty coefficient the lower the coordination error
and the greater the optimal value of the performance index for given p. The
convergence of the performance index values Q% and OF to themselves,
which means that the penalty terms converge to zero, can also be observed.
The results are a good illustration of Theorem 2.14 in section 2.3.

To be complete, let us give the optimal values of controls and interactions
obtained in the last iteration (k =4):

¢,=1(0.53348, 0.84815)

¢, =1(0.99043, ~0.17651, 0.00304)

¢, =(—0.45136, 0.24860)

i =(0.17140, 0.03033, 0.34195, —0.04300).

2.6.4. THE PRICE METHOD

The application of the price method (1BM) requires a reformulation of the
problem (see section 2.4). It is necessary to introduce the following local
problems (the price method can be applied when performance Q(c, u) is
in additive form (2.114)):

First local problem
minimize [L,(cy, uy, A)=(u, = 1) +5(c; + €1, = 2)? + A uy = Aga(ey = ¢ = 1)
subject to (c,, u,) e CU,.
Second local problem
minimize L,(c,, Uy, A) =2(¢a; —2) +(C35)* + 3(Cp3)* + 4(1z1) + (U5,)?
+ Ag Uy, T Anatpy — A (Coy — Cop T Uy — 3Uy,)
—A3(2C05 — Co3— Uyy + Uyo)
subject to (c,, u,)e CU,
Third local problem
minimize Li(cs, us, A)=(c3; + 1)+ (u;—1)?
+2.5(C35)” + Asus — Axp(Can+2.5¢5, — dus)
subject to (c3, us) e CU,.

The dimensions of the local problems are increased when compared with the
direct method. Yet, the local constraints do not depend on the coordinating
inputs A.
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The coordinator task consists (see section 2.4) in finding A for which the
local solutions satisfy the interconnection equations. To accomplish this task
for our problem, two coordination algorithms have been tried. In the first
case the dual function

e(\)= max Y L(c.u,A)

(c,u)eCU ;= |

obtained through local problem solutions was maximized with the standard
conjugate gradient procedure for unconstrained optimization. The algorithm
was stopped after the condition |[Ve(A)[|=10"" was satisfied (where
Ve(d)=—-W(Q)).

In the second case, algorithm (2.68) from section 2.4 was applied and we
set s(A)=0. Therefore, the coordination strategy was as follows:

AT P =AM — e AW(AK).

Two possiblities for matrix A were tried: A =1 (with £ =0.8), and A=A,
(with £ =0.8), where A, was chosen according to the method described in
Appendix A. The stop criterion |w(A)||=8 was used, with & ranging from
107% to 107,

In both cases the local problems were solved with the shifting penalty
function method using the conjugate gradient algorithm for unconstrained
optimization. In both cases the coordination algorithms were started from
A2=0.

The major numerical results are displayed in Table 2.3. Q, denotes the
optimal value of the performance index and n denotes the number of
iterations of the coordination algorithm. The maximization of the dual
function gave slightly better results (smaller n) than the application of
algorithm (2.68). This algorithm, however, is to be used mainly for on-line
coordination purposes (see Chapter 3).

TABLE 2.3 Simulation Results for the Price Method

Q. Stop Criterion n A=A Ag Agss AS)
Case [ (¢%9) 6.101 [Wl=10"* 66  (-0.604, —1.473,0.659, —0.411)
Case II (o)  6.100 IW|=<10"2 58  (=0.602, —1.643,0.679, —0.440)
A=1
Case Il (&)  6.100 [W)=10"2 48
A=Aj! 6.101 w102 73

6.101 [W)=10"* 97  (—0.619, —1.654,0.679, —0.440)
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2.6.5. THE LINEARIZED AUGMENTED LAGRANGIAN METHOD

The linearized augmented Lagrangian method, like the price method, is
applicable only in the additive case (2.114) and uses all controls and
interaction inputs as local decision variables.

The linearized augmented Lagrangian (2.79) for the sample problem has
the following form

3
A(C, u, G u, /\’ P) = Z Q (Cu u +/\ (“1 F21(C2’ u2])

+ Ay Uy~ Filcy, u))+ Aga(tgy — F3(Cs, us)) + Ag(us — Foolcy, )
+%P((u1)2+(u21)2+(u22)2+(u3)2+(F1(C1, ul))2+ (F2i(cz, uz))2+ (Fpo(cs, uz))2
+(Fs(cs, us))?) + P('Jl}’zl TUnY T U3t UsYor — UiY21 — Uz Vi~ UpaYs
T U3Y T U Fo (o Up) = tn Frcy, uy) — Upa (e, us) — usFon(cy, us)),

where £ F(c, u), A = (A, Azp, Ay, A3) €R* is the vector of multipliers, and

p €R, is the penalty coefficient. Hence, local decision problems Lp%; are as
follows

First local problem
minimize Q(cy, u;)+A5u; — A5, F(c;, u)+3p((u)?+ (Fi(cy, u))?)

= pluyys, +us Filc, uy)
subject to (¢, u;) e CU;,,

Second local problem
minimize Q,(c,, Uy) + A5ty + Assttzn — ASF5 (Co. 1)
= M Fo(Can up) +3pW(1)) + () + (Fay (€5, 4o))?
+(Fas(Cs, t2)®) = puar VY + Upo Y + UTES (Con Us)
+ ukF,5(cy, uy))
subject to (¢,, uy) € CU,,
Third local problem
minimize Qs(cs, us)+ Alus— A5 F5(cs. us)
+30((u3)* + (F3(cs, U3))” = p(usyss + ub, Falca, us))
subject to (cs, uz) € CUs,
Denoting the solutions of local problems as

k=g (uk, v AR p), uk Tt =q,(u¥, v¥, A%, p), iel, N,
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and taking yf ' 2 F (¢, ubY), iel, N, we get the following coordinator
problem:

Adjust the Lagrangian multipliers according to the formula
AT =R+ 1p(uk— Hy"), iel, N.

In fact, the more complicated algorithm (2.83) was applied instead of the
above simple coordinator problem, but it was not needed because it was not
necessary to increase the initial value of the penalty coefficient p=1. The
initial values of all variables (multipliers, inputs. controls) were set to zero.
The optimization run is presented in Table 2.4. The columns of the table
are:

k—The iteration number,

Q*—The value of the linearized augmented Lagrangian after iteration k,

Q%—The value of the original, unmodified performance index after
iteration k,

u*—The optimal values of the interaction inputs,

A¥—The values of the multipliers.

For completeness, the optimal values of the controls after 14 iterations are
given below:

¢,=(0.53110, 0.84730)
¢,=1(0.99100, —0.14855, 0.00322)
¢, =(~0.50524, 0.34238).

2.6.6. THE INPUT PREDICTION AND BALANCE METHOD

The classical augmented Lagrangian for the sample problem has the form
(compare section 2.5.3)

3
La(C, u, A, p)= Z Qi(c;, w)+ A (u; — Fyy(cs, uz))‘*'/\z](“zl*ﬁ(cls u))
i=1

+ Aol — Fi(cs, us)) + Aslus — Faolcy, u3))
+%P((“1)2+ (u21)2+ (“22)2 + (“3)2+ (Fi(cy, “1))2
+ (Fy(ca, “2))2+ (Fyalcq, uy))* + (Fa(Ca uy))?) — pluy Fyy(cg, uy)
+uy Fr(cy, )+ upn Filcs, us) + usFos(cy, 1)),
which is separable with respect to ¢, i €1, N. We cannot treat variables u,,

and u; as local decision variables, as in the penalty function method, owing
to mixed terms in the last parentheses. Hence, the local decision problems
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must be formulated with Lp,; that was introduced in section 2.5.3:

First local problem
minimize Q,(c;, u)+ A u, — Ay Filey, wy)

+3p((u)*+ (Fi(cy, u)))?) — puai Fi(cy, wy)
subject to ¢, € C, ={c, eR?: (c,)> + (¢, = 1},

Second local problem

minimize Q,(c,, Uy) + Ay tyy + Asstiny — A Fy(cy, Us) — AsFos(cy, us)
+ p((uz )+ (152)> +(F2 (2, )+ (Fap(ca, 1))
—p(u Fa (¢y up) +usFos(cs, us))

subject t0 ¢, € Cy{u) ={c, €R*: 0.5¢,; + 1+ 2o =11
4(Cy, )+ 2C2,Usy + 0.4Us, + Co 1 Co3+ 0.5(Ca3) 4 (1y)* < 4},

Third local problem
minimize Qs(cs, Us) + Asu; — Ay Fi(cs, us)

+%P((U3)2+ (Fslcs, u3))2)—pu22F3(c3, us)
subject t0 ¢;€ Cy(u)={c; €R*: ¢35, + u;+0.5=0A0=<c5, < 1}.

The method uses interaction inputs u = (u;, Uy, Uy,, U3) ER* as coordina-
tion variables. Ounly in the first local problem is the constraint set not
dependent on the coordination variables because of the separability of the
set CU, = C,x U,. The counstraint sets in the second and third local prob-
lems depend continuously on the values of w. Luckily, the constraint set in
the third problem Ci(u) is not empty for all values of u because there are no
absolute value constraints on ¢4, : this is not a typical formulation. But the set
C,(u) may be empty for some values of u, namely, when u does not belong
to the set

5o ={ueR*: —2.662939361 < u,, =2.102939361}.
Thus, the admissible input prediction set U, consists of two parts:
Uy=U, NU,=U,yN{ueR* 0=u,=0.5},

and the set U,, cannot be violated during the optimization run,

Because of the dependence of the local constraint sets on u, the gradient
formula (A.13) derived in Appendix A cannot be applied to the coordinator
problem functional

Ap)= L L0,
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where L (u, A, p) denotes the optimization result of the local decision
problem i, i=1,2,3. There are two possible approaches from this point:

e To apply a two-level coordinator strategy to minimize the function
¢(-, A, p) by means of a nongradient procedure;

e To evaluate the gradient of ¢(, A, p) using Theorem A.3 from Ap-
pendix A, and then to apply two-level coordinator strategy using a gradient
procedure for minimizing (-, A, p), or to apply a one-level strategy to the
obtained gradient. The gradient of ¢(-, A, p) exists only in the interior of set
Uso-

For the simulation problem the first possibility was chosen. The multipliers
were adjusted according to Hestenes’s formula with p = 100. The function
¢(-, A, p) was minimized by the Powell procedure. The coordinator al-
gorithm was started from A°=0, u’=0. The local problems were solved
numerically using the shifting penalty function method for constrained
minimization. The results are given in Table 2.5. The columns of the table are:

k—The iteration number corresponding to changes in A,
n*—The number of local-level calls from iteration 1 to k, inclusive,

O* —_The value of the performance index after iteration k,
le*|—The norm of the coordination error after iteration k, where

e & yk — HFE(ck, u®).

The final values of the price interactions and controls were:

A

(—0.5655, —1.509, 0.6802, —0.4199),
(0.17503, 0.03099, 0.32888, 0.01225),
¢,=1(0.5286, 0.8489),

¢, =1(0.9904, —0.1413, 0.0033),

¢, =(-0.5122, 0.3559).

]

TABLE 2.5 Simulation
Results for the Input Pre-

diction and Balance
Method
k nk Ok le®li

1 44 6.1158 0.00032
2 65 6.101  7x10°
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2.6.7. THE OUTPUT PREDICTION AND BALANCE METHOD

The output prediction and balance method (opBm), described in section
2.5.4, is a generalization of the penalty function method (pem). The local
problems of opsM are simple modifications of the local problems of prm that
are obtained by using linear and quadratic modifications of local perfor-
mance indices instead of only quadratic modifications. Applying opeM to the
sample problem, we get:

First local problem

minimize [Q,,(c,, v, A1, p) = Qi(c,, H,v) + p|v, — F(cy, H,v)|
+{A,, v, —F,(c, Hv)y= (v — 1)*+5(c, 1 + ¢, —2)°
+P(Ul_C11+C12“2021)2+)\1(U1_C11+C12_2U21)

subject to ¢, € C,.

The second and third local problems for opsm are also similar to those of
pEM(see section 2.6.3) and therefore will not be given here.

The simulation problem was solved using two different coordination
strategies of opM:

e The two-level strategy with multipliers adjusted according to formula
(2.112),

e The one-level strategy described by formulae (2.113). Only case
(2.115) was considered, i.e., $(Q,;. Q,, Q;)= Q; - O, + Q;. Output variables
veR* and multipliers A eR® were set to zero initially. The value of the
penalty coefficient was fixed and equal to 100 and 200 for the one-level and
two-level strategies, respectively. In both cases, local problems were solved
numerically using the shifting penalty function method for constrained
minimization.

Using the two-level strategy, the minimization of the function

(-, A, p)2 Q.1 (, A%, p) - Qua(, A5, p)+ Q55 A%, ),

was performed by means of the conjugate gradient method, where
Quilv, AX, p) denotes the ith local problem solution for given values of v, A¥,
and p, i=1,2, 3. The constraint ve V,={veR*:0=<v,,<0.5} was not es-
sential since it was inactive (it could be included in a penalty term or an
augmented Lagrangian term). The computation results are given in Table
2.6.

The columns of the table are the same as in Table 2.5 except that the
coordination error is now defined as in Eq. (2.116). Satisfactory results were
obtained after the fifth iteration. The following iterations do not improve the
value of the performance index because we are near the optimum. The final



TABLE 2.6 Simulation Re-
sults for the Two-Level Strategy
of the Output Prediction and

Balance Method

ko n* Q* lle*
1 25 6.7073 0.0114
2 30 6.7266 0.0059
3 35 6.7315 0.0029
4 41 6.7328 0.0051
5 42 6.7331 0.0008
6 43 6.7332  0.00042
7 44 6.7332  0.00022
8 45 6.7332 0.00012
9 46 6.7332  0.00006
10 47 6.7332  0.00003

values of the controls and interactions (recall u = Hy = Hv) were

=(0.53177,0.84688)

¢
¢;=1(0.99637, —0.14966, 0.01002)

¢, =(-0.52674, 0.3863)
u

=(0.16562,0.01613. 0.33229, 0.02674).
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For the one-level strategy (2.113), the computations were performed with
the penalty coeflicient p =200, since with p = 100 there was no convergence

(the results oscillated). The results for p =200 are given in Table 2.7.
The columns of the table are:

k—The iteration number corresponding to changes in A and v,
Q*—The actual value of the performance index after iteration k,

le*|—The norm of the coordination error, as defined by Eq. (2.116).

The final values of the controls and interactions were:

¢, =1(0.53172,0.84691)

&

(0.99835, —0.15431, 0.00964)

¢;=(—0.52480, 0.38296)
u

=(0.16233, 0.00944, 0.3320, 0.02482).
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TABLE 2.7 Simulation
Results for the One-Level
Strategy of the Output
Prediction and Balance

Method
kO~ Hle* |
1 20.222 0.0214
2 8.9090 0.0043
3 6.7932 0.0128
4 6.7826 0.00338
5 6.7736 0.00299
6 6.7666 0.00088
7 6.7610 0.00071
8 6.7565 0.00027
9 6.7529 0.00021
10 6.7501 0.00013
15 6.7419 0.000071
20 6.7382 0.000046
30 6.7349 0.000027
40 6.7338 0.000017
52 6.7333 0.000010

2.7. DECOMPOSED OPTIMIZATION IN ON-LINE CONTROL

The computational methods and algorithms for coordinated solution of
decomposed optimization problems that have been described in this chapter
can be used for model-based control decisions for complex systems. The
control structure would be an open-loop structure because the algorithms
cannot accommodate any feedback from the real system before a calcula-
tion is finished. In Chapter 3, algorithms are elaborated that accept feedback
information from the real system during the solution iterations for steady-
state control, and Chapter 4 presents methods using feedback to improve
dynamic control.

Open-loop optimization algorithms are used in the optimizing layer of a
multilayer control structure (see Figure 1.4). Thus, the optimization algorithms
are not used to directly determine the values of manipulated variables
(control actions) of a process, but rather to determine the tasks of first-layer
controllers, for example, the so-called set points or desired values ¢, of
some chosen variables c.

This two-layer structure, described in some detail in Chapter 1, makes
extensive use of feedback in the direct control layer to perform the follow-
up task (forcing ¢ to equal ¢;) as accurately as possible. It is the determina-
tion of the optimal values of ¢, which would be done in an open-loop
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structure using the algorithms of Chapter 2 (closed-loop algorithms are used
in Chapters 3 and 4).

The two-layer structure to control a complex system will look like the one
shown in Figure 2.5, where the direct control layer is sometimes not entirely
decentralized, that is, some links between the controllers are possible and
may be necessary. The essential feature of the structure is that the first-layer
controllers do not optimize the process but perform a regulatory action, that
is, they enforce some given trajectories of c;. Whether the enforcement can
be done in some optimal way, for example, by minimizing a quadratic
performance functional is a different question. The design of that part of the
system, that is the choice of the structure and parameters of direct control-
lers, as well as the choice of a few intercontroller linkages, belongs to the
area of multivariable control systems. This problem is mentioned in section
4.6 of Chapter 4, but the area is very broad and beyond the scope of this
book.

Coordination

unit
P4 A Optimizing
/ \ control
/ AN

Local unit Local unit

VCd1 ,CdN
Follow-up [*———1 Follow-up Direct
conftroller ———-= controller control

l [

Cy

Y
z
Y

:

FIGURE 2.5 A two-layer structure with on-line open-loop optimizing control.
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Coming back to the open-loop optimizing layer, we may ask why a
model-based solution of the optimization problem should be done in a
decomposed fashion; a straightforward, one-level solution algorithm with
the same system model would be—in principle—identical. We have hinted
at that question in Chapter 1; see Figure 1.6. What are the advantages and
disadvantages of a two-level or multilevel solution algorithm in on-line,
open-loop optimizing control?

The advantages can be seen if we consider that the decomposed solution
can be programmed into a hierarchy of computers rather than only one
computer. The immediate results could be:

e Reduced requirements for transmission of information since more
optimizing commands will be generated locally than the number of coor-
dinating commands to be transmitted from the control unit;

o Increased reliability of the system: if one of the local computers fails,
the rest of the system can continue to operate;

e Reduced overall computational requirements due to parallel compu-
tations in lower-level computers and simple computations in higher-level
computers.

Note that the above features, in particular the information transmission
aspect, remain valid if we consider human decision makers instead of
computers as the control units.

The informational aspect gains in importance if we consider that parts of
the controlled system itself may be located at a large distance from one
another. The reliability aspect gains in importance when parts of the system
are relatively weakly coupled in the sense that a lack of optimizing control in
one part does not affect the performance of the system as a whole very
much.

There may be cases where the choice of one computer or several compu-
ters has already been made. The subsystems may simply have their own
computers for performing the task of direct control or for other purposes. In
that case a divided, or decomposed, optimizing control algorithm is a natural
solution.

If there is one central computer in which the on-line, open-loop optimiza-
tion problem is to be solved, then the only reason for using decomposition
would be for more efficient computation. In our experience, however,
mostly with nonlinear programming applied to complex chemical processes,
decomposition did not increase computational efficiency. Thus, in open-loop
optimizing control, we recommend decomposed methods of solution when
the decision units (the control computers) are divided, even though the
computations may be less efficient. We also recommend that for appropriate
conditions and system layout one should use several computers for optimiza-
tion rather than a single computer.
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The open-loop optimizing algorithms can be used to solve either static or
dynamic optimization problems. There is no difference in the principles of
the methods of coordination and for that reason Chapter 2 has been written
in a general notation to cover both cases. However, in the application to
on-line optimizing control, a distinction between static and dynamic prob-
lems has to be made. In the first case, we deal with on-line, steady-
state optimization. More precisely, the optimal trajectory of ¢, is deter-
mined as a sequence of values that are constant over some intervals T;, and
moreover, the conditions of the problem permit us to determine each
value by static optimization, that is, in the steady state (see Chapter 1,
Figure 1.15).

There should be some reasonable incentive, as well as a data base, for
recalculating the ¢, in the on-line control system, even if it is an open-loop
optimizing structure; otherwise, one solution would do forever. There are
two groups of such reasons:

1. Information about changes in external factors, i.e., disturbances such
as changes in prices, loads, desired production rate, raw material properties,
ambient temperature;

2. Information about a change in the system model, for example, a
decrease in catalyst activity or malfunction of a system element; the source
of such information may be on-line model identification or a knowledge of
its time-varying or disturbance-related properties.

Let us note that case 1 means a change of some exogenous variables in
the model and case 2 a change of model parameters. Both cases call for a
recomputation of the optimal values of the endogenous variables in the
model, in particular of the control decision ¢, to the same degree. It is not
relevant, in principle, whether the recomputations are done routinely at
constant time intervals, or on demand, that is, whenever a significant change
in exogenous variables or parameters is observed. Some discussion of this
problem can be found in Donoghue and Lefkowitz (1972) and Tsuji and
Lefkowitz (1975).

The picture will be slightly changed if the on-line, open-loop optimizing
control is concerned with a dynamic optimization problem. In that case the
trajectory ¢, may also be represented as a sequence of values that are
constant over some intervals T,. However, this sequence of values has to be
determined at t =0 for the whole optimization horizon (compare Chapter 1,
Figure 1.10) and the computation must take into account the dynamic
properties of the controlled system as well as the future disturbances. The
sequence of values of ¢, will then be a solution to a dynamic optimization
problem.

For the steady-state case, two conditions were given for a repetition of the
optimization computation: a change of exogenous variables or a change in
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model parameters. The same changes may require a repetition of the
open-loop dynamic solution computation. However, the meaning of inter-
vals T, over which é;(-) is kept constant is now different: these intervals
result from a discretization of the continuous dynamic problem and have
little to do with the need to recalculate ¢, for new data. In other words, this
recalculation can be done for example, every 5T, or every 10T, or on
demand. In the steady-state case, the intervals T, were exclusively intervals
of recalculation.

The computation of the solution for a dynamic optimization problem must
include the initial state x(0) of the controlled system; it must be assessed and
introduced into the open-loop control program. What should be done each
time the dynamic optimal control is recalculated? If we use a guessed value
of the state, for example, the state that was prescribed for that time by the
computation done at t =0, then our control is indeed on open-loop one, and
recalculation is caused and justified by external factors only. Should, to the
contrary, a measured value of the system state be used as the initial
condition for each recalculation, we have a closed-loop dynamic structure
referred to as repetitive control. This kind of structure is discussed exten-
sively in Chapter 4.

The last point we wish to make in this brief survey of problems lying at
the interface of optimization and on-line control relates to the question of
whether optimization models, algorithms, and procedures used in on-line
control should be identical or similar to those that would be used for a
single, unrepeated solution of an optimization problem, for example, the
kind of optimization problem that arises in system design, where one wants
to determine the optimal operating conditions of a process. Generally, they
should differ, first, because accuracy may be sacrificed for ease of computa-
tion. It will seldom be the case that both the models and the disturbance
data are very accurate, so for that reason alone the solution iterations may
be stopped earlier than for many other scientific or engineering calculations.
Second, the on-line solution will have to be repeated many times for
changed values of a few, and always the same few, variables or parameters.
And last, the recalculations in on-line control start in the vicinity of the
solution that was found for the previous interval of time. This may also have
an influence on our choice of iterative procedure.
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Iterative Coordination for
Steady-State Control

3.1. PROBLEM DESCRIPTION
STEADY-STATE HIERARCHICAL CONTROL

In this chapter we shall be concerned with hierarchical control structures.
They will involve local decision-making units and a supremal coordinating
unit. The control problem will be to optimize the steady state in the
controlled system. There is a suitable direct control layer, so we determine,
for example, the optimal set-points for the stabilizing controllers (see section
1.2). The control structures will be closed-loop, that is, they will use
feedback from the real system. Those in Chapter 2 were open-loop.

As this chapter will show, it is possible to develop a body of theoretical
principles and iterative procedures of control and coordination applicable to
steady-state or static systems, with due attention paid to model-reality
differences. These iterative procedures cannot be practically applied to
dynamic control, except for cyclic or batch processes (we present some
computational examples in section 3.6). On the other hand, steady-state
optimization is the current method of control in many industrial processes
and its applications certainly deserve much attention.

The conditions under which steady-state optimization acting on a direct
control layer is a reasonable approximation to the true dynamic problem
were given in section 1.2: the approach is valid for slow disturbances acting
on a fast system.

The hierarchical structure that we are going to discuss was presented in
general terms in Figure 1.7 in Chapter 1. There are two ways of thinking
about the local decision units presented there: they may be computer
algorithms or human decision makers. We shall use formal models for these
units, that is, we shall present their control decisions as the solutions of some

182



183

appropriately defined optimization problems. This approach can be used
directly for computer-based control decisions. However, we may also con-
sider these algorithms to be models of rational decision making performed
by human operators who want to achieve well-defined goals optimally. The
assumption that human operators would optimize in a rational way, and
moreover that they would optimize goals which were imposed on them by
system design or by the coordinator, is very simplistic. It is only a rough
approximation of the real processes of decision making.

There are two principal modes by which the coordinator could intervene
in the local problems. The use of direct instruments (section 3.2) means
prescribing the values of some of the subsystem variables, e.g., the outputs,
while the use of price instruments (section 3.3 and 3.4) leaves the assign-
ment of values to the local decision units. With the presence of constraints
and model-reality differences, the two modes differ significantly in both
applicability and performance.

In most of our discussion, the local algorithms will be based on models of
the controlled subsystems. The models would use available estimates of real
disturbances acting on the subsystems. In most of this chapter we assume
that disturbances, as well as the disturbance estimates, are slow and conse-
quently can be treated as constant parameters during coordination. In
section 3.5, however, we present a discussion of the performance of iterative
algorithms applied to a time-varying system. Such an application corre-
sponds to the assumption that the controlled system does not yet have to be
treated as dynamic (for example, the optimal state could be constant
irrespective of disturbances, or only slowly varying), and therefore we can
still use iterative procedures; at the same time we cannot assume that the
disturbance is constant during a full sequence of the iterations.

THE USE OF FEEDBACK INFORMATION

Most of the discussion in this chapter concerns control structures where
feedback information is used only in the coordinating algorithm and the
local decisions are computed on the basis of subsystem models. Thus, the
feedback information reaches the local units indirectly through the interven-
tion of the coordinator. This structure is primarily applicable to computer-
based control hierarchies. The advantage of the structure with feedback to
the coordinator is the ease with which stability can be obtained: there is only
one loop of iterations in the structure. This structure is the first step of
improvement over open-loop control. The iterations that involve feedback
should always be initiated from a starting point supplied by the solution of
the model-based optimization, that is, from the open-loop optimal control.
It is also possible to use feedback information directly in the local
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steady-state optimization algorithms. We devote section 3.4 to a discussion
of structures allowing the direct use of feedback that use price coordination
(see also section 1.3). The use of both kinds of feedback is conceivable,
though difficult. Section 3.3 describes one of the possibilities, where the
coordinator uses feedback in the form of measured output values for his
iterations of the prices, while the same measurements are used in the local
control algorithms to compensate for the inadequacy of the models.

FEASIBLE CONTROLS

If we recognize that a difference exists between the real system and its
model, we have to pay attention to the feasibility of model-based control
with respect to the real system constraints. We should consider this problem
for every coordination method. As a rule, we require that the control
obtained from an iterative procedure should be feasible. If this is not
enough, that is, if we want feasibility for each iteration, we have to resort to
some special way of generating feasible controls. A discussion of this subject
and some algorithms are given in section 3.6.

FORMULATION OF THE CONTROL PROBLEM

We follow the formulation given in section 2.1, emphasizing that the case is
finite dimensional, and that there are model-reality differences.

The controlled system including its direct controls (compare Figure 2.5),
will be described as follows:

V1= Fyy(cy, wy, 24), u, = Hyy
3.1

Yn = Fen(Cn, Uns 2n)s un = Hyy,

where y, are subsystem outputs, y; are interconnection inputs, ¢ are
controls, z; are disturbances. Fy;:%€; XU X%, —%; is subsystem input-
output mapping i, y=(y;,..., yn)EY; X ... XYy 2%, and H, is intercon-
nection matrix i composed of zeros and ones. The subscript * will be added
later to all mappings related to real (not model) objects.

The couplings are separable:

Mz

u, = HUyI'
i=1
When we denote, for the whole system, ¢ £ (c,, ..., cn)€€, X.. . Xy £
Cus(uy,...,u)eU,x. .. xUy2U and

A A
Z=(Zl,...,ZN)€?f1>< Lo XL XgN=g,
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then (3.1) can be written in compact form as

y = Fy(c, u, 2), u = Hy, (3.2)
where
Fy ey, ug, 2y) H,
Fy(c, u, Z)é .. and HZ
F*N(CNa Un> ZN) Hy

In many places in the chapter, the disturbance inputs are not important,
since they are assumed to be constant, though unknown. We shall therefore
often use (3.1) and (3.2) with an abbreviated notation, as

yle*l(Cl’ul)a u,=Hy,
.. (3.1)
Y~ = Fyndcas Un)s uy = Hyy,
and
y = Fy(c, u), u = Hy. (3.2)

The interconnected system reacts to the control input ¢ as defined by (3.1)
or (3.2). We shall always assume that for each (¢, z)e € X% there exists
exactly one output y =(y,, ..., yy) in the system. The system may then be
generally described by mapping

K, : ¢xZ—->y,
which means the following input-output equation of the interconnected
system
y =Kylc, 2). (3.3)
The argument z may be dropped in appropriate circumstances, as it was
in (3.1°) and (3.2’), giving
y =Ky(c) (3.3)
Mapping K, and Eq. (3.1) or (3.2) describe the same object and are
closely related. This relation is the following

Vic,z)e€x% |y =Kylc,2)FucU (y=Fglc, u, z)nu=Hy)]

We mentioned at the beginning of the chapter that the system relations
are not known exactly; we only know models that are some approximation
of reality

yi1=F(cy, uy, z1), u, = Hy,
(3.4)

yn = Fylcy, uy, 24), un = Hyy,
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where F;: €, XU; XZ,—%; is a model of subsystem input-output mapping i,
and H, i€ 1, N, are interconnection matrices that are assumed to be the
same in the model and reality.

Mapping F:€xuxZ—%, composed of F, and mapping K: € xZ—%,
representing the model system including interconnections, can be defined as
they were for the real system relations.

The abbreviated form of (3.4) can be used where appropriate:

y = F(c, u), u = Hy. (3.4

In the general case, Eqs. (3.1) and (3.4) differ, that is, Fy, and F; are not
the same. Only in some of the considerations in this chapter, for example, in
section 3.6, will we assume that F,; and F; are the same mappings, and
consequently that the model differs from reality only in the value of
parameter z.

We now describe the constraints. The local constraints are assumed to be
given explicitly as

(¢ w)e CUié{(ci’ w) €€ XU : Gi(c, u) =0}, iel, N, (3.5)

where G;:¢; Xq;—R™, or in the form involving the output:

(¢, u, yi) e CUY, é{(ci, U, V)€ XU XY, : G?(Ci’ u,y)=0}, (3.6

where G} is another mapping with values in the real space.
The constraints (3.5) or (3.6) can be conveniently described jointly as
(3.7) or (3.8), respectively:

(c, u)e CUR{(c, u)e€xU: G(c, u)<0} (3.7)
(c,u, y)e CUY 2{(c, u, y) e € X UXY: G c, u, y)=0} (3.8)

Except in some places in sections 3.3 and 3.6, we assume that (3.5) or
(3.6) are the same for the real system and the model. In other words, we
assume that we know the constraint functions exactly. However, even under
this assumption, if the feasible set is defined primarily in the form of (3.6),
we can reduce it to (3.5) by substituting the subsystem equations for y,, We
then obtain different feasible sets for the real system:

(¢ u)e CUy = {(c, u;)e 6, x U, 3G?(Ci’ U;, F*i(ci’ u;)) =0}, (3.9
and for the model
(ci, u) e CU; é{(Ci, W) EC XU, : G?(ch u;, Fi(c, u;)) =0} (3.10)

An optimal control for the model that is feasible according to (3.10), may be
infeasible for the real system, that is, it may violate (3.9).

The range of global constraints in addition to (3.7) or (3.8) that will be
discussed in this chapter is restricted. In some of the sections we consider an
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overall constraint on the output
yeY2{ye¥y:G(y)=0}, (3.11)

where G : Y- R™o,
In other sections we consider the following resource constraint:

N
(c, u)e CUR{(c, u)eexUu: ), r(c, w)=ry}, (3.12)
i—1
where 1, :€¢; X% —>R™, r,eR™.
A known local performance function (that is, one that is the same in
reality and in the model) is associated with each subsystem. It may be
explicit in (¢, u;), that is,

Q,: 6. XU —R, (3.13)
or may also involve the output
Q. ¢, ¥ X%y, —>R. (3.14)

As was the case with constraint relations, the form of (3.14) can be
reduced to the form of (3.13), but the reduction leads to differences between
the local performance functions in the model and those in the real system.

The global performance functions

Q:€xXyu—R, or Q:€xXUXY—R,

are composed of the local performance indices (3.13) or (3.14) respectively,
in the following way:

Q:llf°(Ql,...,QN), (315)

where function  :RY —R is assumed to be strictly order preserving.
For the price coordination methods we are going to assume that (3.15) is
of additive form

N
Q=2 Q (3.16)

i=1

3.2. COORDINATION BASED ON THE DIRECT APPROACH
3.2.1. THE BASIC CONCEPT

In this section we describe the use of the desired values of subsystem
outputs as coordination instruments. Thus, we will use the direct (paramet-
ric, feasible, or image) mode of coordination (cf. section 2.2.1.).

Let us first consider the application of pure direct coordination to real
system control (Findeisen 1974a,b). The structure of the two-level control
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Coordinator Ka (C )
T
v ' v
4{v) n(v)
15" local N Local
decision unit decision unit
cenl— LB (V)

|

FIGURE 3.1 The structure of direct coordination with feedback.

system with feedback in which decision problems are specified with the
direct method is shown in Figure 3.1.
Each local decision problem (Lp;) is formulated as follows:

For a given value of coordination variable v €% find the control

é(v)y=argmin Q;( -, Hyv) 3.17)

Ci(v)
where
Ci(v) L{c % :Qu, vi) [(c, u))e CU; Ay,
=F(c, u)ru,=Hory =u]}
={c; :(c;, Hv) e CU, nv; = Fi(c;, Hv)}.
It is a model-based problem that is the same as Eq. (2.22), in which the
coordination variable v prescribes the subsystem outputs and interactions.

Notice that in the above Lp;, y; = v; and w; = H;v are strict equalities, which is
possible only when

ve Vo2 {vew:Viel,N C(v)# ).
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i.e., when the coordination instruments belong to the set of outputs feasible
in the model. The set V,, not specified explicitly in the initial problem
formulation, is associated only with direct coordination; except in special
cases, it is very difficult, if not impossible, to determine this set.

The task of the coordinator is to minimize the measured real value of the
overall performance function, i.e., to solve the coordinator problem (cp):

Find a coordination variable

D=arg min Q(¢(-), HK,(¢(-)))

ViV
where
VeN Vo2 o e K (&(v)e YAVIe 1, N (&(v), HKy(é(v)) e CUIN V,,

As before, we assume that &(v) 2(é,(v),. .., (V) exists for every v in
VNV, ie., Vo=V, (cf. section 2.2.4.) and Ku(é(v))e¥ denotes the
measured real system outputs corresponding to the implemented controls
é(v) (cf. 3.3").

The coordinator problem introduced above differs from the one described
in section 2.2.1. since it uses the values of outputs measured in the real sys-
tem in the definitions of the performance index and the feasible set. The
definitions formalize in the terms of a decision problem the idea of using
feedback information that proceeds from measurements in the real system
made by a supremal decision unit.

The structure now being described performs a kind of peak-holding
control, where the coordinator uses subsystem outputs as decision variables.
We should note that we do not allow the coordinator to set the controls ¢
directly, that is, to override the local decisions, or to perform the hill-
climbing on all decisions. It is assumed that the number of output variables
that the coordinator deals with is much less than the total number of local
decision variables (controls). Otherwise the structure may not have practical
sense.

The local decision units solve typical off-line optimization problems based
on subsystem models, and the coordinator solves the on-line problem based
on measurements performed in the real system. The structure can thus
ensure that at least at the end of the supremal unit’s hill-climbing, the
inequality constraints in the real system will not be violated. When the
models used in local problems are accurate (i.e., Fy; = F; for every i€ 1, N),
the result obtained with this structure is strictly optimal.

As noted earlier, in the general case we are not able to determine the set
V. This difficulty is a major drawback of the pure direct approach. Another
weakness is the need for the coordinator to obtain complete information
about the local feasible sets CU,. The above shortcomings are not quite so
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severe when controls and interactions are constrained separately, that is, for
each iel, N

CU =G XU,

where C, =%, and U, <49 In this case the local feasible set is only
parameterized by equations of the subsystem model. Consequently, the
separated local problem (stp;) has the form:

For a given v in % find a control

¢ (v)=argmin Q,( -, Hv) (3.18)

Clv)y
where

Cil(v)é{ci €6, :c.e G ry =Fl(c, Hv)}.

In the supremal problem the feasible set has a simpler form as well. The set
V4 does not depend on constraints imposed on controls

Ve ={ve¥: Ky (é(w) e YN(HT (U)X - - X HZ'(Uw))}-

In the following sections we shall describe some methods that allow the
application of direct coordination with feedback when V| is only partially
known or entirely ignored. The methods are based on appropriate modifica-
tion of the local problem. The coordination variables and the control
structure (cf. Figure 3.1) will be unchanged.

3.2.2. COORDINATION WITH PARTIAL KNOWLEDGE OF THE FEASIBLE SET V

Even though we may not know set V,, we are in some cases, able to
determine the set Vi resulting from all local constraints but without interac-
tions:

N
Ve = X F(CU,)
i=1

where F,(CU,) is the image of the set CU.. Knowledge of the set Vr means
that for each model of a subsystem we know the range of the subsystem
output variation corresponding to the feasible variation (belonging to the set
CU;) of subsystem inputs (controls and interactions). The way to use the
additional information given by knowledge of the V. was presented in
sections 2.2.4. and 2.2.8. Arguing as in section 2.2.8. for the selection of the
coordinator strategy, we obtain the following modification of pure direct
coordination.
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Local decision problem i (mLp;) has the form:

For a given coordination variable ve®, first find an interaction u™(v)e
U.(v;), such that

u(v)=arg IILI? )Hu,-—Hiv |, (3.19)
and then find a control & (v), such t‘ha‘t
é(v)=arg érli(nl)Q,-(-, Huv) (3.20)
where |
Uiv) 2 {y; €U, :3c [(c,u)e CUAv, =Fc, ul} (3.21)

C™)2{c e% (¢, u™v)HCU; v, = F(c. u™(v)}.

The task of the coordinator, as before, is minimization of performance
function

Q()2QE(-), HK(&( )

based on implemented (real) values of controls ¢(v) and corresponding
outputs Kg(¢(v)) measured in the real system and subject to the real
constraints. We get the following coordinator problem (cp):

Find a coordination variable

d=arg min Q(é(-), HK (é(-))) (3.22)

VetV
where
VeN Ve ={veW: Ky (¢(v))e YAVie 1, N (&(v), HKy((v)) e CUIN V.

In the above formulation, the problems (3.19) are introduced in order to
relax the previous stiff requirement that the local optimal control be found
under the condition that the interaction input is given as w, = H;v. The
above formulation of the local problem leaves both subsystem inputs to be
chosen by the local decision unit. Nevertheless, after the iterations, the
interactions have to match the coordinator’s desire. Therefore, in (3.19) we
ask that u["(v) be as close as possible to H;v, i.e., the value of the interaction
set by the coordinator.

In mathematical terms (cf. section 2.2.8., problem mvLpr;) the above
modification of the local problem extends mapping ¢( -), whose original
domain was the set V,, onto the set V2 V,,. Lemma 2.7 shows that when
set CU; is compact and subsystem model F; is continuous, problem (mvp;)
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has a solution (u!(v), ¢ (v)) for all coordination instruments v in V. Unlike
the extended local problem, the supremal problem cp remains in principle
unchanged—only set V, is replaced by set Vg.

Before investigating the applicability conditions, we should notice that the
two-level problem ({mie}Y |, cp) just described is equivalent to the follow-
ing optimization problem (op):

Find ¢, such that
Q(E, HK (¢))=min Q(c, HK( +)), (3.23)
G

where
C2{ce€:Kylc)e YAVie 1, N (¢, HKy(c)) e CUIN&(Vi).
The equivalence means that
Q() = Q(&, HK4(€)).

This problem is an approximation of the optimizing controller problem
for the real system (1op):

Find c,, such that

Q(cy, HK y(cg)) = Iréin Q( , HK (")) (3.24)

where
Ce2{ce€:Ky(c)e YAViel, N (¢, HKylc) e CUY.

The only difference is in the definition of the feasible sets C; and Cy. If we
know the mapping K, exactly (i.e., the model F, i€ 1, N, is accurate) the
constraint ¢ € ¢( V) is not essential; it would be satisfied for each control ¢
that is a solution of problem 1op. Therefore, problems 10p and orp are
equivalent. We assumed that function ¢ is strictly order preserving, so
problems ({mrp;}}_,, cp) and rop are also equivalent (Theorem 2.1 treats a
similar problem). Because we do not have exact knowledge of mapping K
representing the real system as a whole, the value of the performance
functional corresponding to two-level direct coordination with feedback is
generally worse than the value associated with the solution of the ideal
optimizing controller problem. We should remember, however, that the
number of iterated variables is much less. In principle, the more inaccurate
the models, the greater the loss of performance. In all simulations, however,
the loss was much smaller than for the model-based, open-loop control.

In formulating the coordinator problem, we implicitly assumed that map-
pings u["(+) and &( - ) are well defined and that feasible set V is not empty.
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Let us briefly consider the nonemptiness conditions first. Comparing cp
and 1opr, one sees that

ve Vy & ¢v)eCy,

hence,
Cy# and 3ve Vi é(0)eCy (3.25)

are the conditions that we are seeking. The set Cy is not empty if the
constraints are not contradictory for the real system. Similarly © exists when
the difference between the real system equations and the models of the
equations is not very large.

When these requirements are not satisfied, the system model F;, H,
i €1, N, is too inaccurate or the local feasible sets CU; are too tight and both
must be improved. We restrict our attention to cases in which requirements
(3.25) are fulfilled.

We now discuss the applicability conditions of the method considered.
Applicability means that the solutions of local problems and coordinator
problems exist. Assume that €;, U;, i€ 1, N and % are real Hilbert spaces.

THEOREM 3.1 If the controlled system and its model are such that:

1. Mapping K, representing the real system including interactions is
COntinuous,

2. The overall constraint set Y is closed,
For each ie 1. N:

3. Local constraint set CU; is compact,

4. Mapping F, is continuous and open on CU; and such that mapping

(¢, u)—(u;, Fi(c;, w;))

is open on CU,,
5. For all v in Vg, local problem mip; has no more than one solution
(u"(v), &(v)),

6. Functions Q, and  are continuous,

then for all i€ 1, N, a solution of local problem muvp; exists and there exists a
solution of coordinator problem cp, i.e., the direct method with feedback is
applicable.

Proof. The proof will be based on the well-known Weierstrass theorem
which says that a continuous function defined on a compact set achieves its
minimum and maximum.
Because functions F, and Q; are assumed to be continuous, one can infer
from assumptions 3 and 5 that the mappings
Visv—ul(v)=arg min |lu, — Ho| ey,

u,elU;(v,)
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and
Veav— &{vy=arg min Q;( -, Hv) e,
CM(v)

are well defined, which means, among other things, that for all v in Vg, a
solution of problem mvLp; exists.
Similarly, cp has a solution whenever the function

O(-)=Q(&(+), HK4(e(-))) =t o (Qy(&,( ), H K4 (E(-)), - ..,
QN(éN( - ), HNK*(é( : ))))

is continuous and the feasible set of the coordinator Vi M V¢ is compact.
The definition of the set VM Vi can be rewritten as

VeNVe=2¢1(CN .>,N(1 F(CU,)
where

Ca=Kz'(Y)N 1 DL(CU),
and the mappings Dy; are defined as

€3 cr>Dy(c)= (¢, HKy(c)) €€, X

The mappings Dy; are continuous because the mappings H, and K, are
assumed to be continuous. The sets CU; and Y are closed, so the set Cy is
closed. From the compactness of CU; and the continuity of F;, we obtain the
compactness of XN, F(CU,). Therefore, the set VN V. is compact
whenever the mapping ¢é(-) is continuous. The definition of Q and assump-
tions 1 and 6 imply that Q is continuous whenever mapping
(8,09, ..., &)= ¢&() is continuous. Therefore, the continuity of &(-) for all

i in 1, N is sufficient to prove the theorem. In order to prove this continuity
we introduce the following mappings:

Vesv— Q.m(U) =min Q( -, Hv)= Q.(&(v), Hv)eR,

C™(v)
and

Vi3ve Bi(v)={¢ e C%: Q™ (v)— Q,(c, Hv)=0}e CP(CY)
where

CV2 g (CU)).
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In the proof of Theorem 2.11 in section 2.2.8. (cf. also the proof of
Theorem 2.9) it was shown that assumptions 3, 4, 5, and 6 imply that
mapping Q"(-) is continuous. So, the set

{(v, ¢)e Vex C? G E Bi(v)} ={(v, ¢;): ém(v)_ Q(c, Hv) =0}

is closed. The set V. xC(C! is compact by assumption 3, hence. from
Kuratowski (1968, Theorem 4 of §43.1). mapping B;(‘) is upper
semicontinuous with exponential topology introduced in C2(C?Y).

We can now prove the continuity of &( -) as we proved the continuity of
mapping u"( -) in the proof of Theorem 2.11. Mapping B;( - ) will play the
same role as mapping W;(-) and the uniqueness assumption of (3.20) will
play the same role as assumption 3 of Theorem 2.11. We therefore omit the
details. Since the continuity of ¢( - ) for each i in 1, N is sufficient to prove
the existence of the coordinator problem solution, the theorem is proved. [}

We shall now discuss the applicability conditions. The assumptions that
mappings Ky, F,, Q,, and ¢ are continuous, the sets CU, compact, and the
set Y is closed are natural and satisfied in most applications. The first crucial
assumption is the requirement that the mappings F; and (¢, ;) f.(c, u;) =
(u, F(c, u;)) restricted to the set CU, be open. Unfortunately, these as-
sumptions are vital. Consider the following example.

Let €, =9, =%, =%, =R. The first subsystem model is given by the
equation
R?*3(c,, u))—~>Fy(c;,, u))=—c; tu, eR

and coupled according to the equation
(i, y2)=> Hy(y1. y2) = ¥s.
The local constraint set is given in R? as
CU,=(1,4]1x[2,5DU{(cy, u):0=c,<1Au,=c,+1}.
Let v,=1; from (3.19) we obtain (see Figure 3.2)
2 for v,e[-2,1)
ut(v, 1)=<1 for v,=1
v,+1 for wv,e(l,4]

So mapping uT(-) is discontinuous because mapping F,|CU, is not open.
Consequently, mappings C7'( -) and &,( ) are discontinuous too.

In Wozniak (1976) there is an example that shows that when mapping f; is
not open, mapping Q(-) is not even lower semicontinuous.

Stating sufficient conditions for openness is very difficult because, as we
saw in the example, apart from the behavior of mapping F;, we must take
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U, U,
6 4 6(- =

open set
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FIGURE 3.2 The sets CU,, f,(CU,), F,(CU,), and mapping u7(-,1) in the
example.

the properties (‘“'shape’”) of set CU; into consideration. The following lemma
(Schwartz 1967, Theorem 30, Chapter III) can help to check the openness
assumption.

LEmMa 3.1. A continuously differentiable mapping F; : €, X U; — ¥, is open on
the open set X <€, xU; if for all (¢, u;)e X, Fréchet derivative F!(c;, u;)e
(€, xXU,W;) is a surjection.

In the finite-dimensional case, the above lemma takes the following
simpler form.

CoroLLARY 3.2. If 6, U;, and Y, are finite-dimensional Hilbert spaces, and
mapping F,: €, XU, —%, is continuously differentiable, then

1. It is open on open set X < €; X U; whenever

Vic,u)e X rank[Fi(c, u)]=dim%,,
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2. Mapping (c;, u;)—>(u, F(c;, u;)) is open on open set X< €; XY
whenever
V(c,u)e X rank[F!(c, u)]=dim%,

where [F!(-)] ([F!c(-)]) denotes the derivative—Jacobi matrix—(the partial
derivative with respect to ¢; €€6;) of the mapping F,.

The rank conditions of the corollary have a clear meaning in engineering:
each subsystem must have an adequate number of controls ¢; € €,—namely,
dim €; =dim %;,—and they must be appropriately located in the subsystem.

The second restrictive assumption is that for each v in Vp the local
problem mup, must have a unique solution. Without this assumption, u!"(-)
and ¢;(-) as defined above could be point-to-set mappings and the applicabil-
ity conditions as stated in Theorem 3.1 would be insufficient.

If for all i€ 1, N and for all v, € F,(CU,) the set U;(v,) defined by (3.21) is
convex, then the well-known theorem about the existence of a unique
element with a minimal norm in a convex set in a Hilbert space implies the
uniqueness of the solution to (3.19). In the finite-dimensional case, the
convexity of the set U;(v;) is not only sufficient but also necessary to ensure
the uniqueness required above (cf. Rice 1969). For the nonconvex case, we
consider the following lemma.

LEmMA 3.2, If the set U < U, is compact then the set

NU 2 Y \{u,: u™ U, u™=arg min e — o |}
has an empty interior.
Proof. We prove first that if ae, and 0# u®<c %B(a, r), then

(1 fr 8 (a, )N ir B(E+u®, [r—[ul]) = {a iy u}

u
For convenience we assume that & = 6. Let u’'€ R, oNfr %—(0, r) where R0 4
{u;:IAn =0 u, = nu"}. Since u’ € R,.. then there exists §, =0 such that u'=
8,u". The inequality [ju’||=<r=|u||= 8,||«"| implies that §,=1. The norm of
the difference u®—u’ equals

llu® =l =[1- 8 - u®ll = (8, = Dlju’ll = flue'l| =} = r = [luc”Y

hence u’ e fr B(0, ryNfr B(u®, |r —|luC|).
Let u”efr B0, ryNir B(u®, [r—|u|), therefore, |u”||=||w'|| and ju® - u"|| =
[u®—u'|l. So,

loa” = %l - {lucl = flue” = 2Ol el = fl'll = el
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We assumed that @, is a Hilbert space, hence, the equality
= )+ el = = )
implies that there exists 8, =0 such that u”—u°=8,u’. Because
Sollulll =lu" =l =flu’ =l = (8, — D[|u”|

we obtain
82 = 61 - 1,

which means that u”=(8,+ DHu’=8,u’=u’, and proves assertion (1).

We now prove the lemma. Let it € NU and min, .y |lu - it|]| = r. We assume
that u*e{u,:30<a <1y =(1—a)i+aou™}=S. where u™ € arg min, . flu =
i|l. From (1), after algebraic transformations, we get

fr B (ia, r) Nfr B(u*, ‘r—llu*—ﬁll y={um},

which means that u*™¢ NU. Now, from the definition of segment § it follows
that in every nonempty open set there exists a point that does not lie in NU.
Hence, the set NU has an empty interior. [

The lemma means that the set of points in which the uniqueness assump-
tion is not satisfied has an empty interior. Therefore, in a numerical search
cp, we should be able to find the solution § of cp even though Eq. (3.19)
may not have a unique solution.

The uniqueness property of problem (3.20) is a necessary requirement in
most multilevel methods, and except for the problems with a strictly
quasi-convex performance index and convex feasible set, we must check for
this property case by case.

3.2.3. COORDINATION BASED ON PENALTY FUNCTIONS

The main difficulty of the methods described in the previous sections is the
necessity to know and, moreover, not to violate the sets V,, (in the pure
direct approach) or Vg during the optimization process. This requirement is
all the more troublesome because the only reason for preserving V, or Vg in
the coordinator problem is the need to have nonempty constraint sets in the
local decision problems, which have been constructed from inadequate
models. If we could formulate local problems so that their decision sets
would always be nonempty, we could eliminate the requirement. Of the
direct optimization methods described in Chapter 2, the penalty function
method allowed such a formulation. We will now apply the local problems
of this method to our coordination structure with feedback.
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We do not want to have any set of the type V,, in the coordinator problem,
so we will use the generalized local problems vpj,; defined in section 2.3.4.
and not the local problems re,,, defined in section 2.3.1. This approach
gives us a simpler coordinator problem, which makes the iterations on the

real system easier. Thus, the local decision problems (1Lp?) are as follows:

For given coordination variable v find both control and interaction

(éi(ua pi)v ai(v'- pl)) = arg min Qplyi( Ty Ty Ua pi)’ (3-26)
Cu,

where
Qpui(ci Ui v, p;) £ Qi(c;, u)+p (v, — Fi(c, w)l? +”ui - I_I‘U“%)

p; €R, is an appropriate penalty coefficient and the norms ||-|| and ||-||,
must not be the same, e.g., || - [|= ]| - lo, where «; € R, reintroduces the same
weighting between outputs and structure equations.

The interaction variables u; are treated as additional local decision vari-
ables only in order to have the constraint sets of the local problems
independent of coordination variables v. Thus, only those elements of the
interaction input vector u; which are constrained together with the local
controls ¢; (see example in section 2.3.4.) should be treated as local decision
variables. Hence, if the sets CU, are separable, i.e.,

CU =CxU,

then the local decision problems would only have controls as decision
variables. Consequently, the separated local problem (sLrf) is defined as
follows:

For given coordination variable v find control
6i(U7 px): arg min thyi( ) U’ pi)5 (3~27)
C

where
thyi(ci’ v, Pi)é Qi(c, Hv)+p; “Ui —F(c, Hav)\\z-

Separable sets are most favorable for the methods described in this
section, since the coordinator problem constraints are simple; this was
mentioned in section 3.2.1.

Using local decision problems Lp?, we get the following coordinator
problem, cp”:

Find coordination variable
t=argmin Q(¢( -, p), HK4(¢( -, p))), (3.28)
ve

Vi S{ve¥:Ky(é(v,p))e YAVie LN (&(v, p), HK(&(v, p))e CU}
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where p2(p,,...,pn)eRY and é(v, p) 2(¢,(v, p), . . ., én(v, p)) (cf. problem
(3.22)).

Coordinator problem cp® is a reasonable optimization problem only when
mapping ¢é( -, p) is a point-to-point mapping (both local and coordinator
problems are solved with a constant value of p)—which implies that local
problem P should have a unique minimum. It is also desirable for ¢( -, p)
to be a continuous mapping. This requirement is satisfied by the assumptions
also necessary to ensure reasonable features of the local decision problems.

LEmMa 3.3 If function Q, and mapping F; are continuous, set CU; is compact
and local problem 17? has a unique minimum for every v ¥, then é (-, p;) is
continuous on %Y.

The proof is standard and therefore omitted (cf. the proof of Theorem
3.1). Observe that local problem 1#? has a unique minimum when CU, is
convex, Q; strictly quasi-convex, and F; affine.

To make possible and justify the application of the penalty approach, the
adjustment of penalty coeflicient p and the result of control should be
discussed. The theorem formulated below contributes to this discussion.

TueoreMm 3.3.  If the assumptions of Lemma 3.3 are satisfied and {v"},_, is
any sequence from ¥ convergent to some v°, then for every sequence {p7}i_,
tending to infinity

lim (&7, ar)e M, (v°),
where
M, (v°) £ Arg min (o} — F(c, w)I* + [ — Holg

(c,)eCU;

is the set of points minimizing the function |[v{— F.(c, u)|* +|w;, — Hv'|} on
CU, and {(¢¥, i)} is any convergent subsequence of the sequence {(¢}, iif)} £
{& ", pD), 4;(v", p™)}. If additionally the mapping M,( -) is continuous at v°
then

lim (&, ") e M,(v%),
where
M, (v")= Arg min Q;( -, -)
Mi(U“)

is the set of points minimizing Q; on M, (v").
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Proof. Denote by (&, &i;)e CU; the limit of the sequence {(¢!, d!)}, and
suppose that (¢, i;) € M, (v"). The function Q; is bounded on CU; since it is
continuous and CU, is compact. The set M.(v") is nonempty since the
function k,(-, -, v?), is continuous on compact set CU, where

(¢, u, V)~ ki (¢, uy, v) :“vi —F(c; ui)”2+“ui 'Hiv“(z)-

Denote by (¢, it;) any point of M,(v%). It follows from the boundedness of Q,
on CU; and the continuity of k;, on CU, X% that for sufficiently large n’

Qpryi(é?la a?’? v",’ P;"')> Qpryi(éi’ ai) Un'? p",)5
which contradicts the fact that (é',4!) is a point minimizing
Qi+, -, 0", p!") on CU; for every n'. Hence (&, 4;) e M. (v°).

For every ve® the set M;(v) is compact since k;(-,-,v) is continuous
and CU; is compact; hence, M;(v) is nonempty and compact because Q; is
continuous. Let us denote by (&(v°), &(v")) a point from M;(v®), and by
{(c?', u™)} a sequence convergent to (¢ (v°), &;(v®) such that for every n':
(cf',ul)e M;(v"). By virtue of the assumed continuity of M;(-), such a
sequence exists, and we have for every n’

Q& uM)+pl k(& ay, v™) = Qe ul )+ pl kil u, v™)
because the points (&7, 4) minimize Q,. Of course
k@, ar, vy zklc, uy, o),
which implies that for every n’
Q.(&, al)=Qu(cl, ul').
Taking into account the continuity of Q,, we get in the limit
Qi(&, 4) = Q,(&((0"), 4;(v),

from which it follows that (&, &,)e M;(v°). O

The above theorem provides that for sufficiently large values of p the
solutions of local decision problems Lp? approximate the solutions of the
following so-called limit local problems 1p}:

For given coordination variable v find control and interaction

(éF(v), aF(v))=arg min Q.( -, +). (3.29)
M, (v)
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The coordinator problem (cP™) corresponding to the above local problems
is as follows:

Find coordination variable

8 =argmin O(¢"( - ), HK (¢"(-))), (3.30)
Vi
VEA{vey: Ky (¢t (v))e YAVie 1, N (¢Hv), HK4(é"(v) e CU},
where ¢5(v)2(¢H(v), ..., é5(v)). Tt will be called the limit coordinator
problem.

As in the two-level problem ({mvLp,}Y,, cP) in the previous section, the

two-level problem ({LpF}Y.,, cP") is equivalent to the following optimization
problem (op"-)

Find control

¢=argmin Q( -, HK (")), (3.31)
oL

Cta{ce®:Kylc)e YAViel, N (¢, HKx(c))e CUINE“(¥).

Problems op (Eq. 3.23) and op" are nearly the same; the only difference is
that the set (%) in op™ replaces é(Vg) in op. As for é(Vg), the constraint
ceé™ (%) is not essential when the models are accurate (i.e., F; = Fy; for
every i € 1, N), and, moreover, the whole optimality discussion made earlier
for op and 10p can also be made for op" and 10p.

We will consider the applicability conditions of the penalty method with
feedback. If we take into account approximation Theorem 3.3, it is sufficient
to discuss only requirements that ensure that a solution of cp" exists. First of
all, its feasible set Vi should not be empty. The required nonemptiness
condition is similar to (3.25):

Ce#0 and Ioe¥ (D) e Cy,

and the whole discussion made earlier for (3.25) can also be made here to
ensure that Vj is not empty. The required existence conditions can now be
stated as follows.

THEOREM 3.4. If the controlled system and its model are such that:

1. The mapping Ky is continuous, the constraint set Y is closed, the
function s is continuous, and Y is some compact subset of the system output
space,

2. For all ie 1, N: the local sets CU; are compact, functions Q. and
mappings F; are continuous and such that the point-to-set mappings M,(-) are
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continuous on Vi, and limit local problems 1p- have a unique solution for all
ve Vi,

then a solution of a limit coordinator problem cp" exists.

Proof. Let us show first that the mapping ¢"( - ), i.e., each of the mappings
éH(-), ie1, N, is continuous on %. Let us take any point v'€% and any
sequence {v"};_, <% converging to v". Since CU; is compact we can
assume, without loss of generality, that {(c”'l amy2{(ekv), ak(om)) = C;
converges to some point (cF, uF)e CU, Suppose that (cF, ul)#(éH(v?),
i (v®). It follows from the continuity of M;( -) that (c{, ui)e M;(v?), hence,
owing to the assumed uniqueness of the solutions of Lp],

Qi(et, up)> Quer(v?), ar(v").

The continuity of M,( -) implies that there exists a sequence {{c[", u)} < CU,
such that for every n: (¢! ul)e M;(v") and (¢}, u?) — (¢-(v°), dHv")). For
every n=1, 2,..., we have by definition

Q(C" A")_Q(Cl’ l"),

which contradicts in the limit the previous strict inequality. Thus for each
iel, N:(ch ub)y= (&), é-(v°)), which implies the continuity of ¢5(-).

The above result ensures the continuity of Q(&"( ), HK4(¢"(-))), since
Y, Ky, and Q,, i @, are assumed to be continuous. The assumptions that
the sets CU,, i € 1, N, are compact, the set Y closed, and % compact are now
sufficient to guarantee that Vi is compact owing to the continuity of
K4 (é%(-)). The existence of a solution of cp" follows directly from the
Weierstrass theorem. [

Let us discuss briefly the assumptions of the above theorem. Demanding
that mappings should be continuous and sets closed or compact is not
unusual. The most restrictive assumptions seem to be that mappings M;{ -)
be continuous and that problems LP- have a unique solution; they are
needed to guarantee that é“(-) is a point-to-point, continuous mapping.
We must check these assumptions on a case-by-case basis. Note, however,
that they concern only the model of the system, i.e., the known, and as a
rule simplified. mathematical description of reality.

The whole optimality and applicability discussion has been mainly for the
limit problem ({LpF}Y,,cpt), which is justified by the approximation
Theorem 3.3. The assumptions of both Lemma 3.3 and Theorem 3.4 are
sufficient for the existence of solutions of the coordinator problem cr” as
long as set V& is not empty—which should be the case for appropriately
large p. Owing to Theorem 3.3, these solutions should tend to the solution
of cp™ as p tends to infinity, the optimality of that solution was discussed
earlier (see Eq. (3.31)).
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It is no trouble to apply the penalty methods when local performance
indices Q, and/or local constraint sets depend explicitly on outputs y, or
when there are global resource constraints. The generalization of the
methods to such cases is rather obvious and is left to the reader.

3.2.4. COORDINATION STRATEGIES

We are now in a position to choose the method of solving coordinator
problem cp or cp®, the so-called coordinator strategy. These problems are
formulated as optimization problems in which we do not know the analytical
definition of the minimized functional and the feasible set because they are
defined in terms of mappings ¢(-) or (-, p) and K (). We can only compute
the values of the former functions and measure the values of the latter in the
real system. Under these circumstances, the penalty function method pro-
vides a powerful way to find the coordinator problem solution.

The coordinator feasible sets V4N Vi or V were defined such that for all
feasible v the values ¢(v) or &(w, p), respectively, do not violate the real
constraints. Therefore, we should choose a barriere (interior penalty) func-
tion of the set VNV or V4§ as the penalty function. Unfortunately, it
seems that a statement of the sufficient conditions ensuring the nonempti-
ness of the interiors of the above sets, which is absolutely necessary in order
to use the interior penalty function approach, is in general impossible.
Consequently, a mixed or even an exterior penalty function could be used.

We propose the following experimental method of verifying the nonemp-
tiness of the interior of VM Vg or Vi. We shall consider the set VN Vg
only; the set V§ can be considered in the same manner. The set VM Vg
equals

N
VenVa= X E(CUINC( 1) DRICUNNE Kz (Y)
i= i=1

where ¢ Dy, (c)=(¢;, HKy(c)). The interiors of the sets K '(Y),
D, (CU,), F,(CU,), i€ 1, N, are not empty whenever the interiors of sets Y
and CU, are not empty, mappings Ky, Dy, F,, i€ 1, N, are continuous, and
mappings F;, are open. For continuous mapping f:E,— E, and EcE,,
Vee E, [f(e)eint E > ecint f '(E)]. Hence the following chain of implica-
tions is true whenever mapping ¢(-) is continuous:

Viel, N [veF(int CU)A(¢(v), HK(é(v)) €int CUA Ky(é(v))eint Y

N J—
Veint _i<1 F(CU)AViel, N Dy(é(v))eint CU A Kg(é(v))eint Y

—>

veint VpaViel, N &v)eint Di!(CU) A é(v) eint K3'(Y)

>
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N
veint Ve aé(v)e [ int DE(CU,) Nint KL'(Y)
i=1 u

N
veint VeNint & ( M Dz (CUy) ﬂK:kl(Y)) =
i=1
int (Ve N V).

Thus, when the assumptions in Theorem 3.1 hold, implying, in particular,
that mapping é( -) is continuous, and

intY# @ andViel, N int CU,# J,

yjr nonemptiness of int (VM Vi) can be ascertained by searching for a v in
int Vi such that

Viel.N (&(v), HK4(¢(v)))eint CU;
and

Ky (é(v))eintY

where ¢(v) is a compound solution of local problems {mrp,}}L, and K (é(v))
is a measured real system output corresponding to é(v). To find v we can
use the method of Fiacco and McCormick (1968) for finding an interior
point.

When the point v in int (Vi N Vi) or int V% is found, we can proceed to
numerical solution of cp or cp® with v* as a starting point. The techniques of
applying penalty functions to these problems are standard and can be found,
e.g., in Fiacco and McCormick (1968) and Polak (1971). However, when a
mixed or exterior penalty function is used, the inequality constraints in the
real system may be violated in the search for the optimal value of the
coordination variable.

In penalty coordination with feedback the proper value of the penalty
coeflicient p must be chosen. A suitable first approximation is the value
obtained from the solution of the model-based, off-line problem. We now
briefly, consider the choice of numerical procedures for solving local and
coordinator problems. For a fixed value of the coordination variable v and
the penalty coeflicient p, local problems mup; or Lp? are standard problems
of nonlinear programming. Hence, the choice of a procedure depends on
properties like differentiability, convexity, and so on. As far as the coor-
dinator problems are concerned, even for simple cases the function to be
minimized may not be differentiable (cf. section 2.2). Since the statement of
differentiability conditions is a rather formidable problem, we have to apply
nongradient search methods to solve cp or cp®.
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3.2.5. SIMULATION RESULTS

Pure direct coordination with feedback was tested using a modification of
the system described in section 2.6.1, which is composed of three subsystems
for which the performance functions, constraints, model, and real input-
output mappings are as follows:

Subsystem 1
Qe u)=(u,— D*+5(c,,+c,—2)
CU,={lc,,upeR’:(c; )+ (c.)’=1A0=u,=0.5}
yi = Falc, u)=1.3¢,, = ¢+ 2u;+0.15u,¢y,
yi=F(c;,u)=cy—c»t+2u,
Subsystem 2
Q,(Car tz) = 2(C2, = 2)* +(€22)7 + 3(€23)* + 415 ) + (35)*
CU,={(cy, Us) ERZ:10.5¢;+ ozt 2C23 = 1 Ad{C2 )2+ 25, iz, + 0.4 + €31 Cas
+0.5(c03)% + (uay > =4}

Va1 = Fiya1(Co, Un) = Coy — Con + 1.2U5, — 3y, +0.1(c2,)°

Vo2 = Fyo(Cay ) = 2¢55— 1.25¢53— Upy + Uy +0.25¢5,053+0.1

Vo1 = Fo(Ca, Up) = Cay — Can+ Uy — Blisy

Voo = F(Cp Up) =2Con = Coz— Uy T Uy

Subsystem 3
Qs(cs, uz)=(c3; + 1)°+ (us— 1)2+ 2~5(C23)2
CU;={(c5. uz)eR*:c5, T u3+0.5=0/0=c3, =1}
V3= Fyalcs, u3) = 0.8¢5,+2.5¢3,—4.2u,
y3= Fi(cs, u3) = c3,+ 2.5¢3 — 4ua.

where Q, is the performance function, CU, is the constraint set. F,,; is the rea
input-output mapping, and F, is the model-based input—output mapping.
The structure of the system described in Figure 2.4 has the following matrix

form:
u,=Hy=[0 1 0 0][)’1)’21)’22)’3]T

1 0 0 0

“2:[1421“22]T:H2)’:[O 0 0 1

u;=Hsy=[0 0 1 0][Y1Y21Y22)’3]T~

The system considered in section 2.6.1 is here assumed to be a model of a
controlled real process.

] [Y1Y21)’22Y3]T
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As in the model example, the task of the coordinator is to influence the
local decision units so as to make the global performance function
Qlc, u)= Qlcy, up)+ Qslcy, uy) +Qs(cs, us)
Qlc, u)=Q(cy, uy) - Qalcz, uz)+ Qslcs, us)
as small as possible.

The local decision problems are the model-based problems, hence, they
are the same as in section 2.6.1. The coordinator solves the problem

minimize Q(v) = ¥(Q,(v), Qy(v), Q5(v))
subject to ve Ve NV,

(2.114)
(2.115)

or

where Q,(v) = Q,(&(v), H;K,(¢(v))) denotes the real local optimal perfor-
mance, and $(Q,, Q,, Q;) equals Q,+Q,+Q; for Eq. (2.114) and
Q, Q,+Q; for Eq. (2.115).

Since set Vi NV, cannot be ignored during the coordination process, the
problem was programmed using the interior penalty function technique.
Because the function Q(-) is not differentiable, the Powell procedure for
unconstrained minimization was used.

The starting point was v =(0, 0, 0, 0) and the unconstrained minimization
was performed once with the penalty coefficient set equals to 10*. The
results are shown in Table 3.1.

TABLE 3.1 Results of
the Simulation for Pure
Direct Coordination with
Feedback

Eq. (2.114) Eq. (2.115)

6, 0.0531 ~0.0450
6y 0.2574 0.2102
Bys 0.0411 0.2722
6, 0.2691 0.2265
é4 0.4375 0.4350
1, 0.8992 0.9004
u, 0.1857 0.1403
by, 0.9716 0.9968
€rn 0.0400 0.0623
€ 0.0949 0.1280
Us, 0.0531 0.0450
U 0.2966 0.2469
e ~0.5411 0.3385
s 0.3898 0.6615
Uy 0.0455 0.2624
Q) 6.3841 7.9465
Qy 6.3142 7.2245
Q 6.8998 14.3618
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O* is the real optimal value of the performance, and Q,, is the model-based
(open-loop) value of the performance.

The generated optimal controls in combination with the corresponding
real outputs in both cases do not violate the constraints. This is contrary to
the case when model-based controls are applied and the constraints in the
real system may be violated. As expected. the losses in performance are
much smaller than for open-loop control.

The numerical example using the direct method described in section 3.2.2
can be found in Wozniak (1976) and the example using the direct penalty
method in section 3.2.3 in Findeisen et al. (1978).

3.3. COORDINATION BASED ON PRICE INSTRUMENTS

3.3.1. THE BASIC CONTROL STRUCTURE: THE INTERACTION BALANCE METHOD WITH
FEEDBACK (IBMF)

We now use price instruments for coordination and allow the local decision
units to solve the local problems of the interaction balance method (see
section 2.4). The local units use only mathematical models. The collection of
all N local problems, referred to as the infimal problem, 1p, has the following
form, where the price vector A is fixed:

Find control é(A) and interaction input &i(A) for the disconnected system,
such that

OQroa(€(A), Gi(A), A) = minU Onoalc, u, A) (3.32)

c,u)eC

N
CU2 Y CU, CU ={(c, u):Gi(c, u)eS,)

i=1

where

N
Quoa (6, , A) =2 Qi(c, ) +(A, u—HF(c, u)).
i=1
It is assumed in this section that € and % are real Hilbert spaces, although
IBMF is applicable mainly to static systems: however, it can also be used in the
control of batch processes which are periodic (see section 1.3).
The infimal problem Ip is, of course, separable and we can solve it by
solving N local problems 1p; independently.

Find control ¢;(A) and interaction input & (A) for subsystem i such that

Qmodi éi()\), ai(x), )\) = min Qmodi (Ci’ u;, )\) (3-33)

(c,u))eCL;
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where

N
Quoai (G, i, ) = Qi(cyy u;) +(A, u)— Z <)\,-» H;F(c, 1)),
=1

We assume here that the solution (¢(A). @(A)) of the infimal problem is
unique for every Ae A<, _

The solutions (& (X), &(A)) of the local problems 1P, i €1, N, for given A
are used in the following way (Figure 3.3): the controls ¢(A) are applied to
the subsystems, and the interaction inputs u*()\)éHK*(é()\)) are measured
and transmitted to the coordinator. His task (cp) is defined as follows:

Find X = (X,,..., Ay) such that
G(X) = ug(X). (3.34)

Note that the coordination condition in cp is arbitrary: it is evident that the
control é(A),if A exists, obtained by IBMF is in general not optimal in the
model or in the real system.

Supremal u(n) = HK, (& ()
decision unit [
(CP)
| \
A R *
U1(>‘) Un (‘)
1" local N local
decision unit .. decision unit
(1P,) (1Py)
S4(a) SnlA)
T ___“__"}
U4 Y
I - Frr 1 - . |
! H
I T . |
xN

I Un |7
| |
| |
| K

L

FIGURE 3.3 The structure of price coordination.
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1BMF was described by Findeisen (1974) and its main properties have been
investigated by Malinowski (1976) and Malinowski and Ruszczynski (1975),
where it was shown that if Fy=F+8 (8 =const) then &¢(A) is the optimal
solution of the system optimization problem. The important questions
concerning such properties as: the existence of A, the feasibility of ¢(X), the
suboptimality of ¢(A), and coordination strategies will be discussed in the
following sections. Possibilities for modifying 1BMF to enlarge the class of
problems for which it gives feasible control solutions will be discussed in
sections 3.3.4, and 3.6.

3.3.2. THE EXISTENCE AND FEASIBILITY OF THE SOLUTION (A)
THEOREM 3.5 (existence of A). If we assume that

1. CU is a weakly compact and convex subset of € X,

2. F, and Fy; are weakly continuous on € XU and Q, is bounded on CUj,
and weakly lower semicontinuous on € X for each i€ 1, N,

3. For every s S the following system optimization problem:
find ¢™(s), u™(s) such that

Q(c™(s), u™(s))=min Q(c, u) (3.35)
{c.u)
subject to u=HF(c,u)+s and (c,u)e CU
can be solved (i.e., can lze coordinated) by the interaction balance method 1BM
with coordination price A, € A, where

S2{seU:3c,u)e CU s =HF.(c,u)—HF(c, u))},

4. For every se€S the solution of problem (3.35) is unique and the
mappings c¢™(+), u™(-) are weakly continuous on S;

then there exists at least one solution X of the coordinator problem of 1BMF.

The proof is given in Appendix B.1.

The above theorem is founded on assumptions 3 and 4. Note that S is a
set depending on the model-reality difference. Coordinability by 1Bm (as-
sumption 3) has been extensively discussed in section 2.4. The following
theorem can be proved with the information in that section.

THeoREM 3.6 (Coordinability conditions for problem (3.35)). Suppose that
assumptions 1 and 2 of Theorem 3.5 hold and

1. There exists k, >0, such that for every u®cay, |u%|<k,, there exists
(¢, u)e CU such that u = HF(c, u)+u°,
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2. For every (c, u)e CU following inequality is satisfied
|[HFy(c, u)— HF(c, w)| =< ks,
where

05k2<k1,

3. (Eé(A), a(A)) is unique for

ki—k§
/\eAé{/\e I SM}
il =
where
ko= sup Qlc, u), "= min Q(c u),
(c,u)eCU (c,u)eCU

then assumption 3 of Theorem 3.5 will be satisfied and moreover c™(s) and
u™(s) are unique.

The proof is given in Appendix B.2. Note that assumption 2 means that the
model-reality difference is bounded.

In general, it is difficult to give explicit conditions under which assumption
4 of Theorem 3.5 is satisfied, and, in particular, conditions under which the
uniqueness property is guaranteed. Some special cases (convex problems)
have been considered in detail in Chapter 2. The continuity of solutions to the
optimization problem with respect to the parameters of the problem is
discussed in Chapter 4.

The feasibility of é(/{) follows directly from (3.34) (cp) if we assume that
the constraints have the form (¢, u) e CU and that they are the same for the
model and the real system, i.e., CU = CU4. 1P ensures that (é(A), @(A))e
CU. We always have ¢y =¢(A) and for A =X we have Uy =0(A).

3.3.3. OPTIMALITY OF THE SOLUTION (A)

We now discuss the suboptimality properties of the basic version of MF. If

the assumptions of Theorem 3.6 are satisfied, CU = CU, and solution A of

coordinator problem cp exists, then the following inequality holds:
0~ kﬁ

k1 —k,

where ¢, is the real optimal control vector and the parameters ki, k,, k§, kg
are specified in the assumptions of Theorem 3.6. Indeed, the left side of
inequality (3.36) is obvious since ¢(A) and u,(A) are feasible control and

0=Q(&(A), ux(A)) — Q(éx, HK(E4)) =2k, (3.36)
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interaction inputs. From (3.32) it follows that we can write

Q(&(A). ug(R)) +(X, ugx(X) ~ HF(E(R), us(X))

< Q(&y. HK 1(E4)) + (A, HK (&) — HF (¢4, HK (&)

Using the above inequality and the assumptions of Theorem 3.6, we obtain
Q(&(A), us(R)) — Q4. HK((E4))

=(A, [HF (¢4, HK(84)) — HF (¢4, HK((E4))]

—[HF(¢(X), us(X)) — HF(E(X), ug(X)]  (3.37)

which yields the required bound. In (3.36), the coefficient k, depends on
differences between the mathematical model and the description of the real
system. Therefore, if |Fy(c, u) — F(c, u)|| — 0 uniformly on CU (i.e., k, — 0),
then the loss of performance decreases to zero.

The upper bound on performance loss given by (3.36) is large. Indeed, it
follows from (3.37) that if V(c,u)e CU HFgyl(c, u)— HF(c, u) =, that is,
when the model-reality difference reduces to a constant vector 3, then

Q(E(X),ug(X)) = O(Ey, HK(24)),

that is, there is no loss of performance and é(/\~) is the real optimal control.
This conclusion does not follow directly from (3.36). In such a situation, the
optimal, open-loop control from the model can be very far from the optimal
value.

The simple geometric example in Figure 3.4 presents generally the
operation and advantages of iBMF. The continuous line is the set of real
system operating points (c, u) satisfying an equation u = Fy(c, u). The
dashed lines are sets of system model operating points, u = F{c, u), drawn
for two models. The performance index is assumed to be Q{c, u)=—c, and
the optimal performance is at point B. The control value ¢ is then the real
optimal solution. The model-based solutions are c, and c,. When the
optimal control ¢, is applied to the real system, infeasible operating point
A™ is obtained. When cp, is applied, point D* is obtained. It is feasible, but
far from the optimal point B. Both models give inadequate open-loop
control, but 1BMF would give the real optimal solution exactly. To show this,
we formulate the infimal problem 1p:

minimize [Q(c, u)+A(u—F(c, u))]
{c.aw)eCU
and ask the supremal level to change A until A = A. For arbitrary A, 1p
generates result é(A), i(A), which will not satisfy u = F(c, u), but can be
thought of as satisfying the equation

a(A) = F(EA), a(A))~v(A).
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FIGURE 3.4 Example illustrating 1BMF.

This is equivalent to saying that 1 has solved a model-based optimal
problem for a shifted model.

If the model is like I or II in Figure 3.4, and with Q(c, u) as in the figure,
the solutions é(A), @#(A) satisfying the shifted model will still lie on the
boundary of the set CU. While varying A, we change the shift v(A) and allow
the coordinator to move point A or D along the CU boundary. Each ¢(A)
will be applied to the system, that is, it will generate a uy(A) according to the
real system line in Figure 3.4. Achieving A = X where (M) = ux(A) is in this
case equivalent to arriving at point B.

3.3.4. THE MODIFIED INTERACTION BALANCE METHOD WITH FEEDBACK (MIBMF)

It has been assumed that inequality constraints (see the definition of CU in
1P at the beginning of section 3.3) were given on the values of controls and
interaction inputs only. This, together with the coordinating condition of
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iBMF, Eq. (3.34), guaranteed the feasibility of controls ¢(X) generated by
1BMF. We should also consider a more general case where the original
inequality constraints have the following form:

Gcy un v)€S, ieLN  (G%c u y,)€eS). (3.38)
The sets CU, used in the formulation of 1 will now be defined as follows:
CU, ={(c;, u): G{(c;, u;, Fi(c,, w))€ S}, iel,;N-
Due to model-reality differences, the real feasible sets
CUy ={(co ): GYco thy Fy(c, w)€S),  iel,N  (3.39

are different from CU, and the controls ¢(X), along with u*(X) as generated
by 1BMF, may violate the constraints.

We can satisfy the constraints (3.38) in the real system by introducing a
modified version of BMr. The infimal set of local problems, mip, of the
modified interaction balance method with feedback (MiBMF) is defined as
follows for given and fixed (A, v):

Find control é(A,v) and interaction input @(A,v) for the disconnected
system, such that

Omoa(€(A, 0)iA(A, v),A)= min  Onoq (¢, 4, A)

(c,u)eCU(v)

CU(v) = i CU,(v), (3.40)

i=1
CU;(v) é{(Cis u): G?(Cia u;, Fi(c, u)+v)es;},
V=(V1,..., Un)

We assume for every Ae Ac@ and ve Vc @ that the infimal problem,
which may be solved as N independent local problems has a unique solution
é(A, v), f(A, v), and we define y(A, v) 2 F(é(A, v), @(A v))+v. Each time
that the infimal problem is solved, the control vector é(A, v) is applied to the
real system and the information about interaction inputs and outputs,
ux(d, v) & HK(&(X. v)), ys(A, ©) £ K (&(A, v)) is transmitted to the supremal
decision unit. Its task, msp, will be defined as follows:

Find A e A, 7€V, such that:

(X, D) = ux(X, ©) (3.41)
(X, ) = yul(A, D).
If Ehe solution of the coordinator problem exists, then the control vector
¢(A, D) is feasible for the real system when real constraints are given by

(3.38). The feasibility is obtained at the cost of introducing an additional
coordination variable v. If G° does not depend explicitly on y, then the

S
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results of an application of MiBMF to the real system are virtually the same as
when the basic version of isMF is applied.

The conditions under which solution (A, §) exists are given in the follow-
ing theorem.

THEOREM 3.7 (existence of (X, ©)). If we assume that

1. Set CUY 2{(c, u, y): G%c, u, y) € S} is a weakly compact convex subset
of €XUXY,

2. F, Fy,; are weakly continuous and Q, is weakly lower semicontinuous
on €; XU XY; for each i€ 1, N,

3. For every ve V there is the following optimization problem (A):
Find c¢™(v), u™(v) such that

Q(c™(v), u™(v))=min Q(c, u),
(c.u)
subject to u=HFl(c, u)+ Hy and (¢, u)e CU(v), can be solved by 1Bm with
the resulting optimal price A, € A, where

VA&{vedy:3(c,u, y)e CUY: v=Fylc, u)— F(c, u)},

4. For every ve V the solution of problem A is unique and the mappings
c™ (), u™(-) are weakly continuous on V,

then there exists at least one solution (X, ¥) of the coordinator problem of
MIBMF.

The proof is similar to the proof of Theorem 3.5.

More detailed conditions of the existence of (A, §) can be formulated, for
example, for convex problems. The output shifts v can also be manipulated
at the infimal level if appropriate local feedback is applied. This creates new
structural possibilities and is the subject of current research.

3.3.5. COORDINATION STRATEGIES

In this section, we present some ways of solving the coordinator problem of
iBMF. With some modifications, these algorithms may also be used for solving
the coordinator problem of MIBMF.

In BMF the task of the coordinator is to find the price satisfying the
condition (see Cp):

(A~ uk(A) 2 Ry(A)=0. (3.42)

When we know very little about the properties of Ry besides perhaps its
continuity, it is difficult to propose a method for solving (3.42) other than
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direct minimization of the following function:
J(A) 2[RI (3.43)

It should be noted that even when the functions Q, F,, Fy, G; have
reasonable differentiability properties, the mapping R, may be nondifferen-
tiable. Thus, J is also nondifferentiable in most cases. Even if J were
differentiable, we would not know VJ since it depends on the unknown F,.
Local minima of J can also make the minimization of J difficult.

The difficulties associated with the minimization of J make it worthwhile
to consider for solving Eq. (3.42) a modification of the Newton method for
solving nonlinear equations. Unfortunately, the direct application of New-
ton’s algorithm is not possible since we do not know the Jacobian Rj(A). In
most cases it does not even exist. However, the structure of Newton'’s
algorithm suggests to us how we can try to generate new values of A. This
coordination strategy (cs1) can be formulated as follows (Zinchenko 1973):

AT = AR —[RIAS) T Re(A5), k=0,1,2,... (3.44)

where R is a certain differentiable approximation of Ry and R’ is the
Jacobian of R.

The general conditions under which algorithm (3.44) can generate se-
quence {A*} convergent to the solution of (3.42) can be given by using the
theorems proved by Zinchenko (1973) and Lika (1975), without assuming
the differentiability of R,.

Tueorem 3.8. If

1. Fréchet derivative R'(:) of R(-) and mapping Ry(A)= R4(A)—R(A)
satisfy the Lipschitz conditions on a certain set Uyc, i.e., for every
(A, AN)e U,

IR'(AD—=R'A)|[=LIIA" =A%
IRo(AN = Ro(AD| = L,|Ia" = A%
2. There exists To=[R'(A9)]" and
HTOHSPO
T R(AY) <m0

3. pol: <1
4. ho=polng S%(l - POL)2
5. Ball B(A% ry) = U,,

where

ro=(1—poL, "\/(1 - pOLl)z—ZhO)nQ/ho =t Mg
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then the solution of Eq. (3.42) is A€ B(A\";r,) and the sequence {A\*Yi_,
generated by algorithm (3.44), where X" is the starting point, is well defined
and converges in norm to A.

The theorem specifies not only the conditions under which (3.44) con-
verges, but also the coordinability conditions. However, the crucial assump-
tions 4 and 5 can easily be satisfied by appropriate selection of A° (see
assumption 2) only if the real system is coordinable by 1BMF. Therefore, the
assumption about coordinability is hidden in 4 and 5. Also, the differentia-
bility of R4(-) is not required in the assumptions of Theorem 3.8, but
assumption 3 shows the importance of the proper construction of R(-)—the
value of L; depends on how well R(-) approximates Ry(-).

Since we can measure uy(A) in the real system, the coordinator can obtain
the values of R,(A). To apply strategy (3.44) for solving the coordinator
problem (3.34), we have to construct approximation R(-) of R,(-); we will
use, of course, only R'(-).

Let us make a temporary assumption that for a unique given A, solutions
¢(A), u(A) of the infimal problem (3.32) are differentiable functions of A and
that there exists an inverse operator to [I— HF, (c, HK(c))]. In such a case,
it is possible to construct operator R(-) such that its derivative has the
following form:

R'(\)=a' (M) —=[I—=HF_(&(A), ux(M))T ' HF/(2())), usx(A))E"(X)
4 D(X) - w'(A), (3.45)

where w =(c, u), w(A)=(&(A). a(A)) and F, and F, are Fréchet derivatives
of F with respect to ¢ and u. R'(A) is the most direct approximation of

4(A)—if we could use Fy., Fy, in (3.45) instead of F., F,, then (3.45)
would just give us the derivative of Ry{-) in A.

Since it is difficult to compute w’(A) and it may not even exist at some
points, we should rather compute a suitable approximation of w'(A). This
can be done by using the approach in section A.6 of Appendix A—this will
give us the approximation of w'(A) in the form:

WD) = ~[(Omoa)cs (WA VTV (RO)TF (3.46)
where
Viw)=V(c, u)=u—HF(c, u).
By substituting into (3.45) we obtain the approximation of R'(A). However,
the application of this approximation would require a large amount of

on-line computation. Further simplification of (3.44) can be made by using
the constant value of R'(-) computed at A =\°, i.e.,

R'(A)= = DA ) (Qmoahiw (WAL [V ORAT, (3.47)
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where we have introduced a scaling factor 1/¢>0. Assumption 3 of
Theorem 3.8 can be satisfied by adjusting . Formula (3.47) can be further
simplified if instead of [(Quoa)ew(W(A"), A)]' we use some positively
defined operator B (e.g., B =I). We then obtain

R'(AM)=—'DA)B[V, (WA T*. (3.48)

To compute the above approximation R of Ry, the coordinator has to have
information about the subsystem equation before the BMF algorithm has
started. Therefore, the application of (3.48) destroys to some extent the
decentralized prior information pattern of price coordination. The con-
vergence properties of algorithm (3.44) with R’(A) computed according to
(3.48) will be investigated in section 3.6. Solving Eq. (3.44) directly may not
be the best way to achieve the desired balance condition. Assume that if
s = HF(c, u}— HF(c, u) for some (c. u) € CU then ¥c € [14(CU) the equation

u—HF(c,u)=s

has the unique solution u €. In order to achieve condition (3.42), we may
solve the following equation:

= G(A)+HF(E(A), G(A))+ HEL(E(A), ug(A))—HF(E(A), ux(A))=0. (3.49)

We can write the left side of the above equation in the following form

T(A)=W(QA)+s(A), (3.50)
where
W(A)=—a(A)+ HF((A), 4(A)) (3.51)
and
$(A) = HF,(E(A), ux(A)) — HE(E(A), ux(A)). (3.52)

The appealing feature of Eq. (3.50) is that (3.51) is a gradient of some
functional (see section 2.4), and (3.52) depends only on the difference
between the model and the real system.

To generate subsequent prices A* we can use algorithm (2.68), which was
developed and thoroughly examined in section 2.4. The coordination
strategy (csn) will have then the following form

A=k — g AT(AY), k=0,1,2,... (3.53)

where A satisfies assumption 2 of Lemma 2.13 in section 2.4. T(A*) can be
easily computed by parts at the local control stations if the measurements of
ux(A) are available; (ug(A) = HF(¢(A), ux(A)). The amount of information
sent to the coordinator in each iteration will be the same as when coordina-
tion strategy csi, Eq. (3.44), is used.

The convergence properties of algorithm (3.53) have been studied in
section 2.4. Theorems 2.18 and 2.19 of section 2.4 specify the sufficient
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conditions for this convergence. If the real system is coordinable by 1BMF,
then by finding appropriate A° for (3.53) it is possible to satisfy the
assumptions of Theorems 2.18 and 2.19 if the assumptions of Lemma 2.13
are satisfied. First, we are interested in satisfying condition (iii) in assump-
tion 1 of Lemma 2.13 by operator s(-) as defined in Eq. (3.52). W(-) given
by (3.51) depends on the model data only and its properties have been
investigated in section 2.4.

Lemma 3.4. If the assumptions of Lemma 2.14 from section 2.4. are
satisfied and

(1) V!, 2eT,CU [|HKy(c")— HK ()= o’ — ),
(2) Vic!, uh), (c? u?) el ,CU) xqy
I[HE4(c", u*)—HF(c', u")]—[HF4(c? u®)— HF(c?, u?]|
=ogll(c', u)—(c?, u?).

then condition (iii) of Lemma 2.13 is satisfied for A, A+ he®, and o,=
O¢' 04, where ;>0 and o, does not depend on the difference between the
model and the real system. Therefore, if a is sufficiently small, assumption 3
of Lemma 2.13 is satisfied.

The proof of this lemma is straightforward if we use the proof of Lemma
2.14 from section 2.4 (see Appendix A).

It is usually very difficult to check whether the theoretical convergence
conditions for algorithms (3.44) or (3.53) are satisfied for a practical
problem and therefore numerical simulation is necessary to evaluate the
coordination strategies.

Finally, the question concerning the practical choice of A°—the starting
point for algorithms (3.44) or (3.53)—should be answered. Intuitively, it
seems reasonable to take the model coordinating price A (see section 2.4) as
A? since for small differences between the model and the real system A
should be close to A. Consider the following theorem:

THEOREM 3.9. Suppose that we are given a family ¥ of the subsystem
models, where F™(-,+),ie1,N,n=1,2,..., are members of this family, and
a family of real systems %, with members Fg/(-, ). If

1. Assumption 1 of Lemma 2.13 is satisfied for operators W™(+), s™(-)
uniformly with respect to n, where W™(+), s"(-) are defined by Egs. (3.51)
and (3.52) with F(c, u)=F"(c, u) and Fy(c,u)=F(c, u),

2. Using each model F™(-, ), the real system (with F(-, +)) is coordina-
ble by 1BMF and X" e P [X™ solves Eq. (3.49) with T"™(A)= W™ (A)+
S(n))\)],
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3. The optimization problem for the system model, with F™(-,-), can be
solved by 1BM (see section 2.4) and A" eP,,
4. VY(c,u)eCU

IHF g (¢, u)— HF™(c, u)| = B,

then ||X" — X"\ < B,/o where o is defined in assumption 1 of Lemma 2.13 in
section 2.4. Therefore, if B, — 07, then

I = R — 0™,

The proof is given in Appendix B, section B.3.

We have then, that if some reasonable assumptions are satisfied and if the
difference between the model and the real system decreases uniformly on
CU, then the optimal prices from the model approach the iBMF balance
prices A, This justifies the choice of A® as A in the coordination strategies
csi and csit, Egs. (3.44) and (3.53).

3.3.6. APPLICATION OF AUGMENTED LAGRANGIANS

In section 2.5 we showed that the class of optimization problems to which
price coordination is applicable can be considerably enlarged when we use
the augmented Lagrangian instead of the normal Lagrangian in the infimal
problem. Of course, the augmented Lagrangian does not allow easy separa-
tion of the infimal problem (3.32) into independent local problems. But with
on-line price coordination of the real system, in some cases we can use the
augmented Lagrangian

L.(c,u, A\)=Qlc, u)+{A, u—HF(c, u))
+1p{u—HF(c, u), u— HF(c, u)), p>0 (3.54)

instead of Lagrangian L(c, u, A) in the infimal problem (3.32). If (3.54) is
used in (3.32) then, without changing the coordinator problem (3.34), we
can apply the on-line price coordination mechanism. The only trouble is that
in this case problem (3.32) can no longer be solved by solving N indepen-
dent local problems (3.33)—term p{u, HF(c, u)) cannot be additively
separated into N terms depending on u;, ¢, To overcome this difficulty we
can use the approach described in section 2.5, which involves specific
linearization of the nonseparable term in (3.54) and provides us with the
approximation L, of (3.54) in the form:

L, (c,u, A; @, y)=Q(c, u)+{A, u—HF(c, u)
+3plu, u)+3p(F(c, u), F(c, u)) (3.55)
+pl(a, Hy)—(a, HF(c, u))—{u, H)].
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where y = F(¢, i) and we have assumed that H is a matrix with one nonzero
entry (equal to 1) in each row and in each column. Function L., -, A, V)
is additively separable and using it we can define the interaction balance
method with feedback and augmented Lagrangian (iBMFAL).

The infimal problem (1ra), separable into independent local problems, will
have the form:

For given ¢, &, A find control &(i, ¥, A) and interaction input @(i, y, A) for
the disconnected system, such that

L.(c(@, ¥, A), 4(@, §,A), A @, §)= min L (c,u, A\, % ¥), (3.56)
(c,u)eCU
where y = F(c, i1).
The coordinator problem (cpa) that defines the coordinator’s task is as
follows:

Find &, i, A such that

3

&, y, A) (3.57)
i =0(d, §, ) = HK«(&(d, §, X))

where y = F(¢, &)

The coordinator must find not only the balance prices A but also the controls

and interaction inputs. Therefore, in order to preserve the decentralized

character of the decision process and the (prior) information pattern, it is
necessary to develop very simple rules for the coordination strategy.
Stoilov (1977) has proposed the following coordination strategy

ak+l — a(ak, yk, Ak)

S =¢3ik, &, AN (3.58)
AR = pK +§[(ak _ HF(E*, @)

— (HK(¢*)— HF(Z*, HK(c")))]

in which the coordinator has to receive and transmit only the information
concerning the interaction inputs and outputs values.

The convergence properties of coordination strategy (3.58) have been
studied by Stoilov (1977) for a finite-dimensional case and under typical
assumptions (involving second-order local sufficient conditions of optimality,
a strict complementarity condition concerning the local constraints, and so
on). Perhaps the most important result is that under reasonable assumptions

X =X+ p[HF(& @) — HF(c, u)] (3.59)
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where A is the balance price for BMF. Therefore, by increasing p we
convexify the initial problem, but at the same time we move the solution of
IBMFAL away from A and, hence from the model-based optimal price A which
is used as the starting point for the coordination strategy (see the previous
section). Furthermore, for large values of p the coordination strategy (3.58)
may lose even the local convergence property (unlike in the optimization
case considered in section 2.5). Still, a reasonable choice of p may allow the
solving of some coordination problems with i1BMFAL which are not coordina-
ble with the basic price mechanism, 1BMF.

3.3.7. SIMULATION RESULTS

To test 1BMF and MiBMF, the following examples were simulated:

Example 1
Subsystem 1

Y1:‘311_C12+2u1_0-55%1+0-5(511+512_2)u1:F*1(C1, up)
y1=1.4375¢,,—0.1875¢,5,+1.75u,—0.6872 = F,(c,, u,)
Q,(cy, u1):(u11_1)2+5%1+(512’_2)2

G,(ci,u))=c¢y;+u;;—1.006=<0.

Subsystem 2

[Y21J= [CZI —Cap+ Uy —3uy,

= Fyo(cy, uy) = Fy(c,, uy)
2C5 = Coz— Uy + uzzJ

Y22

Qs(cy, up) =2(cyy — 2)2 + C%z + 3553 +4“%1 + u%z-

Subsystem 3
y3=C3—4u;+0.5¢3u; = Fys(cs, us)
y3=1.25¢;—3.75u;—0.125 = F5(c;, u;)
Qs(cy, uz) = (c3+1)* +(u;—1)?
Gilcs, u3)= —c3—u;—0.5=<0.

Structure equations

u, 01 0 0 vy

u21 _ 1 O O 0 R yz]
Ussp 0O 0 0 1 V2
Us 0O 01 O Vs
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The mappings Fy, and F,; describe the real subsystems, and F, and F; are
model equations. They are obtained by approximation of the real nonlinear
equations around some chosen points (c, u) that satisfy the inequality
constraints. It was assumed that F, = F..

1BMF was applied to the above example and two coordinating strategies
were used to adjust the four-dimensional A:

1. The direct Powell method for unconstrained minimization of J(A) (see
Eq. (3.43)),

2. Algorithm (3.44) with R'(A) computed from (3.48), where we set
B=1 and ¢ =0.8.

Algorithm 1 was run once with A°=0 and once with A°= A, the optimal
price vector from the model.

Starting from A°=0, algorithm 1 converged slowly to solution A. After 55
1nterat10ns at the supremal level the algorithm was stopped Starting from
A°= X, algorithm 1 converged to A with an accuracy to 1072 in 23 iterations.

Algorithm 2, starting from A°=0, converged to A with the same accuracy
as in algorithm 1 in 8 iterations. Starting from A® = A, the solution was found
in 2 iterations.

The above results confirmed our intuitive expectations that a direct
minimization of J at the supremal level may cause difficulties and that in any
case it makes sense to begin iterations of the BMF algorithm from the
optimal price vector A°= A computed from the model.

When we assumed that constraint G;{cs, u;) of subsystem 3 was obtained
by substituting model F;(cs, u,) into the following real constraint:

Gcs, Us, ¥3) =—2.25¢5+2.75us+ y,— 0.375 <0,

then this constraint was seriously violated after ¢(A) was applied to the real
system. It was necessary to use MIBMF in order to obtain feasible control
é(A, ©). Itis easy to see that only the application of output shift v, in subsystem
3 is significant and v, and v, do not have to be used (G, does not depend
explicitly on y, and there is no G, constraint). Therefore, the task of the
coordinator problem of MiBMF is to solve the following equations:

G(A, 03) —ug(A, v3)=0
$3(A, U3) = yx3(A, v3) = 0.
We denote both of them as
R, (A, v5)=0.

Since algorithm 2 proved to be effective, the approximation of R similar
to (3.48), with £ =0.8, was used in the following coordination strategy:

E D;]—[Rw: oI Ry(A%, v8).

U3
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This algorithm was run once with A®=0 and v$=0, and once with A°= A"
and v9=0, where A° is the price vector obtained by application of 1BMF in
the previous case.

Starting from A°=0, the algorithm converged to the point (A, ©;) and
control vector &(A, U,) satisfying the constraints in 20 iterations; starting
from A°=A° it took 10 iterations.

Example 2

The system described in section 2.6 can be used to simulate the application of
1BMF. That system was assumed to be a mathematical model of the controlled
static process. The mappings Fy,. Fy,, Fy; that describes the real
subsystems had the following form:

Subsystem 1

yiu=13c¢c,,—cp+2u;; +0.15u;,¢1, = Fyy ey, uy)
Subsystem 2
Vo1 = Ca1— €+ 1.2Uy1 — 3tin + 0.1(¢20)* = Fyolcy, 1)
Vo2 =2Cp — 1.25¢,3 — Uy + Uy +0.25¢55¢5,+0.1
Subsystem 3
y3=0.8¢31+2.5¢3,—4.2u;.

When 1BMF was applied to the above example, the infimal problem was the
same as the infimal problem of BM in section 2.6. Two coordination
strategies were used to achieve the desired balance condition. Algorithm
(3.44) with R’(A) computed from (3.48), where we set B=1 and £ =0.8;
and algorithm (3.53) with (a) A=1 and £=0.1, and (b) A computed
according to the procedure in Appendix A.2 and £ = 0.8. The application of
algorithm (3.53) with A =1 does not require the coordinator to have prior
information concerning the models of the subsystems. Also, the computation
of A according to the approach presented in Appendix A is much simpler
than the computation of R'(A) for algorithm (3.44).

Both algorithms were run from the starting point A° =0, which would not
be reasonable in a practical application but creates rigorous test conditions
for numerical simulation. The following stop criterion was used: ||a(A)—
ug(A)]|=a. The results of the simulation are summarized in Table 3.2.

For a =0.0001, the real system constraints have been satisfied with very
high accuracy (better than 107*). It should be noted that some of these
constraints were badly violated after application of the model optimal
controls é. As in Example 1, changing A from 0 to A creates an advantage
for the on-line coordination strategy since the number of iterations required
to achieve the balance condition decreases considerably.
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TABLE 3.2 Results of the Simulation for 18BMF and MIBMF

Number of Number of
iterations Performance iterations Performance
a=0.01 value (real) a =0.0001 value (real)
Algorithm (3.44) 41 6.320 92 6.323
Algorithm (3.53)
(case a) 59 6.323
Algorithm (3.53)
(case b) 52 6.323 78 6.323

3.4. DECENTRALIZED CONTROL WITH PARTIAL OR FULL
COORDINATION

3.4.1. THE CONTROL STRUCTURE

The decentralized control structure has been explained and briefly presented
in section 1.3 (see Figure 1.20). In this subsection it is described in detail.
We start with an infimal problem formulation. The ith local decision
problem (rp;) has the following form:

For given coordination variable A and interaction variable & find control
¢, (w;, A) such that

Ornoai (6i(uia A), u;, A)= min Oroai (¢ ui, A) (3.60)
¢, € C ()
where
N
Qmudi(ch U, /\)éoe(cu u) (A, u)— Z </\,', H,xE (¢ ui))
j=1
and

C () 2{c, €€, :(c, u) e CU}.

Let us suppose that the collection of N local decision problems has been
solved and control é(u, A) =(&,(u;, A), ..., éu(un, A)) has been found. Next,
the controls & (u, A), i €1, N, are applied to the real interconnected subsys-
tems and a new value HK,(é(u, A)) of the interaction variable in the real
system is realized. If this value of interaction equals the one that was used to
obtain &(u, A), then we say that the equilibrium state in the control structure
is obtained. In this case we also say that the infimal problem is solved.
Otherwise, the new value of the interaction is sent to the local decision units
and the new controls are produced as before. Let us assume that for each
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value of the interaction variable from set

UL{ucqu:Cu)# 3}, (3.61)

where

Xz

Cluy=

1 Ci ( U; )7

and for each value of the coordination variable A from %, any local decision
problem (see (3.60)) has a unique solution. This means that a mapping
¢é(-, A) is well defined on U® for any A € 9. The set U° is decomposable, i.e.,

o_ ¥ 10
U= x U7}, (3.62)

i=1

where
U?={u, e, :C(w)# 3}

It follows directly from the above that the problem of proving the existence
of and finding the infimal problem solution (or the equilibrium state of the
considered control structure) is equivalent to the problem of proving the
existence and finding a fixed point of the following mapping

U> U5 u — HKy(é(u, M) e€.

The infimal problem-solving (for a given A) consists in finding the fixed
point of this mapping using the following iterative scheme:

uk = HK (é(u*, \)) (3.63)

This iterative scheme will be called a lower-level iterative scheme.
To find the fixed point of the mapping HK,(é(+, A)) or equivalently, to
solve the operator equation

u = HKy(¢(u, X)), (3.64)

we could use an iterative scheme different from Eq. (3.63); however, Eq.
(3.63) has two appealing features:

e The interaction variable value which is actually realized in the real
system is directly introduced into the local decision problems, so the
measurements used in the local problems are, from the point of view of the
local decision units, used in the most natural manner.

e It is completely decentralized.

The use of an iterative scheme similar to Newton’s for solving equality
(3.64) is discussed in Brdy$ and Michalak (1978) for the linear—quadratic
case. This kind of algorithm requires the existence of partial communication
between the local decision units. It makes the information structure more
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expensive than in the structure required by algorithm (3.63). However, the
completely decentralized lower-level iterative scheme given by (3.63) may
fail in some cases and partial communication between the local decision
units must be introduced to solve Eq. (3.64).

For a given A let us denote the infimal problem solution by u,(A) and the
corresponding control by ¢,(A) where

Cp (M) = C(up(A), A). (3.65)

Let us also denote by A, a set of all coordination variable values for which
u,(A) exists.

A coordinator problem (cp) for this control structure is defined in the
following way:

Find A =(X,, ..., Ax) such that

Q4(A) =min Q(A) (3.66)

A€A,

where

Ox(M) 2 2 Qulaw(A), (1))

Owing to equality
U, (M) = HF (¢, (M), u, (X)) forany AeA,,

the coordinator task is to minimize the performance of the real system with
respect to the controls that are chosen by the local decision units. If the
coordinator problem is formulated as above, then we say that we deal with
decentralized control with full coordination. This kind of coordination was
first proposed by Findeisen (1976) and its main properties have been
investigated by Brdy$ and Michalak (1978) and Brdy$ and Ulanicki (1978).
Another way to formulate the coordinator problem is the following:

Find A°=(AY,...,AY) by using 1BM for coordination of the mathematical
model of the system. (3.67)

In this case we deal with decentralized control with partial coordination. A
solution obtained by using partial coordination is, of course, not better than
that obtained by using full coordination, but it is easier to find. If the
solution of (3.67) is not good enough, it can be used as a starting point for
solving ¢p defined by (3.66).
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3.4.2. OPTIMALITY OF THE SOLUTION

Since the control structure considered above produces a suboptimal solution
of the control problem, we will now discuss the suboptimality properties of
this solution. We will formulate the conditions under which the control
structure with full coordination is consistent (see section 3.33). A control
structure is consistent if and only if the solution found with this structure
equals the real optimal solution when the mathematical model of the system
fully describes reality.

THEOREM 3.10 (consistency conditions). If we assume that (a) the
mathematical model of the system is coordinable by 1BM, and (b) for A = \°
the infimal problem solution is unique, then the control structure with partial or
full coordination is consistent.

Proof. Let us consider full coordination, and suppose that F = F,. From
assumption (a)

A€ AN, A" e € xU) (EAY), a(A"))=arg min Qfc, u)

(c,u)eCU
+{A° u—HF(c, u))
and
(A% = HF(E(A%), (A)).

Let us consider the infimal problem for A = A°. Since A’ € A,, the solution of
this problem exists and it is unique. According to the definition of this
solution (see Egs. (3.60), (3.64), and (3.65)) the following holds:

(A =arg min [Q(c, u, (X)) +{A°, uy (A°) — HF (¢, u, (A"))]

ceClug(A™)
and

up(A%) = HF (¢, (A%), 1, (A7)).

Hence, from assumption (b)

(A =¢(\")
and

u, (A% = (A°).

Since

(e(A"), (A%))=arg min Q(c, u)

(c.u)
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subject to
(c, u)e CU,
u=HF(c, u)
and
YaeA, Q(EA%), a(A?) =Q(c(A), up(A)),

the proof is completed. The proof with partial coordination is the same. [

It follows from the theorem that if we want to apply the control structure
to a real system coordination, we should check whether the model of the
system is coordinable by BM and whether the uniqueness assumption is
satisfied. et us note that the consistency conditions are more restrictive as
compared with IBMF.

It 1s interesting to compare the suboptimality of the solution obtained by
1BMF with the suboptimality of the solution obtained by decentralized control
with full coordination:

THEOREM 3.11. If~we assume that (a) the system is coordinable by 1BMF with
A=A, and for A = A the infimal problem solution is unique, then

Q(cy(A), up(R)) = Q(E(X), G(X)),

where X denotes the solution of cp defined by (3.6(3), and ¢(X) and G(X)
denote the infimal problem solution in 1BMF with A = A.

Proof. Taking into account the same arguments as in the proof of Theorem
3.10, we can show that

and

which completes the proof. [

Theorem 3.11 shows that the decentralized control method with full
coordination is in general no worse than 1BMF, and simple examples can be
constructed in which it is much better. However, it can be applied only to
weakly coupled systems. This is implied by the convergence properties of
the lower-level iterative scheme, which is convergent if the subsystems are in
some sense weakly coupled. This limitation will be discussed in more detail
in the next section. We note also that functional Q, in (3.66) is in general
nonconvex and nondifferentiable, which makes the coordinator problem
rather difficult to solve.
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Theorem 3.11 enables us to apply directly the suboptimality results which
were derived for 1BMF in section 3.3.3. to the suboptimality analysis being
done here. If the assumptions of Theorems 3.10, 3.11, and 3.6 are satisfied,
then ||F(c, u)— Fyl(c, u)|| — 0 uniformly on CU implies that performance loss
Q(cy(A), uy(R)) — Q(é4, HK4(é4)) decreases to zero. Furthermore, if the
assumptions of Theorem 3.11 are satisfied then a rough upper bound on
performance loss can be obtained from Eq. (3.37) if (), ﬁ*(X) is replaced
by ¢y (A) and u,(A). A more precise bound has not been developed.

3.4.3. PROPERTIES OF THE INFIMAL PROBLEM

In this section the conditions under which the infimal problem solution exists
and the lower-level iterative scheme converges to this solution will be
derived. To simplify the analysis, U, €, and % are assumed to be finite-
dimensional Hilbert spaces.

Existence of the solution

It was pointed out in section 3.4.1. that there is an equivalence between the
infimal problem solution and the fixed point of mapping HK(¢(-, A)). This
mapping is the composition of mappings é(-, A), K, and H. Mapping H is
simply a matrix. The interesting properties of mapping K, can be easily
investigated using an implicit function theorem. Hence, it will be assumed
that K, is continuously differentiable. For mapping ¢(-, A), the problem is
more complicated and requires a special discussion. We will start with the
formulation of the conditions under which ¢&(-, A) is continuous. Let A be
fixed in A,.

THEOREM 3.12 (continuity of é(-, A)). If we assume that for a given u and for
any i€ 1, N,

1. Functional Q,,.q4; is continuous on 6, X U,,
2. Set CU,; is expressed by a finite humber of functional inequalities, i.e.

CU, ={(c;, w) €€ X, : h,‘(Cw u)=0,je$;}

and is compact,

3. Vjed h;is continuously differentiable on 6, x U,

4. (Vue UNVje$) (-, ) is convex on €,

5. (A8>0)(Yuf — u, uf # u;)(A subsequence {u*} of {u} such that (Yc,
from the boundary of C,(u*))

inf {lc¥: ¢* € 0 Minax (€ u*)} = 8)
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where 3 hi,.. denotes a subgradient of a functional

max

himax(Ci, u;) £ max {hj(ci’ ui)},
i€

with respect to ¢,

then mapping (-, A) is continuous in u.

The proof of this theorem is long and can be found in Ulanicki (1978).
Other conditions under which é(-, A) is continuous can be derived using the
results given in Fiodorow (1977).

Based on Schauder’s theorem (Kantorovich and Akilov 1964), we can
formulate sufficient conditions for the existence of the fixed point (or the
infimal problem solution) of HK(é(-, A}) as follows:

1. Set U° is compact and convex,
2. Mapping HK,(¢(:, A)) is continuous on U°,
3. HKLE(C, MU < U°.

Since U°=TL,(CU), assumption 1 is satisfied if CU is compact and convex.
The conditions under which assumption 2 is satisfied were given in Theorem
3.12. Assumption 3 is difficult to check except when U®=a. We can derive
other sufficient conditions for the existence of the infimal problem solution
by looking at the existence problem from the point of view of perturbation
theory. First we will formulate the following general lemma.

Lemma 3.5. If continuous mappings T: A —q and Ty: A — A are given,
where A < such that

1. intA+Q,

2. There exists a point i€ int A such that T(i)=0,

3. There exists neighborhood V(1) of & such that mapping T is a
homeomorphism on V' (i),

then the following holds:

(Fe, >0)(V0<e < )(IE5>0)

The proof of this lemma is given in Appendix B, section B.4.
We can formulate the following sufficient conditions using Lemma 3.5.
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THEOREM 3.13. If we assume that

1. imU#Q,
2. For a given A, a model-based infimal problem has a solution ug(A),
ie.,

up(A)=HK(E(up', A))
and
ulA)eint U(’,

3. There exists neighborhood V(up(A)) of up'(A) such that mapping
I-HK(E(-, A)) is a homeomorphism on V(u (/\)
4. Mapping I-HK4(é(-, L)) is continuous on V(uy(A)),

then the following holds:
(e, >0)(V0<e <g,) (36>0)
(Ve e e, M)V (uy(h) [IKxlc) - K(o)|<8) >
(Qup(X) € U A (luy (V) — i (V| <€)
Proof. Let us note that for any ue U°
lu—HK(é(u, A))— (u— HK(é(u, M| <||HIIIK(é(u, L)) — Ky(é(u, M)l

Hence, if we set

T(u)=u—HK((u, A)),

Te(u) = u—HKy(E(u, A)),

u=up(A),

and

A =TV (ug'(A))
then the proof of the theorem will follow directly from Lemma 3.5. [

Theorem 3.13 gives the sufficient conditions for the existence of the infimal
problem solution in terms of the properties of the model-based infimal
problem. Thus, roughly speaking, if the model-based infimal problem has a
solution and the operator HK(¢(-, A)) is a local homeomorphism, then the
infimal problem solution exists and it continuously depends on the difference
between model and reality expressed by ||Ky4(c)— K{(c)||. It is very important
that we can check whether assumptions 2 and 3 of Theorem 3.13 are satisfied,
since they concern the mathematical model of the system. To verify assump-
tion 2 we can use Schauder’s theorem. Condition HK(¢(-, ) (U< U, in
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Schauder’s theorem, can be checked, since mapping K is known. The
continuity of HK ¢é(-, A)) may be checked with Theorem 3.12. The condi-
tions under which assumption 3 is satisfied are given in Appendix B, section
B.7. To derive such conditions we cannot use an implicit function theorem
because operator ¢(+, A) is in general not differentiable. On the other hand,
application of Theorem 3.13 is limited to situations where the infimal
problem solution belongs to the interior of U°.

The convergence conditions

The sufficient conditions for convergence of the lower-level iterative scheme
will be derived using Banach’s contraction mapping theorem (Kantorovich
and Akilov 1964). Hence, our main aim is to formulate conditions under
which é(-, A) has the Lipschitz property and to find the Lipschitz constant of
the contraction mapping.

It is easy to find the Lipschitz constant of a continuously differentiable
mapping since the mean value theorem can be applied. Unfortunately,
mapping ¢(-, A) is usually not differentiable, which can be explained in the
following way. For a given value of u, a value of (-, A) is defined as the
solution of some optimization problem (see (3.60)}). An index set of all
active constraints at the solution can change when u is changing in U°.
There exist, however, subsets of U® where the index set of the active
constraints is constant. In the interior of these subsets, ¢(+, A) is differenti-
able under reasonable assumptions; but it may not be differentiable at the
boundary points. Such partial differentiability is the basic property of é(-, A)
needed to find its Lipschitz constant.

Using the Lipschitz constants of &(-, A), found on the differentiability
subsets of this mapping by using the mean value theorem, we will find the
Lipschitz constant of &(-,A) on U°. We will start with the formulation of
certain topological properties of the subsets mentioned above.

Let A be fixed in A,. Let us assume that the topology of U? is
generated from the topology of . It will also be assumed that set CU is
expressed by a finite number of functional inequalities, i.e.,

CU=CU,;x...xCUy
and
CU, ={(c, ;)€€ XU : hi(c, u)=0,je ¥}
for ie 1, N.

LemMA 3.6.  If we assume that

1. Mapping é(-, A) is continuous on U°,
2. (Viel,N)(Vje$,) function h; is continuous on €; XU,
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then there exist separable subsets of U’, U,, ..., Uy, that are open in U°, such
that L

(Viel, L)\Vu',u"e U)I(E(', \))=I(é(u", X))
where 1(é(u, A)) denotes an index set of all active constraints at point é(u, A),
and

O _ L T
Uu'=J U.
i=1

The proof of the lemma is given in Appendix B, section B.5.

In the next lemma we will formulate the sufficient conditions for the
extension of mapping ¢(-, A) from U, on U° iel, L. Let us denote by I,
iel, L, the index set of all active constraints for ue U,.

Lemma 3.7. Let us suppose that for any ucU® and any i€l,L the
following assumptions are satisfied:

1. Mapping &(-, A) is continuous on U°,

2. Functions Qg (-, u, A), hi(+, u)y are twice continuously differentiable
on € for any je UN | &4,

3. The following minimization problem has a solution, say, c¢'(u, A):

min Q,q(c, u, A)

with respect to
h;(c,u)=0,
(1) :
h.,-s(c, u)=0
where
{s - g =1

4. Vectors hlo(c'(u, A u) are linearly independent for all je I,
5. The following matrix is reversible:

[(Q,,wd)!(.(('i(u, A ud+(h(c (A w), w0 Rt (u, A), u)]
hi(c'(u, A), u) :

where
h=(h,....h)

and p denotes a vector of the Lagrangian multipliers corresponding to problem

().
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Then,
1. (Vie 1, L) there exist an open set U°> U° and a continuously differen-
tiable mapping T': U° — € such that

Yue U, Tiu)=2élu ).
If, additionally, (Vue U") the matrices
A = (Omod)(,"('_ h;rc“(héh;r,)ilhé(omod)(, and h;Ailhtl,

computed at (é(u, A), u) are reversible, then
2. (Viel,LY\VueU") the derivative of T' is expressed by the following
formula
Ty(w)=[A ' =AW (h A7*hTY A7 ThI (ke A7 hIH) ™Y
[<Qmod y({,u - hz-::(h:h(r,)71 hg(omad)i}
"""""""""" W

The proof of this lemma is given in Appendix B, section B.6.
We formulate Lemma 3.8 based on Lemmas 3.6 and 3.7.
LemMma 3.8, If we assume that
1. The assumptions of Lemmas 3.6 and 3.7 are satisfied for a given A,
2. Set U’ is convex and compact,
then mapping &(-, A) has the Lipschitz property on U°, i.e., there exists a
constant K(A) such that
Yu'.u"e UY |Jé(u”, M) —Ew', M= K)|lu"—u').

Proof. Let u' and u”e U be given. Because of the convexity of U°, an
interval

[u, u={ucU%u=(1-u'+w” 0=t=1}

is contained in UY. Let us divide the interval [u’, u”] into [u® u'],

[u',u?],...,[u5"" u®], where u®=u’ and u®=u" by using the following
procedure:
1. Set 1,=0,

2. For s>0 determine
t,=sup{telt,_,, 11:(1-Hu' +w"eU,_},
t

and a corresponding point

uw =1—tu' +tu”,
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3. If u®=u" then stop; otherwise set s=s+1 and go to step 2.

Notice that if u,# u” then u, € Ui) such that Uijé Uim for any m <s. Hence
the above procedure is well defined and finite since the number of sets U, is
finite.

For any value of s the following holds:

whuwel, (3.68)

a—1"

Because U" is compact and T%, is continuous on U° for any i€ 1, L (see
Lemma 3.6), the number

K'(x) = sup I Ty Gl (3.69)
is finite for ie 1, L. Thus, from part 1 of Lemma 3.7 and the mean value
theorem, we conclude that

¢, M) = L, M=K M)|lut —us"Y|| forany sel1,S. (3.70)
Using the triangle inequality, we obtain:
éu”, Ay—é@', Ml|=lle’, M) —éw', M)+ ..+ éw®, A) =S, A
=K' —uw)+. .+ Ks llu® —u® =K (M|u"—u)

where
K(\) =max {K"(\)} (3.71)

iel.l.

Hence, the proof of the lemma is complete. [

Notice that formulae (3.69) and (3.71) enable us to compute the Lipschitz
constant of é(-, A) for a given value of A. To compute this constant, we may
also use the results obtained by Hager (1979).

Let us return to the lower-level iterative scheme and notice the following
pitfall. For some k it may be that u* €° and u**' cannot be determined
since set C(u*) is empty. This can happen even when the infimal problem
solution exists. If this solution lies in an interior of U°, then this pitfall can
be eliminated by an appropriate choice of the starting point. If not, then the
iterative scheme may fail. To eliminate this pitfall, we will modify the
scheme. Instead of (3.63), let us consider:

u T =TI o HK 4(E(u*, X)) (3.72)

where Il » denotes a projection operator from % on U°. From the well-
known properties of I1;,. it follows that if HK4(¢(-, A)) satisfies the Lipschitz
condition then I1,;o(HK4(¢(, A))) also satisfies this condition with a constant
no greater than the Lipschitz constant of HK(é(-, A)). Since U°=XN, U?
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where U? e, for ie 1, N (see (3.62)), then
HU“: (IIU“ ..... Hu“),

which implies that the lower-level iterative scheme (3.72) remains com-
pletely decentralized. If we introduce a current projection on set U°, then
all points generated according to (3.72) are in U". We now proceed to the
convergence conditions.

THeEOREM 3.14. If we assume that for a given A € A,

1. There exists an infimal problem solution w,(A),

2. There exists an open ball K(u,(A); r) such that mapping HK (¢(-, A))
satisfies the Lipschitz condition on set K(u,(A); r)N U with a constant less
than one,

then for any initial point from K(u,(A);r)N U the sequence {u“} generated
by lower-level iterative scheme (3.72) converges to the infimal-level solution
Uy (A).

Proof. Let u’e K(u,(A); r)N U* be given. From the assumptions it follows
that

llu' = M = T e HK (8 (u®, A))) = HK 3 (é(up (A), M)
= Mol HK (& (u®, A))) = T ol HK 3 & (uy (). MV < atlle® — u, (A)]

where 0<a< 1.
Hence, u'e€ K(u,(A); r) N U°. Using mathematical induction we obtain that

Vk=1 u*eK(u,(A\);)NU" and |lu* —u,(A)||= a"lu®—u, (V)|
which implies that

lim u® =u,(A),

k—o

and the proof is completed. []

The conditions under which assumption 1 of the theorem is satisfied were
discussed at the beginning of this section. The sufficient conditions for the
existence of the Lipschitz constant of mapping ¢(-, A) were given in Lemma
3.8

To be sure that the lower-level iterative scheme converges by use of
Theorem 3.14, the Lipschitz’s constant of HK4(é(-, A)) must be less than
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one. If it is, then we say that the control system consists of interconnected
subsystems that are weakly coupled. A more precise characterization of
weakly coupled systems can be given only in the linear-quadratic case. The
properties of the set K(u,(A); r)NU® are such that we can call it the
convergence ball of the lower-level iterative scheme. In many practical cases
we know that such a convergence ball exists, but there is no way to find it.
Hence, finding a starting point for the lower-level iterative scheme is often a
problem. One may solve the model-based infimal problem for a given A and
take the solution as the starting point. The conditions under which such a
choice is proper are given in Brdy$ and Ulanicki (1978).

3.4.4. EXISTENCE OF THE COORDINATOR PROBLEM SOLUTION

In this section we will derive the sufficient conditions for the existence of the
coordinator problem solution. For a given u € 9 let us introduce the follow-
ing optimization problem:
min Q(c, u)
subject to ¢ € C(u) and
u=HF(c,u)+s (3.73)

where sisfixedin S(u)2{seU:3cec€ (c,u)e CUAu=HF(c,u)+s} Letus
denote by é(u, s) the solution of the problem. The following lemma charac-

terizes the infimal problem solutions in terms of the solutions of problem
(3.73).

LemMma 3.9, If w, is the infimal problem solution for a certain A € A, then

1. Problem (3.73) is coordinable by 18m and the following holds:
Cp = Uy, §)
where
s = HFy(cy, up) —HF(cp, ).

If the pair (¢, ) is such that

O
I
()Y
—~~~
=
%l
S

where

|

= HF (&, i) — HF (¢, D),

and if problem (3.73) with u=# and s =5 is coordinable by 1BMm, then

2. @ is the infimal problem solution for a certain A € A,,.
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Proof. Part 1: From the assumption, there exists A € A, such that

¢, = arg min [ Q{c, u,) + (A, u, — HF (¢, u,)}]

Clup}
and
u, = HF (¢, uy).
Let us set
s = HF(c,, u,) — HF (¢, u,).
Then
¢, = arg g(nn) [Qfc, u,) + (A, up, — HF(c, u,) — s]
and h

u, —HF(cy, up)—s =0.
This means that problem (3.73) with
U =

and
s = HFy(cy, u,) — HF(cy, ty,)

is coordinable by iBM and ¢, is its solution.
Part 2: Let a pair (c, i) satisfy the assumptions of part 2. Therefore, there
exists A € such that

¢ =argmin [Q(c, &)+ (X, it — HF(c, 1) — 5)]
C(in)

and

This implies that
¢=argmin[O(c, @) +{A, it — HF(c, i1))]
C@)
and
i = HF,(C, ).
Hence, i is the infimal problem solution with A =X, and the proof of the

lemma is finished.

It is now easy to derive the conditions under which the set of all infimal
problem solutions CU, is compact, where

CU, 2 U (c(A), u, (1)) (3.74)

AEA,
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LeEMMA 3.10 If we assume that

Mappings Q, F, and F4 are continuous on € XA,

Set CU is compact,

Mapping D 5(u, s)—&(u, s) €€ where P is its domain, is continuous,
V(u, s) €@ problem (3.73) is coordinable by 1BMm.

bl

then set CU, is compact.

Proof. Since CU, < CU and CU is compact, set CU, is bounded. It will be
shown that it is also closed.

Let us take a sequence {c", u"} which converges to a certain point, say
(c, &), such that Vn=1,2,.... (c", u")e CU,. Owing to Lemma 3.9 there
exists a sequence {s"} such that

c"=2c(u" s")
where
s"=HFy(c", u")—HF(c", u")
and
u"=HF(c", u")+s".
Taking into account assumptions (1) and (2), we conclude that
Vn=1,2,..., (U, s,)€D.

Hence, we can use assumption (3) and obtain

lim s = § = HF (¢, il)— HF (G, &) (3.75)

n—o0

and

u=HF(c, i@)+5. (3.76)
Since CU is compact, point ¢ belongs to set C(i1). Therefore, relation
(3.76) implies that (i, 5) € 9.

Since we know from assumption (1) that mapping é( -, - ) is continuous on
its domain, we also know that

(i, §)=1lim é(u", s")=1im c" =¢.
n—se N>

This equality, equality (3.75), and assumption (4) allow us to use Lemma
3.9, which tells us that (¢, i) € CU,. So, set CU,, is compact since it is closed
and bounded, and the proof is complete. [J

Now we can formulate an essential point of this section.
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THEOREM 3.15 (existence conditions). If we assume that (a) the assumptions
of Lemma 3.10 are satisfied, and (b) set CU, is nonempty, then a solution of
coordinator problem cp of the decentralized control structure with full coordi-
nation exists.

Proof. Let us note that cp (see (3.66)) is equivalent to the following

min  Qfc, u).
(c.w)eCU,
By assumption (a) the set CU, is compact. Since it is nonempty and since
functional Q is continuous, a solution of this problem exists. [

3.5. ITERATIVE COORDINATION WITH DISTURBANCES

3.5.1. INTRODUCTION

In the previous section it was assumed that disturbances were constant
during coordination. It was also assumed that the optimal control problem
for the real system consisted in finding a control that optimized the steady
state of the system. In this section it is assumed that the disturbances are
time-varying and that the system dynamics are fast compared with the
changes of the disturbances. Therefore, we deal with a system that operates
in the steady but time-varying state. The behavior of the system is described
by the following static but nonstationary subsystem equation:

yi() = Flci (1), w(0), z(1), i€ L,N, (3.77)

where z;(t) denotes the time-varying disturbance. We assume that %,, €, U,
and Z, are finite-dimensional Hilbert spaces. Interactions between subsys-
tems are described by the equations

N
w ()= Hyy,(1), iel,N, (3.78)
j=1

in which Hj; are the interconnection matrixes composed of zeros and ones.
Though the system considered is not truly dynamic, there is a large class
of industrial steady-state processes which may be described in the above
manner (Findeisen 1974, Pliskin 1975).
Using compact notations, y=(y,,...,¥n), Cc=(c;,...,cn), U=
(Ug, .. .oun), 2=(2,...,2n), F=(F,...., Fy), the real system equations
may be written as

y(8) = Fule(t), u(t), z(1)),
u(t) = Hy(1),
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where

N N N
yeEY= XY, ce€= X €, UEWU= X U,
i=1 P= .

N
ze¥=x %, Fyu:€xXYXZX -y, H:y—.
i=1

This set of equations is supposed to represent a real physical system and it
is postulated that there exists a well-defined implicit mapping Ky : € X% —
%, such that the outputs of the real system are uniquely determined by
controls ¢ and disturbances z. Unfortunately, in most applications Eq. (3.77)
is not known exactly. Unknown and time-varying disturbances make the
task of constructing precise models of subsystems very difficult. It is a
common procedure in engineering to base the design of a controller on a
simple mathematical model that roughly describes the actual system. Let us
assume then that we have simplified mathematical models of subsystems of
the form

vi() = F(c(t), w(1), Z(1)), ie€l,N, (3.79)

which, combined, give
y(t) = Fc(t), u(t), z(1),

where z(1) =(Z,(1), ..., Zy(1)) denotes the estimation of the unknown func-
tion z(t). As before, F=(F,, ..., Fy), F:€xuxZ%—v where Z2R(z(-)).
It is postulated that the set of equations (3.78) and (3.79) defines an implicit
function K :%¥ X% —% such that outputs K(c, Z) in the model are uniquely
determined by control ¢ and disturbance estimate Z. Let us assume that

there is a performance index of the system Q :€—R which has the following
form

Qlc(0), u(t)) = Z Qi(c; (1), u (1)) (3.80)

where Q, :€; Xy, —R. Finally, let us require that the inputs and controls of
each subsystem satisfy the relation

(¢;(1), w () e CU, iel, N,

which, combined, give
(c(t), u(t)) e CU

where CU= x| CU.
The optimal control problem consists in finding control &(¢) such that the
following Lebesgue integral

J Qe(t), u(t)) di

0
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is minimized subject to the constraints
y(1) = Fylc(0), ult), z(1)),
u(t)=Hy(),

(c(t), u(r)) e CU, almost all te[t,, 1],

(3.81)

é(+)e{c(+):c(-) measurable and essentially
bounded on [, ]}

Note that the optimal control problem formulated as above is neither a
static nor a dynamic one. In terms of mathematical programming, our task is
to minimize some functional on a certain subset contained in an infinite-
dimensional space. However, in terms of optimal control theory, we are
dealing with a static but nonstationary optimal control problem. It seems
that the latter phrasing is the best one. To show this, let us consider the
following problem:

min Q(c, u)
subject to
y = Fx(c, u, z(1)),
u = Hy, (3.82)
{c,u)e CU,

where ¢ is fixed in [, t]. Let us assume that for every ¢ €[to, ] a solution of
the problem exists and let us denote it by ¢(t). What is the relation between
é(t) and é(1)?

ProrosiTioN 3.16. If we assume that the integral [ Q(E(t), @(t)) dt exists,
then ¢(t) solves the optimal control problem.

Proof. Let us take into account any pair (c(t), u(t)) that satisfies constraints
(3.81) such that integral fir Q(c(t), u(t) dt exists. From the definition of &(t)
it follows, that

Viet, ;] QE(), a()=Q(c(t), u(n).

Therefore, using the fundamental property of the Lebesgue integral, we
conclude that

J " 0. a() di = J O(c(t). u(t) dt.

0 [

Hence, the proposition is proved. [J
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The above proposition shows that under reasonable assumptions our
optimal control problem can be replaced by an infinite number of static
problems defined by (3.82) and solved in each instant of time on the interval
[0, t]. These static problems are just the same as those considered in the
previous sections of this chapter. It will be further assumed that the
assumptions of Proposition 3.16 are satisfied. If the disturbance z(t) is a step
function and the intervals of time on which z(t) is constant are long enough,
then the static problems can be solved by one of the methods from the
previous sections. If not, then the situation is much more complicated. We
have two possibilities in general. The first is to solve the static problems
(3.82) in an open-loop manner, that is, to solve the following model-based
optimal static problem in each instant of time:

min Q(c, u)

subject to
y = Flc, u, (1)),
u = Hy, (3.83)
(c,u)e CU.

This problem can be solved by using one of the methods from Chapter 2.
Solving (3.83) requires some computation time and it can thus not always be
used. When it can be used, it gives a suboptimal approximation of ¢(t) in the
form of a step function. In some cases, however, especially if the difference
between F and F, is large and the estimate Z(t) of the real disturbance z(t)
is not good, the open-loop optimal control can be very far from é(t).

The second possibility is to measure some real system variables and use
these measurements in an algorithm generating an approximation of é(t) in
the form of a step function. This leads to a kind of closed-loop control and
probably gives a better approximation of ¢(t) than that obtained using the
open-loop manner. On the other hand, the construction of such an al-
gorithm is not so clear as before. In general, the difficulties are caused by the
fact that in solving problem (3.82) for a given ¢t we can use only the
measurements taken at the moment t; at the next instant we have another
optimization problem in the form of (3.82) because there is another value of
the disturbance variable. Thus, it is quite obvious that the direct application
of the algorithms from the previous sections leads to satisfactory results only
then when the system disturbance changes slowly enough and the algorithm
can track the moving solution &(t) with satisfactory accuracy. The detailed
analysis of the accuracy of the tracking will be given for the 1BMF in section
3.5.3. We will now consider the possibilities for the design of a hierarchical
decentralized control algorithm in the nonstationary case.



245
3.5.2. DECENTRALIZED CONTROL OF NONSTATIONARY SYSTEMS

In this section we will try to adapt the decentralized control structure which
was considered in section 3.4.1 to the case when some disturbances affect
the real system. The presentation will be based on the resulits given in Brdys
and Michalak (1978). For given values of the disturbance, the disturbance
estimate, and the price, z, z, and A, let us denote an infimal problem solution
(see (3.65)) as uy(A, Z,z) and ¢, (A, Z, z). So, the coordination problem cp**
(see (3.66)) tends to minimize the real performance function of the system
subject to price, i.e., it performs the task:

Find a coordination variable A(Z, z) such that

Q(Cb(x’ Z—, Z)v ub(x’ Z’ Z)) = min Q(Cb(A, Za Z), ub(Av Z—’ Z)) (384)
AeAL(Z.2)
where for given z and Z, A,(Z, z) denotes a set of all values of price A for
which the lower-level problem solution exists.

Finding the coordinator problem solution at each instant ¢ €[t,, ¢;] we obtain
a control function ¢, (X(Z(1), z(1)), Z(¢), z(t)) which can be considered as an
approximation of é&(t).

During the solution of the infimal problem a certain number of iterations
on the real system must be performed and we assume that during these
iterations the disturbances are constant. Hence, the disturbances are time-
varying only from the coordinator’s point of view. Let us also assume that
the disturbance is a step function and can be represented as the sequence
{z*}. We introduce the following notation:

QA 2, 2)2 0, (A, Z, 2), uy (A, 2, 2)). (3.85)

Therefore, the best coordination strategy is to generate a sequence {A*} such
that

A<=arg min QA 5 z%). (3.86)
AeA(Z*.zH)
Because an exact form of Qy is not known (F can differ from F, and z* can
differ from z*), it is impossible to generate the sequence {A*} in accordance
with formula (3.86). An application of optimization methods without know-
ing the derivatives used in the stationary case can give unsatisfactory results
owing to changes in z*.
It follows from the above that to construct the coordination strategy more
realistic criterion for generating A* must be formulated. Let us consider the
following one:

Q*()\k, Z_k+l, Zk+])>Q*(Ak+], Z_k+1, Zk+1). (387)
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This condition means that we will gain by changing A* to A**! in relation to
the case when A*"! =)k

Now we present an algorithm that generates prices A* that are, under
suitable assumptions, very close to those satisfying criterion (3.87). This
algorithm is designed assuming that Qy is a quadratic. The selection of
prices A* is done in the following way:

AT = —QrL (AR, 29T+ Ak (3.88)

where Q, (A, z) is defined by (3.85) taking F = F4 and z = Z, and 7§ denotes
a step coefficient in iteration k. Notice that the direction —QZ,, (A%, z*) in
iteration k is defined only on the basis of the model. To find the step
coefficient 75 we have to make some measurements of the real system.

Let us introduce the following notations. The intermediate iterations after
the main iteration k will be denoted by k; where i =1, 2. Disturbances and
prices will be also denoted with the adequate indexes. The step coeflicient
7% in iteration k is determined in the following way. Let us consider the
performance Q.( -, Z, z) along a line determined in ¥ by direction Q’,,(A, Z)
and a point A. Owing to the quadratic form of Qu( -, Z, z), the following
holds:

q(e,2,2)2 QA — QA 2), 2, 2) =ae* + be + ¢ (3.89)
where € € (—o, +) and a, b, and ¢ are real numbers. Notice that if
q(e, 2%, z5)=a,e*+be + ¢4 (3.90)
then
¢, =4q(0, 2%, z%)= Qu(A¥, 2%, z¥). (3.91)

The first intermediate iteration consists in finding price A*: according to the
rule

A =—QLa A, 29T+ Ak, (3.92)

where 7, is a given step coefficient.
Next, one finds the lower-level problem solution c, (A1, z%1, z*¢). Of course,
there exist real numbers a,, b,, and ¢, such that

q(e, 2%, z)=a,e*+ bye + ¢, (3.93)
and
q(ry, 2% 2"y = a,72 + b1+ e = QA 24 2. (3.94)
In the second intermediate iteration, price A*: is found from the formula

Ae=—Q7 (A%, ZF)m,+ Ak (3.95)
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where 1, is a given step coefficient such that 7,7 7, and then the lower-level
problem solution ¢, (A%, %2, z*2) is determined. As above, there exist real
numbers as, by, and c; such that

q(e, 2%, z5) = aze* + bse + ¢, (3.96)
and
q(12. 2%, 2%) = @313+ b3+ 03 = Qg(A 2, 2%, 2%2), (3.97)

The step coeflicient 7% is found from the relations (3.91), (3.94), and (3.97),
according to the formula:

Ti:‘ﬁ’ (3.98)
where
d_(q(Tl,Z"‘*,zk*)—q(O,ik,Z"))Tz—(q(Tz,Z"‘azk2)—q(0,2"‘,2"))'rl
T%Tz_Tng
(3.99)

and

5 : 0,

fodtn. 228790, 25 29 o (3.100)

Ty

Hence, iteration k of the coordination strategy consists of two intermediate
iterations given by formulae (3.92) and (3.95), on the basis of which the step
coefficient 7% is determined; the main iteration defined by formula (3.88) is
then found, which gives a new price A**'. The real performance value at this
point equals Qu(A**!, 251 z%*1), What is the difference between A**! and
a point minimizing Q*( ,ZR*1 25Ty on  the set {AeaA=AF—
Q. (AX, 24), £ e(—, +0)}? To answer the question, let us note that there
exist real numbers a,, b,, and c, such that

qe, 25", 2" ) = ae’+ bye +c,. (3.101)

Hence, this minimizing point equals A* —Q,, (A%, z¥) - , where
F=——t (3.102)

The relation between the step used in (3.88) and the step ¥ which is really
optimal is given by the following lemma.
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LemMa 3.11.  Let us denote:
a;=a,+8a,, a,=a,+éa,+ba,,
b;=b,+8b,. b,=b,+ &b, + 8b,,
¢, =C,+8cy, C3=¢;+ 8¢, + 8¢y,

where 8qa;, b, and 8¢, i =1, 2, 3, 4, represent changes of coefficients a;, b;, c;,
i=1,2,3, 4 in (3.90), (3.93), (3.96), and (3.101) caused by changes of the
disturbance and the disturbance estimation. Let us assume that fori=1, 2, 3,
47

|8a;,| <Aa
|8b;| = Ab (3.103)
|8¢;| = Ac.

The following then holds:

_ A
206[(1d@ — asly, +24a +2|a|(71|a P 2Ab)
T

ol 24— 1al(la - asln + 20)

(3.104)

where

T Ac+TT,Ab+ 21 Ac+ 31,Aa

a—a =
l Zlmax T%Tz _ 1_%1_1

Proof. From (3.91), (3.94), and (3.96) we have:
c;=q(0, 2%, z%),
a,Ti+ by + e+ 8¢, =q(r, %, 24,
and
(ay+8a,)7T5+(by+ 8b,) T, + ¢, + 8¢, + 8¢y = q(15, 252, 25%2).
Hence

(q(Tla Zkl’ Zkl)_q(ov 2k7 Zk)_scl)TZ_(q(TZ! ZkQ’ Zkz)
—q(0, 2%, z*)— 8¢, — 8¢, — da, 73— 8b, 7)) T,

2 2
T1T, — T2T,

a, =

From the above and formula (3.99) it follows that

ld,—a I<72Ac+TszAb+2TlAC+T§TlAa
17 Ao = .

2 2
TIT2— T2Ty

(3.105)
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The relations (3.94), (3.100), and (3.105) imply that

~ Ac
lb_b2|STl l& _a2|max+4
1

and
- A
16— by =7, |G — ayly,, + = +2Ab,
71
ld - a4| = |("i - a2|max+2Aa'

Hence, using formulae (3.98) and (3.102), we can easily derive inequality
(3.104). 0O

Note that if the disturbance and the disturbance estimation are constant
during iteration k, then Aa=Ab=Ac=0 and, from Lemma 3.11, 75=7%
regardless of the difference between the system model and its mathematical
description. Note also that if Aa—0, Ab—0, and Ac—0, then 7',};—)1’: A
fundamental property of the decentralized control algorithm is formulated in
the following theorem.

THeOREM 3.17. If we assume that

z% and z* are constant for all k =0,1, ..., and equal to Z and z,
Ab =9,

(Fp>0)(VAeAy) [|QfaA 2,2) = Qra(A, 2)ll=p,

AA>0 (A=X), Qb (A — )\))>A A= X2

el

where X minimizes Qu(-,2,2) on L, ie., the functional Qu( -, z, z) is strictly
positive definite on U, then

1. For any £ >0 there exists k, such that A% EK()\ (p/A)+¢€), where
K(X; (p)A)+¢) denotes an open ball with center at A and radius equal to
(plA)+e.

2. Sequence {Qu(A*, Z, z) converges monotonically.

Proof. Consider A and £ >0 such that
H)\—)(|\Z—§+e.

From assumption (4) the following holds:

105X, 2, 2 = Qi A =X)| = A A = X||=p+ As. (3.106)
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Let us consider an angle between Q4,(A, z, z) and Q!,(A, Z). From the
scalar product properties it follows that for any a, bed

la— bl =<a—b, a—b)=|al?—2(a, by+|b|.
Thus, taking into account assumption (3) and inequality (3.106), we obtain
<Q=’k)\()\s Z,z), Qla(A, IN=a

where a =(p+ Ae)Ae. From the above relation it follows that on the
outside of the ball K():, (p/A)+¢€), the directions Q7. (A, Z) are those of
uniform improvement. Also, from assumption 1 and consequently from
Lemma 3.11, 7% =7 Thus, the step coefficients 7§ are converging step
coefficients, and part 1 follows from the convergence theorem for an
algorithm that uses the directions of uniform improvement and the converg-
ing step coefficients (Goldstein 1967).

To prove part 2, we note that from assumption 4 the sequence
{Q4(A%, z, z)} is bounded from below and by equality 74=7 it is not
increasing. The proof of the theorem is completed. [J]

The theorem gives an asymptotic upper bound on performance loss if a
disturbance jumps from one value to another and is constant for a long time.
This bound is given by the radius of the accuracy ball K(X; p/A). It seems
that Theorem 3.17 describes the behavior of the algorithm during coordi-
nation when functional Qu( -, Z, z) is quadratic and the disturbance has the
form of a step function that does not change frequently. The situation is
much more complicated when the disturbance changes frequently. Only
partial solutions have been found in this case; one of them is given below.

THEOREM 3.18. If we assume that

1. V(gu)e6xaU F(c, u)=Fylc, u),

2. Forany k=0, 1,..., z"€ Z<% where Z is compact, z*=z*, and
8>z if k-,

3. Functional Q,,(-,z) is convex for any zZ from Z and a functional
Q...(A, *) satisfies the Lipschitz condition with a constant independent of A,

4. Sequence {A\*} is generated according to the rule

)\k“:)\k_ka:M()\k’z-k), k=0,1,...,

where p* denotes a positive step coefficient in iteration k,
S. The step coefficients are such that

|z T —zF =8 >0 if ko

and
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6. The sequence {A*} is bounded,
7. VzeZ A Z2)=U

then the following holds

lim [Qu(AX, 2% z%)—  min  Qg(-, 2%, 2%)]=0.

k—»oo AEAL(Z*.2%)

Proof. The proof follows immediately from a general theorem given in
Appendix B.8. Let us note that assumption (2) means that we can measure
the current values of the disturbance exactly. The theorem seems to be a
good starting point for further research.

3.5.3. APPLICATION OF THE INTERACTION BALANCE METHOD WITH FEEDBACK
TO NONSTATIONARY SYSTEM COORDINATION

To simplify the analysis, it is assumed that a disturbance estimation Z(¢) is
constant an [t,, t;]. Hence, Z will be omitted as an argument of the operators
F and K. We also assume that t = +. Note that the analysis here is based
on Ruszczynski (1979).

Let us consider the following iterative, hierarchical control scheme. In
iteration k local decision unit i solves its local problem Lpf of the form:

For a given value A* €9 of the coordination variable find both control and
interaction

(& (A%), 4, (A*))=argmin Q_q( -, -, A¥) (3.107)
cu,

where

N
V(e u)e € x U, Qmodi(cis ui)é Qi(c;, ui)+</\:(# u)— Z (l\,’-(, HjiE(Civ u)
i=1

and
AR =A%, . AR,
The coordinator generates at times fg, t;,..., &, ..., the prices A°, AL
A, ..., according to the rule
AT = MK + eERG(E(A), a(A%), z(f.y)) for k=1,2,..., (3.108)

where ¢ is a sufficiently small positive number, E is the appropriately chosen
linear bounded operator, and R4(¢(A%), a(A*), z(t..,)) denotes the discoor-
dination at time ., that is,

R*(é(/\k)» ﬁ(Ak), Z(tk+1)) = ﬁ(/\k)— u*(é(/\k)v Z(tk+l)) (3.109)

where
uglc, z(£) 2 HK «(c, z(1)).
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The initial price A" is found from the coordination model of the system at
t=1t,.

Owing to the time needed for data transmission and computation, the
control applied to the real system equals

c()=2¢" for telt,, t,]
and

AT for fo=t=t +T,
(t):{ ( ) x x

k=1,2,..., (3.110)
A%y for ftT<t=i,

where 7>0 denotes delays due to on-line computation and communication
between levels. Thus, the operation times ¢, ¢,, ... should satisfy the ine-
qualities

tk+12tk+T7 k:1’2!~~'7 (3.111)

where T=r1 These inequalities include all delays (among which delays
caused by transient processes play the fundamental role) and technological
requirements, which limit the frequency of control changes.

If the disturbance is constant over [¢,, ] and if t; is sufficiently large, then
the discoordination norm can be made as small as desired. This follows from
the convergence analysis of the coordination strategies for IBMF given in
section 3.3.5, where suboptimal control has also been discussed. If the
disturbance is time-varying, then all we can do is try to keep the current
discoordination norm as small as possible by choosing the times for coor-
dinator intervention appropriately. In other words, we try to satisfy the
coordination condition of 1BMF at each moment ¢ in the interval [1,, &].

To examine this problem, some assumptions limiting the class of possible
disturbances must be made. We will assume that we know the range and/or
a bound on the rate of change of disturbances. Therefore, we shall assume
that there exist a function ¢ :R—R. and a set Z = Z such that the class ® of
all possible disturbances may be described as follows:

O ={z(-)eZ®:p(z(1"), z(t") = o(1") — @(t') for all
t',t"€[ty, ], such that ¢’ =¢"} (3.112)

where p(-,-) denotes a metric in Z.

Let us assume that the operator E has been chosen in such a way that
there exist in 9 a norm, say |- |l,. equivalent to ||| and a positive real
number q <1, such that the following inequality is satisfied:

(Vk=1,2,... ) VzeZ) ||[ERg (A", a(A**h), zl|,
=q | ER4(6(A%), 5(A%), zlly. (3.113)
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This means that for any disturbance that is constant during coordination, the
imbalance norm is reduced uniformly on the disturbance value. We show
how to construct an operator E in section 3.6.

Continuing with the design of the algorithm, we introduce an operator D,
D :€xuxZ—y as follows:

D(c,u, z) 2 HK(c)— HK(c, z). (3.114)

Notice that operator D describes a difference between the mathematical
model of the system and its mathematical description. Let us assume that
with respect to a disturbance this difference satisfies the Lipschitz condition
uniformly for a control and an interaction. A positive real number must then
exist such that the following inequality holds:

(Vz,, 2,€ Z)(V(c, u) e € X U) |E(D(c, u, z)— D(c, u, 2o =Bp(z1, 22).

(3.119)
The simplest way to choose the intervention times is to choose a certain
interval T, = T and update the price at times t, =t,+kT., k=1,2,.... The

following theorem gives the bounds on the discoordination norm when the
intervention times are chosen in this a way.

THEOREM 3.19. Let there exist constants d, >0, d, >0 such that for t =t, (a)
e(t+T.)—@(t)=d, and (b) @(t+7)—@(t)<d,. Then for any z(-)ed

Bd,

(1 lim ||n(t)||051 +Bd,.
t—o -q
(2) If (g o= Bd,/(1 - q) for some k,, then

Im®llo=Bd, /(1 —q)+Bd, for all t=¢,

where n(t) denotes a discoordination at time t.

Proof. Let us define a function A:[t,, ©)—R as follows:
A(to) = ER4(E(X°), &A%, z(t))llo = n(to)
and for k=1, 2,...,

A(t)é{A(tkH Ble()—¢(t)) for te(h. b +7], (3.116)
qA(t)+Ble(D—e(t)) for te(t +7, 4]
It may be easily checked that for all t =¢,

(0l =A(). (3.117)

Indeed, for some k=1 let
“n(tk)”()SA(tk)-
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Then, from (3.110), (3.112), and (3.115), the following inequalities hold for
all te(t, . +7]:
(Ml =IER(EA*Y), &(A*7Y), z(D))llo =[[ER£ (A", (A% ™),
z(0) = ER4 (A" ™), (A%, z(£)) + ER(e(A* ™), (A ™),
z(t)llo = Ble(t) — @ (t) +m (8l = Alk) + Be(t) — @(£)) = A1).
If te(t +1,t.,.], then according to (3.110), (3.112), (3.113), and (3.115),
the following is true:
In(®llo = ER(&(A%), &(A¥), ()]l = |ER£(E(A*), G(A*), z(1))
—ER4(E(A%), a(A%), z(6)) + ER(¢(A%), 4(A%), z(t )l
= Ble(t)— et ) +q [ER&(EM ™Y, a(A* ™), z(t)llo
=qfm(s)llo+ Ble () — o(1)) = qAt) + Ble (1) — ¢(8)) = A(1).
Hence, inequality (3.117) holds for all t=¢,. Let us note that for te
(e 1+t +7]
A=At +1).
Consequently,

lim A(t) = lim A(t, +7). (3.118)

t—o k—oc

It follows from (3.116) that
A1) = qA(6) + B(e(t1) — @(1)).

Hence
- — ) Bd,
lim A(tk)s1 Iim (et +T.)— (1)) < . (3.119)
k—x —q t—= -
According to (3.116) and assumption (b) of the theorem
At + 1) <At )+ Bd,. (3.120)
Thus, we obtain from (3.118), (3.120), and (3.119) the inequality
— d
lim A(t)5%+3d2, (3.121)

which, together with inequality (3.117), proves part 1 of the theorem. In order
to prove part 2, let us observe that if for some k =k,

Bd,
1-—

ImCtollo= (3.122)
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then, according to (3.110), (3.112), (3.113), (3.115), and assumption (a)

Im(teeillo = lER&(E(AF), a(A*), z (. Do
=[ERy(e(A"), a(X*)z(t.1))
— ER4(&(A%), &(X*), z(1))+ ER4(E(A%), a(A%), z(5))l
=Bd, +q |ERx (A", a(A* ). z (8o

Bd,

=Bd,+q |n(t)llo= 1—

_Bd,
1—-q

and (3.122) holds for all k=k,.

Therefore, to prove part 2 it is enough to prove that

“n(t)uo—— for t€(t, ti) (3.123)

where k is fixed and k =k,.
Let te[t, t, +7]. Then, according to (3.110), (3.112), (3.115), and as-
sumption (b)
I(0llo = |ERx(EM*Y), (A ™), z(t)o
=[ER (M), a(A ™), 2(1))
— ER (N, (A ), 2(6))+ ERx(EA ), aA* ™), z(t)lo

<pa,+ B

and (3.123) holds. Let te(f +, t.,). Then, according to (3.110), (3.112),
(3.113), (3.115), assumption (a) and the above inequality taken at t =1, + 1,
the following hold

(Ol =|ERx(E(A%), a(A%), z(D))lo
=|ERx(¢(A"), a(A%), z(1))
— ER4(6(A"), 1(A), z(f + 7))+ ER&(E(A5), 1(A%), z (8 + 7)o
=Bd, +q |ERL(EATN, aA ™), z(t+ 1)

=pd, +Q(Bd2+ lﬁii;)

]B : +qBd,
q

d,
<pd,+ £

q
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and (3.123) is also true for this t. Hence, (3.123) holds for all t e (&, t.1),
and part 2 is proved. [J

The theorem gives an upper bound for discoordination that may occur in the
nonstationary system when it is coordinated at a constant frequency by the
interaction algorithm. This bound will be called the tracing accuracy. It
follows from part 1 that the tracing accuracy depends on the intervals T. and
1. If ¢ is uniformly continuous, then the tracing accuracy may be improved
by decreasing T.. Still, inequality (3.111) must hold and consequently the
tracing accuracy cannot be brought to zero. However, by simultaneously
decreasing T,, T, and 7, any desired tracing accuracy may be obtained. In
contrast, if noncontinuous disturbances occur, decreasing 7. does not
necessarily improve performance; the tracing accuracy is limited by jumps of
the function ¢. Finally, let us observe that the method is less efficient as the
bound on the rate of change of the disturbance becomes large. In order to
obtain the desired tracing accuracy one should take a very small T, and
update the price frequently, irrespective of the actual disturbances. The
efficiency loss can be overcome if the times at which the coordinator
intervenes are determined on-line on the basis of current observations of
discoordination. Of course, the cost of on-line measurements and data
transmission is large compared with operation based on fixed intervention
times. On the other hand, the global control cost, which is not considered
here, may be less.

Since the total discoordination is the product of local differences #;(A)—
us(é(A), z(1)), the observations may be carried out in a decentralized way
by taking advantage of the special structure of the control system. Interac-
tions in the real system are observed by the local decision units, and the
coordinator comes into operation when one or more local discoordinations
become excessive. The control algorithm organized on this idea will be
called the discoordination stabilization method. o

Let each local decision unit have its defined tolerance v, =0, i€ 1, N. The
system is supposed to work well if

“ﬁi(/\)_u*i(é(/\)a Z(t))lliS'Yi for iel, N,

where || - ||, denotes a norm on ;.

Next, let T, denote the distance between successive times at which
measurements of local inputs are made by the local decision units.

We assume that k — 1 iterations have been executed and the current price
and control equal A**, &(A*"). The outline of the discoordination stabiliza-
tion method is as follows:

Step 0 Index j is set equal to 0.
Step 1 Local decision units at _,; =t _;+T+j- T, measure inputs
Ui EA*7Y), z(,_ ;) of their subsystems.
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Step 2 If for every ie I, N
(3, (A* D) = ug @AY, 2z DM =¥ (3.124)

then Step 1 is repeated with j=j+ 1. Otherwise, the coordinator is notified
and Step 3 is executed.

Step 3 The coordinator defines # =1, , ;, gathers from all local decision
units the discoordination @;(A* ") — u4,(é(A*""), z(t.)) and updates the price
according to (3.108). The new price A* is sent to the local decision units.

Step 4 Local decision units solve their problems (Lp*) defined by
(3.107), save ;{A*), and apply controls ¢ (A*) to the real system. Step 1 is
repeated with k=k+1 and j=0.

Before proceeding to the detailed analysis, let us observe that there exists a
constant y such that

(o, —usli <y forevery iel, N>(|E(@—unlo=7¥) (3.125)

with 4= (0, ...,0y), Ug=(Usgr, ..., Usn)-
Briefly, the existence of ¥ results from the equivalence of the norm || - ||,
and || - || on 4 (recall that |ul| =Y, lwll, for u="_(uy, ..., uy)).

Taking advantage of the constant vy, we present the following theorem.
TueorREM 3.20. If we assume that

1. There exist constants d; =0, d, =0, and d,=0 such that for all t =y,
e(t+T)—e(t)=d,,
e(t+7)—e(t)=d,,
e(t+ T, )—et)=d,.

2. y=(B/(1-g))(d, +qd,),
then for any z(-)e®d
L. llm\ln(t)llo ¥+ B(d,+d3) (3.126)

where 1(t) denotes the discoordination at time t.
2. If for some k=0
18 A (e + T) — usleA (6 + 1)), (b + T, <7, forall iel,N,
then for all t=t +T
In(®)llo=7¥+B(dz+ds).

The proof of this theorem is technically the same as the proof of Theorem
3.19, and is left to the reader. It can be found in Ruszczynski (1979).
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Theorem 3.20 gives a bound on the tracing accuracy attainable by the
discoordination stabilization method. In order to obtain the desired tracing
accuracy A, one should find y=<A—pB(d,+d;) according to (3.126).
Moreover, ¥ should satisfy assumption (2). Next, the v, i€ 1, N, satisfying
(3.125) should be chosen. The discoordination stabilization method with
these v, provides the desired accuracy A. It does not follow from this
theorem that each local discoordination is kept below its vy, According to
assumption 2 and (3.126), the tracing accuracy is limited by A, =
B(d; +d;)/(1—q)+ Bd, no matter how small the vy, have been chosen.

As a matter of fact, the coordination algorithm described in this paper can
be used with any intelligent procedure for determining intervals of opera-
tion. Once an algorithm having contraction mapping properties (see relation
(3.113)) has been evaluated, the problem of tracing the moving solution of
the coordination problem is no longer difficult if the rate of change of the
disturbances is bounded. If disturbance estimation z(t) used in the model
(see Eq. (3.79)) is time-varying, then the analysis is more complicated but
does not involve any new concepts and is therefore omitted.

The description of disturbances, used in this section seems to be quite
close to the description of disturbances in engineering. To avoid confusion,
noises due to inaccurate computations and measurements have been ig-
nored. There is every indication, however, that bothi measureinent and
computational noises may be taken into account, and ideas suggested by
Kheysin (1976) may be useful in further studies.

Simulation results

Let us consider the system described in Figure 3.5. The subsystems are
described by the following equations.

Subsystem 1

Y1(t) = C11(1)+ C12(t)+2u1(t)+ le(t)(cu(t))z
+2z 501 (1) — €12() = 2)u, (1) + z,15(1).

Subsystem 2

Va1 (1) = €21 (1) — C2(8) + Uy (1) — Buan () + 25, (8),
Voo (1) = 2¢55(1) — €23(1) =tz (1) + 2Upy(t) + 255(1).

Subsystem 3

ya(t) = cs()+4us(n)+ z3(8)c5(t) + z32(1).
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FIGURE 3.5 The structure of the simulated system.

The structure matrix H has the form

0100
1 0 0 0
H'0001
0010

We have access to an approximate linear model of the form

Subsystem 1
yilt) =c (1) + () +2u(t).
Subsystem 2
Y21(8) = €21 (1) = €55(1) + uz, (1) = 3uas (1),
Va2 (8) = 2¢55() — €o3(1) — uay (1) + 2upy(2).
Subsystem 3
ya(t) = c5(t) +4u,(t).
The performance function is defined by
Q(c, u)=Q{cy, u)+ Qx(cy, uy) + Qslcs, us)
where
Q. (cp, u) =(u, —1)*+(c; )’ +(c1n—2)%,
Q,(Ca, Uy) =2(C10—2)? +(€22)* +3(Ca3)* + Mty ) +{Un)?,

Qslcs, Uy) =(c3+ 1%+ (u;— 12
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Feasible sets for the subsystems are described as follows.

CU, ={(cy1, €12, €13, Uy) i ¢py +u, =1.006},
CUzzRS,
CU3 :{(C3, u3) : C3+ u3 2_'0.5}.

The behavior of the real plant was simulated on the interval 0=t =150. The
disturbances z,(t), z,(t), z4(t) were obtained in a random number generator
such that for all t=1, 2,...,150 and all i, §

Zij(o)zos
|Zi,'(t+ - zij(t)| =0,
|z (t)|=w,

where v is the limit of the rate of change and w is the range of disturbances.
Examples of the disturbances obtained with v =1 and w =10 are shown
in Figure 3.6.

100 \A J 150 1

-3k

| _

FIGURE 3.6 Examples of disturbances used in the simulation.
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FIGURE 3.7 Behavior of the discoordination norm in the interconnected system.

In the simulation study, the range and rate of change of the disturbances
were fixed at v=0.015 and w =1.0. The discoordination norm was com-
puted from the formula

[(al — Uy, i)2+(a2l - u*21)2+(ﬁ22— u*22)2+(u3* u*2)2]1/2
The step size £ in (3.108) was fixed at 0.8.

A real system, when controlled by a constant, model-based optimal
control &(A"), exhibits the discoordinations indicated in Figure 3.7. When
the coordinator intervenes at fixed intervals, the tracing accuracy is much
better, as shown in Figures 3.8 and 3.9. However, the method becomes less
efficient when the frequency of intervention of the coordinator decreases,
which can be seen by the difference between Figures 3.8 and 3.9. The
discoordination stabilization method overcomes this difficulty, as indicated
in Figure 3.10.

E I A O B D B
o}

c03- |
'*goz~/ // ~
c | |

2 T T T A A

100 150 t

FIGURE 3.8 The discoordination norm when the coordinator intervenes at fixed
intervals.
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FIGURE 3.9 The discoordination norm with less frequent interventions by the
coordinator than in Figure 3.8.

Finally, the correlation between discoordination and real system perfor-
mance in all the above experiments was studied. The value of the perfor-
mance on the interval [0, 150] was computed according to the formula

150

Q= ). QEA(0), ug(A (D)), 2(1))).

t=0

The squared discoordination in the coordination process was calculated from
the formula

7= 2 2 0) = ug @A (0), 2(0).

0.4l _
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©
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0
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FIGURE 3.10 Discoordination stabilization.
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FIGURE 3.11 Correlation between discoordination and performance.

The results are collected in Figure 3.11. It follows from the figure that the
coordination improves as the discoordination decreases. Though the coordi-
nation condition G(A)— ug(A, z) =0 yields a control that is not necessarily
optimal, it still is a good basis for an efficient algorithm.

3.6. FEASIBLE CONTROLS

3.6.1. THE SAFE CONTROL CONCEPT

The coordination procedures presented in the previous sections ensure the
feasibility of the control for the real system only after the iterations. Can we
avoid an excessive violation of the real system constraints at any stage of the
control iterations if we know the limit of the difference between the model
and reality? We can if we are able to generate a control that is feasible
for the real system on the basis of this limit.

Let us assume that the subsystem model equations contain parameters
o ed;:

vi=F(c, u, ), 1€1,N,
and that the models of the constraint relations contain parameters 3; € %;:
G u, B)eS, c ¥, iel,N.

We assume that the real system relations are the same, whereby the system
parameters have some fixed values ay;, Bxi. If we do not know ay;, By, we
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cannot properly adjust «;, 3; in the models. We shall, however, assume that
we know the sets of;, B;, in which ay;. B4; are contained.

DEFINITION 1. We say that control € is a (&, B)-feasible control for the model
if and only if the following relations are fulfilled:

G( a,B)eS

(3.127)
(G, A)ECU, <€ XU
where
a=(a,....an)ed=oA; X ... XAn,
B=(B,..., B =B, X ... XRB
B=(B, BNIERB 1 N» (3.128)

S=8X ... X8, €Uy =CUo1 % ... XCUyn»
G(c, i, B_):(GI(EI’ Uy, B_l) ... Gn(n,s 17188 B—N))

and where ii is the result of control € in the model of the interconnected system
when variable « takes the value & in set of, that is, it satisfies the equation

u=HF(¢,a,a) giving u=HK( a). (3.129)

Set €4, in the above definition may be a cube in which the values of (c, u)
are bounded. From this definition it follows that control ¢ satisfies all the
local constraints, the subsystem equations, and the structure equation in the
model when variables «, B take the values &, B in sets & and 3.

DerINITION 2. We say that control € is a feasible control for the real system if

and only if the relations (3.127), (3.128), and (3.129) are fulfilled with &, 8
equal to ay, Bx.

Derintmion 3. We say that control ¢y is a safe control if and only if it
is («, B)-feasible for the model for every (a, B) € A X AR.

It is evident that safe control ¢, is feasible for the real system because
(ax, Bx) € A X B. So the feasible control for the real system could also be the
safe control and can be found using only the mathematical model of the
interconnected system. The following discussion of the existence of a safe
control and methods for finding it is based on Brdy§ (1975a, 1975b). We
assume that ¥, 4, €; are Hilbert spaces; S; is a closed, convex, positive
cone; €Uy, is a closed, convex, bounded set; o, 9%; are compact, topological
Hausdorff spaces, and i€ 1, N.

Existence of a safe control

Let us introduce a scalar measure r: 11 (€U, X (AXRB)XZ—R, of the
value of the constraint function in the model of the interconnected system:

Wlc, v, 2)2(z, G(c,v)) (3.130)
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where

vy = (o, B),
Z2{zeFP:(zeSTA|z|=1}, (3.131)
G(c,v)2G(c, HK(c, a), B)

and where Tl,(€%,) is a projection of set €, on space €.

THEOREM 3.21. (existence of a safe control). If we assume that

1. Mapping G is convexlike (see Appendix B.9) on o X B and concavelike
on [, (€u,) with respect to S,

2. V(y,2)e(dAXRBYXZ functional y(-,vy,z) is weakly upper semicon-
tinuous on 1l (€u),

3. (Vzy,2,€Z)(Vcelle(6U,y))(Vee[0, 1))

inf [tdlc, vy, z,)+(1— (e, v, z5)]

yEAXRB

= t lnf lll(C, 'Y, Zl) + (l - t) lnf l{/(C, 'Y’ Z2)>

yedxRB yeEAXR

4. (VYcell (6U,))Vae A) (c, HK(c, )€ €U,,
5. V(z,0)e Z x4 (6U,) functional ¢(c, -, z) is lower semicontinuous
on A X B,

6. Via,B)edXB there exists a control that is (a, B)-feasible for the
model

then a safe control exists.
Proof. To simplify the notation we denote:

inf =inf, inf =inf, sup =sup
zeZ z veEAXRB v cellg €Uy I

From assumption 6 it follows that:
(Vye g xB)3c el (6)) Glc y)ES.
which is equivalent to
(VyedAXB)Icell (€U))VzeZ)Y(c, vy, 2)=0
This implies that

inf sup inf Y(c, v, z) = 0.
Y

[ z



266

Thus, taking into account the inequality
VyesdA xR infsup ¢(c, v, z)=sup inf (c, v, z),

which is always true, and changing inf, inf, to inf, inf,, we have

inf inf sup ¥{c, v, z)=0. (3.132)
z Y c
From assumptions 1 and 2. the functional (-, -.z) is convexlike on

AXxB and concavelike on I (€, for each ze€ Z. (V(vy, z)e(AXRB) X Z),
G( -, v, z) is weakly upper semicontinuous on Il(€7,) and the set €y, is
weakly compact. Therefore, by the minimax theorem (see Appendix B.9),
the following inequality holds:

VzeZ infsup ¢(c, v, z) =supinf ¢(c, v, z). (3.133)
Yy < c v
Combining (3.132) and (3.133) we have

inf sup inf ¥ (c, v, z) =0.
2 c LY
From assumptions 1, 2, and 3, the function inf, ¥(c, v, z) is concavelike
on [ (€%,) and convexlike on Z, and for all z€ Z the function 1 (€%,) 3
c¢—inf ¢(c,v,z)eR is weakly upper semicontinuous. Therefore, the
minimax theorem can be applied again. By this theorem we have

inf sup inf ¢(c, v, z) =sup inf inf Y(c, v, z). (3.134)
z c v c z v

Relations (3.133) and (3.134) imply that:

sup inf inf ¢(c, v, z) =0. (3.135)

Y 2
The function
[T (€U,) 5 c—infinf Y(c, v, z)eR
Y z

is by assumption 2 weakly upper semicontinuous, and set [lg(‘€%U,) is
weakly compact. Therefore, on the basis of the Weierstrass theorem, we
conclude that sup, in (3.135) is achieved. Hence, we can write

(e el (€U))VyE AXBAVZz e Z) Yiic,v,z)=0. (3.136)

T_hus, due to the definition of ¢ and Z. there exists control ¢ such that
G(c, y)e S for all ye o X A. It then follows from assumption 4 that control
¢ is safe.
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Assumption 6 seems to be reasonable. It is intimately connected with the
quality of the mathematical model. One mathematical model is better than
another one when its sets of and 9 approximate more exactly the unknown
constant values of the parameters in the process. Assumptions 1, 2, and 5
are commonly used in minimax problems. Satisfying assumption 3 mainly
depends on the character of mapping G(c, -), where ¢ € €,. We now give
an example in which this assumption is satisfied.

Assume that Z=R", S={zeR":z=0}, and (Vz e Z)(Vcell,(6u)) the
number inf, ¢ (c, v, z) is finite. Let us also assume that mapping G has
the following structure:

(Ve el (BUNVy e AXB) Glc,v)=(G,(c, v, .- .. Gulc. yn))
where
AXRB =(A; X RB)X ... X(dAn X Bn), v={ay, B1),-- -, (an Bn)),
Vi Eﬁ (o, Bi) e st X B;.

By simple computation we can show that assumption 3 is satisfied.

Assumption 2 in Theorem 3.21 is restrictive when ¥ X is an infinite-
dimensional space; sometimes it can be replaced by a less restrictive
assumption. Suppose that mapping G has the form:

(Ve eIl (6%U))(Vye A x B) Glc,v)=DP(G,(c), Go(y)) (3.137)
where C_il -, Gz:ﬂx%ey’, and &: ¥xX¥—>F.

For the mappings G that belong to the class defined by (3.137), we can
formulate the following theorem.

THEOREM 3.22. If we assume that

1. Mapping G has the form given by (3.137), where the mappings ®(z, -)
and ®( -, z) are weakly continuous on & for each z€ &,

2. Assumptions 1, 3, 4, 5, and 6 of Theorem 3.21 are satisfied,

3. Sets G,(TI1(€U,)) and G,(sd X RB) are weakly compact,

then a safe control exists.

The proof of this theorem is quite similar to the proof of Theorem 3.21
and is left to the reader.

From the above existence theorems it follows that the class of problems
for which a safe control ¢ ,q exists is quite wide. We can see from these
theorems (see assumptions 3 and 6 in Theorem 3.21) the intuitively obvious
fact, that the safe control may not exist if sets «f, B are large, i.e., if the real



268

parameters are uncertain. This means that our approach to the problem of
finding a feasible control for a real process using only the model of the
process makes sense.

Procedures for generating a safe control

The procedures for finding a safe control involve a search in the set o X 3,
for safe values of model parameters «, 8. The first of the two procedures
that we will discuss follows from Theorem 3.23.

TueOREM 3.23 (finding a safe control). If we assume that

1. Vcellg(€U,) the functional lc.-,*) is weakly lower semi-
CONLINUOUS,

2. V(v,z)e(AXB)xZ the functional (-, vy, z) is weakly upper con-
tinuous,

3. (Veell(6Uuy)(Vaed) (c, HK(c, a)) € €U,

4. Safe control c 4.4 exists,

then a solution of the problem

max min Y(c, v, z) (3.138)
celle(®uuy) (v, 2)e{AXB)XZ
exists. Moreover if (C, ¥, Z) is the solution of this problem then ¢ is a safe
control.

Proof. Set €%, is weakly compact and mapping Il is linear and continu-
ous. Therefore, set Il (¢, is weakly compact. From assumption 2, func-
tional

(€Uy) 3 ¢c— min Plc, v, 2)eR

(v, 2)e(AXB)XZ

is well defined and weakly upper semicontinuous on Il (€a,). Thus, on the
base of the Weierstrass theorem it follows that a solution of the problem
exists.

Let us suppose that (¢, v, Z) solves the problem. The following inequality
then holds:

Veellg(€U,). min Y(C, v,z)=  min Ylc,y,z) (3.139)

(v, 2)e(AXBY<Z (v, 2)e(A<B)=XZ
On the other hand, by assumption 4, we know that

min P(C ynam> Y, 2) =0. (3.140)

(v, 2)e(AXB)<Z
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Because ¢ .4 € 11.(€%,) and as a result of inequalities (3.139) and (3.140),
we have

min ¥(c, v, 2)=0.
(v, z2)e(AXB)*XZ
From the properties of Z and ¢, and from the previous inequality it follows
that

Vyedx®B G(C y)eS. (3.141)

Note that by assumption 3 Ya e A (¢, HK(C, a)) € €U,. Hence, taking into
account relation (3.141), we conclude that ¢ is a safe control.

Theorem 3.23 implies that it is enough to solve problem (3.138) to find a
feasible control. To solve this problem, a procedure for computing the value
of mapping G is needed.

Because of the way G is defined in (3.13), we must solve the subsystem
and structure equations simultaneously. If we make some further assump-
tions, a partial decomposition of the problem will be possible. As can be
seen from (3.131), mapping G is the decomposition of mappings G and
H o K. We will eliminate mapping H o K by adding a modification compo-
nent to the functional z G and constructing a functional ¢ as follows:

b TL(BU) X (A X B) X Z XYUX YR,
(e, v, z, u, m)2(z, G(c, u, B)Y+(n, u—HF(c, u, a)).

The main property of this approach is given in the following theorem.

(3.142)

THEOREM 3.24 (finding a safe control). If the assumptions of Theorem 3.23
hold and

1. Veellg(6U,), yeAXRB, z€ Z, ne€U the functional §(c, v, z, -, 1) is
concavelike and weakly upper semicontinuous on the set 11, (€%,) (where I1,,
is a projection mapping from € x U on U),

2. (Vcell(€u))(Va € £)Ar>0) (Ve ey, |le|| = N Qu € [L(€U,)
e=u—HF(c, u, a),

3. (VBeB)Vcell (€U,) mapping Ty(€U)2u—Glc,u, B)ed is
bounded,

4. (Vcell(€U))(Vu € 1o (€U)) (Y1 €U) the functional §(c, -, -, u,m) is
weakly lower semicontinuous,

then a solution of the problem

max min min max (¢, v, zZ, U, ) (3.143)
c ellg(€uy) mea (v, z2)e(AXRBIXZ uelly (€U,

safe control.
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Proof. Let c, v, and z be arbitrary points fixed in sets [1(€%,), o X %, and
Z, respectively. Since set I1,(€%,) is weakly compact, from assumption 1 we
have
inf max (¢, v,z u,m)= max inf §(c, v,z u,m) (3.144)
ned uelly(€u,) uell(€u,) newu
Let us note that if u— HF(c, u, «)# 0 then inf, .o ¢ = —. From assumption
4 of Theorem 3.23, there exists u €11, (€U,) such that u — HF(c, u, a) = 0.
Thus
max inf ¥(c, v, z, u. m) =(z, G(c, v)). (3.145)

uell (€dy) newu

Combining (3.144) and (3.145), we have

inf  max Jl(c, v, z, u, ) =(z, Glc, ¥)).

neu uelly, (€
From assumptions 2 and 3, it can be proved that the infimum in the last
equality is achieved. Therefore, we know that

Ve ellg (6U) min min max ¢(c, v.2, U4, M)
(v, 2)E(AXBI*XZ meau ueclly(€un)

= min Ylc, v, z).
(v, 2)e(AXB)XZ
Assumption 4 allows us to change min, ., min, to min, min,,. To com-
plete the proof we need only apply Theorem 3.23. U

It follows directly from Theorem 3.24 that a safe control can be found by
solving problem (3.143).

Incorporation into the coordination process

The safe control concept can be incorporated into coordination structures,
for example, those considered in section 3.4. In the following sections some
possibilities for modifying these structures to achieve feasible control during
the iterations will be presented. It should be noted that the methods of
feasible control generation using the safe control concept that have been
presented in this section can be used to solve another kind of problem, for
example, the system start-up problem.

3.6.2. PRICE COORDINATION WITH PROJECTION ON THE SET OF SAFE CONTROLS

Let us denote by C .5 the set of all safe controls. Consider the structure
illustrated in Figure 3.12, which is a modification of the structure of 1BMF. A
feasible control generation (FcG) unit has been introduced. The local prob-
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FIGURE 3.12 The structure of coordination by the price mechanism with projec-
tion on a set of safe controls.

lems and the coordination task are the same as in BMrF, The control is
generated in the following way: first a model-based é(A) is applied to the
real system and the feasibility of this control is checked by measuring the
value of G(E(A), HK4(¢(A)), Bx). If ¢(A) is feasible then the real interaction
HK 4(é(A)) is sent to the coordinator. If not, then on the basis of information
about the violated real constraints, the FCG unit generates a new control
¢;(A) that is feasible. This ¢;(A) is applied to the real system and interaction
HK(cs(A)) is sent to the coordinator. This task is assigned in Figure 3.12 to
the selecting unit that has input é(A), ¢;(A) and output é4(A), where

é(A) if é(A) is feasible,
¢;(A) otherwise.

&= |

In order to construct the FcG unit, one must know the set C; such that
C; = C4, where Cy is the set of all feasible controls for the real system.
Taking into account the properties of the safe controls set C .4, we can
choose C; in the form of C q.

Let us now consider the following way to implement the FCG unit:

(A =TIl ,(E(N)), (3.146)
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where [l is the projection operator on the set C .. In this way a new
control structure has been obtained. Notice that the coordination task cp has
the following form:

Find A =(A,, ..., An) such that
A(X) = HK (V). (3.147)

The coordinator problem in the considered control structure looks like
(3.34) formulated for mMF. In reality, however, there is an essential differ-
ence between these two formulations: the BMF formulation has no protective
mechanism like the selecting and the FcG units. Thanks to this mechanism,
only that interaction value that is obtained in the real system when the
feasible control is applied is sent to the coordinator. It is obvious, though,
that if the real subsystem constraints are known, that is, if B ={B4}, then
each solution obtained using BMF is also a solution of the coordinator
problem (3.147). However, if the constraint operators G,, i € 1, N, are really
dependent on the parameters ;, i € 1, N, then the controls generated during
coordination by 1BMF may be infeasible for the real system, and the control
obtained at the end of the coordination may also be infeasible. This is
mainly the case in which the safe controls with the price mechanism should
be applied.

We now consider (a) the existence of A, (b) the suboptimality of é4(X),
and (c¢) coordination strategies. The sufficient conditions for the existence of
X can be derived as they were for 1BMF, and the task is left to the reader.
With regard to the suboptimality of é*(X), quantitative estimates of the
difference between the optimal value of the real system performance and the
value of this performance taken at &4(A) can be obtained, but the detailed
analysis is omitted here.

Let us consider the problem of finding suitable coordination strategies for
solving the coordinator task (3.147). In terms of the mathematics involved,
we must find numerical methods for solving an operator equation of the
form

B(A) 2 (L)~ HK 4(é4(1)) =0. (3.148)

The upper index p is used to stress an existence of the protection mechanism
in the control structure. It should be noted that even when functions Q,, F,
F,., G, iel, N, have reasonable differentiability properties, the operator
R% may not be differentiable. Thus, the direct application of Newton’s
algorithm for solving equation (3.148) is not possible. However, the con-
struction of Newton’s algorithm suggests that we can try to apply the
following coordination strategy:

A = Ak — g [RLATRE(AX), (3.149)
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where R is a certain differentiable approximation of R%, R} is a Fréchet
derivative of R and ¢ is a positive real number. The following general
theorem (Zinchenko 1973) shows that such an approach makes sense.

THEOREM 3.25. Consider an operator P:M— X,, where M is a subset of
Banach space X,, and X, is also a Banach space. Consider an operator
P,:M—X, that is Fréchet differentiable on M. Let us assume that the
operators P’ and P— P, satisfy the Lipschitz condition on M with appropriate
constants n and n,. Let us consider the following iterative process:

xkl=xk - k(x*) (3.150)

where L* are operators from X, into X, and x"e M. If we assume that the
following conditions are satisfied on M:

IPCx) = P (o)L (ol = v, [Pl
IL* )l =y 1P,

2
n
[P(x°)N|=m and h évl+nﬂ+% n<l,

Kx%n2{xeX,:|x—x)=ricM
where

r= Yn
1-h

then in the closed ball K(x";r) there exists a solution x* of the equation
P(x)=0 and the sequence {x*} generated by formula (3.150) tends to this
solution. The following estimates can also be found:

2 h=

kox¥let . T
B

if y+n,vy=0
and
Ix* —x*|=rh* if y+nn#0.

By using Theorem 3.25 we can formulate the satisfactory conditions under
which the choice of operator R as the approximation of R§ is a proper one.
Operator R will be linear and bounded with bounded inverse R™'.

THEOREM 3.26. If we assume that
1. There exists neighborhood QUA°) of A° such that control é(\) is (a)

feasible for the real system YA € UA"), or (b) infeasible for the real system
VA e QAY),



2. Mapping é( ) satisfies the Lipschitz condition on Q(A") with constant

3. Safe feasible set C .., is convex and closed,
4. Operator R is linear, bounded, and has a bounded inverse R™', R and
20—n,([R™'D
IRIHIR™"[*n
where n=||R5(A")|| and n, is the Lipschitz constant of R — R,

5. K@% r(e))c Q1Y
where

O<e<

IR""[m
1=n IRz [R[{IR"|Pen ”

r(e)=

then in K(\%; r(e)) there exists solution A of the coordinator problem and
sequence {\*} generated by formula (3.149) tends to A.

Proof. Let us suppose that ¢(A) is infeasible. Assumption 1 implies that
operator R% can be expressed on ((A°) as the combination of operators
¢(-) and Il . Assumption 3 implies that operator Il , is well defined.
Since I, satisfies the Lipschitz condition with a constant no greater than
one, we conclude, taking into account assumption 2, that R§ satisfies the
Lipschitz condition with constant no greater than k. This implies that
RE— R also satisfies the Lipschitz condition with a constant no greater than
k. +|R].
Let us now compute constants y;,y, and n from Theorem 3.25. Since

[R&(A)—eRR'REW)[[=(1—¢) [REQA),
then vy, =1-¢. Since
IL*II=leR™ REMW)I| = |R™[|[RE)II,
it follows that
vy=e|[R'|.

Since R is linear and bounded, n =||R||. The theorem follows from assump-
tions 4 and 5 and direct application of Theorem 3.25.
The proof for feasible ¢(A) is similar and therefore omitted. O

Notice that if we want to check assumption 4 of Theorem 3.26 for a given
operator R we must first compute constant n,, given constant k.. The
simplest way to do this is to set n, =k, +| R, but this is not the best way.
To show this, let us consider the number 1—n, ||R || (see assumption 4). It
follows that

1—n [R7 =1 (k +[RID IR =1~k IR —[RIIR .
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Hence, owing to the inequality ||R|[{{R !|=1, we find that 1—n, ||[R }|=<0
and € =0, which violates assumption 4. Thus, the computation of n, must be
done very carefully.

Assumption 1 limits us to some special cases. But if the assumption is not
satisfied, then R§ may even be a discontinuous operator and R cannot be
linear. In this case, R must be constructed with great care.

Regarding assumption 2, let as observe that if the performance index is
quadratic with a positively defined operator, and mappings F, i€ 1, N, are
linear, then mapping é(-) satisfies the Lipschitz condition. This follows
directly from the projection theorem (Luenberger 1969).

Simulation results

Consider the steady-state system in Figure 3.13. The subsystem models are
as follows:

Subsystem 1
y,=u+uptc+alc)
Q.(cy, u)=(c, = 5P+ (uyy — 4.4 +(u,— 3.65)%,
CU, ={(cy, u)eR’: By, =c, =B},
A ={a, R o, | =1},
B, ={(B11, B) eR*:—5=B,,=-1.5, 1=8,,=3}.

Subsystem 2
Y21 =Ca1— Caz+ at31(cay —3.8)7,
Va2 ==l +2Co1 + Cap + Arr(Cyy — 2.8)%,
Qa(cz, Uy) = (cp1 — 107 +2(cz — 10)* +(u, — 8.95)%,
CU, ={(cp, u) eR*: oy + 1o =Bs},
Ay ={(0z1, @2) ER?:|az;|=0.2, |ay,|<0.5},
RB,={B,eR':5=p,=<8}.
The real subsystem equations and constraints have the form:
Y =U +Hup,+c,+0.4(c)?,
Va1 = Ca1— €z +0.1(cy, —3.8)?,
Yoo =—Upy+2Cy; +Cap +0.25(cy —2.8)3,
—2=c, =2,

Cr+Cn=6.
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FIGURE 3.13 The structure of the simulated system.

From the above relations it follows that the values of parameters « and 8 in
the real system are:

a*1=0.4, a*21=0.1, a*22=0.25,
By =2, B2 =2, Bx2=06.
The set of safe controls has the form:
Coran =, )R —1.5=¢, =1, ¢;; + €2 =5},
The operator R has been chosen in the form of
-1 0 0
R=] 0 -1 0
0 0 -1

Two possibilities for coefficient ¢ were tested: £ =0.5 and £ =0.2. In both
cases the coordination algorithm was started from A°=(0,0,0). In all
iterations of the algorithm the controls ¢(A*) generated by the local deci-
sions units were outside the feasible set of the real system. Therefore, the
FCG unit intervened in each algorithm iteration. The results of the simulation
are given in Table 3.3. k is the iteration number and corresponds to changes
in A. Q¥ is the value of the real system performance index after iteration k,
and [[R%(A%)|| is the norm of the discoordination. The final values for the
price, controls, and interactions were:

X =(7.1987, 4.2135, 2.1659),
&,(X)=2.5000, &4 (X) =¢;,(X) =1.0000,
éx(A) =(4.4351, 2.5648),

Ex2(X) = ¢r2(X) =(3.4351, 1.5648),
ug (X) = (1.8836, 2.6262),
Us(R) =5.7602.
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TABLE 3.3 Simulation
Results for Price Coordi-

nation with Projection on
the Set of Safe Controls

trols
k o* IRg (A%
e=0.5
1 257.4 9.5448
2 237.1 7.0618
3 2234 4.7698
4 218.9 3.3367
5 220.6 3.0532
10 21895  0.7248
20 218.84  0.0843
40 21872 0.004
46 218.64  0.00009
e=02
1 257.4 9.5448
2 249.0 8.5449
3 241.3 7.5444
4 234.5 6.5534
5 228.8 5.5969
10 2189 2.4908
20 2194 1.0185
40 218.95  0.0809
46 21892  0.0303
95 218.68  0.0009

3.6.3. PRICE COORDINATION WITH FEASIBLE SET IDENTIFICATION

Let us return to the optimal control problem formulation. The problem of
providing optimal control is one of finding all ¢ such that:

1. There exists u=HK,(¢é) that satisfies the real system equations and
the system structure equation,

2. (& HK (¢))e CU, =¥ xu where CUy is the feasible set of the real
system,

3. For all ¢ satisfying 1 and 2 we have

Q(¢, HK4(8)) = Q(c, HK«(c)).

This problem cannot be solved because we do not have complete know-
ledge of CUy and F,. Therefore, we will search for suboptimal solutions
which, however, must satisfy the real constraints in condition 2. If set CU,
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has the form
((c,u)e CUY > (Vie LN (¢, u)e CU,)

and sets CU, are completely known, then 1BMF would generate a feasible
suboptimal control. There are, however, practical control problems that
cause the violation of the assumption. For example, as mentioned in section
3.4, the constraint relations may contain y explicitly. To express the real
system constraints with only ¢ and u, one should use the approximate model

y =F(c, u)

that gives an approximation CU to the set CUy4. Sometimes the so-called
safe feasible set can be defined off-line using only the model. If the
difference between this set and CU is too large, then it is not possible to
achieve a good enough control. However, by long observation of the
process, it is sometimes possible to decrease the uncertainty and, conse-
quently, increase the accuracy of the feasible sets. Especially suited to such a
procedure are systems that differ from their models only in the value of
certain parameters. We can increase the accuracy of the safe sets by
decreasing the sets o and 9.

We can now formulate a method of price coordination with feasible set
identification. In particular, we shall assume that a sequence of safe feasible
sets is generated by an rsi (Feasible Set Identification) unit and the control
iterations based on the information from the rsi unit. First, independent
local problems corresponding to the subsystems are formulated. The perfor-
mance indices in these local problems, as they were with IBMF (see section
3.4), are modified by terms dependent on price A, which is a coordination
variable. The price A is an element of Hilbert space 4, and the sets on which
the local indices are minimized may change in the coordination process.
These sets are generated by the FsI unit.

Let us assume that the rs1 unit produces a family E of the sets X*,
B ={X*}7_,. satisfying the following relations (a) X°c X'c ... X< ... <
Xmax S CUy, and (b) X*= x,X¥ for each k=0, 1,..., where X<
€; X;. k is the iteration number and i denotes the number of the subsys-
tem. Local problems 1} in iteration k have the following form:

For a given value A* € 9 of a coordination variable (price) A and set X¥, find
both control and interaction
(&A% X5, a(A%, X7)) =argmin Qpeqi( -, -, AX) (3.151)
X*

where

N
Vic, u)€ € XU Quoai(Ciy Uiy A) = Q. (¢, u) + (A, u)— Z <)\j5 I—IjiE(cia u))

j=1

and A=A, ..., Ay).
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In compact form they may be written as:

min [Q(x)+{AX, P(x))] (3.152)
xeX*
where xe X2¢ x4 and P: X—a, P(x)2u—HF(c, u).
Let us denote the infimal problem solution of (3.152) by (A, X*), £:q x
E-X.

Coordinator problem cp has the following form:

Generate a sequence {A*}7_, such that

lim [4(A%, X*)~ HK4(¢(A%, X*))]=0. (3.153)

k —»ac
Let us defire a discoordination in iteration k as
Ry (A%, X}) 2 a(A*, X*)— HK4(¢(A*, X)). (3.154)

We can say that the coordinator problem is to generate a sequence of
prices {A*}x_, such that the discoordination sequence {R(X(A*, X*)}r_,
tends to zero. The above method was first formulated by Brdys,
Ruszczynski, and Szymanowski, who also investigated its practical aspects
(Szymanowski et al. 1976, 1977). The coordination structure of this method
is shown in Figure 3.14. Note that due to the iterative nature of the Fs1 unit,
there is no coordination condition in the operator equation form, as there is
in 1BMF. This is the main difference between this method and other methods
using the price mechanism. which where described in Chapter 2 and section
3.4 of this chapter.

Coordinator
AR = AR+ eER, (X (AKXK)
! i
AX o
| 3
N Local (53/

FSI - optimizers —_
min [Q(x)+(7\",P(x))] =
xe XK -

=
& (a% x¥) ©
Y &
. Real f_
observation system

FIGURE 3.14 The structure of coordination by the price mechanism with feasible
set identification.



280

Sequence A satisfying (3.153) is generated with the following coordina-
tion algorithm or strategy:

Step 1. Based on the mathematical model, solve the equation
D(Z(A, X9) =0 (3.1553)

where D : X -, D(c, u)2u—HK(c). Use price A° obtained in this way for
finding x°=%(A°% X) and set

Dy,2 D! (x"),  P,2P.(x°. (3.155a)
Step 2. Select successive prices according to the formula
A=Ak + e ER(X(A%, X*)) (3.156)

where E =(D,AP¥)~'. A is a self-conjugated operator positively defined on
R(PY), ie.,

(Fma >0, M, >0)(Vx € R(PY) mallx|F=(x, Ax)=M, ||x|*. (3.157)

The number ¢ in the algorithm is assumed to be sufficiently small and
positive. Note that step 1 of the above algorithm is equivalent to solving the
model-based optimal control problem using 18M (see section 2.3 of Chapter
2). The operator E used in (3.156) in the form of (DyAP,)"! was first
proposed by Ruszczynski (1976).

A convergence analysis will now be done under appropriate assumptions
related to the mathematical model, the properties of the Fst unit, the
properties of the infimal problem solution, and the differences between the
model and the mathematical system description represented by the
operator D2 D — R,

Convergence analysis

We have to show first that the algorithm is well defined. Let us assume the
following:

(A1) Functions F and Q are Fréchet continuously differentiable twice

with respect to both variables and bounded on CU,.
(A2) For each (¢, u)e CUy, operator I,— HF'(c,u) has a bounded in-

verse operator.

ProrosriTioN 3.27. If (A2) is satisfied, then
(1) R(Po)=u
(2) R(P)=R(PY),
(3) N(P5)={0}.
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Proof. By (A2), R(I,—HF'(c°, u’)=%. It is also true that P,=
[—HF.(c® u?, I,—HF{(c’ u®]. Thus, R(P,)=4. Part (2) of the thesis
follows from (1) and from the closed range theorem (Dunford and Schwartz
1958). Because N(P¥)=R(P,)* (Luenberger 1969), by (1) we have that
R(P)*={0}. O

Lemma 3.12.  If we assume that assumptions (A1) and (A2) are satisfied,
then operator (D,APE)™! exists and is bounded.

Proof. We will show first that
N (Do) = N(Py). (3.158)
By the implicit function theorem we know that

dHK
2 (c®) =, — HF'(c°, HK(c")))"HF(c’, HK(c")).
c
Thus, D,=(I,,—HF',(c®, HK(c®)))"'P, and relation (3.158) is true. Let us
suppose that DyAPFu =0 for some u €. This means that APFu € N (D)
and by (3.158), AP5ue N (P,). Thus, P,AP¥u=0.
From the last equality it follows that

<P3<U, AP:‘)‘u>=<u’ POAP:)k>:0)

which implies that Pfu =0 since A* = A. From Proposition 3.27, u =0, so
operator D,APF has to have an inverse. It is also linear and continuous
since it 15 a composition of linear and continuous operators.

Now we will prove that D,AP% is the operator on 9. Let us denote by I
the orthogonal projection operator from €Xa on linear subspace S=2
R(P¥). Let us consider operator IIgA :S—S. If x€ S then

{x, Ax)=({Isx, Ax)=(x, [[;Ax)

because Il is a self-conjugate operator. From this equality and inequality
(3.157) it follows that
m {|x]? =(x, TsAx) <(x|| [[IsAx|
and
ITLsAxl|=m, {Ix]|

Therefore, set R(IIgA) is closed (Dunford and Schwartz 1958). Let us take
z € S such that z L R(IlIgA). Then

0={z,I;Az)=(Ilsz, Az)={z, Az)=m, |z|f?
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which implies that z =0. Therefore
R(IgA)=S. (3.159)
By Proposition 3.27

N(Dg)=N(Py) and  N(Po)* = R(PY),
thus
N(Dy)* = R(P)
and
X =N(D,)DS. (3.160)
From (3.159), (3.160), and Proposition 3.27, it follows that operators
P¥:q—S8,
M4A:S—S, (3.161)
Dy:S—u

are onto. Equality (3.160) implies that for all xeS we have DyAx =
DyIl¢Ax, which, with (3.161), implies that D,AP¥:q—a is onto.

Summarizing the above results, it has been proved that operator D,AP¥
is linear, bounded, and onto. Hence, from Banach’s inverse operator
theorem, (D,APF)™! exists and is bounded. [

To guarantee that the algorithm is well defined, we assume that

(A3) There exist convex neighborhoods Q(A°) of A” and w(x°) of x® such
that for each A eQ(\°) and X* €E there exist unique infimal problem
solutions £(A, X¥) and £(A, X*) € w{(x").

Because of assumption (A3), the following discussion will be limited to
prices from the neighborhood Q(A°) of the initial price A°. It is obvious that
if function Q,,.4( -, A) is strictly convex and continuous on CU, for each A
from a certain neighborhood Q, of A°, and the sets X* are convex, closed,
and bounded, we can take Q(A%) =0, and w(x’)=%¢x%. The following
proposition shows that very often there is an w(x°) which is different from
the whole space € xa1.

ProrosiTION 3.28. If there exist a set w and a real positive number d such
that

(VX eE)VxeX*—w) Q(x)+(A" P(x))=Q(x")+ (", P(x*))+d.
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then there exists neighborhood €, of A® such that
(VX eE)VAe,(A%) i\, XYY ew
if (A, X*) exists.
The proof is given in Appendix B, section B.10.
To derive the desired properties of the function £( - , X*), we assume that
(Ad)  Fe>0)(Vxew(xNVAe Q) QL(x)+(A, P(x)) =V

LemMma 3.13.  If assumptions (A1), (A3), and (A4) are satisfied, then for all
X* eE, the function QUA®) 53— x(A, X*) € w(x®) is continuous.

The proof is given in Appendix B, section B.11.
(AS) Each of the sets X¥, ie1,N,and k=0, 1, ..., is expressed by a finite
number of functional inequalities, i.e.,
X:(:{(Cia ui)e(gi Xaui:h;((ch ui)s()’ ]EJ:(}
where hf:%; xa;—R are continuously twice Fréchet differentiable convex

functionals and J¥ is a finite set of indices.

We let A, A,eQ(A°) and set A, =th,+(1-1)A, for 0=t=1. Let us
consider the behavior of (A, X*) as a function of real variable t. We define
for A € U(A°) the set

IEA) 2{i-h &\, X*))=0}. (3.162)
Let I ={i,, i», . . ., i;}. We define the operator H* : ((A°) x X —R as follows:
HY (A, x) 2 (hE (x), hE(x), . . ., BY(x)). (3.163)

The next assumption is typical for such a problem.

(A6) For AeQ(A"), the derivative H* of the operator H* with respect
to x taken at the point (A, £(A, X)) is a surjection, where k=0,1,...,.

In other words, we assume that at (A, X*) the gradients of the active
constraints are linearly independent. Assumptions (A1)-(A6) prove the
existence and uniqueness of Lagrange multipliers for the infimal problem
(Luenberger 1969).

Let ueR' be these multipliers. We introduce, for fixed A € Q(A%), and
X*eE, the operator W(A, X*): X— X

WA, X5) 2 QL(E, X))+ (A, P(R(A, X)), +{py H(A, (A, X)L
(3.164)
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Of course, operator (g, H*(A, x)Y..(A, (X, X*)) is positively semidefined
owing to the convexity of the constraints and the inequality pu =0. There-
fore, according to (A4), the operator W(A, X*) with A e Q(A°), X*€E is
positively defined, i.e.,

WO, X*)= vl (3.165)

The function t— (A, X*) with X* fixed in E is not differentiable in general.
It can be shown, however, that at certain points the derivative of this
function exists.

Lemma 3.14. If I&(N,) is a constant set for to— 7 <t<t,+7, then

1. Function t— %(\, X*) is differentiable in t, and

dz(x, X*)
dt

where for fixed A and X*

(te) = =B (A, X)PFE(,, XN —Ay) (3.166)

B(A, X4 : X—>X

w-! for I§(\)=O
W' = WIHFHW ' HH T HW™ for I§(\)#D.

(3.167)
For brevity, we have denoted W = W(A, X*) and H, = H* (A, x(A, X*)).

2. Furthermore, operator B(A, X*) is nonnegatively defined and self-
conjugated, and

B(A, xk):{

N(B)=R(HF), (3.168)
B=wW! (3.169)

The proof is given in Appendix B, section B.12. Next we assume that

(A7) For any A, A, QA% and any X*e€E, the section [A,,A,]=
A A=t +(1—1)A,, 0=t=1} can be divided into a countable number of
sub-intervals so that within each of them the set I§(A,) is constant.

This assumption means simply that we are dealing with a model whose
solution £(A,, X*) “jumps” a countable number of times from one “wall”” of
the feasible set to another.

Assumption (A7) is purely technical. It is necessary for some mathemati-
cal considerations relating to the formula

t, d* Xk
£(A,,, XY= %A, X<) = J % dt.
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Assumption (A7) makes no essential practical restrictions on the problem.
1t is very difficult to set up a model of the system, constraints, and a cost
function that do not satisfy (A7). Finally, it should be stressed again that
(A7) refers to the mathematical model only.

We shall assume also that in (A°) the active constraints and the equa-
tions of the model show the property of uniform linear independence:

(A8) (38>0)(VA € QA)NVX* e B) (Vv e R(PHE(A, X))
d (v, RIHY*(A, 2(A, X*))) =8l

where d : X x2* —>R' is the distance between the point and the set involved.

Roughly speaking, this assumption gives sufficient freedom in the manipula-
tion of values £(A, X*) as A changes. This can be seen from Egs. (3.166) and
(3.168). Assumption (A8) implies that

RPFEA, XN NRHTHA, R(A, X*))={0}.

Note that N (P*(x(A, X*)={0} (see Proposition 3.27) and
N(H*(A, (A, X*)))={0} (see assumption (A6) and the proof of Proposi-
tion 3.27).

It follows that

PN, X5)) du+ H *(X, (A, X*)) dz =0

has the unique solution du=0, dh=0 in %uxR' Since the ranges of
PZ(X(A, X*)) and HY¥*(A, £(A, X*)) are closed, the equation is equivalent to
the solvability of the set of equations

PR, X)) dx =du
HY(A, (A, X*)) dx =dz

for any du e and dz eR' (Przeworska-Rolewicz and Rolewicz 1968). The
last property in the finite-dimensional case means that the gradients of the
system equations, i.e., the rows of matrix P,(£(A, X*)), and the gradients of
the active constraints, the rows of matrix HY(A, 2(A, X*)), are linearly
independent. This is commonly assumed in various works in the field (see
Luenberger 1969). The system equations are the equality constraints for the
problem. We assume also that the angle between the two subspaces spanned
by the two groups of gradients is always greater than a positive angle
equal to arcsin é.

1t is convenient to investigate the convergence property of the algorithm
in a special norm determined in % by the new scalar product (-, - ),. This
scalar product is defined as follows:

Vu',u'eU (', u"y2(Ptu’, APXu"). (3.170)
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LemMA 3.15  The bilinear form (-, - ) defined by (3.170) is a scalar product
in 9 and the norm | - ||, induced by this scalar product is equivalent to the
original in .
Proof. Operator A is self-conjugated, implying that

(W', u")=(Pfu’, APFU")y =(APFU, Piu"y =(u", u'),.
On the other hand (see (3.157)),

{u, “>():<P:l)<uv AP?;“)ZmA HP?“HZ

which implies that {u, u), =0 if and only if u =0 (see Proposition 3.27). The
other properties of a scalar product are obvious. So, it has been proved that
(-, ) is a scalar product in 9.

According to part 2 of Proposition 3.27 and Banach’s inverse operator
theorem, there exists a number vy >0 such that

VuelU ||P¥ul=lul.
Hence
Vue¥U |julf=<u u),= mAY2||u2|l- (3.171)

On the other hand
(Vu ) lulls = (u, wo =|IPFN A |Jul. (3.172)

By (3.171) and (3.172) we conclude that the norms ||| and || -}, are
equivalent, which completes the proof. [

Let us consider now, for fixed X* € E, the following operator:

Vi DA X Q(A)— X

, :
VE(AL, Ay 2 (I—EED0 J‘ B(A. X") dtPB")()\2—/\1) (3.173)

0

where
A=t +(1—0A,, O=r=1.

The behavior of this operator, which will play a very important role in our
considerations, is described by the following lemma.

LemMma 3.16 If we assume that

1. Assumptions (A1)-(A8) are satisfied.
2. There exists a constant M,, >0 such that

(VA eQA)(VxeX) (x, WA, X*)x)=M, |x|I’
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then
(VXk € E)(V/\l» A€ Q) HV:()('\l, /\2)”0501(8)H'\1 - '\2“0 (3.174)

where

; 2 82 2 1/2
£ £ ) . (3.174a)

= — +—
a(e) (1 MM,  +°m2

Proof. Relation (3.165) means that |[W ™ '(A, X*)||= 1/ for all A € Q(A,) and
X*eE. So, by (3.169), we have

(VX e E)VA € Q) [IB(, X")HS;I, : (3.175)

Due to Lemma 3.13, assumption (A7), and the definition (3.167) of
B(A, X*), the function [0, 1]3t— B(A,, X*)e £(X, X) is continuous almost
everywhere for all X*e=. Hence, on the basis of the above statements,
§o B(A,, X*) dt exists (Bourbaki 1961) and for all X* € E the operator V is
well defined.

Let us denote by Il the projection operator from X on S£ R(P§). We
introduce the following operators:

AS é l_[Sfx lSs
Bg(A, Xk) = HsB(/\, Xk)ls,

Py éPnls,
Ds £ Dy|s.

(3.176)

Let us observe that for all s,,s5,€8
{(s1, PsAls $2) = (81, PgAsy) =(APssy, 52)
=(As,, 82) =(Asy, Pss,) =(PsAsy, s,)
={PgAls 5,, 53).

This means that operator Ag is self-conjugated on S.
Additionally, for all seS

(s, Ags) ={s, PsAs)=(Pqgs, As)=(s, As).

Hence, from (3.157) we conclude that operator Ag is strongly positively
defined on S. This implies that Ag' exists. Since S =S (see Proposition 3.27)
and S =R(P¥), the operator P¥ is equal to the operator P¥. By part 3 of
Proposition 3.27 and Banach’s inverse operator theorem, operator (P¥)~!
exists.
Relation (3.160) implies that operator Dg' exists. Hence, the following is
true
(DsAsPE) ' =(P$'Ag'Ds". (3.177)
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According to relations (3.159) and (3.160), Dylly =D, and D, AP =
DI AP% = DyAGP¥. The last equality, with relation (3.177), implies that

(D,APH '=(PH'Ag'Dg". (3.178)
Let us also observe that the following holds by relation (3.160):
D3'D,=Ilg (3.179)

Let us now consider the operator [} Bg(A,, X*) dt with X* fixed in E and
A1, A, fixed in QU(A,). Note that for all s S

(s, Bg(A, X*)s)=(s, IIsB(A,, X*)s) =(Ilgs, B(A,, X*)s)={(s, B(A, X*)s).
(3.180)
It was proved in Appendix B, section B.12 (see Eqgs. (7) and (8)), that
(s, B X*)s)=(y, W'(A, X*)y) (3.181)
" y=s—H¥HW 'HH'H W'y,
The simplified notation is used in the last formula. This implies that
liyll=d(s, R(HY)),
which, with assumption (A8), implies that
Iyll=8llsl. (3.182)

Relations (3.180).(3.181),(3.182), and assumption 2 allows us to write (see also
Appendix B, section B.14)

1 82
(5. Bs(ho X492 Iyl o

The last inequality implies (Bourbaki 1961) that

2

1
&
Bs (/\,, Xk) dt S>ZM—w ”3“2
(3.183)

(VX e E)(Ay, A e Q) (Vs € S) <s, J

0

Let us return now to the definition of V¥ (see (3.173)).
Relations (3.178) and (3.179) yield

1
VIO((/\U /\2) = (I_E(ng)ilAngngoJ’ B,(A,, Xk) dng)(/\z—/\l)
0 /

= (I_E(pg)—lA;‘ Jl Bg(A,, X*) der‘)(/\z—/\l).

(4]
Hence

ll Vl(?(/\h /\2)u<2) == A, A Ay —2e(A, — Ay, (Pask)—lAglRP;k(/\z_ Ao
+82<(P§=)71A§1RP§<(/\2’"/\1): (ch)-lAglRpask(/\z_)\x»o
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where, for simplicity, we have denoted R = f} Bs(A,, X*) dt. For all 5,, s,€ S
(815 AA§152> =(Igs,, AA§132> =(sy, HSAA§152> =(s1, 53). (3.184)
By relations (3.183) and (3.184), we can write
</\2_)\1’ (ng)glAsilRP;k()\z_)\l»o
=(P¥(A,—A)), APE(PEY TAS'RPE(N,—A))
:<P:)k()\2_)\1), AAglRPEk()\z 1)) (P ()\2 1), RP:Sk()\Z—)\l»
5 * 2
—[PF(A,—A 3.185
=2 P A (3.185)
and
(PHTTAS'RPEM,— L)), (PHTTAS'RPE( — )Y
=(P¥(PE) 'As'RPE(A>—\y), APE(PE) ' AS'RPE(N, — A1)
:<A§1RP>sk(/\2_)\1), AAglRPEk()\z_)n))

1
:<A§1RP§()\2’)\1), RP’sk()\z_)n))Sm_ “RP>sk()\2_/\1)“2- (3«186)
A

Because B=W~' (see (3.169)) and |W || =1/,
1
[Ri=-;.
Thus
1
”RP>SI‘()\2_’\1)“25:J "PBI‘(I\Z_)‘I)“’

which, with (3.185) and (3.186), implies that

282 e?
PE(A,—A )||2

Va1, A=A — A5 - IPFA— AP (3.187)
ma

w

It follows from (3.157) that

1
M_ (P:)k()\z ‘/\1), APBk()\z— M))SNPB"(M— )\1)“2
A

1
5;‘ (P;Jk()\z —A), APBk(Az_AJ),

A
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which implies that

1 1
”/\z_/\1”(2)5”1)?;(/\2_/\1)”25 ”/\2_/\1”%- (3-188)
M, m

A

Using (3.188) in (3.187), we prove the lemma. ]

Now we are ready to consider the contraction properties of an operator
V5 QA" —a defined as follows:

VE(A) 2 A +eERL(£(A, X*)) (3.189)

where X* is fixed in E.
Lemma 3.17. If

1. The assumptions of Lemma 3.16 are satisfied,
2. AL >0)(VA;, A, e QA))(VX e E)

IDL(R (A, XDB(A,, XKYP*(R(A,, X))
= D4UX(As, X)B(Ay, X*IPFR(AS, XOo=LIIA; = Asllos

3. @y>0)(VAe QAO)NVXkeE)
DA, XNB(A, X¥)PFER(A, X5))
~D(X(A, X?)BA, X)PFEM, Xo=1,
4. AL>0)(VA,, A, e YAV X e E)
ID(£(Ay, X*) = D (A2, X*Wo=L A, = A2llos

5. There exists continuous function « :R, —R_, x(0)=0, such that for all
X*eE and all AeQ(AY)

[R4(Z(A, X*)) — Ru(R(A, XONlo =< (dist (X*, X°))

where

dist (X*, X")=max{sup inf |x—vyl, sup inf Hx—yll}
x° yeX?xex*

xeXkye
then the following inequalities are satisfied:
(1) [VEA) = VE@IIL
= (a(e)+& | Ello L max {|A;= A%, A, = A%llo} + el Elloy + el Ello L) IA2 = A o

for all A;, A, e UA®), and

2 v =A%,
=z¢ |Ello LIN =A%+ (a(e) + € IEllo v+ € 1Ello L) A = A% + el Elloax + £1°
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where «ale) is given by (3.174), n°=|ER (A%, XM, and Kmax =
k(dist (X, a0 X°)).

Proof. From the definition of V¥*(A) it follows that
VEL) = VEA) = A= A + e E(R (A5 X¥)— Ry(X(A, X*¥)))
=X, — A, +eE(D(X(A5, X*))— D(£(A1, X*))
+eE(D(£(Ay, X*)— D(£(Ay, X*))).  (3.190)

Let us consider the term A, — A, + e E{D(X(A, X*))— D(&(A,, X*))) of the right
side of (3.190) and label it by a,. Taking into account the continuity of
function t-—>%(A, X*) and using the same arguments as in the existence
proof for [§ B(A, X*) dt in Lemma 3.16, we can write that VA, A, € Q(A,)
and VX*e &2

LdR(A, X*
f()\z,xk)—f()\l,xk)"—‘[ Mdt. (3.191)

) dt
It follows from Lemma 3.14 and Eq. (3.191) that
1
”a1“0 = ”)\2_ A— GEL D(x(A,, XNB(A, X")P;*()E()\[, Xk))()\z_ AD) dt”()

where A, =tA, +(1—0)A,, O0=t=<1.

By simple calculations we obtain:

lashy= {22 = [ DL, XDBO, XIPEERS, XD A=) dr\\
0 (4]
+e L (DUE s XO)B O XPHGE (A, X%)

= DS, XDBO XIPAGE, XNk~ df

o
1

+e [|El u J (DL(£(A XNBA, X)PFE(, X5)

0

= Dy (0 XNB (O XOPFHE O XD —A) di

o

Let us consider the right side of the above inequality. The first term can be

estimated on the basis of LLemma 3.16; the second and third can be
estimated using assumptions 2 and 3, respectively. We find then that

1
l|a1l|osa(8) ”)\2_)\1H0+ £ ”E”O L J: “Al _/\OH() dt HAz_ An“o’*‘ € ”EHO Y H)\z_ Ml\o
)

=a(e)[A; = Ao+ e [Ello L max {[A; = A%, A2 — A%} A2 — A4l
+e|lEllo v HAz_)\lno- (3.192)
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Estimating the second term of the right side of (3.190) in accordance with
assumption 4 and taking into account relation (3.192), we obtain inequality
(D).

Let us turn to the derivation of inequality (2). The following holds:
[VEA) =A%,
=[[VEQ) = VEAO b+ VEAN) = VO o +HIVOA®) =A%, (3.193)

The first term on the right side will be estimated as in the proof of (1). If we
take advantage of the fact that in this case A, =A°, we obtain

[VEN) = VEAD),
=}e ||Ell L IX =A%+ (cee) + & [|Elly v + & [Elo L) A =A%, (3.194)
The second term can be estimated using assumption 5:
[VEA) = VA= |Ell |R#(£(A°, X)) = Ry (£(A°, X))l
= e |[Ellox(dist (X, XY =& ||Elly kpmax (3.195)

whereas
[VOA?) =A% = & |ER(2(A°, X))llo = £mq

Using this equation and relations (3.194) and (3.195) in (3.193), we obtain
inequality (2) of the lemma. []

We know from formula (3.174a) that for sufficiently small ¢ within a
certain bounded interval, the number a(e) will be less than 1. So if we
demand sufficiently small values of L, L, v, and k,,,,, we can be sure that
operator V* will have contraction properties. The basic theorem about
convergence, Theorem 3.30, is founded on this idea. Before we state the
theorem, we will analyze the reasonableness of the assumptions in Lemma
3.17. Assumption 1 invokes assumptions (A1)-(A8), which were discussed
in detail when they were presented. The presence of operator B(A,, X*) in
assumption 2 is not essential because |B||<||W!||. Assumption 2 would be
satisfied if it were assumed that functions D’(x) and P™*(x) on w(x®) are
bounded and satisfy the Lipschitz condition. The same remarks are applic-
able to assumption 3 if we account for the influence of changes in set X* on
£(A, X*). This influence can be easily estimated using the next proposition.

PropostTiON 3.29.  Let X be a Hilbert space and X, and X, its convex closed
subsets. Let us assume furthermore that Q:X—R is a functional twice
differentiable, and that:

X< Xs,

3%, e X, OF,)=min,x, Q(x),
dx,e X, O(X,)=min,x, Q(x),
@Am>0)VxeX,) Q. (x)=ml,
AM>0)(Vxe X,) [|QLx)|=M.

VW
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Therefore,

. . 2M . 1/2
%, — %,)| = (—m— dist (X, X1)>

where dist (X,, X,) should be understood as it is in Lemma 3.17.

The proof is given in Appendix B, section B.13.

Assumption 4 of Lemma 3.17 limits in some defined way the difference
between the model and reality. It is clear that this difference must be limited
somehow if we want to control any real process efficiently based on a model.
Assumption 5 adds no restrictions since the existence of function «(-) is a
result of Proposition 3.29 and the continuity of Ry(-).

We will now give the conditions under which the coordination procedure

Ak+1 — V"()\")
leads to the convergent sequence of discoordinations

'ﬂk :”ER*()AC()\’(, Xk))”o- (3.196)

THeEOREM 3.30 (convergence theorem). Let us introduce the following nota-
tion:

1 -
£ é; (I-ale)—¢ “Eno Y€ ”EHO L),

h 2| Elly L(n°+|Ello kmax)

and
£—J&2h

"B L

If we assume that

1. The assumptions of Lemma 3.17 are satisfied,

2. V2h<g

3. KA%n2deu: A —A%=r}<Q)9),

4. X°cX'c...cX,,, cCUyg and lim, . dist (X**', X*)=0,

max —

then

1. Sequence {A*} remains within K(A®; r).

2. Sequence {n*} defined by (3.196) converges to zero.

3. Sequence |A¥ —A*|,, where X* is a fixed point of V* in K(A%;r),
converges to zero.
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Proof. We set
g=oale)+e |Ello Lr+¢ HEH() y+e|El L.

Due to assumption 2, g <1. Therefore, according t0 Lemma 3.17_(part 1)
and assumption 3 above, operator V* is a contraction mapping on K(A"; r):

(VAL e KA, ) [ VEA ) = VRO =q 1A — Al (3.197)
Furthermore, it follows from part 2 of Lemma 3.17 that for A € K(A: r) the

following is true:

0]

IV =A%, =36 [|Elly Lr* + (@(e) + £ [|Elo v + & [Ello L)r + & |Ellg 100 + £7°.

Because r is a solution to the quadratic equation of the form
e [Ello Lx*~ (1= a(e)—¢ [Eloy & |Ell Lx + & | Elly kay + £0° =0,

the right side of the inequality is equal to r. Hence, we know that sequence
{A*} remains within K(A’; r) and the proof of part 1 is completed. It follows
that operator V* satisfies the assumptions of Banach’s contraction
mapping theorem on K(A®; r) and has a fixed point A* within K(A°; r). Let
us examine the behavior of the discoordination sequence {n*}. We shall
estimate the discoordination n**':

[n* I =NER A ™, X* D)o

=[ERH R, X 1)) = ER& (XA, X*)o HIIER (XA, X))y
(3.198)

The first term on the right side of (3.198) will be estimated using assumption
5 of Lemma 3.17.

NER (A Y, X 1)) = ER (R ', X Do =||Elly & (dist (X***, X*)).
(3.199)

The second term will be estimated by taking advantage of the contracting
properties of operator V* as follows:

2 + 1 +
IER& (RS, XEPllo =~ VA = VEAS I,

1
=_4q AT = A4 = g |ER&(R(A, X*Nllp=gn". (3.200)

From (3.198), (3.199), and (3.200) we obtain
n* = Elly « (dist (X ' X*))+gn*.

From assumption 4 and the fact that q <1, we conclude that n* —0, which
completes the proof of part 2.
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We know that
AR = X<l = VE AR = VRS,
=[[VE AR = VEAR) + VE) = VER),
<[[VEF) = A, +qllA* _/{k“o

SO
kK vk 1 ki k Kk € K
”’\ —A “05 HV (AF)—A “(): n.
l-q I—q

We have already shown that n*—0, so it follows that ||]A% —A¥||,—0,
which completes the proof. [J

The convergence conditions for Theorem 3.30 are very similar to those for
Newton’s method (Kantorovich and Akilov 1964). In particular, we did not
assume that either of the operators Ry(x(:, X*)) and D(&(-, X*)) is
differentiable with respect to A.

Simulation results

The method presented in this section was tested on two examples of
iteratively controlled systems {batch processes). One was a linear dynamic
system and the other a nonlinear dynamic system. The systems were
described by differential equations, and the control computations were
based on simplified mathematical models for which outputs y were found
from a three-phase operation made on controls ¢(t) and inputs u(t). In the
first phase, the controls ¢(t) are transformed into step functions and the
inputs u(t) are transformed into piecewise linear functions. Next, the values
of controls and inputs at the points of discretization are used as input data
for the discrete state equations. From these equations, the values of the
outputs at the points of discretization are obtained. In the third phase, a
piecewise linear approximation of the output functions is made based on
these values.

In order to investigate the influence of model accuracy on the solution of
the control problem, one should construct models in which the input and
output spaces are the same as for the actual system. For the straightforward
discretization of state equations, however, one usually does not have to
fulfill this requirement. In the case of system control, this problem takes on
a special nature caused by the existence of two kinds of input variables. If,
for example, subsystems are described by differential equations and the
controls belong to L2, then the state variables and interaction inputs are
usually absolutely continuous functions from Wj3. For that reason, another
type of transformation for ¢ and u was used.
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In our investigation, the coordination task is solved on a computer.
Therefore, the values of real interactions HK4(¢(A, X*)) at each cycle are
measured only at fixed intervals, which means that a piecewise linear
approximation of HK(¢(A, X*)), based on these measurements, is used in
coordination. If we make the measurements in the moments of discretiza-
tion used in the model, the coordination task, initially formulated in W2, will
turn into a finite-dimensional problem. This approach was used in the
computations.

In the linear dynamic system there are two subsystems:

Subsystem 1
si=—w,()+c,(1),  5(0)=0,
y1(t) = 5, (1), (3.201)
y12lt) = as, (1)
Subsystem 2
so() =ux()+cx(t),  5(0)=0 (3.202)

where s,, s, denote state variables, ¢, ¢, local controls, u;, u, local inputs,
and y,;, y1», local outputs. The structure of the system is shown in Figure
3.15. Operator H has the form:

0 I
H:[I 0], H %, XY, = XU,

where I denotes the identity operator. The performance index has the form:

0= j L0 + (D)) di+ 10(s, (1)) + j {0 +10(ca(1) di,
0 0

(3.203)

and can be divided into two parts corresponding to the two subsystems. As
we mentioned before, the control will be iterative, i.e., after reaching ¢t =1,
the initial state s,(0) =0, 5,(0)=0 is restored and the process starts again.

Y Uz

Uy Subsystem "1 Subsystem Y2
1 Y12 2

)

FIGURE 3.15 The structure of the simulated system.
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We assume that the feasible set CUy for the real system is not known.
We assume that Egs. (3.201) and (3.202) are not known to us precisely
and we use the following approximate discrete models:

Subsystem S1

§,(0)=0,
$; (1) =0.1(c; () — uy 1)) +5,(8), i=1,...,9, (3.204)
yu(t) =s,(t),
yilt) =5,(8).
Subsystem S2
$2(t1) = 0.1(co () + () + 52(1), (3.205)

82(0):0.
where t, =(1/10)i, i=0, 1, 2,..., 10,

There are two sources of differences between the model and the real
system. The first is the parameter «, which is set equal to 1 in the model but
does not equal 1 in the real system. The second difference is the error
introduced into the model by discretization.

We now describe the control algorithm and begin with the design of the
Fs1 unit. We know a priori that

X={(c, u):5,(1)=z}= CU, (3.206)

for z =z°>1. We assume that in subsequent iterations the knowledge about
set CU, increases and the Fs1 unit generates the sequence of sets X*
satisfying the relations:

X CUy,
X*={(c, u):s,(1)=z*}, (3.207)

koo k-1 o }
z —mm{z k)
The numbers #», are chosen at random from the interval [0, 1], and k is the
iteration number. The sets defined in (3.207) are obtained by an identifica-
tion procedure that will not be discussed here. However, the influence of the
identification procedure on the properties of the method should be investi-
gated. For that reason, parameter v in (3.207) has been introduced. Ran-
dom properties of the sequence {+*} make the sequence (3.207) close to
those obtained in real identification procedures. Let us note that sets X*
defined by (3.207) satisfy assumption 4 of the convergence theorem.
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Due to the form of the model, discrete versions X% of sets (3.207) will be
used in the local problems:

XZ = X’l(dx ng,
Xi=€,xU,, (3.208)

ng = {({Cz(ti)}?:os {u2(ti)}i12() :0.1 Z (Cz(ti) +u,(t )= Z}.

i=0
Let us denote for simplicity
X1 2 (e, (to), €4(t), - - -y ealte), uyto), . - ., us(tyo)),

X2 2 (0a(to), €a(ty), - - -y Calto), Unlly), - . - us(tyy)).

Following the scheme of the algorithm described in this section, we intro-
duce the vector of coordinating variables A € R** and formulate two inde-
pendent local problems which in iteration k have the form:

miq [Qmom(xl- A9y = Qix)+ lo(sl(tl()))z

x1€Xia
10

11
3 Myl F sl )= L Mo i | (3209

i=1 i=1

and

11
mif} [Qmod2(x2a /\k) =Q,(xy)~ Z A'i(x2,i+10:|’ (3.210)

x2€ X34 i=1

where A* is the price in iteration k, and y,(t,) and s,(t,,) are calculated on
the basis of the model. There are no constraints on the first local problem.
The problem is now ready to be solved.

For given A, the local problems (3.209) and (3.210) together with corres-
ponding model state equations (3.204) and (3.205) form discrete optimal
control problems. The discrete form of the maximum principle was used to
solve the local problems. The step controls ¢, and ¢, thus obtained were
applied to the real system (3.201) and (3.202), which resulted in certain real
interactions. The values of these interactions at ¢ (i=0,1....,10) were
H, K, (c(t)) and H,K(c(t)) calculated analytically from equations (3.201)
and (3.202). Thus, it was possible to obtain discoordinations u,(t)—
H, K, (c(t)) and u,(t,)— H,K,(c(t;)) for i =0, 1,..., 10 from the computer.
Operators D, and P, defined in (3.155a) were 20 x40 matrices computed
directly from the model. Operator A was taken as the inverse of the matrix
of second derivatives of Q41 + Qnoax With respect to (x,, x,). Operator E,
which is used in the algorithm, was a 20X 20 matrix. The value of parameter
¢ was chosen experimentally, as shown below.
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FIGURE 3.16 The influence of parameter ¢ on convergence properties in the
control of a linear dynamic system.

During the numerical simulation, the influence of parameter £ on the
convergence properties of the method was investigated, and the results are
presented in Figure 3.16. A safe value, £ = 1.2, was chosen. Then, the
influence of the Fst unit (parameter vy in (3.207)) on the coordination process
was analyzed. This influence is presented graphically by a family of curves of
discoordination norm versus iteration number for three values of y (Figure
3.17). The behavior of z* in {3.207) is also shown. In all cases the algorithm
converges irrespective of the changes in the feasible sets. Coordination with
v¥=0.1 and £ =0.8 and 1.8 is shown in Figure 3.18.

Finally the influence of discretization on the performance of the method
was investigated. Three intervals of discretization were used, NN =10, 15,
and 20, and the discrete versions of the local problems and the coordination
task were formulated as in (3.209) and (3.210). A plot of the value of the
performance at the end of the coordination process versus NN is shown in
Figure 3.19.

The second example, a nonlinear dynamic system, is one consisting of
subsystems S1 and S2 (Figure 3.20). Subsystem S1 is a periodically
loaded chemical reactor in which conversion A — B takes place. The work
of S1 can be divided into three phases. In the first phase (0=<t=<t,) the
reactor is loaded by a constant flow of substance A up to its capacity W,
The temperature of the substance is T(0). In the second phase (t, <t=4)
conversion A — B takes place. In the third phase (4=t=5) the reactor is
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FIGURE 3.17 The influence of the feasible set identification (Fsr) unit on the
coordination process for a linear dynamic system.

unloaded by a constant flow and the compound flows into S2. The reactor is
heated continuously by a flow of heat H(t). There are three state variables
in S1: W(t), the volume of liquid in the reactor, XA(t), the concentration of
A in the reactor, and T(t), the temperature in the reactor. The controls are
t;, the duration of the filling phase and H(t), the heat flow. Subsystem S2
separates substance B from the compound flowing in from the reactor. S2 is
an object without memory. The work of S2 depends on the parameters
XA(t) and T(t) of the reactor output flow. Since the separator is supplied by
the reactor outflow only during the interval [4, 5], we consider the interac-
tions as functions defined on the interval [4, 5].
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FIGURE 3.18 Coordination with y=0.1 and £ =0.8 and 1.8.
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FIGURE 3.19 The influence of discretization on the final value of the perfor-

mance.
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FIGURE 3.20 Example of a nonlinear dynamic system.

The equations of subsystem S1 have the following form:

dw Iy
d )0, n=t=4, (3.211)
-1, 4=1=5
1-XA@ _ . _
dx:;:(t)= Wi~ XAD KT, 0<r=1, o
—XA(1) - k(T(1)), H=t=$5
300—T() H()
—_ . T =
are | oW T XAWKIOL 0=
B (3.213)
dt H
Wi~ XAWKTW). (=1=5

where k(T)=(0.00833 - T—2.5)". The initial state in each cycle was W(0) =
0, XA(0)=1, T(0)=300°K.

Since the output of §2 does not influence S1, there is no need to introduce
the output equations of S2. Still, the performance of the system strongly
depends on the work of S2.

The performance index for the reactor is:

Q,=0.01 y(H(t))2 dt+ll. (3.214)

(0] 1
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It represents the cost of control. The performance index for the separator
represents the cost of control R(t), 57 and the value of product B:

Q.= [ [-2001-exp (-R())
x (1—exp (=0.01(1 - XA())500—T(1))+0.1R(1))] dt. (3.215)

We assumed that the mathematical model was evaluated on the basis of
Egs. (3.211)—(3.213) in the way indicated at the beginning of this section. In
the first phase, control H(t) was transformed into a step function constant
within intervals [0, 0.1], [0.1, 1], [1, 2], [2, 3], [3, 4], [4, 5]. Thus, 6 points of
discretization were used. In the second phase, the state equations were
discretized at the following points: 0, 0.1, 0.2, 0.4, 0.6,...,02i,...,5. In
the third phase, the piecewise linear output function was constructed from
the values of XA(y) and T(¢) for ; =4+0.2j,and j=0,1,...,5. Because of
the strong nonlinearity of state equations, a greater number of discretization
points were used in the second phase.

Regarding the unknown set CU,, at the beginning we know that set X°,
defined by the inequalities

0=t,=0.1,
H()=0, te[0,0.1]
T(4.0y=<361-z°

for certain z°> 0, is included in CU,. We assumed that during the iterations
the knowledge about set CU, increases and the Fsi unit generates the
sequence of sets X* defined by the conditions:

0=t =01,
H()=0 for t€[0,0.1],
T(4.0)=361—z%,
K : A
z =mmle - k}'
The formula for z* was the same as in the first example, where the meaning
of all variables used was more fully discussed.

Owing to the discrete form of the coordination task and the structure of
the model, we can define decision variables for the local problem as follows:

¢, =(H(0.1), H(1), H(2), H(3), H(4), 1,),
¢, =(R(4.0), R(4.2), R(4.4), R(4.6), R(4.8)),

u, = (XA(4.0), XA(4.2), XA{4.4), XA({4.6), XA(4.8), XA(5), T(4.0),
T(4.2), T(4.4), T(4.6), T(4.8), T(5)).

(3.216)
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The local problem for the method is the following for S1:

min [Qmodl(cb )\k) =Q,(c)—

c1€Xla

3 Ayl (- 102+ Ak vl +G-1002) | G217

where X*,={c;:¢,;;=0, c;6€[0,0.1T, A*=(A%, ..., A%,) is a vector of coor-
dination variables, y,=(XA, T), and the values of y,(4+(j—1)0.2) for
j=1,...,5 are obtained in the mathematical model. The local problem for
S2 is:

10
min I:QmodZ Qx(cz, up) + Z )\,!(uz,j] (3.218)

(c2. ux)e X4y j=1

where X%,={(c,, u,): u,7=361—z*}. The goal of the coordinator was to
bring the discoordinations u,(t;)—H,Ky(c(t)) to zero for ;=4+0.2(j—1),
where j=1,2,...,5. The values of H,Ky(c(;)) in the real system were
computed by a very precise procedure integrating state Egs. (3.211)-(3.213)
with a relative accuracy 0.1 percent. The difference between the model and
the real system was about 1.5 percent in T(¢) and 10 percent in XA(1).

The local problem for S1 (3.217) was solved by Powell’s method. The
simple constraint on ¢, was eliminated by Box’s transformation. The model
had to be integrated in each evaluation of the cost function in (3.217), so the
minimization proved rather time-consuming. Therefore, the problem was
not solved with high accuracy for S1.

The solution of problem (3.218), thanks to its static nature, was divided
into five independent minimizations for t=4.0, 4.2, 4.4, 4.6, 4.8. These
minimization problems were transformed into equations by employing
necessary conditions (the problems are convex). The equations were solved
by the two-point secant method.

The evaluation of operator E from the model was rather difficult since
derivatives D, and P, could not be calculated analytically. Numerical
estimates of the derivatives have been computed. Operator A was taken
equal to the unit matrix.

In the calculations, the influence of parameter £ on the convergence
properties of the method was investigated first. In this example there were
difficulties in choosing an appropriate operator A, since the Hessian of the
performance function was not available. Consequently, the identity matrix
was used. Unfortunately, it turned out that only very small values of ¢
guarantee convergence. The results are presented in Figure 3.21. A safe
value of £ =0.00022 was chosen.
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FIGURE 3.21 The influence of parameter £ on convergence properties in the
control of a nonlinear dynamic system.

Second, the influence of the Fsi unit on the coordination process was
analyzed (Figure 3.22). Because of errors inherent in numerical solutions of
local problems and numerical simulation of the real system, the coordination
condition (3.153) could be satisfied with only limited accuracy. Third, the
behavior of real performance during the coordination process was investi-
gated (Figure 3.23). The performance decreases as the coordination pro-
ceeds. Small oscillations at the end of the coordination process are caused by
random numerical errors.

We draw the following conclusions from the simulation:

e Although full information about the real system equations and feasible
sets is not available, the method finds a feasible satisfactory control that is
much better than that of open-loop control.

e A convergence proof for the method under very general assumptions
about the Fs1 unit has been given. Such a general approach enables us to
construct the Fst unit in a number of different ways, depending on the
differences between the model and the real constraints.

e The errors caused by discretization may be taken into account in the
framework of this theory.

e In all computational examples the method converged, as predicted by
the theory.

The above promising properties indicate that price coordination with
feasible set identification may be used to control complex industrial plants.
In order to make it more useful, the following research should be done.

First, since real plants are usually nonstationary, the nonstationary case
should also be considered. Coordination of a nonstationary system in a
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similar structure, without the Fs1 unit, is considered in subsection 3.5.3.
Second, the general conditions imposed on the Fsi unit allow it to be
constructed in various ways. Thus, a choice of specialized identification
procedures for some classes of problems should be made. Third, the
simulations showed that the quality of the control depends on the discretiza-
tion step used (see Figure 3.19). It should be determined if the solutions of
the discrete versions of the coordination task tend to the solution of the
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FIGURE 3.22 The influence of the rsI unit on the coordination process.
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FIGURE 3.23 Behavior of performance during the coordination process.

continuous version as the discretization step tends to zero. Fourth, it was
mentioned in the convergence theorem that the rate of convergence is
linear, but it seems possible to achieve faster convergence of the coordina-
tion algorithm. Moreover, the number of computations may be decreased by
an appropriate choice of stop criteria for the lower-level problems. Some
research in this direction for two-level methods of mathematical program-
ming has been done by Szymanowski and Ruszczynski (1976).
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4 Coordination in Dynamic Control

4.1. PROBLEM DESCRIPTION
4.1.1. THE SYSTEM TO BE CONTROLLED

Throughout this chapter, we assume that the system under control is
composed of dynamic subsystems whose inputs and outputs are connected
either directly or through intermediate storage elements (inventories). Thus,
we consider a complex system that can be described formally as follows:

The subsystems are dynamic processes defined on the interval [t,, T,] and
described by a state transformation mapping and an output mapping. The
state transformation mapping is

X (1) = dialxi (1), Myia, Uin, 24l iel,N, 4.1
where

A=[t,t] ty=t,<t=T,.

N is the number of system elements.

x;(t) is the state of subsystem i at time t, x;(t) € X,, a real Banach space.
x;» is the state trajectory over interval A, x;,€ C(A, X)) =%,

m;(t) is the control input at time t, m;(t) € M,, a real Hilbert space.

m;, is the control input over interval A, m;,€ L*(A. M) =M 5.

(1) is the interconnection input to subsystem i at time ¢, u,(t)eR™.
u;, is the interconnection input over interval A, u;,€ L*(A,R™) =9y, ,.
z(t) is the disturbance input (or process parameter) at time ¢, z(t)€ Z, e.g.,
a real Banach space.

Z4 Z; is the interconnection input over interval A, z, € L*(A, Z)=Z%,.

We assume that the initial state plus the inputs until the present determine

310
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the current state of each subsystem, i.e., for all t,,t,, and ¢t such that
to=t,<t,=t=<T, we have

¢iA,[xi(t1), Mia,s Uia,s ZAl] = ¢iA2[xi(t2), Mia,, Uia,s ZA2], (4.2)
where

xi(tZ) = ¢iA,2[xi(t1), Mha,, Uia, s ZA,Z]
and

A, =[t, t], A2=[t2, t], A=t tz]-

The subsystem output mapping is

YI(t):F?[xz(t)y rn:(t)a ui(t)7 Z(t)]’ ie 1a N, (4'3)
where
FY: X, XM, xR™ X Z —>R™, y;(t) eR™..
Combining (4.1) and (4.3), we can define the subsystem input—output
relation as follows:
Via= Fialx: (1), mia, tia, 24l, (4.4)
where
A=[t,,t] and y,,e€L*A,R™).
For simplicity, we denote
Xx=(X1,...,Xn)s X=X xX...xXy,

and we do the same for m, u, y. Thus (4.4) may be written in compact form
to describe the whole set of subsystems, the system with its couplings cut, as

ya=Falx(t,), my, us, 241 4.5)

For the system couplings, the interconnection equations, the coupling
equation has the following form (for given A=[t,, t,]):

N
Pa(ua, ya) = Z P;A(tia, ¥ia) =0, (4.6)
i=1
where for given A=[t,, t,], P, is a continuous linear operator with values in
some space P (we assume that @ is a real Hilbert space). Suppose now that
for every i€ 1, N the vectors of the interconnection variables are split into
two parts u; = (U, U,;) and y; = (v, Yu:). We will consider the class of system
couplings (4.6) to have the following form:

ug () = Hyy, (1) = Z Hijysj(t) 4.7

for almost every t€ A, where H; are real matrices. Couplings (4.7) are stiff
interconnections.
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The remaining components of u and y may be required, for example, to
satisfy the following weak interconnection relations:

| 0= By de=b, (48)
A
for a given sequence of time intervals A, where b, e R™, H, and H, are real
matrices, and N
Hyu,(t)= Z Hliuwi(t)-

i=1
A similar expression can be written for H,. It is easy to see that (4.8) does
not relate the input u,(¢) at a particular time to the instantaneous output
¥ (1) and therefore this input will be considered as a decision (control)
variable.

In most of this chapter, and in particular in sections 4.2 and 4.3, we
assume that local variables m;(t) and u,(t) may be constrained to a certain
set, that is (m(t), u,(t)) e MU? « M, XR™. The set MU? can be defined, for
example, as follows:

MU ={(m(1), u, (1)) : g (m; (1), u, (1)) =0},

where g is a vector-valued mapping. We assume that subsystem state x;(t) is
unconstrained and we consider no global constraints.

4.1.2. THE SYSTEM CONTROL PROBLEM

The overall performance function of the system is specified, for some
interval Ay =[t,, t] (¢ =Ty), in additive form as follows:

N
ng(xAp My Uaps ZA,) = Z Q?A,(xm,, My, Uiap ZA,)
o
= 2 {[ a0 50 0, w0, 2(0) e+ |, (49)

where q,; and J, i€l, N, are scalar-valued functions. By making use of
(4.1), we can say that performance Q3 implicitly depends on the initial state
and on the inputs taken over A;:

ng = Qus(x(to), Ma,, Uap Za,)- (4.10)

The following global off-line system optimization problem (sor) may now
be formulated:

Given prediction Z,, of the disturbance trajectory find the model-based,
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optimal, open-loop controls i, (Z,,), i, (Za,), that minimize QY, subject to
(4.5), (4.6), (4.7), and (4.8) over

MUArZMulA,X-'-XMUNAp (411)
where
MU, ={(mia, wia): (m(1), u; () e MUY for te A}

We assume that the initial state x(ty) is given.

This formulation is not the most general. We treat the disturbance as a
random variable and propose to solve the deterministic problem (find a
control for the predicted disturbance z) as if it was a given function of time.
The reason for this approach was already mentioned in Chapter 1, section
1.1. It is difficult to solve a problem in a stochastic formulation for anything
other than a linear, unconstrained system with quadratic performance func-
tions.

sop is an open-loop formulation, that is, it determines the controls as
functions of time. In a closed-loop formulation a decision rule would be
determined that relates an instantaneous value of control to the measured
value of the system state. The reason is again of a practical nature: many
more problems are solvable in the open-loop form than in the closed-loop
one and, moreover, we cannot use continuous feedback at the higher levels
of a control hierarchy.

4.1.3. THE CONTROL STRUCTURE

When the model-based optimal controls are applied to the real system, the
behavior of the system may be far from desirable, because, in general, the
disturbances z},, are different from the predictions Z,. As a result, coupling
equations (4.8) may not be satisfied in the real system; the same could also
happen to the local constraints. There is a need to introduce appropriate
on-line control structures that would use feedback information from the
system. If the optimization problem is formulated and solved as sop above,
the use of feedback is possible in the form of repetitive optimization (see
section 4.5), where sop would be solved at given intervals and the actual
state of the system would be used as the new initial value. In most of this
chapter we will use predicted disturbances and repetitive optimization.

According to the main theme of this book we are going to discuss in this
chapter the hierarchical structures of dynamic control, and we pay most of
our attention to dynamic price coordination. We consider this structure to
be the most flexible to apply.



314

4.2. MULTILEVEL STRUCTURES FOR ON-LINE DYNAMIC
CONTROL

There are three main kinds of multilevel structures for on-line dynamic
control:

e Structures with dynamic price coordination
e Structures based on the state-feedback concept
e Structures using conjugate variables

We shall now describe their main features and properties and draw some
comparisons between them. For clarity, we shall make the formulations as
simple as possible by omitting the inequality constraints in the formulation
given in section 4.1.

4.2.1. DYNAMIC PRICE COORDINATION

The distinctive feature of dynamic price coordination is the use of prices on
the inputs u; and outputs y, of the subsystems in order to coordinate the
local decisions. It has been described in its principal form in section 1.3; we
extend it here, although still using rather simple mathematics. A much more
comprehensive treatment is given in section 4.3,

The global problem

The control problem for the interconnected system is (compare section 1.3):

minimize Q = ), f"qu(xi(t), my (1), w (1) dt 4.12)

i=1
subject to
% () =f,(x(t), m(t), w;(t)), iel, N (state equations),

yi(8) = F(x, (1), m;(1), u, (1), ie 1, N (output equations),

u(t) = Hy(t) (interconnections)

the dependence on z(t) is omitted for convenience; x(0) is given and x(t) is
free or specified. In comparison with section 4.1, our formulation is more
specific and simple. We have assumed that the system dynamics can be
described by ordinary differential equations and that there are no in-
equality constraints. The first part of this discussion follows what was said
in section 1.3, but in a very abbreviated way.
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Decomposition

When the interconnection equation is incorporated into a Lagrangian:
N

L=

i=1

[ a1, m(o), w0 i+ [0, u0-Hyana, @13
0 (0]

then this Lagrangian can be split into additive parts, which are the basis of
local problems:

minimize Q; = Jl'[qu(xi(t)’ m(t), u; (1))

(), u ()= (D), yi ()] d, (4.14)

where y;(t) is determined by the subsystem output equation, the optimiza-
tion is subject to

X% (6) = fi(x (), m(0), u (1)),

x;(0) is given, and x;(¢) is free or specified as in the original problem. We
have to put the optimal values of price vectors X, {; into the local problems,
which means that the global problem must have been solved ahead of time.
As pointed out in section 1.3, there is little sense in the local problems
unless we shorten the local horizons and use feedback. When we shorten the
horizon from ¢ to tf, (4.14) becomes

minimize O, = [ o G (1), m(0), w (1))

+<Xi(t)’ w, (1)) — <, (1), yi()] dt (4.15)

where x;(0) is given as before, but the target state is taken from the global
long-horizon solution, x;(t}) = X,(tf).

The use of feedback at the local level

The short-horizon formulation (4.15) pays off when we repeatedly solve
(4.15) rather than solve the global problem only once. Figure 1.21 in
Chapter 1 shows the principle of the proposed control structure. In section
1.3 we said that feedback at the local level consists in solving the short-
horizon local problems at some intervals T, <t and in using the actual value
of the measured state x/(kT;) as a new initial value.

More exactly, the operation of the structure is as follows: At =0 we
solve the problem max Q, for the horizon [0, t;] with x,(0). We apply control
1, to the real system for an interval [0, T;], and at t =T, we again solve
max Q; for horizon [Ty, t] with initial state x;(T;)=x{(T,) as measured.
Then we apply control /iy to the real system on interval [T}, 2T,], and so on.
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Note that the local problems, which have to be repeated at intervals T,, are
of low dimension and short horizon. We should not forget the disturbances.
As spelled out in section 1.3, disturbance prediction would be used while
solving (4.12) and (4.15), the global problem and local problems, respec-
tively.

The use of feedback in coordination

Feedback to the coordinator, mentioned in section 1.3 and Figure 1.21,
consisted in supplying the actual values x; at time tf,2tf,... so that the
global problem could be solved again for each of these new initial values.

Does this feedback to the coordinator make sense when the lower-level
problems have to achieve x[(t})=x;(t}) and already use feedback? It does
because the model-based target value %,(t}) is not optimal for the real system
and asking the local decision making to achieve exactly x{(t}) = x;(t;) may not
be advisable or even feasible. Some numerical evidence of this fact can be
found in section 4.3.

The feedback to the coordination level need not be at tf, 2tf, and so on. It
might be advisable to use the feedback and perform the recomputation of
the global problem prior to time t, and the feedback should then occur
prior to time t}.

Static elements in the system

We did not mention in section 1.3 that the length of the global problem
horizon # has to be matched to the slowest system element dynamics and
the slowest of the disturbances. The shortened horizon t; for the local
problems would in fact result from considering repetitive optimization at the
coordination level, for example ¢} could be set at 15t The dynamics of a
particular system element may then be fast enough to be neglected in its
local optimization problem within the horizon t}. This means, in other
words, that if we take m; and &, from the global optimization solution, the
optimal state solution X; follows these with negligible effect on the element
dynamics.

To make this assumption more formal, let us consider that the system
element has been supplied with first-layer follow-up controls of some
appropriately chosen control variables ¢; (see section 1.3 of Chapter 1). We
are then allowed to assume that ¢; determines both x; and m; of the original
element and the optimization problem becomes

minimize Q, = J:f[q{)i(ci(t), u; (1))

+(A (), w () — (& (1), v(0)] dt, (4.16)
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where g),(-) is a reformulation of the function g, with ¢; in place of x, m,.
Although (4.16) is not a dynamic problem, its results will be functions of
time. In particular, ¢ is a time-varying control because prices A, d; are
time-varying. The essential assumption under which the dynamic local
problem (4.15) reduces to the static problem (4.16) is that dynamic optimal
solutions m, i;, X; change slowly with respect to the system dynamics.

The use of simplified models

We have made no use till now of the possibility of simplifying the model
in the global problem, which is solved at the coordination level at times 0,
t, 2t},. ... The global problem may be simplified for at least two reasons:
the solution of the full problem may be too expensive, or the data on the
real system, in particular the prediction of disturbances, may be too inaccu-
rate to justify computations based on the exact model.

Simplification may concern the dimension of the state vector (aggregated
x¢ instead of x), the control vector (m° instead of m), or the inputs and
outputs (u° = Hy° instead of u=Hy).

The global problem Lagrangian will now be

N 'f tf
L=3 [ Taneio, mio. uio) dooe [ "0s(0, w0~ Hoye(0) di
i=1+0 0
(4.17)
The simplified solution will yield optimal state trajectory X°=
(%1, X5, ..., %) and optimal price function A¢. The linking of those values to

the local problems cannot be done directly because the local problems
consider the unaggregated vectors x;, u;, and y, We have to change the
previous requirement x;(t;) = x;(¢}) into a new one

v: (% (1)) = %5 (¢p), (4.18)

which, incidentally, is a more flexible constraint, and we also have to
generate a full price vector A:

~ A

A=RAXC (4.19)

where R is an appropriate price proportion matrix. The prices of the
aggregated A° may be termed group prices.

We should note that the functions v, and matrix R have to be approp-
riately chosen. The choice could be made by model consideration but at
present it is not possible to indicate how this could be accomplished in a
general case. We should also note that even with the best possible choice,
the optimality of the overall solution will be affected, except in some special
cases.
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System interconnection through storage elements

We have only considered system interconnections that are stiff, that is,
outputs connected to inputs in a permanent way. The full dynamic problem
formulation (as given in section 4.1) also considers a weak interconnection
of an integral type:

(k+1g,
[ w0 ya di=o,

s

which corresponds to taking input u; to subsystem i from a store, with some
output y,, of subsystem € connected to the same store. To ask that the
integral equal zero over [kt,.(k + 1)t,] means that inflow and outflow have to
be in balance over each balancing period t, (assuming that the capacity of
the store is large enough).

A store may be supplied by several outputs and drained by more than one
subsystem input. There may also be many stores, for example, for different
products. If we assume the same balancing period for all of them, then the
integral constraint becomes

(t+1)tb _ _
| - Fayaop ar =0,
ki

1

where u,, y,, are parts of u, y connected to the stores (the stiffly intercon-
nected parts will be termed u,, y,). Matrices H,, H, show the way in which
u,, ¥., are connected to the various stores. The number of stores is of course
dim H,y,, =dim H,u,. A state vector w of the inventories can also be
introduced

ke, +t

wikt, +t) = w(kt,)+ 4[ (H,u,(t)— H,y, (1)) dt. (4.20)

kty,

At this point it is worthwhile to note that the notion of inventory
couplings (4.8) is in general based on an assumption about the existence of
inventories in the system. This in turn usually implies the boundedness of
stocks at any moment, and we should introduce constraints of the form:

¢
€=- A 0-Ay.0ld=e, (4.80)
tie
(or 0= w(kt,+t)=w,,, for w(kt, +1t) as given by (4.20)). If we drop these
constraints from our considerations, we assume implicitly that the fulfiliment
(or approximate fulfillment) of condition (4.8) implies the fulfillment of
(4.8a) owing to the existence of a sufficient capacity reserve. For further
discussion of this issue, see Malinowski and Terlikowski (1978).
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When both stiff and soft interconnections are present in the system, the
global Lagrangian problem becomes

L= 3 [ a0, m0. w0 di+ [ A0, 10~ Hy, ) de

k=t/i k+ly, _
+ Y (] a0 Ao ai) @.21)
k=0 o

s

and we of course continue to consider

X () =Ff(x (), m(1), u; (1)), i=1,...,N,
yi(t) :E)(xi(t)a mi(t)7 ui(t))s i= 1, Ly N,

x;(0) given, and x,(t) free or specified, i€ 1, N.

In comparison with the previous Lagrangian, a new terin has now ap-
peared reflecting the new constraint. Note that prices n* associated with the
integral constraint are constant over period t,. Note also that if ¢, tends to
zero, the integral constraint becomes similar to the stiff one and m, which
changes in steps, will change continuously, as A does.

With two kinds of interconnections, the local problems become

minimize Q, = J;r[qo,»(xi(t), m, (8), w, () + (X, (0, u, (DY~ (1), v (tH] dt

k =1/,

o 3 ([ A Ry ) (4.22)

173

where ygi (1) = F(x (1), m; (1), u (1)), v ()= Fi(x(0), m(1), u(t)) and the
optimization is subject to X;(t) = f; (x;(t), m; (1), u; (1)), x;(0) given, and x,(t)
free or specified.

In problem (4.22), inputs u,,; taken from the stores are now free control
variables and can be shaped by the local decision maker who controlled only
m; in (4.15). The local decisions will be under the influence of prices A and
A= 7. ... ), where both A and 4 have to be set by the solution of the
global problem. Local problem (4.22) has no practical value yet; it will make
sense when we introduce local feedback and shorten the horizon. We omit
the details and show only the control scheme (see Figure 4.1).

In order to improve the decisions of the coordinator, we made a proposal
to feed the actual x' () to his level. We have now additional state variables,
the inventories w; if price #* is wrong, the stores will not balance over
[kt,, (k+1)t,]. We can correct the imbalance by influencing the price n**!
for the next period. The new price should be in line with the difference
w((k+1)t,)—w'((k+1)1,), where w'(-) is a value measured in the real
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FIGURE 4.1 On-line dynamic price coordination in a system containing inven-
tories in the interconnections.

system. This kind of feedback is also shown in Figure 4.1. Section 4.4 shows
some algorithms for improving prices n*.

Conclusions

We have shown that time-varying prices are a possible coordination instru-
ment that can be used in a multilevel structure of on-line control, if
accompanied by prescribed target states. The local problems may be formu-
lated with a short horizon and low dimension. The coordination level must,
solve the global problem for the full horizon in order to generate the
optimal prices and the target states for the local problems. A simplified
global model may be used in appropriate cases.

The price coordination structure applies to systems with stiff interconnec-
tions and to system with interconnections through storage elements. The
operation of the structure depends on the possibility of solving the optimiza-
tion problems numerically. Analytical solutions of the dynamic problems
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involved are not needed, so we are by no means restricted to linear-
quadratic systems.

4.2.2. MULTILEVEL CONTROL BASED ON THE STATE FEEDBACK CONCEPT

There has been considerable research devoted to the structure in which the
optimal control at time t, #i(t), is determined as a given function of the
current state x(t). Comprehensive solutions exist in this area for the linear
system and the quadratic performance case, where the feedback function
proved to be linear; that is, we have

m(t) = K()x (1),

where K(t) is in general a time-varying matrix. To apply this approach to a
complex system, we might use for each local problem

my (1) = K (8)x, (1), (4.23)

where K;; is one of the diagonal blocks of matrix K.
The result of such local controls, although all states of the system are
measured and used, is not optimal. Note that for i1, () we should use

(1) = K (0)x (1),

that is, we should make sy, (t) dependent on the overall state x(t).
We can compensate for the error committed in (4.23) by adding a suitably
computed correction signal

(1) = K, (£)x, () + 6,(1). (4.24)

To get ©;(t) exactly we should generate it continuously from the overall
x(t). This would, however, be equivalent to implementing state feedback for
the whole system directly, and we would lose the advantage of having small
local problems. Adding ©;(t) means, in fact, overriding the local decisions. In
particular, dim v; = dim m,. Exactness has to be sacrificed. With this in mind,
we propose various solutions, for example (see section 4.6 and Figure 4.2),

e O, will be generated at t=0 for the whole optimization horizon ¢
(open-loop compensation)

e ©#; will be generated at t=0 as before but will be recomputed at
t=t;<t, using the actual x(#;) (repetitive compensation—see subsection
4.6.3)

e ¢, will not be generated at all; instead we implement in the local
problems (see subsection 4.6.2)

(1) = Kox (1), (4.25)

where the feedback gain matrix K9 is adjusted so as to approach optimality.
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FIGURE 4.2 Dynamic multilevel control based on the feedback gain concept.

This structure may be referred to as decentralized control. We could think
of readjusting K% at some time intervals, which could be looked on as
adaptation. This adaptation would present a way of on-line coordination of
the local decisions.

Local decision making based on {4.23), (4.24), or (4.25) makes more
sense for fully computerized implementation than for a hierarchy of human
decision makers. The previous approach based on minimization of the local
performance subject to imposed prices seems to describe the workings of the
real system better than the state feedback approach. We should also
remember that the solutions in the form of feedback gains to the optimiza-
tion problems are available for a restricted class of these problems only.

4.2.3. STRUCTURES USING CONJUGATE VARIABLES

It is possible to base the local on-line optimization on the minimization of
the simultaneous value of the Hamiltonian, and thus use the trajectories of
conjugate variables computed during the global optimization as an addi-
tional control decision of the upper-layer controller of the dynamic coor-
dinator. The use of conjugate variables has been described by Findeisen
(1977); one can also find some attempts at practical applications (e.g., Foord
1974).

For the complex system optimization problem (4.12), the Hamiltonian
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would be
H= i qoi (% (1), m; (1), w; (1)) (i (t), f(x(1), m(2), u())). (4.26)
The interconne'c;ilon equation
u(t)—Hy(t) = u(t) — HF(x(t), m(1), u()) =0

provides that u(t) is a function of (x(t), m(t)) in the interconnected system

u(t) = @(x(1), m(t)).

Therefore

H= L qoi(x (1), mi(0), ¢, (x(1), m(1)))
+ (W (D), f(x(0), m(D), @(x(), m@)).  (4.27)

We assume that the global problem has been solved and hence the
optimal trajectories of conjugate variables  can be easily computed. We
are going to use the values of ¢ in the local problems. Having s, we could
redetermine the optimal control by performing at the current time t

minimize ¥ = Z Qo: (x; (1), m; (1), ¢; (x:(x(t), m(1)))
(D), (1), m(D), @(x(1), m(1)))), (4.28)

where the problem is an ‘““‘instantaneous minimization” and needs no consid-
eration of final state and future disturbances. This information was of course
used to solve the global problem and determine ¢ for the whole time
horizon.

To perform (4.28) we need the actual value of state x. We could obtain it
by simulating the system behavior starting from time t, when the initial
condition x(t,) was given, that is, by using the equation

x(0) = f(x(1], m(0), @(x(1), m(1))),

with x(t,) given and m = rit known for [t,, t;] from the previous solutions of
(4.28). We could also find x(t) by measuring it in the real system, as long as
we take into account possible model-reality differences, about which we
have incomplete information.

Problem (4.28) is a static optimization, not a dynamic one. We would now
like to divide it into subproblems by treating u(t)—Hy(t)=0 as a side
condition and solving (4.28) with the Lagrangian

L= Z qoi (x; (1), m(1), u; (1))

+((D), Fx(0), m(1), u(0))+{A(1), u()— Hy()), (4.29)
where y(1) = F°(x(1), m(1), u(1)).
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Before we get any further with this Lagrangian and its decomposition, let
us note how it differs from the Lagrangian for dynamic price coordination.
We had there

L =J ' Y doi(x(1), m (1), w (1)) dr + J ’<A(t), u(t)—Hy(t)) dt
0 0

i=1

subject to

() = £ (0, m(), w(t), iel,N.

It was a dynamic problem. In the present case there are no integrals in L(-)
and the dynamics are taken care of by the value of conjugate variables .
The differential equations of the system are needed only to compute the
current value of x in our new ‘instantaneous’ Lagrangian. No future
disturbances have to be known, no optimization horizon is considered—both
are included in .

Assume that we have solved problem (4.29) by using the system model,
i.e., by computation, and that we have the current optimal value of price X,
X(t). We can then formulate the following static local problems to be solved
at time t

minimize L; = qq; (x; (), m;(t), u;(t))
m (1), (1)

W (1), £ (e (), my(1), u; (1))
+ (A0, (D))= (@ (1), yi(1))- (4.30)

These local problems could be used in a structure of decentralized control;
see Figure 4.3. The local decision makers are asked here to minimize L;(-)
by using the model and to apply control #(t) to the system elements. The
current value x;{t) is needed to perform the task. The coordination level
would supply ¢, (1) and the prices A;(¢) and g, (¢) for the local problem, which
would be different for each t. Note that there is no experimental search
(hill-climbing) on the system itself.

Figure 4.3 implies that the local model-based problems are solved im-
mediately with no lag or delay. We can therefore assume, conceptually, that
the local decision making is more than implementation of a state feedback
loop relating control #(t) to the measured x;(t). In an appropriate case we
could solve problem (4.29) analytically with s (¢) and X (¢) as parameters and
the result would be a feedback decision rule. If an analytical solution of
(4.29) cannot be done, we have to implement a numerical algorithm of
optimization and some time will be needed to perform it. An appropriate
version of control with conjugate variables would have to be considered (see
section 4.3).
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FIGURE 4.3 Dynamic multilevel control using conjugate variables.

Now let us think about feedback to the coordinator. We might decide to
let him know the state of the system at some time intervals tf, that is x(ktf),
on which he could base his solution ¢ for all t=kt; and also the prices A
for the next interval [ktf, (k +1)#f]. This procedure would be very similar
to what we have proposed in dynamic price coordination.

It might be worthwhile to again make some comparisons between
dynamic price coordination and the structure using both prices and conju-
gate variables. Both these cases do not prescribe a state trajectory. In
dynamic control, direct coordination with a state trajectory or input and
output trajectories would be difficult to perform if model-reality differences
are assumed.

In this structure the local problems are static. The local goals are slightly
less intuitive, as they involve (J/i(t),, x;(1)), that is, the ‘“value of the trend.”
This would be difficult to explain economically and hence difficult to
implement in a human decision-making hierarchy. Since the problem is
static, no target state is prescribed.

4.2.4. COMPARISON OF CONTROL STRUCTURES

We have discussed three structures for a dynamic multilevel control system
using feedback from the real system in the course of its operation. It is not
yet possible to evaluate all advantages and drawbacks of the alternatives
However, if the mathematical models do not differ from reality, all the
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TABLE 4.1 Comparison of Dynamic Coordination Struc-
tures

Local Local
Coordinator Problems Goals
Dynamic price  Solves global prob- Dynamic Maximize per-
coordination  lem, sets price A optimi- formance.
and targets x; zation achieve target
state
State feedback  Solves global prob- State feed- No goal
lem, supplies com- back deci-
pensation signal ¢, sion rule
Conjugate Solves global proh- Static Maximize per-
variables lem, sets prices A optimiza- formance inclu-
and conjugate va- tion sive of
riables (W (1), %,()

structures would give the same result, the fully optimal control. The impor-
tant question is what will happen if the models differ from reality. Quantita-
tive answers do not exist. Some partial results are available, and are
presented in later sections.

Another feature of the structures concerns their use in a human decision-
making hierarchy. It is then important what the local decision problem will
be, the one assigned to the individual decision maker. He may feel uncom-
fortable, for example, if asked to implement only a feedback decision rule,
as in the state feedback structure, or to account for the value of the trend
<lZli(I), %,(t)) in his own calculations, as in the structure using conjugate
variables. For the human decision maker, the structure with price coordina-
tion seems to be the most natural. Table 4.1 shows a comparison of the
structures.

Optimizing and regulatory dynamic control

In a hierarchical control system we often decide that it is the control
determined at the higher levels that should have the responsibility for
optimizing performance, as opposed to the lower-level regulatory control
that has to follow the directives specified at higher levels. Usually, the
optimizing control is computed for long time horizons and the mathematical
models reflect only the dominant (“‘slow”) process dynamics. In this type of
control problem

e The process equations are nonlinear and the performance index is
neither quadratic nor linear.
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e The disturbances to be taken into account are those that have a major
effect on the process behavior. They usually change slowly but cannot be
considered stationary.

e The interventions of the optimizing controller can only be made at
certain intervals (e.g., once a day, once a week, or when an intervention is
needed), and only discrete observations of the process behavior (e.g., values
of the dominant state variables) are used.

Because of the above characteristic features of the problem, it seems to be
very difficult to utilize a stochastic approach for the design of optimizing
control algorithms. Moreover, the stochastic control approach may be
inappropriate because it would optimize the expected value of the system
performance, while we would like to develop a control strategy that would
result in satisfactory system behavior for a specific, i.e., predicted, occurr-
ence of dominant disturbances. So it is often more appropriate for us to use
a deterministic approach based on prediction of disturbances. This is also
the only approach that seems appropriate for an actual application. It will be
possible to compensate for errors due to the deterministic treatment when
the lower-level regulatory control mechanisms are designed. We should note
that the control structure described in subsection 4.2.1, for example, could
be considered as an optimizing controller superimposed on some lower-level
control systems.

When designing the algorithms of the regulatory control that takes place
at the lower levels of a control hierarchy, we usually formulate different
objectives and consider different properties of the process from those used
in the optimizing control design. The main features of the control problem
this time will be as follows:

e The principal task of the regulatory controllers is to cause the process
to follow a specified reference trajectory. This trajectory may reduce to
stepwise changing set-points if steady-state optimization is used at the
higher levels (see Chapters 1 and 3).

e In most cases, the models used to describe the process behavior in
some neighborhood of the specified reference trajectory can be linear. Very
often, a quadratic performance index describes the regulatory control qual-
ity well enough (see, e.g., Athans 1971).

e Usually, it is necessary to take into account fast disturbances (noise)
that influence the process. The available measurements will have to be
considered incomplete and noise-corrupted.

e Because of the fast disturbances, the regulatory control has to be
continuous, at least in principle. Therefore, fast on-line data transmission
and processing is required. Heavy demands on the information transfer
structure are imposed in that case (see Chapter 5 and section 4.6), and
important information constraints may have to be considered.
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There are several reasons, the informational aspects among them, for
which one tends to consider decentralized rather than centralized control
structures for the regulatory control task. If state estimation is required,
because of the incomplete and noisy measurements, we have to construct
not only the decentralized decision rules, but also the decentralized filtering.
The linearity of the models and the quadratic performance indices permit
the investigation of the properties of the decentralized structures by means
of stochastic control theory.

Some decentralized control structures will be presented in section 4.6.
The basic state feedback concepts have been described in subsection 4.2.2.
Sometimes, in order to increase the performance of the regulatory control,
we introduce an appropriate coordination of the actions of the local control-
lers. This coordination will be very similar to those in optimizing control, but
the linear-quadratic structure of the problem together with the noisy charac-
ter of the disturbances will make it possible to use stochastic control.

4.3. DYNAMIC PRICE COORDINATION STRUCTURE
4.3.1. TWO-LEVEL SOLUTION OF THE SYSTEM OPTIMIZATION PROBLEM

Let us suppose that the system optimization problem sor, Eq. (4.11), is
being solved in a two-level fashion in the following way. We incorporate the
interconnection equation (4.6), that is, both the stiff interconnections (4.7)
and the weak interconnections (4.8), into the following Lagrangian:

L =Q(x(ty), m, u, Z)+(A, P(u, y)), (4.31)

where A €@, and (-, ') denotes a scalar product in #. Equation (4.31) is a
more general form of Lagrangian (4.13) in section 4.1. The optimization is
considered over the interval A, but the subscripts A; are omitted for
convenience.

For price coordination, it is essential that we be able to solve sop by the
interaction balance method (1BM, see Chapter 2, section 2.4). To do so, we
define the infimal problem (ip):

For given A € ? find m(x(t,), A, Z), i(x(ty), A, Z) minimizing L. on MU (see Eq.
(4.11)), where for y we substitute output equation (4.5). (4.32)

We denote by l:(x(to), A, Z) the value of L obtained in the solution to 1p.
The essential feature of 1p is that it can be solved by solving independently
N local problems in variables m; and u,. Though in general it is not
necessary (see section 2.4) we assume that the solution of 1P is unique for
given x(ty), ZeZ, <%, A e P, < P.



329

In order to achieve the balance condition, that is, to satisfy (4.6), we have
to introduce the supremal problem sp:

Find L
A= A(x(to), 2—')69’0
such that . .
P(a(x(to)a /\’ Z—)’ y(x(t0)7 /\a Z_)) = 0’ (433)
where

§(x(to), X, 2) = Fx(to), m(x(to), A, ), @(x(to), X, 2), 7).

If sp has solution X(x(to), Z), then the resulting controls as defined by 1p are
optimal in the model and the solution of sop is found. The conditions under
which the solution of sp exists are described in Chapter 2.

4.3.2. OPERATION OF THE CONTROL STRUCTURE

Suppose that we control the real process and that at times ¢; (the sequence {t;}
may be specified beforehand or may result from on-demand operation) we
can obtain the measured or estimated values of the current state in the real
system and other information like the current value of integral (4.8) if ;€ A,
for some ¢. One of the possibilities for system operation has already been
briefly described in section 4.2 (see also Figure 4.4). The supremal unit
(coordinator) operates as follows.

At times t;, where, e.g., j; =0, j,= 10, j; = 20, the global system optimiza-
tion problem (sop) is solved over the intervalAy =[t, t;], or over Ay =
[t.. tz ] if we apply the floating horizon approach. The solution is performed
by M. The measured system state x'(t, ) as well as the updated prediction
Z,, are used each time. i

The solution provides for model based optimal price trajectory A,, and
model-based optimal state trajectory X,  for the whole horizon [t &];
segments of these trajectories will be used as the control (decision) variables
of the coordinator in interval ¢, ¢, 1.

As has already been mentioned, final time t;, may be fixed as . This
means that we control the system over a finite interval of time, the number
of time instants ¢, is finite, and the optimization horizon is shortened after
each intervention of the coordinator. If t;, =t, + T, (a constant optimization
horizon), then T, have to be not less than the greatest interval between
adjacent time instants t;, and ¢, . At the same time, t; has to be a final
time instant of some interval A, if integral constraints (4.8) are present. On
the other hand, if t, belongs to the interior of some A, then we have to
modify constraint (4.8) suitably in sop using the current value of integral
(4.8).
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FIGURE 4.4 A two-level structure for dynamic on-line coordination (for simplic-
ity, only stiff interconnections (4.7) are shown).

The local control units operate as follows. At time instants (£, <<t
the local controllers specify control i, %, for the horizon A; =[¢, t; + Ty ],
where A; < Ag, based on measured state x{(t;) and updated prediction Z,.
An appropriate segment of price trajectory XA] is used here as well as the
desired final state x(;,+ Ty )= X (+ T, ); both are taken from the sup-
remal unit.

A more formal statement of the local problem (Lps;) solved at each ¢ is
the following:

Find
rﬁiA,(x:(tj)a XA,, ZA,-’ fifk(tj + le_)), aiA,-(xir(tj)w XA,’ Z~Ai’ iifk(tj + T,‘L)),

that minimize the following functional on MU, :

Lia, :J‘ qoi (x; (1), my(t), u; (1), Z(1)) dt+<XAis Pia(thiay ¥in))s  (4.34)

1



331

where x;(t) and y;(t) are calculated using (4.1) and (4.3), with x,(t,) = x"(1)
and z(t) = Z(t) = Z,;(1), and minimization is subject to the condition x;(t; +
T;1) = X (t;+ T;.). The target state for the local problem is taken from the
global solution. The definition of P,,, is obvious and A, is given by global
solution ):A, = ):A,k la.-

The calculated r;,, and i, are applied to the real process over time
interval [t, ¢ ,] only. At time =1, the next intervention of the on-line
control structure takes place.

The interventions of the supremal unit are less frequent than the local
ones. Hence, if the sequence {;} is f, t;, t, ... spaced at t;,,—t; =L, the
sequence {t,} could be, for example, to, s, 2, ..., that is, spaced at
[=12L, or at similar intervals.

It is evident that the results of the control may heavily depend on the
choice of the sequences {;} and {t, } and the choice of the local horizons T},
which may be constant or varying. These problems are rather difficult to
assess in a general way. We are able to show only a few sample results in
section 4.5.

4.3.3. PROPERTIES OF THE CONTROL STRUCTURE
Optimality

From the construction of a control mechanism it can be easily predicted that
when the disturbance predictions in the control scheme coincide with the
real disturbance trajectory z" and t;, =t Vk, then the control generated is
optimal for the real system. We assume that the solution of sp exists.

If we use floating horizon t;,, at the coordination level and z"(t) = z,, (1) =
Z, (1)V1, then, as before, the local decision units will repeat the controls
generated at the higher layer. The optimality of the behavior of the
controlled system will then depend on the proper choice of optimization
horizons [, ¢, ]. In both cases constraints (4.8) are satisfied.

In real cases, when z}, # Z,, and, in general, when z} # Z,, we have to
examine whether it is possible for the control mechanism to operate prop-
erly. If it does then we have to know how the interesting variables in the
real system (constraint values, performance index, state trajectory x'(t), and
so on) depend on the differences z}, — za, and z3 — Z,. We can try to obtain
some quantitative answers or examine the behavior of the system when the
above differences converge to zero. These topics are very difficult to
investigate and have not yet been fully explored. However, some results are
presented below in the discussions of the coordinator and local-level
mechanisms.
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The coordination level

The coordination level, in order to generate prices AXAfk’ has to solve the
supremal problem sp at each instant of time ¢,. Since A, along with £, are
the decision variables of the coordinator used at the local level, we are
particularly interested in the properties of XAn(x(tjk), Z,,) such as the its
uniqueness and its continuity in x(f, ), Z,,. To simplify the notation, we omit
the subscript Ay denoting the optimization horizon and treat the initial state
value as a component of z.

The solution of sp may be obtained, for example, by application of
coordination algorithm (2.68) presented in section 2.4. In the basic formula-
tion of this algorithm we define mapping W : @, XZ,—>%

W(A, z)=—V(m(A, 2), 4(A, z) (4.35)
where

V{m, u, 2) = P(u, F(m, u, 2)). (4.36)

The initial state has been included in z, but we preserve the old symbols to
denote the spaces and the various sets of disturbances.

The task of the supremal problem of iBM consists in finding A(%) for given
Z, such that

W(A(Z), 2)=0. (4.37)

We assume that 1p (see (4.32)) solutions m(A, ), &(A,Z) are unique for every
(A, 2) € Py X %, therefore, W(- »-) is well defined on 2, x%,. The conditions
guaranteeing the existence of A(Z) can be found in Chapter 2. In most cases
it is difficult to check before the implementation of 1BM whether these
conditions are satisfied. Nevertheless, they give us some indications concern-
ing the possibility of using 1BM for a given system optimization problem.

To find A(Z) we can use, among others, algorithm (2.68) from Chapter 2,
section 2.4, to generate sequence {A™} of the values of A:

ACTD = e AW, 7). (4.38)

The convergence conditions of this algorithm have been thoroughly ex-
amined in section 2.4. If the assumptions of Theorem 2.18 or Theorem 2.19
are satisfied, then (4.38) converges to X(Z) and A(2) is unique in #,c P,
Vz eZ, (we have assumed that all conditions hold uniformly on %,). If @, is
an open set, then from the uniqueness of X(Z) in &, it follows that X(Z)is a
unique point minimizing a convex functional (-, z), where

S\, 2)=—L(m(A, 2), d(A, 2), A, 2)

and therefore A (2) is a unique solution of sp. See Eq. (4.31).
We now have to consider the continuity in z (on &) of the model-based
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optimal performance value as well as the continuity of A(+). It is evident that
the model-based optimal performance for given z is equal to —¢(A(z2), z).

Lemma 4.1. If we assume that

1. Mappings Q(w, ), V(w, ), where w=(m, u) (see Eq. (4.36) are uni-
formly continuous in z on %, and this property is uniform in we MU

(Ve>0) (38 >0)0(Vwe MUYz, z,€ %) |lz1—z4|=8:
|Q(w, z,)— Q(w, z,)|<e and |V(w, z,)— V(w, z,)| <e.

2. For ze¥,, A(z) belongs to a bounded set P,<®P; the conditions
sufficient to ensure this are given in Chapter 2, section 2.4.

then the model-based optimal performance -d(A(2), 2) is uniformly con-
tinuous on %,.

The proof is omitted. The assumptions of Lemma 4.1 are weaker than the
assumptions of Lemma 2.13. They are not sufficient to ensure the unique-
ness of A(z) for z € #Z, and the continuity of A(-) on %,. In order to ensure
this continuity, we have to make additional assumptions.

THeOREM 4.1 (continuity of A(+)). If the assumptions of Lemma 2.13 and
Lemma 4.1 are satisfied and for every ze€Z,c ¥, (where &, is convex)
A(z)e P,, then A(*) is continuous on %,.

Proof. According to the assumptions, &+, 2) is strongly convex on %;. Thus
Vz,, z,€ ¥, we can write

pd(X(z,), 2))+(1—p)d(A(2,), z,) = P(pA(z,)
+(1—p)A(zy), 2,) +84p(1—p)|A(z,) — A (z,)P
or, for p =3,

d(A(25), 2))— d(A(z)), 2)) =18, K (z) — A (2|

Now it may be easily shown that under the assumptions of Lemma 4.1
&(A, *) is uniformly continuous on %,, and this property is uniform in A € 2,.
Since ¢(A(-), ) is also uniformly continuous on %, we can take & >0, such

that:

Vz,,z,€%, |lz;—z,|=& and VAece,:

£%8,
4

€28,

4

B, z))— DA, 2,)| < and |(A(z)), 2,)— b(A(2,), 2,)|<
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Therefore

V(z,,z,)€Z, |z, —z,|=é:
30X (20) — K(2)P = b(X(25), 22) = (K (2)), 21)

2 2
£°0, €04
+

4 4

+(R(25), 21) — d(A(22), 22) <
and therefore

[A(z))—A(zll<e O

Using a similar technique, we can prove the following lemma:

LemMa 4.2, If the assumptions of Theorem 4.1 are satisfied, then w(-,*) is
continuous on Py X%, and w(A(+), ") is uniformly continuous on %,.

The proof is omitted.

Remark. Lemma 4.2 provides for the continuity of the model-based opti-
mal state trajectory in z if the state transformation mappings (4.1) have the
appropriate continuity properties.

The results obtained above are of essential importance for the dynamic
control structure. The continuity of the model-based optimal price and state
trajectories means that if the predicted disturbances are close enough to the
real disturbance trajectory, then the data that the supremal controller
supplies to the local controllers are close to the actual optimal values. The
assumptions that made these results possible are essentially the same as
those required to ensure the contraction property and the convergence of
the coordination algorithm itself, that is, of the algorithm used for solving
the supremal problem.

The continuity of w(-)= Ww(A(-), -), A(*) does not tell us very much about
the sensitivity of these control decisions of the coordination level with
respect to the prediction z of the disturbance trajectory. For the sensitivity
analysis the differentiability of w(-), AC) is usually essential. However, with
the exception of some special cases it is very difficult to obtain global
differentiability of w(-), X(). Yet, to compute some limits on the decrease in
performance or on the trajectory deviation it could be useful if A() or w(+)
were Holder continuous on subset Z, of &, such that ze #,. To illustrate
this possibility we can prove the following theorem.

THEOREM 4.2. If the assumptions of Theorem 4.1 are satisfied and
(Vz4, 2,€ Z)(Ywe MU) |O(w, z,)— Q(w, z,)| = Kfllz, — 2,
[V(w, z))— V(w, z,)| = K3llz, — z,l.

»
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then the model-based optimal performance —d)():(-), -} is Lipschitz continu-
ous and

Vz,,2,€%, ”):(21) - ):(22)”5 Kl(“Zl - 22”)”2
Proof.  According to the assumptions, Yz € &, ):(z) € P, P, where P, is a

bounded set. Therefore Vz €%, ||A(z)||<L, L <+. Let us take any A € &,
and z, z,€Z,. Then

SN, 2))=b(A, z,) = L(W(A, 2,), A 2,) = L(W(A, 2,), A, 2,) <L(W(A, 21), A, 22)

- L(W(Aa Z])’ A-a zl) = (K(l) + LKg)“zl_ z2u'
Similarly, we can show that

S\, z)— (A, z,) = (K9 + LK9)|\z,— z,|.
Thus, d;()\, -) is Lipschitz continuous on %, uniformly with respect to A € ,.
Now
Vz,,z,e%, X(z), X(z,) €P,.

Therefore

d’;():(zl), 21)_1{3():(22), Z,) Sd;():(zz), Zl)_d;():(zz), Zz)S(K(l)+LKg)||Zl —22”

and
H(X(22), 22) — d(X(zy), z)) = (KO + LKz, — 2,

From the above inequalities and the proof of Theorem 4.2 it follows that
Vz,z,eZ;:

LoA(z) = AMz)IP = 2(K9+ LKY)||z, — 2|

and so

" R 4 1/2
||A(z1>—A(z2)||s[U—(K?+LK2)] z-z)? O
4

The continuity of ):A,k and %, in x(,), Z,, should be accompanied by a
continuous dependence of the trajectories of the important real variables
like x"(f) or the real performance index over A, =[t,,f, Ton Ay, %4,, Za,
for j, =j<jx+1, and on z}_. This can be considered of course under the
assumption that the local-level short-horizon optimization can be per-
formed, i.e., that the vps; are solvable, and the continuity of, among others,
Xy, in X ane Xa, Will depend on the properties of Lps; and on the real coupled
systemn behavior. After establishing the desired continuity properties, we can
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easily draw conclusions about, for example, the continuous dependence of
the real performance index value computed over some interval { J¥o, A, on
Za,» Za, and zj,. When constraints (4.8) are present or local constraints
depend on u(t), or both, then we may be more interested in estimating the
degree to which these constraints may be violated than in examining the real
performance value. If we know that yj, (the real output trajectory) is
continuous in A As Xags Zas 24, (k=1,2,...) and )tAfk, £,, are continuous in
Za,» X'(1,), then we will have a guarantee that constraints (4 R8), for example,
will be appr0x1mately satisfied for sufficiently small differences 2, — z,, and

Zan " Ziage

The on-line local problems

The results presented in the previous section describe the properties of the
global system optimization problem, that is, of the long horizon supremal
problem., It is also necessary to investigate the properties of the on-line local
control problem Lps; and the properties of their solutions. It can be seen that
Lps; depends on the data from the supremal controller (XAj, L (4 + T ), on
the locally updated prediction of disturbances Z,, and on the real state value
at time ¢, that is, x{(t;). There are two essentlal questions concerning the
solution 1y, @;5, of LPs;: When does this solution exist? (In most real cases
this is the same as asking if the feasible set of Lps; is nonempty.) If this
solution exists is it unique and continuous in the data supplied to the local
controller? We now discuss the questions.

The first is extremely difficult to answer in the general case. The feasible
set of Lps; can often be empty, that is, the final state condition at t,+ T
cannot be met. Then it is necessary to modify Lps;.

The feasible set of Lps; (which we denote by MUY, , where o« represents all
the data on which rrs; depends) can be expressed as

MU, :{(mm,., Uin,) € MU, : ia(xi(1), Myp, Uin,, ZAi)
= ilfk(t] + ’T‘jk)}‘ (4.39)
Since MUY, may prove to be empty if Z, #Z, and x{(t;) # % (t;), which
means that x{(,) does not lie on the optimal trajectory calculated from the

model at the supremal level, the following two modifications of this set can
be considered:

(1) MUiIZ,-:{(miA,-’ Uin ) E MU, i (Myn, Uin)

= arg min ”d’m,.(xir(tj): Mip, Uin Z—'A,.) — X (8 + T,L)”} 5

iaj
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(2) ¢4, satisfies the following Lipschitz condition on XZ, < X, X %,,
(V(x', Zl,), (x?, Zi,) € XZA,)(V(miAia uiA,) € MUiA,)
“‘bmj(x L Mip, Uin, Zéi) - d)iA,»(xz, Mya, Uin Zi,.)li = K;(fx' —x7 +jz* = z7p.

It is now possible to define M ?X‘, as follows (if we assume that
(x:(t])s Z_ArklA,»)7 (lek(t])7 5Av’) € XZAi):

MU?Z Z{(miA,-’ uiA,.)E MU, 3||¢m,(xi'(tj), Mha Uinp fA,.)
AU RS ’TjL)“SK;‘(Hiifk(t]’)—x;(tj)|l+l|iAi _2A,-”)}:

where Z, = Z,,|a.

The obvious feature of the set MU is that if MU{, # & then MUL =
MU7,. However, it is clear that sometimes it is very uneconomical to
concentrate effort on reaching target state X5 (¢ + T; ). Then the second
modification of the feasible set may appear to be more reasonable and
convenient, especially if constants K;; can be computed ahead of time.
Modification (2), however, may lead to increasing differences between the
model-based optimal state trajectory and the real system trajectory. This
situation may become dangerous when the supremal controller only rarely
intervenes. It is clear that if Vj, Z, = Z, = zj,, then MU, = M. }Z:MU?X‘
and the real optimal control is obtained.

We can also modify Lps; by adding a penalty term to L;,:

f?en(fifk(tj + T,z_) - xi(tj + T,‘L)),
where $P°" is a positively defined functional on X;. #7°" should be chosen on
the basis of simulations done for each individual case.
If set MU, MU}X,_, or MU?Z is nonempty and there exists a solution of

LPS;, then
Wy (X1(8), Aap Zap Xipc (6 + T )) = s (@),
A;a(X(8), Aay Zap Kigpe (6 + T ) = iia, ()

where a e A =X; XP, XxZ, xX; (the norm in A may be introduced as the
sum of norms in X;, @5, Z,, X;). Let us denote w=(m, u) and omit
subscripts i and A,. Problem Lps; may now be written as follows:

For given a € A, < A, find w(a) such that

L(w(a),a)= min L{w, a),

where L is defined in (4.34).

For the second question concerning the uniqueness and continuity of w{-),
the solution of the above problem, on A, we can get many results by
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specifying sufficient conditions guaranteeing this uniqueness and continuity
(see Chapter 2). We present only two lemmas stating the sufficient conditions.
The proofs are not unusual and therefore are omittcd.

LemMa 4.3, If we assume that

1. VaeA,, w(a) exists, is unique, and belongs to a bounded set W,e
M XU,

2. V{a"Y_, such that a"—a®, a", a® € A, and Yw®e MU™, there exists
{w"¥°_, such that w" e MU*" and w"—w°,

3. If wrow! a"—a’, wre MU, o", a®e A, then w’e MU*’, where

—> denotes weak convergence. The sufficient conditions for this are: MU,, is a

weakly closed set and mapping (4.1) satisfies the following
0] 4] o 0
(Xi3xP—=x?, (mia, Uls) 2> (Mia, Uis), 24, Z4) =
o 0 0 0]
d)iA,.(x?, Mmia, Uia, Zg,)_"bm,(xi s Mia, Uings ZiA,)’
4. Functional L(-, ) is continuous on MU XA, and
(a"—a" a" a’cA, and w'o>w' w"w'eMU)>

L(w® a®)=IlimL(w", a™).
Then Y{a"}7_,, a"—a®, a", e A, we have W(a“)—s>w(a°).

Lemma 4.4, If assumption 1 of Lemma 4.3 is satisfied, set W, is convex, and
1. (V(a!, aP)eA)Vw!le W,NMU*HYTw2e W, N MU

such that w' = wl=kla' - ?|

and
VacA,, vw!, w?e W, MU?, Vpel0, 1]3In® e W,NMU*
such that

low’ +(1—p)w? —wP||=kop(1—p)w' — w7,

2. Y(a!, a®)eA, and Y(w', w?) e W, we have

IL(w!, a)—L(w?, )=k [w' = w|+ k;[la’ — a7
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and
pL(w', a" )+ (1—p)L(w? a")=L(pw'+(1—-p)w?, a')
+op(1-plllw'—w??  Vpe(0,1],
where o >k k.

then YVa', a? €A, the following inequality is satisfied

Ak k), 2]

In Lemma 4.4 the essential role is played by assumption 1 concerning the
continuity of MU with respect to a.

The next questions concerning the operation of the lower-level control are
connected with the behavior of the controlled process. The dependence of
x4(t) on the local control decisions and the continuity of x}  and the other
trajectories (e.g., ya) with respect to x"(f;) and the local-level control
decisions are especially important. From (4.1), (4.2), and (4.3) we can see that

1/2
#(a) = #(a) = | Kla’ - o+

xTa, = Dia (X7 (1), M, Uy z3)s (4.40)

where &, transforms the initial state, control, and disturbance trajectories
into the state trajectory over A; of subsystem i, that is,

D XXMy X Uyp, XEn = Zia,

We consider, of course, a coupled system for i, =(fi,, - .., Hina,), and for
ii,,a- Except for linear systems, it is usually difficult to establish sufficient
conditions guaranteeing the continuity of mapping (4.40), especially when
the direct description of the system elements is given by differential equa-
tions. Some results of this type may be found in Ioffe and Tikhomirov
(1974) and Pontriyagin (1961).

When mapping (4.40) is Lipschitz continuous on some subset of X X, %
U,.a *Zs and for upper-level decisions and lower-level decisions some
proper inequalities are satisfied (like those given by Theorem 4.2 and
Lemma 4.4), we can estimate the upper bounds on the performance and
the state (or interaction) trajectory deviation for given z3, — 25, and z} — Z,.
However, in general, such bounds will be much too large.

Final remarks

It is rather obvious that the results of an application of the dynamic price
control structure may depend heavily on the choice of intervention times
t, and on the choice of T, the local optimization horizon. It is extremely
difficult to give qualitative or quantitative estimates of the influence of ; and
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t; on the system’s behavior. It should be noted that changing the number of
interventions increases the operational cost connected with the implementa-
tion of the structure. Some results for the basic repetitive control problems
are given in section 4.5.

Sometimes it may be preferable or even necessary to use
Gia, (x"(tx), Za, ), the model-based optimal interaction input trajectory
computed at ¢ = ¢, , or some part of it as the upper-level control decisions. In
that case we would take wu,, in LPs; as i,, (x'(t,), Zy,)|a. Such an
approach would decrease the complexity of the local problems and some-
times even improve system performance. If we use one of the methods
described in section 2.5 to solve sop then it may be necessary to fix u, in
LPS;.

Findeisen and Malinowski (1976) introduced a simple algorithm between
the lower and the global level that corrects prices A, associated with
couplings (4.8). In the next section we will consider the possibility of
constructing such a correction mechanism in a simplified case where the
subsystems can be treated as static and nonstationary.

In section 4.2.1. the possibility of using simplified models at the upper
level was discussed. Unfortunately, the methods that could be used to
simplify nonlinear models do not yet exist, except possibly for the singular
perturbation method; we also do not know what the influence of model
simplification is on the quality of control decisions generated at the upper
level. Therefore, we will have to choose the proper simplified model in each
case through experiments and numerical simulation.

4.3.4. SIMULATION RESULTS
A dynamic system with stiff interconnections and fixed time horizon

Assume that we are given the dynamic system in Figure 4.5 described by:
Subsystem equations

x1(0) = zo (O m, (1) + 2, (Duy (8)
y1() = x,(¢)
Xa(8) = = 33,(8) + 2o (hmaf1) + 2, (uy(r)
y2(t) = x,(8) + my(t)
x3(8) = zo (M5 (1) + 2 (Dus(1)
ya(t) = x;5(0)
Interconnection equations
U1 =Yys
U =y,

U=y,
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lm‘l my lma
Y1 | Subsystem | Y1 Y2_| Subsystern |Y2 Y3 | subsystem | Y3
1 2 3

i : L

FIGURE 4.5 The structure of the simulated dynamic system with a fixed time
horizon.

Performance index
Qa=O12+ Qa1 Qsa,

where

Owa=| (m2(0)+4(uy()—2)?) ds,

YA

Ona=| (m20)+(w(n-1?) di,

Qza=| (M) +(us(t)—3)?) de.

YA

The off-line global optimization has been performed over interval A; =
[0,5]; the prediction of disturbances was assumed to be Z,(t)=1 and
Z,(t)=0.5.

The optimization was done by applying the interaction balance method.
Interval A; was discretized into 20 parts, A=0.25. The supremal problem
solution supplied model-based optimal prices ):A,, controls r,, and state
trajectory X,,.

The dual functlon L(x(0), Ay zA,) discussed in section 4.3.1 attained the
value 8.90 at A a- After applying ri1,, to the simulated coupled system (but
still with z,, =z, ), we find that the value of the performance function equals
9.11. This value differs slightly from L(x(0), Aap Za,) as a result of the
discretization and the finite accuracy of the solution of the supremal
problem.

We assumed that constant trend disturbances and sinusoidal disturbances
were present in the real system:

() =1+6t, zi(t)=0.5+at,

2 2
z;(t)=l+Blsin?7Tt, zp()=0.5+a, sin?ﬂt
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TABLE 4.2 Comparison of Open-Loop and Repetitive Control
with Constant Trend Disturbances and a Fixed Time Horizon

Real Op-
Open- timal Repetitive Control
Loop Perfor- k=1 k=12
a B Control  mance T, =05 T, =15 T, =05 T, =15
0 0 9.111 9.111 9.111 9.111 9.111 9.111
0.12 0.24 505.825 9.589 10.58 23.31 10.486 11.557
-0.12  -0.24 11.958 6.978 8,77 10.00 8.82 9.26

For various values of a and 3, the open-loop control (rit,, applied to the real
system over A;) was compared with a two-level repetitive control scheme
without updating the disturbance predication. The interval [0, 5] was split
into 10 parts with intervals { =0.5j (j=0,...,9). We assumed that the local
optimization horizon T;; was 0.5 or 1.5. Global optimization was either not
repeated (k=1; ;, =0) or repeated once (k=1,2; t;, =0, t, =2.5). The
results of the simulation are displayed in Tables 4.2 and 4.3. Real optimal
performance is attainable when z,, and zj can be predicted exactly.

Table 4.4 displays more results of the comparison between the open-loop
control and the repetitive scheme with T;, =0.5 and without global recoor-
dination. Tables 4.2-4.4 show that in most cases local repetitive control
significantly improves system performance; yet, it may also perform poorly
(see case 1 in Table 4.4). The requirement that the final state value in the
local, short-horizon, optimization problems be that prescribed by the long-
horizon global solution may be the reason. Feedback to the upper level and
increasing the local horizons may improve performance, but updating the
prediction of disturbances at times ¢ (especially at times ¢, ) could improve
performance even more.

It is significant that even though the differences between (Zz,, Z,) and
(z., zp) for sinusoidal and constant trend disturbances were very large, the

TABLE 4.3 Comparison of Open-Loop and Repetitive Control
with Sinusoidal Disturbances and a Fixed Time Horizon

Real Op- .\
Open- tir(:il P Repetitive Control
Loop Perfor- k=1 k=12
a, B, Control mances T, =05 T, =15 T, =05 T,=15
0 0 9.111 9.111 9.111 9.111 9.111 9.111
0.2 0.4 88757 6.895 8,524 16.368 8.523 11.927

-0.2 -0.4  97.385 9.6401 10.789 15.546 10.742 18.843
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TABLE 4.4 Comparison of Open-Loop
and Repetitive Constant Trend Distur-
bances Control with T;; =0.5, and a Fixed
Time Horizon

Open-Loop Repetitive

a B Control Control
1 -0.20 -0.40 11.91 16.28
2 -0.16 —-0.32 11.89 10.24
3 -0.12 -0.24 11.96 8.77
4 -0.08 -0.16 11.71 8.56
5 -0.04 -0.08 10.62 8.75
6 0.04 0.08 15.89 9.55
7 0.08 0.16 82.04 10.05
8 0.12 0.24 505.82 10.58
9 0.20 0.40 5,114.43 11.55
10 -0.08 -0.10 14.27 8.21
11 -0.16 -0.20 16.12 10.06

repetitive control scheme with price coordination was able to provide good
results.

A dynamic system with stiff interconnections and floating time horizon

Assume that we have the same dynamic system as above except that the
optimization horizon at the coordination level is always of the same length.
The basic control policy then consists in performing the model-based
optimization at time instants , (k=1,2,...) over time horizon [, ¢, + T,].
We can compare this basic control policy with the two-level repetitive
control scheme in which price coordination is performed at ¢, over interval
Ap =[t,,t +T,], and the local control problems are solved at times f.
Assume that k=1,2,...,j=0,1,...,j=0,5,10,...,and T, = 0.5, T, =
5. We apply this control scheme without updating the disturbance predic-
tion. The results of the simulation are displayed in Tables 4.5 and 4.6 where

TABLE 4.5 Comparison of Control Re-
sults with Constant Trend Disturbances and
a Floating Time Horizon

Two-Level Repe-

Basic titive Control with
Control Price Coordination
a B Policy Ty =05 Ty =15

0.12 0.24 25717 10.240 10.607
-0.12 -0.24 12.550 9.851 10.71
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TABLE 4.6 Comparison of Control Re-
sults with Sinusoidal Disturbances and a
Floating Time Horizon

Two-Level Repe-

Basic titive Control with
Control  Price Coordination
a, B, Policy T, =05 Ty =15
0.2 0.4 23.367 9.775 13.215
-0.2 -0.4 16.242 11.453 12.844

all the performance functions are evaluated over time horizon [0, 5]. The
two-level repetitive control is performed at times # ¢, .

It can be seen that the application of the two-level control structure brings
a considerable improvement when compared with the basic control policy.
The results also show that a better performance value was achieved with the
short local optimization horizons Tj.. Updating the prediction of distur-
bances at time instants £, and ¢ should bring even more improvement in the
performance value.

4.3.5. THE CONTROL STRUCTURE WITH CONJUGATE VARIABLES

We discussed conjugate variables in section 4.2.3. Here, we assume that the
state transformation (4.1) results from the differential equation:

% (1) = fi(x: (1), mi(1), u; (1), z(1)), (441

given x;(t;), where f;:R"™ xXR"~xXR" xZ—>R"; we assume also that
th,t to=t,<t=T, x;p,€ W>'[A; R A=[t,, t]) and that mappings f, G,
F?, ¢, are continuous and have continuous derivatives with respect to x;(t).
We consider a dynamic system described by Egs. (4.3), (4.7), and (4.41).
In sop we have performance function (4.9) and constraints on m;(t), w;(t) in
the form: m,(t), u;(t)) € MU? (see section 4.1).

Supremal unit—periodic optimization

As in the control structure discussed in the previous section, we introduce
the periodic (repetitive) global optimization at the higher level. sop will be
solved at times ¢,. However we want to use A a, and the trajectories of the
conjugate varlables d/A d/Aﬂ((x (t,), Za,) as the control decisions of the
supremal unit. Tra]ectorles Ya, may be easily computed when we find )\A ,
Xa,» Ma, from the solution of SOP by the interaction balance method. Of
course, the components of d/Afk —(tl/mﬁ, e, (IJNAﬁ) can be computed inde-
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pendently in the local decision units of the optimization (dynamic coor-
dinator) level.

It is also possible to treat Eq. (4.41) together with Eq. (4.7) as the
coupling Eq. (4.6). In this case we can form a Lagrangian:

d - _ —
L (xA,-,(a Mas Uags Za,s Aays llfAf.() = Qg,,((xA,k, Ma,s Uagos ZA,-.()

+J (A(D), u()—HF(x(t), m(t), u(t), Z(¢))) dt

'l

f W(1), f(x (), m(1), u(t), 2(1))—x() dt  (4.42)
Afic
Using the Lagrangian we can apply iBM. The local problems of M will be
solved by minimization of (4.42) (for given Z,, A,,, ¥,,) With respect to
Ma,, Us,, Xa, over the set (MU, =MU ., % .. X MUnp, ) X &4, The
coordination problem will be to find A,,, Y, for which the local problem
solutions satisfy Eqs. (4.3) and (4.41). The properties of this decision
mechanism can be investigated by using the general results presented in
Chapter 2. In this situation the local problems of 1BM are not constrained
by differential equations, but they cannot be separated into independent
instantaneous static optimization problems since x;,, € W*'[Ag, R™]. It is
also easy to introduce the constraints on the instantaneous state values when
using this approach. For these reasons, the use of conjugate variables as
coordination instruments has recently become more popular (Mahmoud
1977 and Singh et al. 1975). It is especially popular for discrete time
dynamic problems. If the coordinating instruments A, , ¢, are iterated
with different frequencies, the use of conjugate variables can lead easily to a
three-level optimization method. Unfortunately, there is an obvious draw-
back connected with using ¢,, as a coordinating instrument of 1sm. The
applicability conditions of 1BM become more strenuous than in the case when
the system dynamics are treated as the equality constraints in the local
problems of 1BM (see section 4.3.1).

Local control

We will now describe the use of tﬁfk (and other trajectories obtained from the
upper level) and the measurements (or estimates) of x"(t), z"(¢) at the local
decentralized control layer. We assume here that the conditions under which
the maximum principle holds are satisfied (see Athans and Falb 1966 and
Boltyanski 1969) and the Hamiltonian (see section 4.2)

H= g Goi (x: (1), my(0), w (1), 2(1)) +<dha, (1), F(x(8), m(0), u(t), z(1)))
+ (R, (1), u(t) = HF(x(1), m(0), u(1), z(1)
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attains its minimum with respect to m(t) (or (m(t), u(t)) when needed) at a
unique point for every x,,, za, from some neighborhood of %4, Z4,.

The formulation of local control problems requires some consideration.
Let us assume for a moment that the operation of the lower-layer control
mechanism is continuous. Then we can write the local problems (Lop;) in the
form:

Find m(t), @(t), such that
9, (x.(1), m,(1), @ (t), z(1), X, (1), $ha, (1))
= min (i (0), m(1), u(t), (), As, (1), dia, () (4.43)

(me (6w (1)) e MU

where
7 (x; (1), my(2), u; (1), z(1), A1), (1))
= qo: (x; (1), m; (1), u; (1), z(1)) + (i (1), f: (x:(2), m; (1), u; (1), z(1)))

F (), w (Y= 2 (A (1), HyF i (t), my(t), u (1), z())).
i=1

The values of x;(t), z(t) in problem (4.43) can be chosen in the following
ways:

1. x,(t)=xi(1), z(t) = Z(t)—we use the current measurement (or estimate)
of the state and the prediction Z(t) of the disturbance

2. x;(t) =%, (1), z(t)=z"(t)—the current state is not measured but we
have available the current value of the disturbance acting on the system

3. x,(t)=xi(t), z(t) = z'(t)—the current state and disturbance values are
available

If z(¢t)=z"(t)Vt then our control structure (where m(t) is applied to the
real system) will have the optimality property; if z(t) # z"(¢t) then in case 3
we use the greatest amount of information about the real system behavior.
Of course in case 3 we can expect the highest operational costs. It should be
noted that (4.43) is a static optimization problem and we do not have to
consider future values of the state and disturbances. The future of the
system is implicitly taken into account by introducing into (4.43) the value
of trend (Ys4, (1), X(2)).

In most cases it is either not reasonable or simply not possible to compute
and use the current value of (t) in solving problem (4.43) because

e We design our structure for the optimizing control that operates
periodically and usually we will have a regulatory control layer (or layers) in
the control structure (see section 4.2)
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e It is not possible to find an analytical solution rule for problem (4.43)
that is easy to program—we need some time to perform the numerical
optimization

e To measure (or estimate) the real state and disturbance values and con-
tinuously send the information to the controllers is impossible or, at the
least, extremely uneconomical

Assuming that the interventions of the lower decentralized control layer
are made at times { as in repetitive control with price coordination, we can
define the local problems (LoP!) in the following way:

Find 3, Ui, ) minimizing on MU,

((mi[t,, a0 Wile, 1,“]) € MUi[:,., t.1] if Vte [tp tj+1]: (m(1), w,(1)e MU?)
(4.44)

the integral performance

[ U, (%.(0), ma(0), (1), £(2), Kan (D, dia, (1) dit,

5

where Z, . ., %, .., are the prediction of the disturbance and the predic-
tion of the state trajectory. We can take for example 2(t;) =2z"(t;) and

-Zi(tj)=x;(tj)7 i(t):xAiAfk(t)_iiAﬂ‘(tj)+x€(tj)'

The control trajectories m,, . ,; are used as the control decisions of the local
control units. If z"(¢) = Z(t)Vt then the control structure is optimal.

To solve problem LoP] we usually have to discretize it; in the simplest case
Lop] could be replaced by the following optimization problem (Lop!):

Find (1), &) minimizing over MU} the Hamiltonian
9 (xi(8), m(t), w(8), 2°(1), Ko, (), da, (1)) (4.45)

We define the control trajectory over [, t;,.1] as m;(t)= m,(t;) Vte[t, t;.1]
The optimality property is not satisfied even when z"(t)=2z(t). If the
frequency of interventions of the local controllers is too low then it may be
necessary to use a more fine discretization of Lop!. Figure 4.6 illustrates the
operation of the conjugate variable control structure.

Properties of the conjugate variable control structure

With conjugate variables, the optimization problems solved at the local
control layer are static. At the same time, disturbance predictions are only for a
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FIGURE 4.6 Control structure using conjugate variables.

short horizon (over [, t;.,]) for local problems. From this, we can deduce
the following advantages of the control structure using conjugate variables:

e Frequent interventions of the local controllers are possible if needed,
and we can use the available information to improve the control. The local
problems are more complicated in dynamic price coordination and it may be
difficult to solve them as frequently as, for example, Lop{".

e There is no danger that the empty feasible sets will appear in the local
problems, as they can in local problems Lps;.

e If functions (4.3) depend only on x,(t), z,(t) and we can measure the
real interaction values u(t), then it is reasonable to set u(t)=u(4) in
problem rop”. With frequent interventions of the local controllers it should
be possible then to protect the system constraints from being seriously
violated.

We can also see very easily the obvious drawbacks of the conjugate
variables scheme:

e When solving their control problems with x;(t) = x[(t), the local con-
trollers do not take into account the difference between x,,(t) and x"(¢),
which can become large when z"(t) # Z(¢).

e let us assume that the integrand in the performance index has the
form:

qo(x: (1), z(1)) +qd(m (1), z()) + 3w (1), z(1))
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and the differential Eqs. (4.41) are the following
% (1) = fi(x (1), z(0) + F2(mi (), z(0) + (1), z(D) + f(z (1))

The functions defining a typical linear-quadratic control problem are in this
form. With the expressions in this form, any information about the real state
value x[(t) will not be effectively used in problems Lop! or Lop/’. If functions
q%; and f? do not depend on z(t), then in problems Lop] or Lop! the
measurement or new prediction of z'(t) also will not be taken into account.
In this case the local controllers will simply be ‘“‘repeating” the control
trajectory as generated in the global optimization at times ;. Of course, this
will not happen in the general case; nevertheless, this example demonstrates
that when controlling the system with conjugate variables, we cannot
effectively exploit the available on-line information about the system behavior.

o In the “maximum principle’ structure the local goals are less accept-
able intuitively than in the dynamic price coordination structure since they
involve (J/mﬁ(t), x(1)), that is, the value of the trend. This would be difficult
to explain in economic terms and hence difficult to implement in a human
decision-making hierarchy. For the human decision maker the structure with
dynamic local problems seems to be more appealing.

The conditions guaranteeing proper functioning of both layers of the
conjugate variable structure are mainly connected with the applicability of
1BM and the convergence of suitable coordination strategies (Chapter 2). It is
important but difficult to formulate these conditions in a form depending
explicitly on the properties of Eqs. (4.41). The conditions given in Chapter 2
concerned the properties of Egs. (4.4). The investigation of these conditions
requires rather detailed analysis of the properties of differential equations
and is beyond the scope of this book.

When formulating the global and local problems, we discussed the opti-
mality property of the structure when z'(t) = z(t). For obvious reasons, we
are more interested in qualitative and quantitative analysis of the effects that
will be produced by an application of the structure when z"(t)# Z(t) and
when we use discretized local problems such as Lo/, As in the discussion of
dynamic price coordination, we can investigate the continuity of important
decision variables like A Ano J;Aﬁ with respect to the initial state and the real
and predicted disturbance trajectories. We can also try to establish bounds on
the deviations of the actual trajectories from the real optimal trajectories,
depending on the given difference z"(¢)—Z(¢)(Vt). Since the detailed consid-
erations are similar to what has been presented in section 4.3.3, we will not
present them here. It should be noted, though, that if ):Ana J;Aﬂ, My, AT€
differentiable functions of their arguments (initial state, disturbance trajec-
tory) then we may try to derive the formulae that would allow us to
compute, for a given system, the sensitivities of the state trajectories and the
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performance index. These formulae would be the second variation of the
performance (Wierzbicki 1977). In some case it may be more convenient to
use these formulae to obtain the quantitative estimates beforehand instead
of performing direct numerical simulations. Detailed investigations are also
required to identify the effects of the discretization of Lop]. The considera-
tions concerning the ‘“‘maximum principle” structure are not very advanced
so far. Few results are available concerning the properties of control
structures for continuous processes with discrete observations and control
actions (see section 4.5).

Possible modifications and final remarks

As we mentioned before, local problem LoP” may be modified by setting
u;(t) =ui(t) or u;(t) =", (t), where ii;,, is the interaction input trajectory
computed at the global layer. The latter approach will be necessary if instead
of 18BM we apply some other multilevel methods, for example, the augmented
Lagrangians discussed in section 2.5 for the global optimization.

It is also possible to update the values of ¢ and A with different
frequencies. For example, we can recompute ¢ less frequently than A. The
use of simplified models for the global dynamic optimization is also possible.

4.4. PRICE COORDINATION FOR A STATIC
NONSTATIONARY SYSTEM WITH DYNAMIC
INVENTORY COUPLINGS

4.4.1. PROBLEM DESCRIPTION AND CONTROL STRUCTURE

The theory of systems whose elements are static although time varying and
whose couplings are exclusively in the form of (4.8) (or something similar),
that is, with y(t)2vy,(t) and u(t)2u,(t), may be useful in many applica-
tions. We assume that the dynamics of static system elements are very fast
compared with the dynamics of system couplings (4.8) and the fre-
quency of intervention of the on-line controllers.

In this case, the system elements are:

yi () = Fi(m; (1), u;(¢), z(1)) (4.46)
where
EF,: M, XR" X Z—>R".

We will not consider updating the disturbance predictions except in the
global optimization. We thus demonstrate exclusively the opportunities
offered by direct use of feedback information about the real system be-
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havior. It is, of course, possible to consider different off-line and on-line
models.

At the global optimization layer, the system optimization problem is to be
solved with the performance function that is defined for any interval
Ag =[to, tz ] as follows (compare Eq. (4.9)):

N

Q(mAfka Unap» ZAfk) = Z J q;(mi(t), u;(1), z(1)) dt (4.47)
i=17Ap
where Z(t) =z, ()is the disturbance prediction.
The Lagrangian (4.11) will now have the form:

Lap (M Uage Asge Za0) = Qs iy 20,0+ N0, Fyu())— Fay(0) d
Apc
where A(t) is of constant value on each time interval A, (see Eq. (4.8)) and
the intervals A, add up to Ap.
If we use 1BM to solve the system optimization problem then it is clear
that for nondynamic elements the solutions to 1P (see Eq. (2.55) will be
m(A(t), z(t)) and u(A(t), z(t)), i.e., they will result from the static problem:

minimize L(m(t), u(t), A(t), Z(1)), (4.48)
MU°

where

L(m(t), u(t), A1), 2(t)) = q(m(1), u(t), z(t)) ~
+{A(1), Hyu(t) — HoF(m(t), u(1), z(1))).

The task of the supremal decision unit {coordinator) is to solve the
following problem (sp1):

Find price vector function ):Ark (where Ag =1
interval A, < Ag, such that

t, ]) constant on every time

2

| tAaco, 200 - Baytio, 200 di = be (4.49)

€

where

(X(1), 2(1)) = F(m(X(1), 2(1)), a(A (1), (1)), Z(1)).

After solving the off-line model-based optimization problem formulated
as (4.48) and (4.49), we obtain rﬁ():(t), z(1)), a(x (1), Z(t)). This means that
we have, in fact, outlined the system inventory policy over any given
sequence of time intervals {Aj}:

—J [H,u(t)— Hyy(H)]dt =R, (4.50)

]
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where
R - —j [ELG(X(1), 2() — FLg (K (1), Z(0)] db.

R, is the desired net inventory increase or decrease (inventory level incre-
ment) over a given A;. We will assume that Vj 3€ A, < A, for some ¢; in this
case A(t) =)(,- =a constant for te A,

When we apply the model-based optimal controls to the real system, Egs.
(4.50) may not be satisfied when we substitute for y(t) the real values of the
subsystem outputs y'(X(t), z(t)), 1.e., the outputs obtained with real distur-
bances.

Now we can consider the following on-line control mechanism (Figure
4.7) that differs from the one presented in section 4.3:

1. At times t, (see the discussion of the supremal unit in section 4.3.2)
the global optimization over time interval A, is solved for an updated
prediction of disturbances Z,, and the real value of the inventory levels at
t=t,. The solution, that is, the model-based optimal price function )\A

Long horizon optimization over Ayy.
Prices ?\J and policy RJ specified.

7\j, Pj

Short horizon price correction
Bj= Aj-€jAj D;

A R 5
Aj Aj

Local decision Local decision
unit unit
I—‘—“‘_‘* my, Uq my, U
Subsystem - |
Uy 1 -

. H » |inventories| . | H
" 2 1
l_- . \_."

“ﬂ - Subsystem [YN Lﬂ

N

e

FIGURE 4.7 The structure of on-line inventory price coordination for a static
time-varying system.
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and the sequence {R}—the inventory policy—is supplied to the local con-
trollers;
2. The task of the control mechanism used at times ¢, located between
consecutive times t;, is to cause the real inventory level at t={;, that is,
i_, RIX,), to follow the level desired, Y _, R,, where

R,'(X,) = _J‘ [Hla(xjy Z_(t))" Hz)"():p Z'(t))] dt

and A; is updated at times t.

The control interventions made at times ¢; are described and analyzed in the
next section. Note that step 2 does not involve optimization; it is a problem
of achieving levels already set.

4.4.2. CONTROL OF THE INVENTORY LEVEL

The task of the “high-frequency” control mechanism, step 2 above, should
be to generate at each time ¢ a price A, such that the following condition is
satisfied:

Zi (RYA)-Ry)=0. (4.51)

This means that we would like to follow exactly at each consecutive t = t; the
model-based optimal inventory levels as determined by the “low fre-
quency,” upper-layer controller (step 1 above). Condition (4.51) is similar to
the coordination condition of the interaction balance method with feedback
described in Chapter 3.

Since the model and the real system descriptions are different
(Z(t) # z" (1)), the strict fulfillment of condition (4.51) cannot be achieved and
we have to set a more realistic goal. In this section we consider the
possibility of developing an on-line control strategy for solving the following
control problem:

Over a sequence {A;} (j, =j<j.,,) of time intervals, adjust prices )(,»
during the system operation so as to satisfy the following condition at all
t=1:

i (RY(A)—R,)

s=1

=G, (4.52)

where C, is a given positive number.

We would like to make C, as small as possible, but we can expect that
some compromise has to be made between the value of C, and the
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simplicity of the control strategy. It is also clear that we cannot expect C, to
be arbitrarily small. However, we may consider the possibility of increasing
the number of time intervals A,, that is, of splitting the control horizon into
more parts, to make C, as small as we need it to be.

To simplify the notation we introduce:

i=1 B
D=} [RA)-RIL  j=jeic+l. . (4.53)
s=1
D; is the deviation of the real inventory level from the model-based optimal
level at the beginning of time interval j (D; would be zero for j = j.). Also,

G;(\)=R;(\)—R;+D, (4.54)
where
R/(A) =j r(A, 2(0) di
Al
and

r(Aj; Z—(t)) = _[gl a()\j’ zZ(1)— Irlzy_()\i, Z_(t))]
G;(A;) is the value of deviation D;., predicted at the beginning of A; on the
basis of the desired increment R,, the known deviation D;, and the assumed
price A;.
From (4.53) we know that real deviation D,,, will be:
D;.,=D;+Ri(A)—R; = G;(A) +[RI(A)) — R;(A))]. (4.55)

The term in brackets in the above formula satisfies the inequality:

IR;(A) = R S[ [FLLy (A, 27 (0) = §(A;, 2D de. (4.56)

A,

Suppose now that at time # we measure D; and choose X,- so as to obtain
G;(A)=0. (4.57)

This can obviously be done by using the model and solving the global system
optimization problem with (4.57) as a constraint. If (4.57) is satisfied, the
bound on D,,, is given by (4.56). Therefore, if the following condition is
fulfilled:

(VO (m(t), ult)) e MU®) |[Hy(F(m(t), u(1), z(1))— F(m(), u(t), z'(N)=B,
(4.58)

then from Eqs. (4.55)-(4.57) we obtain
1Dyl = Bla), Vi
Condition (4.58) can be easily satisfied if set MU? is bounded.
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The choice of X,- proposed by (4.57) provides the solution of (4.52) if
Co=Bl|A;| Note that we can reduce |D;,,|| if we shorten the intervals A,
However, this strategy requires that the full-horizon system optimization
problem be solved at the beginning of each time interval A; in order to find
;. The computational effort and the amount of information that has to be
exchanged between the coordinator and the local decision units can render
this approach either impossible or highly uneconomical. It seems, therefore,
that we need a more realistic compromise between the degree of complication
of the on-line control strategy and the reduction of D,,;. A possibility is
offered by the coordination algorithm (2.68) in section 2.4 and its contrac-
tion property. We can use this algorithm to find a solution of Eq. (4.57) at
the supremal level; the price vector values would be adjusted using the
formula:

AP =AW —e AG(A™), n=1,2,... (4.59)
where ¢;, >0 and A; is a symmetric, positively defined matrix. Under proper
assumptions, the above algorithm has the contraction property, that is,

38 <DV G AT Ma, =8 G la,

Since we have Gj()(,-)= D,, the control strategy using the above algorithm
can be based on the following decision rule:

Adjust the values of A; according to (4.59), with A{" = )(,., until

n 1D
@) r=s<1, (4.60)
1

where pf, wb are, respectively, the smallest and the largest eigenvalues of
A,. Then take A; =A{""" and apply it to the system over A,

If algorithm (4.59) provides contraction in norm |-|| in a single step, then
we may also use the following price correction:

X=X —gAD, (4.61)
Algorithm (4.61) can be used if we are sure that Vj, 8§ =8<1. When
applying it, we have to exchange information between the coordinator and
the local units only once.
In both cases we can estimate the norm of deviation D, as follows:
“Djﬂ“ = 5||D,|| + Ba,
where condition (4.58) is assumed to hold and Vj, |A;| < a. Therefore

= . 1
ViID..=Bad (8 =Baz—, (D, =0). (4.62)
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Thus, the proposed approach solves the control problem (4.52) with
Co = Ba(1/1-8). However, since the values of §, and 8 may vary with time
intervals A;, we cannot conclude from (4.62) that ||D;|—0* when we apply
price correction (4.60) with n, = n° for all j and when a—0". On the other
hand, the application of decision rule (4.60) may require an increasing
number n of iterations done at the beginning of each A; as |A;|—0".
However, it will be shown in the next section that if we fix the number #; in
(4.60) and choose, under certain assumptions, the proper length a of equal
time intervals A;, then it will be possible to follow with desired accuracy the
model-based optimal level of inventories in the real system.

4.4.3. PROPERTIES OF DECISION RULE (4.60)

We will now formulate the conditions under which decision rule (4.60) with
fixed n®=n;Vj allows us, with a proper division of Ag into A, to solve
control problem (4.52) with any desired C,>>0. Let us consider sequences
{A;} of time intervals such that |A;|=[Ap|/J =], - .., i +J). The require-
ment that n°=n,Vj will be fulfilled if the following condition is satisfied:

For given n® 38,<1, 3J, such that
vIi=J, [IG(A)l= 8ollG, (Al = 3ollDjl,
fOr j=ju ..., j+J and X; = A D), where

AT =AM AGAM),  AV=X,  n=1,2,...,n% (4.63)

2

Let us assume that A;=V;'. V; can be defined using a hypothetical
decision rule defined Vi€ A, in the form A;(t) =A""*V(¢), where

A=A —e[VOT g (A™(1), 2(1) (4.64)
and
. D,
g(A; (1), (1) = r(A (1), Z(1)) = r(A;, Z‘(t))+m )
AP =X, n=1,2,...,n"%
From the definition of g;(A;(t), Z(t)) we have
g\, Z() = d; =D yie A, (4.65)

14

Let us now define an operator V; as follows:

V; =J V() dt. (4.66)

1
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Operator V(t) can be constructed by using, for example, the approach
described in Appendix A.

Suppose that the above algorithm has the contraction property described
in Chapter 2, section 2.4, that is,

g (A (), 2 =8(2) g A, 2 =8(0) l|d;]

VieA; and Vz, € Z,,, where 8(t) <1. The following theorem specifies the
conditions under which condition (4.63) is satisfied.

Tueorem 4.3. If, Vz, € ZY_, the following conditions are fulfilled:

1. 3¢,>0 such that VieAq el[V()] '=c,. (V(1) has to be self-
conjugated and positive definite.)

2. Jcy;>0 such that Vi, e Ag [|[V()— V(T)|lle =t —7,

3. 3c3>0 such that Vie Ay and VA'(t), A*(1) ePycR™

Ir(A1 (), Z() = r(A%(8), ZO = callA () = A2(1)],

4. 38 <1 such that Vte Ay 8(1)=<34,
5. Sequence {A{™(1)} generated by algorithm (4.64) belongs to P, Vte Ag,

then condition (4.63) is fulfilled for some 8, and J,,.

The proof is given in Malinowski and Terlikowski (1978).

4.4.4. SIMULATION RESULTS

The model used for the numerical simulation does not represent any
particular system but it has all the important features which could be present
in a real example. The results illustrate two important properties of the price
control structure: the necessity of choosing a proper operator A and a
proper value of £ in Eq. (4.59) or Eq. (4.61), and the possibility of following
the upper-level inventory policy by using a proper price correction algorithm
with a sufficiently high frequency of intervention.

Consider a static, time-varying system with dynamic inventory couplings
as presented in Figure 4.8. The subsystem equations of type (4.46), perfor-
mance functions (4.47), and local constraints have the following form:

Subsystem 1
y1(8) =z, (DM () — m ()] + 2w, (1) + 2. (my 1 (1))
+ zg[my(8) + my(8) = 2]u, () + 2, (1),
a4y = (uy(8) = 1> +(my, ())* + (m5(1) = 2)%,
MU? = {(m,(1), u,(1)) e RZXR, my, (1) + u, (1) < a}
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FIGURE 4.8 The structure of a time-varying static system with inventory couplings
L,..., L.

Subsystem 2
y21(8) = 24 ()[m1 (1) — Moy (1) ]+ 1z (1) = () + 2, (1),
Y22() = 24 (D[ 2ma (1) = moa(D) ] = tp1 (1) + una (1) + 2, (0),
4z = 2(my (1)~ 2)* + (myo(1)) + 3(mys(1))?
+ 421 (0))% + (ua(1)).
MU =R*xR?.
Subsystem 3
y3() = 2o (Dms(t) — 4us(0) + z.ma(Dus(t) + 2, (1),
qs=(m3(1)+1)* + (uz(£) — 1)
MU3 ={(ms(1), u3(1)) eRXR, —m(1) — u3(t) < B},
The dynamic inventory couplings have the form:

| 1A= aywiai=o,

'

where
01 00
_ _ 1 0 0 0
Hl - I4><4 H2 - O 0 0 1
0 0 10
and

Ar=[to, t]=10, 10].
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The off-line optimization problem was solved over A; (step 1 of the control
scheme described in section 4.4.2); the prediction of disturbances z,(t), z,(t)
and the constant parameters of the subsystems z,, z;, z, were assumed to be
as follows:

z,(y=1+0.01¢, Z,()=0
Z.=3,=2 =0,

i.e., a linear model was considered. The model-based optimal price /\AA! =X
(constant over A;) associated with the coupling constraints (see Figure 4.9)
are, for a = 8 =1,000, as follows:

X, =—0.6577, A*=-0.1772, X>=-0.5426, X*=-0.7568.
The model-based optimal performance was Q=19.9253. After dividing
the time interval A; into n equal parts A;, the control scheme described in
section 4.4.2 was applied; for the simulation of the control scheme we have
assumed the following real system parameters and disturbances:

zh(t)y=Z,(t), zp()=0.1¢, zl=z3=12,=0.02.

It should be noted that for these disturbances the real optimal performance
Q' would equal 25.5. Price corrections were first made according to formula
(4.61) with A, =1I; thus, at the beginning of each interval A, new prices A
were generated as follows:

/\~J- = ):,- —eD,.

The results obtained for n =10, 20, and 40 for the various values of £ are
presented in Table 4.7. In the rows denoted by D', ..., D* the deviations
of the level of the inventories at the end of the whole interval A, are given.
In the first column (g =0), the results obtained for open-loop control
without price correction are given. The last row of the table displays the
values of performance O obtained in the real system to show that they do
not change very much, except when & =0.50.

It can be seen that the proper choice of ¢ is essential. For n =10 and
g = 0.5, the contraction property of the price correction algorithm was not
achieved and the application of the control structure was not successful. For
e =0.25, the contraction was obtained with 8 <0.8 and the final deviation of
the inventory levels from the model-based optimal values decreased. For
€ =0.25, we show in Figure 4.9 how the prices AL A vary over time.
For smaller values of & (and especially for £ =0.0625) the deviations
increased again. In all cases, though, when the contraction was obtained, the
performance value, which is not the prime goal in this control scheme, was
close to the model-based optimal value. For n =20 and n =40, smaller
values of D' were obtained and the contraction was also achieved for
£ =0.5.
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FIGURE 4.9 The prices associated with the coupling constraints.
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TABLE 4.7 Simulation Results for Price Coordination for a
Static Nonstationary System with Dynamic Inventory Couplings

0 0.0625 0.125 0.25 0.50 1.0
n=10
D! 5 3.41 2.76 1.90 -1374.8
D2 5 3.40 2.5 1.62 365.5
D? 5 3,76 3.1542 2.30 167.7
D* 5.02 0.68 0 0.42 —5,021.7
Q 19.2 18.98 19.73 21.21 1,066,336
n=20
D! 3.36 2.69 1.91 0.39
D? 3.33 2.43 1.56 1.03
D? 3.72 3.09 2.26 1.22
D* 0.64 0.00 -0.21 —2.37
Q 19.04 19.84 21.38 25.45
n =40
D! 0.15 -0.83
D? 0.89 36
D? —-1.38 71
D* -0.19 —189
Q 23.20 165,458

In the simulation, the price corrections were also performed according to
formula (4.61) with

A =Vl VJ-=J V(1) dt,
A

where V(t) is an approximation of r(X,-(t), Z(1)) given by
V(1) = eF,, (W(X(1), 2(1)), ZO)LF, (W(X(1), Z(1)), Z(1))]¥,
where w=(m, u), and
F(w(1), z(0)) = —H,u(t) + Hyf (m(1), u(1), 2(1))

See Eq. (4.66) and Appendix A, section A.2. The elements of V{(t) for the
example can be easily computed:

272(H+11 -3 -273()—4 3
-3 272(1)+5 -1 0
V() = a
O=el 5202 -1 522(1)+3 3
3 0 3 22(H+17

This V(t) does not have a diagonal character. In Table 4.8 the results of the
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TABLE 4.8 Simulation Results with A; = V' and n =10

1.0 2.0 2.5 3.0 35 4.0 4.5
D! 1.63 0.91 0.74 0.63 0.52 0.16 —-1.92
D2 0.95 0:46 0.37 0.3 0.19 -0.77 -7.08
D3 1.74 0.99 0.82 0.69 0.57 0.17 -2.17
D* 1.7 0.95 0.77 0.65 0.57 0.5 0.41

Q 2392 2491 2514 2531 2555 28.58 95.65

computations are displayed for n = 10. There is considerable improvement
over the simple price correction algorithm with A =I. For £ = 3.5 the final
deviations of the level of inventories were smaller than those achieved using
a range of £ in the simple iteration rule with a fine division of the time
horizon (n =40). We can also see that V(t) made the correction algorithm
less sensitive to changes of the value of ¢; good results were obtained for
1=eg=<4).

Tables 4.9 and 4.10 present the results for « =1.006 and 8 =0.5; with
these values of @ and B the local constraints become active. The results
show that the control structure can behave quite well when the local
constraints become active. As in the previous case, the more elaborate
correction algorithm (with A; = V;') proved to be much more successful.

TABLE 4.9 Simulation Results with d=1.006,
B=0.5, and A; =1

0 0.125 0.25 0.5
D! 5.0 2.7 1.97 —461.0
D2 4.98 3.11 1.96 13.0
D? 5.0 321 2.36 140.0
D* 5.01 0.3 ~0.05 —726.0
Q 20.77 20.29 21.74 59,961.0

TABLE 4.10 Simulation Results with o« =1.006,
B=0.5, and A;= V'

0 2.5 25 35 4 4.5
D! 5.0 1.38 0.64 0.44 0.19 —0.85
D? 4.98 2.54 0.61 034 -0.28 -1.26
D? 5.0 1.83 0.88 0.62 0.35 —0.08
D* 5.01 2.18 1.06 0.78 0.74 0.79

Q 20.77 2482 2581 2620 27.84 35.56
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4.5. THE REPETITIVE CONTROL ALGORITHM

The repetitive control scheme was used at the global and local levels of the
control structures considered in sections 4.2-4.4. Here we study the most
elementary applications of the repetitive control algorithm.

4.5.1. THE BASIC CONTROL STRUCTURE

Here we assume that we are given a dynamic process described by differen-
tial equations:

x(6) = f(x(1), m(¢), z(¢)) (4.67)
where
f:R™ xR™ xR >R™,  te[t, T],

x(t) is the state of the process, m(t) the control vector, and z(t) the
disturbance and/or parameter vector. We introduce the following control
scheme for Eq. (4.67): at time ¢, (j=0,1,2,...,..J) the control for period
[, t;+1] is based on the solution of the following current process optimization
problem (op):

Given the real (measured or estimated) value of the process state x"(t;) and
the prediction of the disturbance trajectory z,, where A;=[t, ], find
model-based optimal control ., that is, m(t) for all t€ A, that minimizes
performance:

Q.= " Qx(0), m(t), 2(1)) di+Jy(x(ty)) (4.68)

L]

subject to x(t) =f(x(t), m(1), z(1)), x(4)=x"(t;) and m(1)e M°<R" Vi€A,
The control trajectory from the solution of op is applied to the process over
[, t;+1] (see Figure 4.10). The final time in the optimization horizon may be
fixed, i.e., t; = V], or shifted, e.g., t;y =t_,;+ AT} It is also obvious that we
can compare the above control scheme with the open-loop control (com-
puted once and forever at t=t¢,) only if t; =t (see the first simulated
application in section 4.3). In this case, the final state may be fixed

(x(g)=x").

4.5.2. THE PROPERTIES OF REPETITIVE CONTROL IN THE LIMIT

We assume now that in the basic repetitive scheme of the previous section
the prediction of disturbances Z(t) is not updated and the final time is fixed;
itis t;y =t; and Z, =7, |a. Let m(x(t), t) be an optimal feedback control law
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Controller
Problem OP |s solved at
t= tj

i (t)= i (t) 1 ]

for X (t)
telt), tj] ’

Process

FIGURE 4.10 The basic repetitive control structure.

computed for given prediction Z,, and let x"(¢) be the value of the state
trajectory in the real system when this control law is applied. Of course, in
most cases we cannot obtain the feedback law in an analytical form, but the
hypothetical application of the law offers us a good basis for comparisons. By
m(t), x"(t)(m(t) =, () for t€[y;, t;.,]) we denote, respectively, the control
and the state trajectories obtained from the application of the repetitive
control scheme. We set t,,.,—t,=h, j=0,1,...,J, =(—h.

To compare repetitive control with the continuous control law m(x(t), t),
we can use the following theorem (Nowosad 1978).

TuHeoreM 4.4, If we assume that

1. Mapping f in (4.67) is continuous in its arguments and has continuous
derivatives with respect to x(t) and m(r)

2. The control law m(x(1), t) is continuous in t and continuously differen-
tiable with respect to x(t)

3. Prediction Z(t) is continuous on [t, &}, as is z'(1)

4. The real state values x"(t) and x'(t) belong to some uniformly bounded
set

then the state trajectory resulting from the application of the repetitive control
scheme converges uniformly to X'(t) when the frequency of intervention
increases to infinity (h—07).

Assumption 3 may be relaxed; we can take a uniformly bounded piece-
wise continuous z"(t) with a finite number of discontinuity points. Assumption
2 is, in fact, a special case of the so-called regular synthesis (Boltyanski
1969), and we can also make it a bit weaker. The control law m(x(t), t) may
be the regular synthesis law continuous with respect to x(t). The assump-
tions about the continuity of m(x(t), Z(t)) with respect to time may be
weakened in the same way as the assumptions concerning z(t). Condition 4
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is quite natural and basic. The following lemma gives some conditions that
ensure the fulfillment of this condition.

Lemma 4.5 (Ioffe and Tikhomirov 1974). Suppose that for the process
described by (4.67), where x(t,) =x, m(t)e M°, z(t)e Z°, the following
assumptions are satisfied:

1. Mapping f is differentiable with respect to x(t), and mappings f and f,
are continuous in their arguments,

2. Vm(eM®, z(t)eZ® and VxeR™, mapping t—f(x, m(t), z(t)) is
measurable on [t,, ;] and

[(x, f(x, m(2), z(O)| = cllx|? +r ()
where ¢ >0, r(t)e L'([t, &], R).

then the set of state trajectories H(x,) realized by all measurable
my,, 25 (m(t) e M®, z(t)e Z°) is bounded.

Theorem 4.4 can be applied to the linear-quadratic problem because
under typical assumptions the conditions of this lemma are fulfilled. It is
possible to show that Theorem 4.4 is also valid for the linear-quadratic
problem when x(t) € X, where X is a Banach space (Bamberger et al. 1975).

The above considerations show that under appropriate assumptions re-
petitive control is similar to closed-loop control. Therefore, if closed-loop
control provides for good system behavior, then repetitive control will also
do well when the frequency of the repititions is sufficiently high (even
without updated disturbance predictions). It should be pointed out here that
judgments about system behavior on the basis of performance sensitivity are
quite logical in principle; in practice, however, with constraints on state
and/or interaction variables we might be more interested in the trajectory
sensitivity. It can be shown that in many cases the trajectory sensitivity for
closed-loop control is much less than the trajectory sensitivity for open-loop
control (see Kreindler 1972). The ability to approach the optimal state
trajectory accurately is particularly important in previously described
hierarchical control structures. For example, the lower-level optimization in
the dynamic price coordination structure depends on the model-based
optimal values of the state trajectory. Since it is not possible to use
continuous feedback at the higher levels, we can hope to achieve good
results by applying the repetitive control scheme with reasonable operating
costs and no need to know the optimal feedback control law.

The considerations presented in this section are qualitative; quantitative
results concerning the influence of increasing or decreasing the frequency of
repetitions are very difficult to obtain and do not exist for the general case.
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4.5.3. QUANTITATIVE ANALYSIS OF THE LINEAR-QUADRATIC CONTROL PROBLEM

To evaluate the repetitive scheme quantitatively, we must satisfy the follow-
ing three conditions:

e We have to know explicitly how the optimal control and state trajec-
tories depend on the disturbances and the initial conditions.

e We have to assume that the disturbance and the disturbance prediction
are in a simple form.

e We should know the form of the optimal control law m(x(t),t) to
investigate the properties of the problem in the limit.

For the above reasons, it is possible to analyze only a linear-quadratic
control problem with additive disturbances, where the disturbances and the
predictions are assumed to be constant over the control horizon. Therefore,
we describe the process by the following equation:

(=AOx(D+B{t)m(t)+z, x(ty) = xo,

and the performance index is

Q(xy, my, z) =3(x(t), Fx(tf)>+%J (o), P()x(1))+(m(t), R()ym(1))] dt

We assume that the endpoint of the time horizon is fixed.

For the model-based optimization (4.68) we set zZ# 2", Z, z'—constant,
Z, 2" €R™. For convenience and without loss of generality we assume that
z=0. We assume also that R(t) and F are positively defined and P(t) is
semi-positively defined. Under these assumptions, the optimal solution of
the control problem exists and is unique. The control and state trajectories
obtained in the open-loop structure (optimal control computed once and
then applied over A,) are given by the formulae:

m®(t) = S(t, to)xo
x%(t) = L(t, to)xo+ T(1, t;) Z

where
S(t, to) =R ()BT (D[, (t, to) + P(t, t)QU1y, 1))
L(t, to) =D, (1, to) + Dyo(t, to) UL, 1)
T(t, t0)=Jl v(t,7) dr

and

Qt, tg) = _[q)22(tf7 to) +FP (8, t(\)]_l[cbzx(tf, to) + F® (1 to)],
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matrices ®(¢, t;)) and «(t, t,) satisfy the equations

A(t) B(MOR'(1)B™(1)

P(1) —AT() ] $ @l 1)

d
EQ)("“)):[
D1y, ty) =1I:
4 o) =AWt vl 1) =1
dtv,to— ZaUR 1) Vilg, Ip) = 1.

Now we can compare open-loop control with the control generated by the
repetitive scheme. The following lemma has been proved by Malinowski
and Nowosad (1977):

LeMMA 4.6. The difference between the performance values obtained for
open-loop control and those for the repetitive scheme is given by a quadratic
formula in disturbance vector z' and does not depend on the initial condition
x(to) = Xo.

Therefore we have
AQ=0Q°-Q " =(z")"V(z"),

where

~

=1

For J =0 we have just one intervention of the controller, which is equivalent
to open-loop control.

V=V + (V) + VIT,-)+(V2,- + VzT,-), (4.69)
where

VOJ:U' T (L, T) dr WO,-Ui v(t, T) dT],

)-1 -

VU = J ‘ ’Q)T(tj, ’T) d’T Woj[J fv(tj: T) dTJ’
n 4

i

V= Jt ’ v (8, T) d’r: [J:t! J._t [L(T, ) —v(T, )] P(T)e(r, t) dT dt],

-1 I

Wo, = | T (8, ) P(t0t, £) dt +vT (5, ) Fulty, £)+ K(8)

Yt

and K(;) is the solution of the Riccati equation

KO+KOADO+ATOKN+KOBOR Y (OBT(HK()~P() =0,
K(t)=-F
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for t=¢. The following theorem can now be proved (Malinowski and
Nowosad 1977).

THEOREM 4.5. Assume that P(t)=0 and V,; is positively defined; V,; is
always positively defined when A(t) is constant and has real eigenvalues.
Then an intervention at time t; gives a better performance value under repetitive
control than under open-loop control if the following condition is satisfied:
a; > —1 for all eigenvalues a; of matrix V5 (V,;+ V7). In particular, repetitive
control provides for a better preformance value than open-loop controlif A(t)=0
for any number J of interventions.

In formula (4.69) the first term represents essentially the profit we get
from using the exact value of the real system state at time . If z"(t)=
2"#z2=0 for telty, t,] and z" =z =0 for t€[t, t], then we surely have an
advantage over open-loop control when making one intervention at time ¢,
the profit is expressed by (z")TV,(z"), where V,, denotes the first term of
(4.69) for t,=¢. The remaining two terms in (4.69) are more difficult to
interpret: they reflect the effects of the continuing difference between z" and
Z. When the final state penalty weighting matrix F has sufficiently large
eigenvalues then the repetitive control scheme in general ensures a smaller
final state deviation than open-loop control.

Now we will demonstrate that the assumptions of Theorem 4.5 are
essential and cannot be eliminated. The following example of a linear
oscillator shows that if these assumptions are not satisfied, then repetitive
control may make Q' larger than Q°.

Suppose that
x.() = ox,(t) + 2z
x,(t) = —owx,(t)+m(t)
x1(0)=x,(0)=0

1%
Q= x )P+ (4P | (0P de

Assume that we take =2mn/w, J=1, and repeat the optimization at ¢, €
(0, 27/w). The open-loop optimal control (with Z =0) is obviously () = 0.
Since x3(t) = (z/w) sin wt, x3(t) = —(2z/w) sin® (w/2)t; thus, x(f) = x3(t;) =0
and Q°=0. When making the repetition we have x'(t;) # x°; therefore,
m (t) # 0 for t €[, t;]. This means that Q" >0 and AQ <0.

Under the assumptions of Theorem 4.5, if we increase the number of
interventions without moving the previous intervention times but introduc-
ing new t;,q, t;.o, ... then AQ will increase. Generally, the dependence of
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AQ on {4}{_, is very complex. For fixed J, one can prove only the following
result (the simple proof is omitted):

LemMma 4.7. For the linear-quadratic control problem and fixed J there exists
an optimal distribution of intervention times {t;}{_,, where t, ., =1,

However, at present there is no practical way to determine this optimal
distribution. In this section we have concentrated on the differences between
the repetitive control scheme and closed-loop (or open-loop) control. It
would also be very useful to examine the difference between m(t), x"(t), Q',
that is, the trajectories and the performance value in the repetitive control
structure, and the real optimal control and performance. In particular, we
are interested in the continuity analysis with respect to the difference
z"(t)—Z(t) or in the bounds on trajectory sensitivity and performance
degradation (see also section 4.3). These topics are being investigated. The
analysis of the repetitive scheme becomes more difficult when f;# ¢ (the
floating time horizon), and when the predictions of z are updated. We
presume, however, that in these cases the repetitive scheme will be even
more advantageous. We note finally that in every application, a numerical
simulation will be required to find the proper sequence {t}/_, of repetitions.

4.6. MULTILEVEL STATE FEEDBACK STRUCTURES
FOR LINEAR SYSTEMS WITH QUADRATIC
PERFORMANCE FUNCTIONS

4.6.1. PRELIMINARY DISCUSSION

The part of hierarchical and decentralized control theory for dynamic
systems that concerns state feedback structures for linear systems with
quadratic performance functions would perhaps be impossible to present in
one book. It would have to cover decentralized design, hierarchical and
decentralized filtering, stability of composite systems, and so on. We have
devoted the previous sections of this chapter to control algorithms of the
repetitive type that are recommended for the higher layers of the hierarchy,
where nonlinear processes, discrete observations, and discrete coordination
interventions must usually be considered. The analysis of these repetitive
schemes was rather difficult and it was not possible to obtain too many
quantitative results. Nevertheless, we consider the topic to be important for
applications. To complete the picture of hierarchical control for dynamic
systems, we briefly present in this section some of the concepts and results of
linear—quadratic state feedback theory.
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The control algorithms considered in this section can, of course, also be
used in the steady-state process control structures where they would regu-
late the process to the specified set points which may be determined by static
optimization, for example.

Two-layer control structure

In complex systems, the basic repetitive control scheme of section 4.5 or the
more elaborate hierarchical algorithms of section 4.3 for large systems are
usually not applied directly to the system elements. They are used rather as
the control strategy for the higher-layer controllers in the multilayer struc-
ture (see Chapter 1). Typically, a second-layer optimizing controller might
adjust its decisions at times ¢ =t (sections 4.3-4.5) and specify the model-
based optimal control and state trajectories over a chosen time interval A;
for the first layer regulatory controller (compare the remarks at the end of
section 4.2). If the basic repetitive scheme of section 4.5 is used in the
second layer to control indirectly the process described by Eqs. (4.67), then
the first-layer direct control strategy can be based on

x"(t;)

o o——
Second layer controller
Problem 4.68 is solved at
t=tj
W(t) =y () X (t) =% (1)
for or
t e[t ] lKAJ- (t) te [, tju]
First layer controller
o ()= Ku;(t) 5x(t)
s (t) 8x"(t)
+ m(t) x"(1)
- Process -
+ + -~

FIGURE 4.11 A two-layer control structure with continuous first-layer control. If
x"(t) cannot be measured then the estimate 8x"(¢) is used instead of 8x"(¢).
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1. Equations (4.67) linearized along m,, X, and Z, (see problem
(4.68)), that is,

x()=A)dx(t) + B(t)dm(t) + F(1)8z (1), (4.70)

where A(t)=f/(Z(t), m(t), z(t)), B(t)=f.(&(), m(1), Z(t), and F(t)=
f:(x(1), m(1), z(1))
2. Properly defined first-layer objectives

The classical state feedback techniques can now be used along with
appropriate estimation (filtering) algorithms, if necessary. The algorithms
provide us with estimate 6x'(f) of 8x"(¢) = x"(¢)—%(t). Suppose that we use
dm(0) = K, (1) 8x' (1) as the first-layer control law. Then our control struc-
ture will compute at time f the new trajectories rita, %5, and K, (1) for
telt, t,,] and apply the control law dm(t) = K, (£)8x"(t) over [t +1] (see
Figure 4.11). It should be noted that if the process is to operate in the steady
state, that is, when the constant state is considered to be optimal or desirable,
then the linearized Eq. (4.70) will be stationary (with A(t)=A and so
forth). For this reason and because the major part of state feedback control
theory is developed for stationary systems, we will consider only such
systems in the next sections. However, some of the methods and concepts
can be easily extended to the nonstationary linear case.

The linear-quadratic control problem

We consider the following linear-quadratic control problem of a complex
system:

%:(1) = Apx, (1) + G (1) + Bimy (1) (4.71a)
yi(t) = Gpx; (1) (4.71b)
u(t) = Hiy(t) = Z H,y; (1), (4.71¢)

where x,(t) eR™, u,(t) eR", m(t)eR™~, y,(t)€R™, and ie 1, s. The perfor-
mance index is

73 3| [ a0, 0mn+ om0, Rm @) e (0, 000 |- 072

We use J instead of Q in order to stress the difference between optimizing
control and regulatory control design. The linear system description (4.71)
may be obtained, as mentioned before, by linearizing the process equations
at the optimal steady-state value of the state and control. In this case, x;(t),
u;(t), m,(t) will be the deviations from the nominal state, interaction input,
and control input values, respectively. It should be noted that decomposition
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(4.71), which is used for the first layer of control, does not have to be
identical to the decomposition used at the higher layers; usually it is much
more fine, that is, more subsystems are formed. Also the global dimension
of control vector m(t) =(m(1), ..., my(f)) can be different from the control
vector considered at the higher layers. In many cases it may be impossible to
use some of the control inputs as manipulated variables for regulation (for
example, when the controls have to be manually adjusted or when a change
of their value requires much time and effort). There is no satisfactory theory
concerning the important question of the choice of manipulated variables for
regulation and the choice of the observed variables if the system state
cannot be observed directly. A few aspects of this problem were presented
in section 1.2.

It is also by no means clear how to establish the weighting matrices
0, Qf, and R, in performance index (4.72). In fact, a large number of
control system design techniques, like the frequency response methods or
pole placement techniques, do not exploit this form of the performance
index at all. If we accept (4.72), time horizon T has to be appropriately
chosen depending on the value of 1., — (see the first part of this section)
and on the process dynamics; if #.,—¢t is large enough, we can use T =<,
which simplifies the control design. If the task of the first-layer controller is
to keep some regulated output variables w{, where w]= Cix;, to the specified
set points wi, from, for example, the steady-state optimization at the higher
layer, then matrices Q; in (4.72) could be Q, = C!"Q/}C’, where Q} has to
“weight” the regulated outputs. Note that in the linearization of the process
equations at times , w{ will be an increment of the regulated output and wi,
will be zero.

In most cases the process state x; is not directly accessible and we have to
observe it through some measured variables w,, where

wi(t)=Cx. (1),  wi(t)eR™ (4.73)
If the measurements are corrupted by an additive noise m,(t) and if it is
possible to describe the fast disturbances acting on any subprocess as

another additive factor £(t), then we can formulate the following control
problem:

%(1) = Agx; (1) + Gou, (£) + Bim () + £.(1) (4.74a)
wi(t)=Cx()+n:(1), i=1,...,5, (4.74b)
plus Egs. (4.71b) and (4.71c) and performance index. By &(1), n;(t) we

usually mean white Gaussian noises, but it is possible to consider other
disturbances as well. We should write stochastic equation (4.74a) in the form

dx = A,x; (1) dt + Gou (1) dt + Bymy (£) dt +d =

where E(f) is a Wiener process, but since notation (4.74a) and (4.74b) in the
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linear case does not lead to misunderstandings we will use it for conveni-
ence.

The first-layer control algorithm will usually involve (a) a procedure for
tuning the controllers, and (b) the implementation of the control law. Both
the tuning procedure and the control law can be decentralized or cen-
tralized. For example, we may think about the centralized tuning of a
decentralized controller or the decentralized tuning of a centralized control-
ler, for which a decentralized procedure for solving the overall Riccati
equation can be developed (Kokotovic 1972, Laub 1974). In complex
dynamic systems, it is especially important to obtain the decentralized
control law because in this way we reduce considerably the on-line informa-
tion requirements (see Chapter 5) and increase the system reliability.
Therefore, we will concentrate on decentralized control laws, which may be
tuned in either a decentralized or centralized way.

A decentralized control law can be tuned at times ¢ only, or updated
more frequently. If it is updated more frequently and the tuning procedure
is not decentralized, it is sometimes referred to as decentralized control with
periodic coordination.

4.6.2. DECENTRALIZED CONTROL STRUCTURES

Simple decentralized control

Consider a linear-quadratic optimal control problem given by Eqgs. (4.71)
and (4.72), where for design purposes we set T =co, This problem can be
written in compact form as

x(t)=Ax(t)+Bm(t)
1> (4.75)
J= > L «x (), Qx () +{m(t), Rm(t))) dt, Q=0, R>0,

where the system defined by matrices (A, B) is controllable, B, Q, and R are

block diagonal matrices with entries B, Q,, and R, x =(xq, ..., x,), and
m=(m,,...,m;). Matrix A is of the form
A=A,+D, (4.76)

where A, is block diagonal with entries A;; and the block entries of D are as
follows:

0 for i=j.
D; :Jl ’ L 4.77
! Go:H;Gy;, for i#]j. ( )

The optimal control law m*(t) = K*x(t), where K*=—R'B"M can be
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obtained by solving the Riccati matrix equation
A™™M+MA -MBR 'B™™M+Q =0. (4.78)

Since A is not block diagonal, Eqs. (4.78) cannot be presented as s
independent sets of equations and moreover, the resulting control law is not
decentralized, that is, for each subsystem

B

m¥(t) = Z K¥x(1)=K¥x(1) (4.79)

Our main goal is to obtain a set of controllers for each subsystem, where
each controller is allowed to observe and control the variables of his own
subsystem only. The simplest way to achieve this is as follows (Bailey and
Ramapriyan 1973). Suppose that we neglect the interactions and consider
matrix D equal to zero. Then the classical design procedure using the
approximation A = A, will be decentralized into s problems:

Find a feedback control law so as to minimize

1o=2 [ (€0, Q0 +m (), R (1)) d (4.80)

subject to x;(t) = Aux;(t) + Bm;(1).

After solving the Riccati equation for each subsystem, we obtain the
decentralized control law:
m()=Kox (), Ki=—R;'BIM{, icl,s (4.81)

where M? is the solution of the Riccati equation for (4.80). If, as a whole, the
closed-loop system
1(t)=(A+BK%x(1), (4.82)

where K is composed of blocks K?, is asymptotically stable, then the value
J* of the performance index obtained in this system is

T =3xIM"x,, (4.83)
where M! is the solution of the linear Lyapunov equation
M'(A+BK®%+(A+BK°"™M"'=—(K°"RK°+ Q)

and x, is the initial state. The following theorem (Bailey and Ramapriyan
1973) summarizes the results regarding the stability of the proposed design
and gives bounds for the suboptimality.



375

THEOREM 4.5. Let us denote by

J* the optimal value of the performance in the system when the centralized
control law (4.79) is applied,

J' the suboptimal value of performance when the decentralized control law
(4.81) is applied (see Eq. 4.83),

J° The optimal value of the performance in a hypothetical decoupled system
with A=A,

and by o(2) the set of eigenvalues of the matrix

5 =(KRK°+ Q) '{(M°D+D"M?), (4.84)
where M° = block diag (M?). If the following condition is satisfied
aC)c(-1,1) (4.85)

then the closed-loop system (4.82) is stable and for any initial conditions the
following relation holds:

(1+o,)  P=T*=T"=(1—0ay) 'J°,

where o,,, oy are, respectively, the minimum and the maximum eigenvalues of
(4.84).

Condition (4.85) may be interpreted as a criterion of weak coupling with
respect to stability in the sense that the simple decentralized control m(t) =
K®x(t) is stable. This condition can always be satisfied when ||D|| is small
enough. Yet it will also be satisfied for large ||D|| when the symmetric part of
MP°D is small.

When we use a finite optimization horizon T in problem (4.71), (4.72),
the procedure remains the same except that we have to solve a differential
Riccati equation. We obtain a time-dependent control law

m, (1) = K3(O)x, (1), (4.86)
where K9%(t)=—R;'BTM?(t) and
M) = -M2(D A, — ATM2(t) + Mi(t)B.RT'BIM (1) — Q,

MY(T)=Q°. The same can be done when A, B, R, and Q, are time
dependent.

General cases of decentralized control

Note that matrices K3 and hence K° in (4.82) were determined by decen-
tralized calculations (decentralized tuning). It is obvious that there may exist
a block diagonal feedback matrix better than K°. Therefore, if we decide to
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use a centralized design procedure we may try to find a block diagonal
matrix K for which the closed-loop system is stable. Its performance,
which is expressed by

J(KP)=3xIM>x,, (4.87)
where M? is the solution of equation
M?*(A +BKP)+(A + BKP)TM?= —(KP"RK" +Q), (4.88)

reaches at KP its minimum value over the set of all block-diagonal matrices
that produce a stable system. However, in this way we obtain a matrix K”
that depends on the initial condition x,.

Since we would like to design a control law independent of the initial
conditions we assume either that all components of x, are independent
random variables with E[x;,]1=0, E[xi,]=r, k=1,...,n, or that x, is
uniformly distributed over an n-dimensional sphere. Then from (4.87) we
have

E[J(KP)]=3uM?, (4.89)

In order to find KP we can minimize (4.89), subject to the conditions that
KP is a block diagonal and M?>0. It is difficult to specify the conditions
that guarantee the existence of a solution to this problem.

This parametric optimization problem is not decentralized and not even
easily decomposable (see Bailey and Wang 1972).

Once we have decided that the on-line decentralized feedback control
laws can be designed (tuned) by the centralized procedure, we may also use
the following indirect approach. Assume that the parameters of the cen-
tralized control law (4.79) have been calculated and we know that

m(t) =K¥x (1),

where K¥=—R;'BTM and M satisfies Eq. (4.78). It is now possible to
minimize the norm of the difference between m¥(t) and the decentralized
state feedback control

m; (1) = Ki;x;(1).
The basic design objective is not to minimize the norm but to minimize the
performance loss. Nevertheless, since J in Eg. (4.75) is continuous in m,
then the proximity of m;(t) to m¥(t) should imply the proximity of the
suboptimal and optimal performance values. The best K, which minimizes
||m;(t) — m¥t)||, results from

min K, K|
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and is given by

Kii = K*IT [Im‘m . Ili.n,]71 = K:l:a

13 Ny, 1y
where I, =[0:...10:1:0!...:0].

We should note that the above continuity argument can be misleading and
it can be easily demonstrated by examples that the above design might result
in an unstable closed-loop system. If the composite system (4.71) has no
unstable modes fixed with respect to class #” of block-diagonal state
feedback matrices, then we can always find a stabilizing matrix K e ¥
(Wang and Davison 1973; see also Theorem 4.6, which follows). Note that
a complex number p is called a fixed mode of x = Ax + Bm with respect to
class J# of state feedback matrices if peo(A +BK) VK € K.

When only output variables w; (see Eq. (4.73)) can be measured, we have
to design a decentralized output feedback controller. This may be done by
constructing an observer of the state of the system described by Egs. (4.71)
and (4.73). If this system is observable, the state may be reconstructed with
any desired accuracy for t =t,>0. With an observer, we could use the state
estimate X =(X,;,..., %) in the decentralized control laws. This will make
sense, however, only if we are able to design a decentralized state observer.
It is also possible to use another approach based on decentralized local
output feedback with dynamic components in the feedback laws. The set of
local dynamic feedback laws will then have the following form:

X (1) = Sixge (1) + Tiwi (1) (4.90a)
m;(t) = Vixg (1) + Kywi(1), (4.90b)
where x,;(t) eR™ is the state of feedback controller i and S,, T,, V,;, and K|
are real constant matrices of appropriate size. After applying feedback laws

(4.90) to the complex system (4.71), (4.73), we obtain a closed-loop system
that can be described in compact notation as follows (see (4.75), (4.76)):

[x(t)]_[A+BKC§B _[x(t)],

wnl LTS x,(1) (4.91)

TC S
where C =block diag (C;), S =block diag (S;) and so on for 7T, V, and K.

THEOREM 4.6 (Wang and Davison 1973). There exists a set of local feedback
control laws (4.90) such that the closed-loop system (4.91) is asymptotically
stable if and only if the system

x(t)=Ax(t)+Bm(t)

w(t)=Cx(1t)
does not have any unstable mode fixed with respect to the class X" of
block-diagonal output feedback matrices K, that is, there exists no complex
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number p such that Rep=0 and pe o(A+BKPC) VK” e¥". KP = block
diag (K;) and K, is of size n,,; X n,,.

In the proof of the above theorem, Wang and Davison describe the
construction of control law (4.90). There is, of course, some freedom left in
the design and we can try to find among all decentralized feedback control-
lers that produce a stable system the ones for which the given performance
index (for example, Eq. (4.89)) is minimized.

Decentralized filtering

Consider now a stochastic system that can be modelled by Eqs. (4.74a),
(4.71b), and (4.71c), that is,

%(t) = Auxi (1) + G (£) + Bm () + £(1)
yi(t) = Grxi(t) (4.92)

w(®=Y. Hyy(0)

and observed (measured) outputs

wi(1) = Cx; (1) + m,(0), (4.93)

where £(t) is the local disturbance noise and m;(¢) is the local observation
noise. We assume that the initial state x;(0) (or, more precisely, x;(t;)—see
section 4.6.1) is a Gaussian random vector with mean x° and covariance
P?, and the noise processes & and 7; are white Gaussian processes with zero
mean and covariance matrices =; and N,, respectively. We also assume that
¢ and n are independent on x(0), that &(t) and m;(t) are stochastically
independent Vi#j, Vt, and also that x;(0) is independent of x;(0), &(¢) of
£(1), and (1) of m(1) Vi#jVe.

Consider now a stochastic equivalent of the deterministic control problem
(4.75), with performance index

T
7=1tim E{—I—J (x(1), Qx(O))+{m(t), Rm(1))) dt}. (4.94)
210 (T Jg

If pair (A, B) is controllable and (A, Q'?), (A, C) are observable then there
exists a unique control law that stabilizes system (4.91) and minimizes
(4.94); see Athans (1971). A’, B, and C are defined in relations (4.75)-(4.77).
This control is given in the form of feedback control law (4.79), where in
place of x(t) we have to use the optimal estimate %(¢) of state x(t) generated
by a centralized Kalman filter in which one has to use all available
information m(t) = (m (1), . .., m,(t)) and w(t) = (w(t), . .., w.(1)).
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If we want to use decentralized control law (4.81) then in order to
preserve a completely decentralized a priori and a posteriori information
pattern which is characteristic of (4.81) (that is, if we want to use decen-
tralized control as well as decentralized design or tuning), we will have to
construct a decentralized filter compatible with this information pattern. A
reduced-order local Kalman filter can be designed by neglecting the interac-
tions in (4.92) and solving the stochastic control problem with D =0 (see
(4.76)). The local filters are described then by the equation

%(0) =A%)+ Bm(e)+ KE(Wi(t)— Cx(1), (4.95)

where gains K =P,CIN;' and P, result from the Riccati filter equations
(see, e.g., Jazwinski 1970), which depend only on the local data. It should be
noted that (4.95) does not give an unbiased estimate of x;(t), yet it is
possible to formulate the conditions under which the closed-loop system
resulting from the application of the decentralized control law m;(t)=
K2%(t) to (4.92) and (4.95) is stable. Teneketzis (1976) has proved the
stability for sufficiently small ||D}| in (4.76) and has investigated bounds on
the estimate error covariance matrix.

The local filter design and implementation can be improved if one can
also observe interaction inputs u;, that is, if the following measurements are
available:

w; (1) = w () +m;, (1) (4.96a)
wio(t) = Cx; (1) + myo(8). (4.96b)

Let us assume that m;,(t), m;5(t) are stochastically independent. Then we have
a special case of the problem considered by Sanders et al. (1974, 1975),
whose results allow us to design a decentralized filter giving an unbiased
estimate %;(t) of x,(t).

Each of the s local filters has the form:

%, (t) = AyX () + Bm(t) + Gow; () + Kﬁ(‘)[Wiz(t) —Cx ()], (4.97a)

where x,(0)=x{ and the gain matrices Kf(t) are given by

Ki(t)=P(t)CINy (4.97b)
P.(t)=A,P.(t)+P,(t) AT—P,(t)CTN;' GP.()+ B; + Gu:N,,GL,  P,(0)=P?,
. ) .. (4.97¢)
where covariance matrix N; of (n;;, ;,) is given by
S
0 N,

In the above construction, the interaction measurement noise is treated as
the local process noise. Consider the following important theorem from
Tacker et al. (1976).
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THEOREM 4.8. If pairs (A, CN™ %) and (A, C) are observable and if
system (4.92), (4.96) can be stabilized by decentralized state feedback, then it
can also be stabilized when local estimates from (4.97) are used in place of the
local states.

If we use filters for local control that have the dimension of the full state
of the system, and if we use a completely centralized design procedure, we
can work out more complicated decentralized control schemes for the
stochastic control problem; see Chong and Athans (1971).

Decentralized disturbance-accommodating controllers

Consider composite system (4.74), (4.71b,c), where the process and observa-
tion disturbances can be modeled as follows:

&(t)=Ez(1), ni(t) =Fz(1), (4.98)
and where z(t) is the output of a “disturbance generator:”

A
F Zi (4.99)
z2=C.3

with random initial conditions. The disturbances of the type z(t)=
a,+at+...+a, "' with unknown coefficients a,,...,a,_, fall easily
into this class since they satisfy the equation z™(t) =0.

Suppose also that the regulated outputs w(t) are measured, that is, they
belong to the measured outputs w;(t). For simplicity, we consider the case
when w(t) have to be brought to some specified constant values w, in the
presence of disturbances (4.99). We mentioned in section 4.6.1 that the
constant values of wi; may result from the steady-state approach used at the
higher control layers—see Bailey and Malinowski (1977).

The control problem is now as follows: we are looking for a regulator that
will asymptotically regulate wi(t) to wi; in the presence of disturbances z,
provide for a fast response to changes in wj;, and use a decentralized
information pattern. An attractive approach that has some of these features
is Davison’s decentralized robust regulator theory (Davison 1976a,b, 1977).
This approach yields a set of disturbance-accommodating controllers that:

1. Regulate w{(t) to wig;

2. Use feedback to maintain zero steady-state error with respect to set
points in spite of the influence of a defined class (4.99) of disturbances;

3. Are robust in the sense that they successfully regulate over a certain
range of process parameters;

4. Are maximally decentralized.
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The process equations are:
% () = Apx (1) + Bm (1) + Gou (1) + E;z(t)
yi(H) = Grx; (1) (4.100)

W)=Y, Hyy ()

and the observation equation:
wi(t) = Cx, () +Fz(v),
where a part of w;(t) is the regulated output
wi(t) = Cixi (1) + Fiz(1),

and z(t) is generated by (4.99). The design of the robust regulator proceeds
in two stages:

1. The dynamic servo compensators
x'ci(t) = Acixci +BCl(w:(t)— w:d) (4101)

are chosen to ensure that the process tracks wi, in the presence of z. Roughly
speaking, the servo compensators are designed to cancel the unstable poles
of the disturbance generator (4.99).

2. w(t) and x,(t) are used as the inputs to the decentralized local output
feedback controllers with dynamic compensation (stabilizing compen-
sators)—see Eq. (4.90)—which are designed to stabilize the augmented
system (4.100), (4.101) with E, F=0. The design procedure given by
Wang and Davison (1973) requires some specification of the required
closed-loop pole assignment, which can depend on the control objectives
(e.g., on some performance index) as well as on the sensitivity of the design
with respect to process parameter variations and process nonlinearities. The
decentralized controller will in the end have the following structure:

m, (1) = K3'x, (1) + K@x (1), (4.102)

where x(t) is the output of the stabilizing compensator.

Davison (1976a) showed that, roughly speaking, when each servo com-
pensator (4.101) is controllable, the transmission zeros of the process
(4.100) do not cancel the poles of any servo compensator, and some other
conditions are met, the robust regulator can provide arbitrary assignment of
all poles of the process. The robust regulator regulates the process for any
changes in plant parameters A, B;, C; for which the control structure
remains stable. The tracking property is however lost when the unstable
poles of generator (4.99) change their values. Therefore, in practice this
approach seems to be restricted to the cases in which dynamic system (4.99)
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models the structural properties of disturbances, for example, polynomial
disturbances that are modeled by the equation z™(t) =0.

Whenever the set point values change significantly (at times ) the tuning
procedure should, at least in theory, recompute the new servo and/or
stabilizing compensator parameters. However, owing to the robust proper-
ties of the regulator, it will continue to regulate as long as the control
structure remains stable. The question of when is it appropriate to recom-
pute the regulator parameters is complex. Some aspects of this question,
including the possibilities for sequential tuning of the local controllers, have
been considered by Davison (1976b) and Davison and Gesing (1977).

In some cases it may not be possible to stabilize the complex system by
using the completely decentralized information pattern (see Theorem 4.7).
Even a stable, completely decentralized control may produce unsatisfactory
system performance. This does not necessarily mean that we should entirely
abandon the idea of decentralized control since in many cases one can
significantly improve the decentralized design by introducing a few chances
for communication between the controllers. For example, in the designing of
control law (4.102) one may find that some unstable poles of the process are
fixed for the class of control laws (4.102), it is then often possible to move
them to the desired positions by adding appropriate off-diagonal blocks.
This means that m; will have the form:

m, (1) = K x (1) + KP? %, () + K3%; () + - -, (4.103)

which indicates the need for some communication among controllers.

A similar thing could happen if one wanted to improve the performance
of a decentralized filter, for example, by sending estimates X;(t) from local
filter i to other local filters. The benefits of this method should be compared
with increased communication costs.

4.6.3. DECENTRALIZED CONTROL WITH PERIODIC COORDINATION

The central controller and its functions

In this section we will consider some possibilities of introducing a central
controller into the state feedback control structures for the processes de-
scribed by Egs. (4.71), (4.73), or Egs. (4.74a,b), (4.71b,c). We will refer to
this central controller as the on-line coordinator or—simply—the coor-
dinator, although the concept and role of this coordinator differs consider-
ably from the coordinator concept in a hierarchical decision-making (hier-
archical optimization) mechanism (see Chapter 2).
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To specify the role of the on-line coordinator we have to proceed very
carefully since, as noted by Sandell et al. (1976), there are many pitfalls that
may virtually cancel decentralization. For example, we may allow the
coordinator to have too many capabilities with respect to information and
decisions. Obviously, the information pattern is a decisive factor here and if
we want to maintain a reasonable decentralization then, roughly speaking,
we will have to specify carefully what the coordinator knows and in what
manner he will influence the local controllers.

We assume, as in the previous section, that each local controller knows
the model data (the dynamics (4.71a) or (4.74a), performance index, prob-
abilistic information) associated with his own subsystem and that he knows
his own past measurements and control decisions. It should be noted that in
many cases it may be more reasonable to assume that the local controllers
have zero memory and at each instant of time they can use only the current
observation.

Consider first the case in which the coordinator operates on the same time
scale as the local controllers, that is, that his interventions can be as frequent
as the local actions. What prior information is available to the coordinator
and what current information will be exchanged between the coordinator
and the local controllers? We could assume that the coordinator does not
know the complete model of the controlled system (no prior information)
and cannot gather this kind of data from on-line communication with the
local controllers. For control of dynamic systems, such an assumption does
not seem to be very productive since, unlike the coordinator in the static
case considered in Chapter 3, the coordinator here cannot make iterations
on the system with which to work out a proper control decision. Neverthe-
less, this assumption may be correct in some situations, for example, if the
local controllers do not want to reveal the parameters or even the structure
of their subsystems. However, this might be more relevant for the theory of
management systems (involving human decision makers) than for process
control problems. Let us, therefore, assume that the coordinator has all of
the model data.

As far as the on-line information is concerned, we might assume that the
coordinator has full and error-free access to all measurements taken by the
local controllers and that he also knows all local control decisions. In this
case, however, as pointed out by Chong and Athans (1975), the coordinator
will tend to override the local decisions and to virtually take over the control
of local subsystems by continuous intervention. It would be unreasonable to
prevent the coordinator from doing so since we have assumed that he
communicates with the local controllers at all times and knows the best
possible control decision to be made at any moment. We could as well
eliminate the local control units.
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It makes more sense to assume that the coordinator does not know the
measurements taken by each local controller but that he can obtain instan-
taneous and error-free information about the local control decisions; see
Aoki (1973). It turns out then (Sandell et al. 1976) that the coordinator can
again calculate control decisions that are almost optimal, so he knows how
to override the local control decisions and take better local actions. This
happens because information about the local measurements can be indi-
rectly included in the local control decisions transmitted to the coordinator.
If the coordinator operates on the same time scale as the local controllers,
then he cannot be involved in complicated numerical tasks since he would
have to work out his decisions very fast, that is, as fast as the local
controllers. Note that the local controls may be continuous or almost
continuous.

The above considerations make it rather clear that instantaneous and
continuous two-way communication between the coordinator and the local
controllers destroys the decentralized nature of the control, especially if the
exchange of information is error-free, and has to be abandoned. It is also
usually not acceptable because of the large costs of data transmission.
Therefore, it is reasonable to assume that the coordinator will influence the
local units less frequently than the local controllers operate on the process.
In other words, the coordinator will become a higher-layer controller. This
will also allow him more time to perform the computations on the overall
system model.

We consider two possibilities for on-line information transmission to the
coordinator:

1. The coordinator obtains all the information that is available to the
local controllers and has a perfect memory, but he is permitted to make
control actions only at times t,

2. The coordinator obtains only some aggregated or discrete data from
the local units (like the coordinator described in sections 4.2 and 4.3)

We will briefly discuss some control structures in which the coordinator
takes control actions at times f, and the local controllers use state feedback
decision rules. We will refer to this control scheme as decentralized state
feedback control with periodic coordination.

Periodic price coordination for a deterministic control problem

Assume that we are given the linear-quadratic optimal control problem
described by Egs. (4.71), (4.72) with finite control horizon T, and that at
times ¢, €[0,T) the dynamic coordinator receives information about the
actual value x"(zt,) of the system state. At each ¢, the coordinator has two



385
tasks with respect to the local controllers:
e The coordinator has to change the local incentives by modifying the
local performance indices

e The coordinator may have to provide for some time trajectories
required by the local-level controllers

Suppose that at time t, coupling equation (4.71b) is incorporated into the
following Lagrangian

L =%2i [J ((X.‘(t), Qixi(t))+(m,.(t), Ri"'li(t))) dt+<X,—(T), Q?X.(T))]

+i; J:T<)\i(t), ui(t)“,g1 Hijyj(t)> dt. (4.104)

This Lagrangian can be split into s parts for given A(t), w;(t) = Y- HiA;(1).
We can consider the following problem L’ (i€ 1, s):

Minimize with respect to m; (), u;(¢) (t€[t,, T]) the functional

L =% J [(x:(D), Qux () +(m; (), Rim (D) + (A (D), wi () — (1), Gx, ()] dt
L

+(x(T), QYx(T)) (4.105)
subject to
X () = A;x(t) + Bm(t) + G, (1)
x;(te) = xi(te).

Suppose that problem rLp' has a unique solution r;(A;, w8, (A, ()
(te[0, T]). We can use the interaction balance method to solve the overall
system optimization problem at t=1t, (see sections 2.4 and 4.3.1) and find
the balance prices A;(t). The coordinator transmits A,(f), ;(t) to the local
controllers and then, in order to develop the local feedback control, we can
use the following two-stage procedure:

Stage 1. For given D), (@;(t) optimization problem (4.105) is solved by

each local controller and i (A, fi;)(t) = d,(t) is found.
Stage 2. For given ji;{t) and f;(t), the following control problem cp'

min L, =J [(x(1), Qux, () +{m; (1), Remy (£)) = (i (1), Grx: ()] at

+(x(T), Q'x(T)) (4.106)
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subject to
% ()= Aux; (1) + Bm (1) + Goitai(t) (4.106)

is used to yield the following decentralized local feedback law with compen-
sation signal

m; (8) = KA6O)xH(t) + v, (t) (4.107)
where

K3()=-R'BIM{(1),  v(t)=—R7'Bv;(1) (4.108)

and M?(t), v}(1) satisfy the equations

M{() = —MY(DA, ~ ATM(1) + MY (DB.RT'BIML (1)~ Q,
M,(T) = Q° (4.109)
0{ (1) = MP()B.R; 'B{v} (1) — Afvi (1) — MY(t) Go;i; (1)
~Gni(t), vi(T)=0

Now suppose that problem Lp' does not have a unique solution. We
cannot use M to solve the overall optimization problem (though the
interaction balance method with input prediction could be used—see section
2.5), and therefore the coordinator has to transmit f,;(¢) and &(t), the
predicted interaction inputs, to the local controllers. The design of local
procedures is along the lines of stage 2 above.

Problem 1P’ can have a unique solution if Q,>0, R;>0, and Q?>0;
there are other conditions as well. However, it is clear that we cannot solve
this problem with the maximum principle; the solution may be obtained by
using a standard technique of dynamic programming. If we add to perfor-
mance J (see 4.72) the following term:

(4.110)

S

T
> | . suwya
i=1v0

then Lp), with (u;(t), S;u;(¢)), has a unique solution when R; >0, S,>0, and
Q;, QY =0. The decentralized control law (4.107) is implemented over time
horizon [t,, t,.,]. We then transmit x"(t,.,) to the coordinator and repeat the
whole procedure. It should be noted that the most complicated Riccati
equation (4.109) has to be solved only once by each local controller at the
initial time t =0.

The information pattern of this control structure is similar to the informa-
tion pattern of the dynamic price coordination structure that was considered
in section 4.3; the coordinator receives only part of the on-line information
that is used by the local controllers (state values x"(t,) at times f,) and
provides these controllers with the performance incentives and—if
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necessary—with the local input prediction (). Unless the dimension of
u;(t) is much smaller than the dimension of m;(t), the coordinator has to
transmit a considerable amount of data to the local units—the amount of
information transmitted from the coordinator to the local controllers could,
in fact, be more than the amount of information involved in the control
signals that would have to be sent to the process actuators by a completely
centralized controller. Therefore, as far as the information pattern is con-
cerned, the main benefit of this structure is that we need to transmit only
some of the measurements to the coordinator. If the dynamic coordinator is
allowed to operate on the same time scale as the local controllers, he will
take over all the control activities by overriding the local decisions.

Periodic price coordination for a stochastic control problem
with completely decentralized filtering.

Assume now that at the design stage we consider the subprocess equations
(4.74a) instead of (4.71), that is, we acknowledge that the disturbance input
& (t) is a white noise. We assume also that the process behavior can be
observed through noisy measurements (4.74b). We want to preserve the
pattern of information exchange between the local controllers and the
dynamic coordinator that was presented above. Witsenhausen (1968) has
demonstrated that for the solution of the linear-quadratic Gaussian problem
with nonclassical information patterns, the separation theorem does not hold;
nevertheless, for technical and computational reasons we will still use the
separated filtering algorithm and the linear control law as in the previous
section. Therefore, we consider the following control structure:

1. At times t,, the coordinator receives state estimates X;(t,) from the
local controllers; given this information and prior deterministic information,
he specifies as before #(f) and f,(f) (or A;(¢), f;(t)) and transmits them to
the local controllers.

2. The local controllers compute the parameters of their local control
laws (4.107) as in the previously described case but use in place of x{(¢) the
local filter output %;(t). The local filter is designed for the process

X (1) = Aux,(t) + Byim; (t) + Gt () + £,(1)

(4.111)
w; (1) = Cx; (£) + ;. (8).

It should be noted that the local filters do not provide for unbiased
estimates X;(¢) of xi(t), and the coordinator may compute wrong incentives
for the local controllers if he uses the biased estimates. If it is possible to
measure the interaction inputs (see Eq. (4.96a)) then we may implement
filter (4.97a) to get an unbiased estimate of x}(t). This could improve the
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performance of the control structure. In any case, this control scheme looks
interesting and deserves investigation.

Periodic price coordination for a stochastic control problem
with local and global filtering

We briefly outline the control scheme presented by Chong and Athans
(1975). They considered a control structure with periodic price coordination
for a linear discrete-time stochastic system. All prior information about the
process dynamics, probabilistic data, and performance index is available to
the coordinator. The local controllers have only the information related to
their subsystems and can measure local noisy output. The task of the
coordinator is

e To correct estimates generated by the local-level Kalman filters;

e To specify new time paths for the local control mechanisms, which
depend on the version of the control scheme that is used;

e To specify additional terms that are added to the local performance
indices.

For his task, the coordinator receives all the measurements available to the
local controllers and all the information about the local control. However,
the coordinator is allowed to communicate his decisions to the local control-
lers only at times nl, [=1, ..., l;; the local controllers apply controls at all
times k=1,..., N. A full-order Kalman filter is used by the coordinator to
generate the optimal state estimates. There are essentially two different
ways for the coordinator to formulate the decision problem at time nl:

o He may neglect the fact that he will act in the future; in that case, he
works with a so-called open-loop feedback optimal structure.

e He may take his present as well as his future interventions into
consideration. This leads to a closed-loop optimal structure with periodic
coordination, which was developed by Chong and Athans. In this case,
however, the decoupling of the local control problems is very difficult; the
coordinator has to transmit more information to the local controllers than in
the open-loop structure.

The local problems are well-defined stochastic control problems. Based on
the information transmitted from the coordinator, the local controllers can
develop their own feedback decision rules and their local filters. Chong and
Athans show that when the coordinator operates on the same time scale as
the local controllers, he himself generates stochastically optimal controls for
the overall system.
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What do we gain by using this decentralized feedback structure? It leaves
some autonomy to the local controllers, but more information is exchanged
within the control structure than in completely centralized control. The
information requirements may be difficult to accept, and the on-line compu-
tational requirements are no less than they would be in a completely
centralized case. Nevertheless, the theory of the structure is interesting and
valuable for further studies connected with partially decentralized control
schemes.

Final remarks

It should be noted that all control schemes described in this subsection
would remain unchanged for time-dependent matrices A;(t), B;(t), and so
on. A linear description of the controlled process, a white noise model of the
disturbance, and a quadratic performance function describe the first-layer
regulatory control problem (see section 4.2) and thus virtually limit the
applications of the theory presented in section 4.6 to regulatory control
design. Since the first-layer actions are relatively frequent, we should avoid
coordination or communication between the first-layer controllers as it will
be expensive because of the wide bandwidth required. It seems that, as far
as the regulatory control structures are concerned, we should often try to
develop completely decentralized control schemes, some of which were
presented in section 4.6.2.
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Information Problems in
Hierarchical Systems

5.1. INTRODUCTION

As noted in Chapter 1, the design of a control system involves the design of
an information process and a decision process; the former provides data for
the decisions taken by the latter. Most of the work in traditional control
theory and hierarchical control theory focuses on the design of a decision
process in which the information process is either given or chosen arbitrar-
ily. In this chapter we focus on the information process. We consider
information and how we measure it, models for information structures in
complex control systems, measures of the amount, value, and cost of
information, and the design of information structures.

Unfortunately, the results are much more tentative than those in the rest
of this book. Many of the ideas are new, most of the concepts are relatively
untested, and many important results are missing. Yet, when we consider
that informational factors are central to the whole justification of hierarchi-
cal systems, it becomes clear that this is a topic of central importance in the
overall theory. We hope that the questions raised will encourage further
study of these issues.

5.2. THE INFORMATION PROCESS

We begin with a simple and informal definition of information. Information
is a commodity that improves decisions. The question of how this improve-
ment occurs will be considered in detail below. For now, we give a simple
example. Consider a farmer who has to plant either crop W or crop D. Crop
W grows well in a wet season and crop D grows well in a dry season. Thus,

392
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the farmer’s profit will depend on the future weather and also on the future
market prices of W and D, both of which are relatively uncertain quantities.
The former depends on the actions of ‘“‘nature” or ““chance’ and the latter is
a function of the actions taken by his neighbor. In order to choose the best
action, the one that gives maximum profit, the farmer would like to know the
coming weather and the future market price. Farmers pay for weather and
market forecasts and they complain about economic loss from unexpected
weather or market changes. On the other hand, a careful identification of
the totality of information used by a specific farmer in making his decision
would be very difficult. We know what information does but it is often
difficult to say precisely what information is.

INFORMATION IN CONTROL

The uses of information in control problems can best be illustrated by some
simple examples. Let us first consider a single-controller static problem with
outcome (output) y = g(m) where m is a manipulated input. Preferences are
represented by the performance index Q(y, m), which is to be maximized.
Here the controller must choose m to solve the problem

maximize Q(y, m)

m

subject to y = g(m). The only information needed by the controller is process
information about g and goal information about Q.

Now consider a more complex version where there is an external distur-
bance u affecting the outcome. That is, the process is now y = g(m, u), but
the performance index remains the same. The controller now needs addi-
tional information about u. This is coupling information; it represents the
effects of external actions (externalities) that are coupled into the local
process. The controller’s success in maximizing Q depends on the quality of
the coupling information he receives. We can represent the coupling infor-
mation received by v =h(u). The controller’s problem is now: given v =
h(u), choose m to solve

maximize Q(y, m)
subject to y = g(m, u).

The above examples suggest that a controller needs three types of
information: goal information, process information, and coupling informa-
tion. In general, the first two are given in advance and we assume that they
are distributed according to some prior arrangement. The focus in this
chapter will be on coupling information: what is needed and how it is
distributed.
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5.3. THE SYSTEM MODEL

The systems considered will be modeled as a collection of simple process
elements, or simply elements, with each element controlled by a separate
decision agent (decision unit). The agents are assumed to act only once;
repeated actions are represented by agents who communicate. In this
respect the development is similar in spirit to that used by Witsenhausen
(1968, 1974). However, we are primarily interested in the design of infor-
mation structures while he focuses on classification. In addition we assume
that the order of action of the agents is fixed so there will be no questions
about causality.
Each process element is described by an outcome function

y =g(m,u) (5.1)

where y is the outcome resulting from action m and coupling input u. Each
agent is described by an information function

v="h(u) (5.2)
and a decision rule
m=d(v). (5.3)

y, m, u, and v are assumed to be members of an appropriate space, most
commonly, a finite-dimensional vector space.

A closed system denoted ¥ will be represented by a set # of process
elements and a set o of associated agents. The elements and agents of
&P =(P, A) are assumed to be located at the vertices of a space-time grid.
The term space is used in a generic sense. It may represent real space,
sectors of an economy, divisions of a firm. Space is divided into S elements
indexed by s=1,...,8. Time is divided into T+1 elements indexed by
t=0,1,...,T. Time elements are assumed to be ordered by the usual
ordering of the integers in [0, T]. The time order of the agents actions is
given by their time index.

We can draw an (S by T+ 1) array of points called an s—t grid; it is shown
in Figure 5.1. We then think of & as a collection of elements and agents
located at these points. The process elements, agents’ outcome functions,
information functions, and decision rules will be indexed by st. Thus, the
complete set of outcome functions for & is denoted by

Voo = 8o (Mg, Ug,) s=1,...,S; t=0,...,T (5.4)

The couplings u,, into g, are in general a function of the actions of all the
other agents. They are represented by

ug, =k, (m). (5.5)
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FIGURE 5.1 A system on an s—t grid.

In addition, agent A, receives the functional form of k, as part of his
process information. Thus, the part of the coupling information unknown to
A, is

m = (mloa cets mST)7

a vector representing the actions of all of the agents in &. In some cases it is
convenient to combine (5.4) and (5.5) and write

Voe = & (Mg, m). (5.6)

The fact that u, does not depend on m, will be assumed but not noted
explicitly.

The coupling structure of & can be represented by a directed graph on the
s—t grid called the coupling graph. A branch of the coupling graph is drawn
from point ij to point ki if the dependence of u,; on m; is not trivial.

Exogenous disturbances coupled into the outcomes of other elements are
represented by the actions of a subset of & called the chance subsystem and
denoted &,. The agents in &, are called chance agents and denoted &/,. The
chance agents receive no information and their actions are independent of
the actions of other agents in &%. Thus, they act first, and the chance agents
and their elements are located at t =0. The elements of the chance agents
are dummies but can be represented by

YSo:gso(mso)7 S:1,...,s, (57)

It is possible to model the actions m,, of the chance agents as random
variables from an appropriate probability space. The remaining elements in
¥ (i.e., ¥—F,) are denoted by ¥ and called the system.
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5.3.1. SUBSYSTEMS

A subset of ¥ having either no couplings entering from outside itself or
couplings only with &, is called a subsystem. Subsystems (agents and process
elements) will be denoted by &, for i >0. The elements and agents in &, will
be denoted ?; and «;, respectively. Several special types of subsystems will
be identified based on the topological properties of their coupling graphs. A
subsystem is deterministic if it has no coupling with &,. A subsystem is
causal if none of its coupling branches are directed to the left. A subsystem
is static if all of its elements have the same time index; otherwise, it is
dynamic. A subsystem is lumped if all of its elements have the same space
index; otherwise, it is distributed. A subsystem is sequential if its coupling
graph has no loops; otherwise, it is cyclic. Note that the process elements and
agents of a sequential subsystem are partially ordered by the interconnec-
tions in their coupling graph. This partial ordering will be called the coupling
order.

5.3.2. GoaLs

The agents may each have individual goals such as

maXimiZe Qsl(yst’ mst)

with respect to m,, or a subset of agents &, may have a common goal such
as

maximize Qg (Yo, My ) (5.8)

with respect to my, where Y, m, are vectors of outcomes and actions for
all agents in &, and their processes. A group of agents having a common
goal is called a team. The team goal is separable if

Q&ﬂi(y&ip msd,)z Z Qst(ysn mst)' (5'9)

stesd;

5.3.3. SYSTEM EXAMPLES

Some simple examples of systems will be given to clarify the concepts.

Example 5.1. A single-element system &,

The simplest system of interest has a single element in %, and a single
element in &. The coupling graph is shown in Figure 5.2. The element at
(1,0} is a disturbance generator coupling disturbances into the element at
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FIGURE 5.2 Coupling graph for the system S;.

(1,1). The element at (1, 1) is described by

Y11 = 8ui(myy, uny) (5.10)
U= kll(mlo)‘

The problem for agent A;; might be to maximize

Q11(y11, myy). (5.11)

If m,q is known this is a deterministic problem. If m,q is random this is a
stochastic problem and we assume Q,, includes an appropriate expectation
operation.

Example 5.2. An N-element static system &3

The coupling graph for a typical N-element static system may look like the
one shown in Figure 5.3. Here each of the elements at ¢t =1 is represented
by

Vi1 = &1 (m;y, Uiy)

i=1,...,N. (5.12)
Uy = kiy(m)

FIGURE 5.3 Coupling graph for a typical Sy.
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FIGURE 5.4 Coupling graph for a typical S§.

For example, the element at (3, 1) is, according to Figure 5.3, represented
by

Va1 = 831 (May, Usy)

U3 = ka1 (Myg, Mag, M),

(5.13)

If the agents in this system are a team there will be a single performance
index

Qmyy, ..., Mu1, Yins - - -5 YN1)- (5.14)

Example 5.3. An N-element, causal, lumped system &%

The coupling graph for a given N-element, causal, lumped system is shown
in Figure 5.4. Note that causality requires that couplings flow only to the
right. The outcome function for element (1, k) is

Yie = gue(Mip, Uii)

k=1,...,N. (5.15)
Uy =ky(m)

Because of the causal assumption, u;, can be a function only of m,; for
j<k. Note that every subset of &% to the left of t=1t', for all '<<N, is a
subsystem.

FIGURE 5.5 Coupling graph for a typical general system S.
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Example 5.4. A general space—time system &

A typical general space-time system & is represented by the coupling graph
shown in Figure 5.5. Note that & is made up of three subsystems &, &,,
and &;. Subsystem &, is deterministic.

5.3.4. INFORMATION STRUCTURE

Each agent receives information just prior to his turn to act. All agents act
in an order determined by their time index, ¢, and all agents having the same
time index are assumed to act simultaneously. Agent A, receives process
information describing g, and k., goal information describing Q,, (or Q, if
the agent is a member of a team), and the coupling information. The vehicle
for distributing this information is the system information structure: a
network of communication links between the agents. In order to focus on
coupling information, we assume that process and goal information is
distributed in one of two polar cases. Process and goal information is
globally distributed if each agent knows the process and goal information for
all the other agents in &¥. Process and goal information is locally distributed if
each agent knows only his own process and goal information. Goal informa-
tion can be locally distributed in a team only if the team performance index
is separable.

The coupling information received by agent A,, may include outcomes,
actions, observations, or messages from other process elements or agents.
Since all of these are eventually a function of m, we describe the coupling
information by the information function

Vg = hy(m). (5.16)

As before, m is a vector of actions of all the agents in ¥, but we explicitly
assume that v, is independent of m,. The set of information functions (5.16)
for an entire closed system &, combined with a statement about the
distribution of process and goal information, describes the system’s informa-
tion structure. The coupling information flows implied by an information
structure can be represented by a directed graph called the information flow
graph. The information flow graph is drawn on the s—t grid in a way similar
to the way in which the coupling graph is drawn. That is, a branch is directed
from ij to kl if h,, is a nontrivial function of m,;. For clarity, it is often
desirable to eliminate ¥, and branches from elements of &, from the
information flow graph. This reduced information flow graph is equivalent to
the precedence graph described by Ho and Chu (1974).

Information structures can be classified on the basis of topological proper-
ties of their information flow graphs. An information structure is determinis-
tic if its information flow graph has no couplings with &,. An information
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structure is causal if all of the branches of its information flow graph are
directed to the right. Note that this causality condition is stronger than that
used in section 5.3.1. We assume that in a causal information structure an
agent cannot be informed of the actions of other agents acting simultane-
ously. An information structure is static if all of the connected elements of
its reduced information flow graph have the same time index; otherwise, it is
dynamic. An information structure is sequential if its information flow graph
has no loops; otherwise, it is cyclic. We can now assert some simple facts.

ASSERTION 5.1. A causal static information structure has no couplings in its
reduced information flow graph.

ASSERTION 5.2. A causal dynamic information structure is sequential.

ASSERTION 5.3. A sequential information structure induces a partial ordering
of the agents of &.

Note that the ordering described in Assertion 5.3 is different from the
coupling order and will be called the information order.

ASSERTION 5.4. A system with a causal information structure can be “played
out” in real time.

By played out in real time we mean that each agent can be presented with
his information and then asked to act in a real-time sequence. Thus, a causal
information structure describes an extensive game (see Witsenhausen 1974).

Most of the previous discussion of information structures in
decision/control problems has focused on systems with causal information
structures. However, many important multiperson decision/control problems
involve noncausal information structures. That is, the information required
by some agents depends on the actions taken by other agents acting at the
same time or even in the future. Noncausal information structures are found
in models of hierarchical control systems, economic mechanisms (Hurwicz
1971), planning processes (Burton and Obel 1977), and iterative optimiza-
tion and estimation schemes (Laub and Bailey 1978). A system with a
noncausal information structure cannot be played out in real time but may
be solved by a planning/action process. A planning/action process involves a
planning stage during which appropriate plans of action are selected, and an
action stage during which the actions are taken. This involves a delay while
plans are developed and a special information structure strictly for planning.
One could include the planning/action explicitly in the coupling and infor-
mation flow graphs. Alternatively, if the noncausal information flow is
sequential it can be made causal by delaying the actions of some of the
agents.



401

ASSERTION 5.5. A sequential information structure can be made causal by
changing the sequence of action of the agents.

A more complex situation is an information structure that is nonsequen-
tial, and thus noncausal by Assertion 5.2. Such systems can be solved by a
special iterative planning/action process called a tdtonnement process.
Tatonnement processes have been studied extensively in the economics
literature (Hurwicz 1971) and are receiving increasing attention in the
literature of hierarchical control theory. As we will see below, the
tatonnement processes have advantages and disadvantages. However, it is
important to realize that in most control problems the choice of information
structure is made by the control system designer.

5.3.5. EXAMPLES OF INFORMATION STRUCTURE

Some typical information structures will be described to clarify the concepts
in the preceding section.

Example 5.5. Three static information structures

The information flow graphs for three typical static information structures
are shown in Figure 5.6. The first is causal, the second is not causal but
sequential, and the third is cyclic.

Example 5.6. A dynamic information structure

The information flow graph for the dynamic information structure shown in
Figure 5.7a has three parts. The upper two are causal. The lower is cyclic.
The corresponding reduced information flow graph is shown in Figure 5.7b.
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FIGURE 5.6 The information flow graphs for three static information structures.
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FIGURE 5.7 The information flow graph (a) and reduced information flow graph
(b) for a dynamic information structure.

5.3.6. APPLICATIONS

We now demonstrate the use of the proposed system model to represent
some traditional decision and control problems.

Example 5.7. A single-person decision problem (sppp)

Since many of the concepts presented in sections 5.4 and 5.5 are based on
results obtained for spop, this problem will be discussed in detail. sppp is
characterized by (see Raiffa and Schlaifer 1968):

A state space X (The term state space in decision theory refers to the
‘“‘state of nature.” Thus x is a random variable representing uncertainty.)

An action space M

An observation space V

An information function h: X—V

A performance index Q:MxX—R

A stochastic model p(x, v) on X X V. (The notation p(x, v) will be used to
represent the joint probability density of x and v when the variables x and v
are continuous and the set of joint probabilities when the variables x and v
are discrete.)

The traditional decision problem is: given information function v = h(x),
find a decision rule d € D, where m = d(v), that achieves

max E{Q(d(v), x)} withrespectto deD

where E denotes the expectation with respect to p(x, v).
Using the models developed above, we see that the system implied by
spop is ¥, (Example 5.1). The chance agent A, chooses m;, (corresponding
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to x€X) according to an appropriate probability rule. The agent Aj;
observes v;; and selects m,,; according to decision rule m,; = d;;(v,;). The
outcome function g,, and performance index Q,, for A;; are chosen so that

Q11(myy, g11(myy, my,)) = é(mu, Mmy).

The information flow graph is the same as the coupling graph in this case.

Example 5.8. A static multiperson decision problem (MpDP)

A static N-person decision problem is characterized by (see Marschak and
Radner 1972):

A state space X
N action spaces M,
N observation spaces V,

N information functions h;: X—V, i=1,...,N
N performance indices Q,: M;X.. . XMyXX — R
A stochastic model p(x, vy, Uy, ..., Un)

The problem for each of the N decision makers is to find a decision rule d,,
where d; : V,— M,, that achieves

max E{Q,(m, . .., di(v;), . . ., My, x)}

with respect to d.. If this is a team problem, then there is only one
performance index Q and the problem is to find a set of N decision rules
d, ...,d, that achieve

max E{é(dl(vl)9 ooy da(vn), X))

with respect to d,, ..., dn.

A static MppP with N decision makers can be represented by the static
system &3, shown in Figure 5.3. The outcome functions g;; and performance
indices Q,;, i=1,..., N, are chosen to be consistent with Q; as in Example
5.7. The random variables corresponding to x € X are generated by one or
more elements of ¥,. The information structure will be static because
V1 = MMy, - . ., Myg). In most cases it is assumed that the process and
goal information is globally distributed.

Example 5.9. A discrete-time dynamic system

A discrete-time dynamic system on the time interval ¢t=1,2,...,N is
traditionally characterized by a difference equation model

X1 = fi(x, my)

8 t=1,2,...,N (5.17)
¥y = & (x, m,),
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an initial state x, =X, and a performance index
N
Or(yr)+ 2 Qi my). (5.18)
i=1

Sequential solution of and substitution in the difference equation shows thar
at step j the outcome is

szfj(f, my,..., mj)- (5.19)

This suggests that we can represent a discrete-time dynamic system by using
the lumped system ¥%. The agents A,; choose actions m,;=m, for j=
0,...,N. The initial state x is chosen by A,y as m,;=x. The coupling
function k,; is chosen so that

U= klj(m) =(m10, vy ml,j—l)
and the outcome function is chosen so that

Vi = &1;(my, uyy) =f,—(i, My, my)

for all 1<j=N. The agents have a team goal
N
Qde(mll, cees My N—15 Y1150 -5 Vin) = Z [Qui(my;, yii)]
i=1

where the Q,; are chosen to correspond to the Q, in (5.18). Note that this is
a team over time rather than space.

The information structure for a discrete-time dynamic system will depend
on the observations available to the agents. A common though not necessary
assumption is that each agent is really the same controller acting at different
times. In this case, the assumption of globally distributed process and goal
information is realistic. The coupling information available may vary. In the
traditional model of a controller with output feedback, the coupling infor-
mation available to agent A,; is, from (5.19),

U1 = ¥j—1 =fj—1(f, My, ..., mj—l)'

Thus the information flow graph in this case is the same as the coupling flow
graph shown in Figure 5.4.

Example 5.10. A multilevel control system
A deterministic static system composed of N processes

v = & (m;, u;) (5.20)
with couplings

;= ki(y) (5.21)
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local performance indices Q;(m;, y;), and team performance index
N
Q(m’ Y) = Z Qi(rni’ yx)
i=1

can be represented by the system &3 described in Example 5.2 with &%,
omitted. The coupling graph for any specific case depends on the coupling
function

Uy = k;1(m) (5.22)

obtained by solving (5.20) and (5.21) jointly.

A multilevel control system with N infimal units and one coordinator is
represented by a similar system ¥3,,; where the additional agent Ay, , is
termed the coordinator. Since the coordinator’s function is strictly informa-
tion distribution, he is not connected to the other elements in the coupling
graph.

The traditional assumption in hierarchical control is that the process and
goal information is only locally distributed. The traditional information flow
has each agent receiving information about the actions of other agents
through the coordinator.

5.3.7. SOME RESULTS

The information structure affects the decisions made via the quality and
quantity of the information provided. At this point we can say something
about the quantity of information provided in terms of the information flow.
In section 5.4 we will also consider the quality of the information flow, its
informativeness. For the results obtained below we will limit our attention to
the two polar cases of either globally distributed or locally distributed
process and goal information.

ASSERTION 5.6. A deterministic subsystem with globally distributed process
and goal information requires no coupling information.

Explanation: In such a subsystem each agent can calculate the actions of
the other agents and thus compute m locally.

Assertion 5.6 states that open-loop control is optimal when there is no
uncertainty. This suggests that when process and goal information is globally
distributed the primary function of coupling information is prediction of the
actions of the agents in &,

An information function v = h(m) is said to be perfectly informative about
m if observation of v reveals the precise value of m (see section 5.4 for
further discussion of informativeness). An information flow is said to be
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sufficient if it leads to optimum actions by all agents under the assumption
that it is perfectly informative.

ASSERTION 5.7. When process and goal information is globally distributed a
sufficient information flow is a feedforward structure providing information
about the actions of s, to all agents in &.

Explanation: Once the actions of s, are known, the closed system & is
equivalent to a deterministic system &.

Of course, such a feedforward of information is generally unrealistic and
feedback is used to develop an estimate of the actions of sf,. Assertion 5.7
suggests that when process and goal information is globally distributed, two
information structures are equivalent if they convey the same information
about the actions of .

ASSERTION 5.8. When process and goal information is only locally distributed
and the agent’s preferences are independent, a sufficient information flow
graph is one that follows the coupling graph.

Explanation: In this case the individual agents face single-person decision
problems with uncertainty z. The sufficient information flow will thus have
to include information about all actions that affect z. This is indicated by the
coupling graph.

ASSERTION 5.9. In a deterministic system with locally distributed process and
goal information but team preferences, a sufficient information flow provides
global distribution of process and goal information.

Explanation: Global distribution reduces the problem to the case consi-
dered in Assertion 5.6.

Such an information structure is of course not very attractive. The coordina-
tion mechanisms discussed elsewhere in this book are designed to avoid
global distribution of information. In section 5.5.3 we examine some infor-
mational questions arising in this case.

Note that the function of the information structure differs considerably
between the two cases of globally and locally distributed process and goal
information. This leads to a wide difference in attitude toward information
in the literature associated with these two cases: the stochastic control
literature traditionally assumes global distribution and the hierarchical con-
trol literature generally assumes local distribution. Unfortunately, many of
the interesting multiperson control/decision problems are those where the
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process and goal information lies between these two extremes. In such
problems, the observation v can include messages containing process and
goal information as well as coupling information and the overall problem
becomes very complex.

The framework developed provides a structure for considering a broad
class of multiperson dynamic control problems. It is not the most general
since the order of action is fixed in advance, but it seems appropriate for
many complex control problems. The framework includes but is not limited
to such problems as classical (discrete) control, decision problems, static and
dynamic team problems, and static and dynamic hierarchical control problems.

5.4. PERFORMANCE OF THE INFORMATION STRUCTURE

In the previous section we identified information flows and some properties
of systems based on information flow only. In this section we are interested
not only in the flow but also in its effectiveness in improving actions.

5.4.1. PARTITIONS AND SUBFIELDS

An information function v = h(m) conveys information to an agent about m.
If we assume that m is a member of a set M and v is a member of a set V,
then we can say that h induces a partition of M into subsets

Mt={meM|h(m)=v} forall veV.

The set of subsets #" ={M"|v € V} is called a partition of M and represents
the resolution of v in describing m. That is, in viewing M through h we find
that all m in each M. are equivalent. Moreover, there is a one-to-one
correspondence between information functions h and partitions #". Thus,
they represent alternative descriptions.

Partitions can be compared by their fineness. A partition A" is said to be
finer than (" (denoted M < #™) if every element M" e #M™ is a subset of
some element of ™. An information function h, is said to be more
informative than h, if M =M".

Another approach to the comparison of information structures is to define
a field & of subsets of M and a corresponding field %, generated by the
subsets M". The field %, is simply the set #" plus additional subsets of M
generated by taking unions, complements, and intersections of the elements
of M. The elements M" of #" are the atoms of the field %,. For simplicity,
we will assume that all sets are finite. The concepts developed can be
generalized for infinite sets. If the partition /" is finer than 4" then clearly
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F o &, 2 %,,. The following statements are equivalent:

h, is more informative than h,
M= M

F 2%,

MM (F,,) is finer than M"(F,)
M"(F,) is coarser than M™(F, )

Note that if h, is more informative than h, then " =< #": and there is a
condensing function f:V— V such that h,(m) = f(h,(m)). Thus we call h, a
condensation of h,.

Given a set H of information functions h we note that fineness gives a
partial ordering of H. That is, for any h;, h;e H we say h;=h; if F, 2 F,_
The fact that the ordering is only partial means that the requirement of
“finer than” is too strong. In general, two information functions may be
incomparable because they are finer in some places and coarser in others.
However, even under these circumstances some interesting results can be
obtained.

5.4.2. NOISELESS INFORMATION FUNCTIONS

An information function h:M—V is said to be noiseless if it can be
represented by a partition ", that is, if for each m € M there is a unique
ve V such that h(m)=rv. The finest possible partition resolves M into its
elements m. However, in general, a coarser partition may be satisfactory,
first, because only a subset of M may be of interest to one or a group of
agents, and, second, because even in the part of M of interest there may be
certain m’s that are equivalent in terms of performance. Thus, given a
subsystem &, we take M, as the subset of M of interest to &; (the agents in
&) and F* as the finest field of interest to ..

Information centralization

If two agents A;; and A, in ¥, have information functions h;; and h,, then it is
generally true that neither %2 %, nor F;2 %;. In this case we say that
the two agents are informationally distinct. In the terminology of Hexner and
Ho (1977), these two agents each have a private information structure with
respect to the other. On the other hand, it may be true that F}; 2 Fy,. In this
case we say that A; is informationally superior to A,;. According to Hexner
and Ho (1977), the common information structure of these two agents is F},.
Equivalently, we may say that A,, has no private information structure with
respect to A;. It is, of course, possible that agent ij is informationally
superior to several other agents in &, If some agent in &, is informationally
superior to all other agents in &, then we say that & is informationally
centralized.
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In a causal static information structure the fineness of %}; for each agent is
independent of the actions of the other agents and so centralization is a
property of the information structure design. In other cases, centralization
depends on the actions taken by the agents in &, and prior statements about
information centralization/decentralization are more difficult.

If &, is informationally centralized because A; is informationally superior
to all other agents, then h; is more informative than all other hy, in &, and
there are condensation functions f,; such that

Vg = hyy (M) =f (hij(m))
for all A, €A,

Information nesting

If & has a sequential information structure, the agents &f; are partially
ordered according to the information ordering. Thus each agent (except
starting agents) has one or more predecessors. A sequential information
structure is said to be partially nested if each agent is informationally
superior to all of his predecessors. Such an information structure provides
complete information along its branches of flow. Each agent knows at least
as much as his predecessors. Thus, when the information structure is
partially nested, the flow arrows in the information flow graph also indicate
informativeness. Ho and Chu (1974) indicate this by augmenting their
precedence graph with dotted informativeness lines.

Equivalent information structures

In section 5.3 we suggested that when process and goal information is
globally distributed, two information structures are equivalent if they pro-
vide the same information about the action of the chance agents s, (see
Assertion 5.7). We now formalize this by stating that if process and goal
information is globally distributed, then two information structures are
equivalent if they are equally informative with respect to My={m}, i =
1,...,S. We can then prove the following:

ASSERTION 5.10. A partially nested dynamic information structure is equi-
valent to the static information structure obtained by deleting all flows between
elements in &.

Explanation: Since the information structure is partially nested, each agent
knows as much as his predecessor in the information ordering. Thus, the
dynamic flows between agents of & do not increase the agents’ knowledge of
M,.
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This result is roughly equivalent to a result obtained by Ho and Chu
(1972a). Tt is important because it reduces a class of systems with dynamic
information structures to systems with static information structures. Since
there are explicit solution techniques available for some static structures
they can now be applied to dynamic structures. Unfortunately, the require-
ment of a partially nested dynamic information structure is overly restrictive.
The required information nesting is seldom achieved in practice except for
the case of a single decision maker. Ho and Chu (1972b) have also shown
how suboptimal controls for systems with non-nested information structures
can be studied using systems with nested structures as bounds.) The follow-
ing example shows the major application.

Example 5.11. A lumped stochastic dynamic system

Consider a stochastic version of the lumped dynamic system discussed in
Example 5.9. The difference equation model is now

xt+1 = ft(xt, m, wt)5

YI = gr(xn mt)9
where for each t=1,..., N, w, is a random variable. In an s—¢ grid model,
w, Iis generated by the chance subsystem with w, =my,, for k=1,...,N. If

we make the standard assumptions that v,; =y, ; , and that all agents are
controlled by a single controller then each agent ‘“‘remembers” what his
predecessors observed. Thus, the information structure is partially nested
and equivalent to the static one obtained by deleting branches in &. The
problem can thus be considered equivalent to a static team problem. If it is
also one of those static team problems that can be solved, then an optimal
strategy is available. Generally, only linear-quadratic static team problems
yield simple solutions (Marschak and Radner 1972).

As noted in Ho and Chu (1972a), this is an important result because it gives
an extremely simple proof of the linearity of the solution to the linear-
quadratic Gaussian (LQG) control problem under very mild assumptions.

5.4.3. NOISY INFORMATION FUNCTIONS

A noiseless information function fails to be completely informative about M
only because of the aggregation or condensation of M into subsets M" by h.
A noisy information function can also fail by sending the wrong message v.
In addition to the partition approach, the information function h can be
represented by the conditional probability density function p(v|m) of send-
ing a correct v for given m. A noiseless information function is such that for
each m, p(-|m)=1 for some ve V. If this is not true, the information
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function h is said to be noisy and is more conveniently described probabilis-
tically, e.g., by p(v|m), p(m|v), or p(v,m). Thus a noisy information
function can introduce both aggregation of information and erroneous
representation,

In dealing with noisy information functions, the concept of condensation
is replaced by the concept of garbling. If h, and h, represent two noisy
information functions with p(v,|v,, m)=p(v,|v,) then we say that v, is a
garbling of v,.

Conceptually at least, a noisy information function h, : M— V can always
be redefined as a noiseless information function h, by expanding the space
M to include the noise. That is, h, : M X N— V can be defined equivalent to
h,.. The advantages of working with noisy information structures appear to lie
in the statistical tools available (Marschak and Miyasawa 1968, Wyner
1970).

We can also introduce analogous concepts of informational distinction,
superiority, centralization, decentralization, and so on in terms of garbling.
For example, A; is informationally superior to A, if vy, is a garbling of v;.
At this point, though, the extension does not seem profitable.

5.4.4. THE VALUE OF INFORMATION

Since we have defined information as a commodity that improves decisions,
the simplest definition of the value of information arises from this property.
That is, the value of information is equal to the improvement in perfor-
mance it produces. The important question here is what measure of perfor-
mance should be used. Up to this point we have only used the performance
measure Q(m, y) defined in section 5.3.4. More realistically, we should write
our performance measure as Q(m,y, h) where h reflects informational
factors. For example, if we think of Q as representing profit, then the h
term brings in the cost of information. If this Q is separable as

Q(m’ Y, h) = QO(m7 y) - Qc(h)’ (523)

we will call Q, the gross performance and Q. the information cost. While this
separable form of the performance index is less general, it is the only case
for which significant general results have been obtained (e.g., see Marschak
and Miyasawa 1968).

For a single-agent problem the gross value of information can be defined
as follows. The single agent faces the problem of selecting an action that
achieves

max Qy(m, y)

subject to y = g(m, u). We will assume that if the agent receives no informa-
tion he chooses m =m,, and that if he receives information v =h(u) he
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chooses m = my,. The gross value of information function h (given u) is then
Ve(h; u) = Qo(my,, g(my,, u)) — Qolmy, g(mg, u)).
If u is a random variable, the gross expected value of h is
Vg(h) =E{V(h;u)}.

When Q(m, y, h) can be defined and is separable as shown in (5.23), the net
value of information can be obtained in an equivalent fashion (Marschak
and Radner 1972). We can now compare two information functions h; and
h, by comparing V,(h,) and V,(h,). We say that h, is more valuable than h,
if \—/g(hl)z Vg(hz). Note that this comparison depends on both the perfor-
mance measure Q, and the probability distribution p(z). The fineness
theorem below (Marschak and Radner 1972) relates the informativeness of
h to the value of h in a broad class of single-agent problems.

THEOREM 5.1.  If h, is more informative than h, (i.e., M" = M"), then for all
p(z) and Q,, h, is more valuable than h,.

An equivalent statement can be made about noisy information functions
(Marschak and Radner 1972).

Conceptually, the above approach can be used to compare information
structures for entire subsystems having a single team performance index.
However, complications can arise when the actions of one agent affect the
information available to another agent, as shown in the following well-
known example (Witsenhausen 1968).

Example 5.12. A two-person team with dynamic information structure

We assume that there are two elements in & coupled as shown in Figure 5.8.
The outcome functions of the process elements are

Yin=my+my
Yiz=Mmyppty =mptmy; +my,.
The team performance index is

1.2 41,2
Q(y11, Y12, My, Myp) =3y71; +3mi;.

Process and goal information is assumed to be globally distributed. The
coupling information provided is

V11 = My

V2= Myo+ Myg+my;.
The coupling information flow is shown in Figure 5.8(b). Note that the

information structure is dynamic since v;, depends on m,; but it is not
partially nested since A, does not have as much information about m,, as
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FIGURE 5.8 A two-person team: (a) coupling graph, (b) information flow graph,
and (c) reduced information flow graph.

A1;. Moreover, the information available to A, depends on the action m,,
chosen by A;;. Thus, the information structure and the actions are interre-
lated. In this case, the informativeness of h,, depends on the action taken by
A;; and cannot be discussed independently. We might also expect that the
information cost q. would depend on the action of A ;. Thus, the separation
proposed in (5.23) and the related measures dealing with the net value of
information may be problematical. Finally, it may be very difficult to obtain
even a gross value of information since the best action for A, is difficult to
calculate. For the example given, there is no known best action (Ho et al.
1978).

5.4.5. THE COST AND AMOUNT OF INFORMATION

The informativeness of an information function tells us something about the
usefulness of the information in certain decision situations. The value of
information tells us something about its effect on system performance. If we
are to attempt a cost-benefit analysis, some measure of the cost of informa-
tion is also needed. Unfortunately, useful measures of the cost of informa-
tion are not easily obtained. In general situations the total cost of informa-
tion depends on production (information-gathering) costs, transmission
costs, and market factors (supply and demand). Since all of these factors
depend on a host of exogenous variables, it seems unrealistic to search for a
general model for the cost of information. However, there are special cases
where the transmission cost dominates and can be modeled. Consider the
initial example of the farmer selecting a crop. Here we might argue that,
with respect to weather data, the production costs are borne by the govern-
ment and there is no market because the data is freely distributed. Thus, the
only cost to the farmer is the transmission cost, say, the cost of a long-
distance phone call. Fortunately, classical information theory (Wyner 1970)
provides an attractive approach to modeling the cost of transmitting infor-
mation in terms of the amount transmitted.

Assume that we have a noisy information function characterized by
p(my Iv,-) providing information v; € V about a discrete random signal m, e M
with probability p(m;). To simplify the discussion we assume that m and v
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are discrete. For the continuous case see Gallager (1968). Consider the
following concepts:

Information: I(m;)=-log, p(m,)

Entropy: H(M) = E{I{m;)}= —}, p(m;) log, p(m,)

Conditional information: I(m;|v;) = —log, p(m;|v;)

Conditional entropy: H(M|v;) = E{I(m, [v)}= =Y p(m; |v;) log, p(m; lv;)
Equivocation: HM|V)=E{HM|v)}=Y, p(v,)H(M|v))

Mutual information: I(M, V)=H(M)—H(M|V)

The information I is a measure of the amount of information conveyed by a
symbol m; from M. Since log, is used, the units are bits. The entropy H is
the average uncertainty (missing information) about the source M in bits per
symbol. The conditional information and entropy have similar meanings
given that v; has been received. The equivocation is the average amount of
information about M that is missing when symbols from V are received. The
mutual information is thus the amount of information sent by the informa-
tion function.

We next assume that the information v about m is obtained through a
transmission device called a channel. A channel may be a sensor, a compu-
ter memory, a human observer, and so on. If the average power E{®(M)} at
the input to the channel is constrained by E{®(M)} <« then the capacity of
the channel is defined as

C(a)=p.sup I(M, V) (5.24)

p(m)

subject to E{®(M)} = a, where p, is the channel symbol rate in symbols per
second. A fundamental result of information theory is that for any fixed
a=a, Cla) is the maximum rate in amount per unit time at which
information can be sent through the channel essentially error free, that is,
with errors as small as we want them to be by appropriate coding. Thus, for
a given channel, the channel capacity C(«) is a measure of the amount of
information that can be sent. Moreover, since the cost of using a channel is
often closely correlated with its capacity, the relation (5.24) can be used to
relate cost to amount of information when transmission costs dominate. In
the next section we will relate the amount of information to system perfor-
mance.

5.5. INFORMATION COMPRESSION

In sections 5.3 and 5.4 we identified the information structure and investi-
gated some measures of its effectiveness in improving system performance as
measured by a performance index. We also noted that in general there is a
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cost encountered in operating an information structure. Thus, we expect that
the design of a satisfactory information structure requires a cost-benefit
analysis. While the relevant costs are generally difficult to quantify, in
section 5.4.5 we noted that the informativeness of an information structure
could be related to the amount of information (mutual information) trans-
mitted and thus to the required capacity of the information channel em-
ployed. The fact that channel capacity is often closely related to channel
operating costs suggests a direct relation between the amount of information
sent and the cost of the information structure. This is, of course, consistent.
Experience with communication systems and control systems confirms this
expectation (e.g., see the example cited in Chapter 1, section 1.4).

In order to reduce the cost of the information structure, we should
consider reducing the amount of information sent, a problem of information
compression. Ideally we would like to find compression schemes that reduce
the amount of information without producing a deterioration in perfor-
mance. More realistically, we seek compression schemes that yield an
increase in net performance (performance minus cost of information).

While there has been a great deal of work on information compression
(also called data compression) in the communications literature (e.g., see
Davisson and Gray 1976), the cost-benefit measures and techniques used are
seldom appropriate for control problems. Thus, while some of these com-
munication techniques are conceptually useful, there is still a great deal of
work required in the development of information compression techniques
appropriate to control system problems.

5.5.1. SUFFICIENT STATISTICS AND STATE VARIABLES

The most commonly used data compression schemes are based on sufficient
statistics and/or state variables. They are generally costless compression
schemes, that is, they are designed to obtain compression with no degrada-
tion in system performance.

Sufficient statistics

A sufficient statistic is simply a compression of the information that does not
degrade performance. If an agent is provided with information v = h(m),
and ¥ = f(v) is a compression of v such that ¢ is as valuable as v, then ¥ is
called a sufficient statistic for the agents decision problem. Such compres-
sions always exist since v=10 is a sufficient statistic. The difficulty is in
finding a sufficient statistic that reduces the information cost (e.g., reduces
the amount of information). The sources of compression are most clearly
seen in single-person decision problems.



416
Example 5.13. A single-person decision problem

Consider a single-person decision problem (Example 5.7) with

Information: v = h(my), mge M,
Outcome: y = g(m, m,)
Performance index: Q(m,y).

The agent is to choose m to maximize the expected value of Q.

A completely informative h would partition M, into its elements.
However, a coarser partition may be satisfactory for several reasons. First,
there may be several m,’s producing the same outcome. That is,

gm,ml)=g(m,mj) forall meM. (5.25)
Second, different outcomes may have the same performance. That is
Q(m, g, (m, m})) = Q(m, g(m, m3)) forall meM. (5.26)

We can say that a partition that resolves M, down to those elements that are
equivalent in (5.25) is outcome sufficient. Similarily, a partition that resolves
M, down to those elements that are equivalent in (5.26) is performance
sufficient. Clearly, an outcome-sufficient partition is also performance suffi-
cient. It is also clear that a performance-sufficient partition is as valuable as
a completely informative partition since decision rules m = d(v) based on
either partition will produce equivalent performances.

The concepts of outcome- and performance-sufficient partitions can be
easily extended to multiperson problems with static information structures.
Extensions to dynamic information structures encounter the problems noted
in Example 5.12.

State variables

State variable compression is an extension of the outcome-sufficient parti-
tion concept to systems with dynamic couplings. If we consider a causal,
deterministic, lumped dynamic system (e.g., Example 5.9) the coupling
graph shows each element (ik) coupled to its predecessors (il),. .., (ik—1).
Now assume that each agent has a decision rule that is a function of the
actions of all preceding agents. That is, for agent A

mye = dy (M, . .., My_1) (5.27)
and the required information is
Ve = ha (Mg, .., My _y). (5.28)

In some cases, this information flow pattern can be simplified through the
introduction of state variables.
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A state space is a sequence of sets X, such that
8uc Mgy tye) = e (M, Xae), (5.29)
where x; € X,, the function g, is given, and x,, is given by an updating rule
Xie = f( X1, Myp_1)- (5.30)
Clearly the trivial solution
X, =M, X< ... XM_,,

with g, =g, and x; = z,, always exists. Again, the problem is to find a
state-space representation that produces a satisfactory data compression.

Conceptually, the sets X, can be defined as follows (Witsenhausen 1976).
Given (A, <) where A is a finite set and < is a total ordering on A, we
define a cut as a partition of A into mutually exclusive subsets A,, Ag such
that for every a;€ A, we have g, <a; for every q;€ Az. Since a causal,
lumped system is sequential, it is totally ordered by its coupling order. Thus
the sets M= XM, and Y = x Y, are totally ordered and we can define cuts
M,, Mz and Y,, Y. Now, for any t€(1, T), we define a cut Y,, Y; where
Yo =(Y1,-..,¥) and yg = (Y41, - - -, yr). Similar equations can be written for
m, and my. By causality, y, depends only on m,, but y; depends on both
m, and mg:

ya = G(m,, my).
We next define an equivalence relation on M, by ml~m2 when
G(ml, mg)=G(m2, mg) forall mgeM,.

Then X, is the quotient space M,/~. Note that X, is simply an output-
sufficient partition of M,. When we can, in addition, find a simple relation
such as (5.30) for “updating” x, € X, from stage to stage, then the result is a
compression of the data sent by the original information structure given by
(5.28).

The fact that X, is an output-sufficient partition suggests an extension of
the above approach using a payoff-sufficient partition. That is, we note that
when the system has an additive team performance index, then {Q,}, where

Q.= ) Qulmy,uy), t=1,...,T,
k=1

is also a totally ordered set, and by causality
Qg = Q(m,, my).

Thus, we can define a new state space X as the quotient space M,/=~,
where m!~m?2 when

Q(my, mg)=Q(mZ, mg)  forall mgeM,.
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The question of whether satisfactory data compression can be obtained in
this manner has not been addressed.

The state variables and sufficient statistics can be combined for nondeter-
ministic dynamic systems; see Witsenhausen (1973) and Striebel (1965). The
use of state variables in developing output-sufficient partitions can be
extended to arbitrary sequential systems. Since sequential coupling induces a
partial ordering of the system elements, we can always select a total ordering
that is compatible with this partial ordering and proceed as before. Since
there may be many possible total orderings consistent with a given partial
ordering, there are many possible state spaces. One would hope to select
one giving the best information compression. For further comments see
Witsenhausen (1976).

5.5.2. INFORMATION COMPRESSION USING RATE DISTORTION THEORY

The discussion of information compression in the preceding section assumed
that the compression would be costless. Beyond this, it may be valuable to
investigate costly information compression techniques. Such compression
schemes produce performance degradation and must be subjected to cost—
benefit analysis. That is, it should be shown that the benefit in reduced
information cost is larger than the cost in reduced system performance.
While the proposed cost-benefit analysis may generally be very difficult,
when the cost of information is dominated by transmission cost, classical
information theory provides some useful tools.

In section 5.4.5 we noted that the capacity of an information channel
could be described by C(a) in (5.24). Recall that the capacity of a channel is
the number of bits per second it can process essentially without error. It can
also be shown (Wyner 1970) that given a distortion function D(m, v), a
general source of signals m can be coded to produce information at a
maximum rate

R4(B) = p; irllf I(M, V) (5.31)

p(v|m)

subject to E{D(m, v)}=<p so that the average distortion E{D(m, v)} does
not exceed B (p, is the source rate in symbols per second). Thus, given a
channel with capacity C(a), signal m can be coded so that R,;(8) = C(«a) as
long as the average distortion is not required to be less than 8. Equivalently,
if an average distortion less than B is desired, then a channel capacity
C(a) = R4(B) is required. That is, the minimum average distortion is given by

B = inf E{D(m, v)} (5.32)

p(vim)

subject to p,J(M, V)=C(a). If we can now relate the average distortion to
degradation in system performance, then the theoretical results presented
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above suggest a link between system performance and information channel
capacity. The following example shows how these results can be used in a
single-person decision problem.

Example 5.14. Information compression in SPDP

Consider a single-person decision problem (Example 5.7) with my,e M,
having probability p(mg). Assume a noisy information function v =h(m,)
modeled by p(v|m,). We will also assume for simplicity that m, and v are
discrete. If m, were known exactly then the optimal action would be m™*(my)
and Q would attain

Q*(m™, my) = max Q(m, my).

Of course, in general m, will not be known precisely, Thus the agent may
choose m# m™*, and incur regret

r(m, mg) = Q(m*, my) — Q(m, my). (5.33)

For a given information function v = h(m,) and decision rule m =d(v), we
can define the expected regret as

R(h, d) = E{r(d(h(my,))), mo}, (5.34)

where the expectation is taken with respect to p(my).

We now note that the choice of information function h implies a choice of
p(v|m) and thus mutual information I(M,, V). At the same time a choice
of h and d implies a choice of expected regret R(h, d) as given by (5.34).
Thus, if we consider the I-R space shown in Figure 5.9, the choice of (h, d)
corresponds to the choice of a point I(h)=I(M,, V) and R(h,d) in this
space. With regard to system design, the optimal I-R point is (0, 0). At this
point, we would have zero mutual information (requiring zero channel
capacity) and also have zero regret. Unfortunately, not all points in the I-R
space are feasible. A point I;, R; is feasible if there is an h and a d such that
I(h)=1I, and R(h, d)=R,. Thus, for all R,, the lower bound of the feasible
region is given by

I*(R)) =inf I(h) = irllf I(M,, V) (5.35)

h p(v|m)

However, comparison of (5.35) with (5.31) reveals that (5.35) is simply a
rate distortion problem with regret R(h, d) used as a measure of average
distortion. Thus, the techniques of rate distortion theory (Berger 1971) can
be used to obtain the boundary of the feasible region in the I-R space.
Since rate distortion functions are known to be convex and monotonically
decreasing, we can draw the typical feasible region boundary curve shown in
Figure 5.9.
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0 R,
FIGURE 5.9 The I-R space.

In the above example we have related performance deterioration, as
measured by regret R, to the amount of information required I. The results
plotted in Figure 5.9 suggest that there is clearly a trade-off involved. These
results can be used in several ways. First, when I can be related to
information cost through channel capacity, a cost-regret trade-off is possi-
ble. For example, if the total cost of operating an spop system is R +c(I)
where ¢ is a concave function representing information cost, then we can
draw indifference curves (i.e., curves of R + ¢(I) =a constant) on Figure 5.9
and locate the point of minimum total cost. Second, when there is an
information constraint involved, say the agent has limited information input
capacity, then Figure 5.9 can be used to relate the input constraint to
performance degradation in terms of regret.

It is important to note two problems in applying this approach. First, as
noted above, rate distortion theory gives only a lower bound on the rate
attainable with a given regret. Shannon showed that this bound is attainable
but only at the price of complex coding schemes using long blocks of data.
Thus, the source-encoder must store up many messages before any are sent.
While this delay may be acceptable in communication systems, it is seldom
acceptable in control/decision problems. Thus, there is a need for construc-
tive research in the area of real-time information theory, that is, information
theory with a real-time coding delay constraint. Recent work on alternative
measures of mutual information has led to some initial real-time results (Ziv
and Zakai 1973). Second, an extension of the above approach to multiperson
problems requires results in multichannel rate distortion theory. While
initial results are available (Berger and Tung 1977) there are many unsolved
problems. Results for multichannel real-time problems are essentially
nonexistent. Some interesting relations between real-time information
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theory problems and dynamic information structure problems are discussed
by Ho et al. (1978).

5.5.3. TATONNEMENT PROCESS

As noted in section 5.3.5, when process and goal information is only locally
distributed, the function of the information structure becomes considerably
more complex. If the individual agents have separate performance indices,
then an information structure that simply reveals coupling information is
sufficient. However, in the more interesting cases, where there is a team
performance index, the agents are coupled through the team goal and
additional information is needed. In this case, a sufficient information flow is
one that provides a global distribution of process and goal information.
However, such a solution is not informationally attractive.

Alternatives to the global distribution of process and goal information
are: (a) centralization of the process and goal information in a single
coordinating agent who solves the entire problem and then directs the
actions of the other agents or, (b) a titonnement coordination process
leading to optimal actions without an explicit transfer of process and goal
information. Note that the former solution corresponds to a centrally
planned economy while the latter corresponds to a so-called market or
competitive economy.

Tatonnement processes are planning/action processes where the planning
phase consists of an iterative message exchange between the system agents
and a coordinator whose sole function is the facilitation of planning.
Tatonnement processes represent an important class of solutions to the
coordination problems discussed in other chapters of this book. Their
properties have been studied extensively in the economics literature (see
Hurwicz 1971 or Kanemitsu 1966). They have the advantage of distributing
coupling information and generating optimal actions concurrently. When
compared with the original solution of global distribution of the process and
goal information, they appear to compress the information. However, when
compared with simple centralization of the process and goal information, the
answer is not so clear. An example will illustrate the point.

Example 5.15. An iterative coordination mechanism

Consider an N-element static, deterministic system (Example 5.10; since the
system is static the time index has been omitted) described by the following
outcome and coupling functions

yi = Gim; + i . (5.36)
1 . e
u; = Z K;m; (5.37)

jEi
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where m; is an r;-vector, y; is a p;-vector and G; is a p; X r; matrix with r, = p,.
Let the team objective of the system be

N
minimize Y ||m]|P? (5.38)
i=1
subject to y;=b, i=1,..., N, where b, are some required values of the

outputs. Process and goal information is only locally distributed. Each agent
knows only his piece of (5.36) and his b,. However, we assume that there is a
coordinator (agent Ay.,) who knows the couplings Kj; for all i, j. Now
consider the planning phase of the following tatonnement process. The
iterative process starts at k =1 with w! =0 for all i. At step k an “‘input
prediction”
:(: Z Kijml"(71 (5.39)
J*=i
is sent to all A; by Ay, and information on the required control
m¥=G7(b,—w¥) (5.40)

is sent to Ax, by all A; (G} is the pseudo-inverse of G;). Laub and Bailey
(1978) show that under reasonable assumptions regarding G; and K, the
planning process converges to the optimum actions. That is, m*— m} for all
i. If the system is cyclic, then the convergence is in the limit as k—oo. If the
system is sequential, then the convergence is at k = N. When the planning
phase is completed, the agents take actions according to the plans de-
veloped.

We see that the proposed tatonnement process provides a form of
information compression. The information flow is simpler than that required
to distribute process and goal information globally. The iterative exchange
supplies a performance-sufficient version of the missing process and goal
information. In addition, the exchange leads directly to the set of optimum
actions. However, the requirement of an infinite iteration (in the cyclic
coupling case) is disturbing as it suggests delay and high information costs.
Moreover, since there is only a finite number of parameters in the problem,
one questions the need for an infinite iteration. In fact, it can easily be
shown that after a finite number of appropriately chosen iterations and some
additional computation, the coordinator has centralized process and goal
information. To see this, note that the coordinator has access to wF and m{
for all i and k. Since (5.39) and (5.40) can be rewritten as

Gyl = mi ) = wi = wh

it is apparent that through a proper choice of w¥, the coordinator can collect
enough information to know all of the G;’s. Moreover, since

mi=Gb,
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the coordinator can also compute b, He then has access to all of the
information required to compute optimum m;’s centrally.

Thus, when a tatonnement process is used, the main difference between
the centralized and decentralized approaches lies in the amount of data
storage and computation required by the coordinator. Without consideration
of this and perhaps other factors (e.g., robustness under uncertainty) a
selection between the centralized process and the decentralized
(tatonnement) process is not possible. This was first noted by Marschak
(1959).

While the above result was obtained for a special case, the basic argument
should hold whenever the process and goal information can be described by
a finite number of parameters. In such cases, it is not unreasonable to expect
the coordinator to be able to estimate these parameters after a finite number
of steps and select the optimum actions centrally.

5.6. COMMENTS AND CONCLUSIONS

In this chapter we have attempted to model information structures in a
general class of multiperson decision/control problems. The motivating idea
was the fact that information can improve decisions but information struc-
tures can also be costly. Thus the fundamental questions are who should
receive information and what should they receive. We have considered two
classes of problems: those where the process and goal information is globally
distributed and those where the process and goal information is only locally
distributed.

When the process and goal information is globally distributed, the only
missing information is the actions of the chance agents $f,. The function of
the information structure is to distribute information about these actions. If
these actions can be observed directly (feedforward control) the problem is
solved. In general, they cannot be observed directly and some indirect
(feedback) scheme is required. Here the problem is one of designing a
scheme that provides the required information at minimum cost and max-
imum accuracy. At present, there are no systematic procedures for selecting
an information structure except in the simplest cases.

When the process and goal information is only locally distributed, the
agents cannot act optimally unless there is some coordination of their
actions. In this case, the missing information is the process and goal
information and the information structure supplies a performance-sufficient
version of it. In typical hierarchical control problems, the information
structures proposed are cyclic and thus noncausal and must be solved using a
tatonnement planning/action process. These processes have the dual disad-
vantages of being both informationally demanding and time consuming.
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However, in deterministic problems they may be solved off-line and the
resultant plans implemented as required in an open-loop fashion. Again,
what is needed is a systematic design procedure with information costs
considered.

Finally, in situations where there is both uncertainty due to the actions of
a chance subsystem and only locally distributed process and goal informa-
tion, the choice of an appropriate information structure is even more
difficult. The use of titonnement planning/action processes requires a pre-
diction of the chance actions during the planning phase. The results may be
unsatisfactory if there are a number of different chance actions involved
(i.e., if the disturbances change rapidly with time). At this point, we await
further research on the design of information structures for realistic multi-
person control problems.
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Appendix to
Chapter 2

A.1. SOME PROPERTIES OF UPPER-LEVEL FUNCTIONS

Let us consider a functional f:%6 X ¥ —R, where € and ¥ are real Hilbert
spaces, and a constraint set X < % X ¥. The properties of the following
upper-level function

f(u)émin f(-,v), where (A.1)
Ccw)

Cv)2{ce€:(c,v)e X}, (A.2)

ve V& {ve ¥ :Clv)# D). (A.3)

will be discussed in this section. The results can be applied to the
penalty function method (pem) for a fixed value of the penalty coefficient p,
i.e., when

fC )= Qpy(:,+, 0)s (A.4)
X ={(c,v)e€X ¥V :(c, Hv)e CU}. (A.5)

This section will also be useful for mixed methods discussed in section 2.5.
For the input prediction and balance method (irBM), presented in section
2.5.3., we would have

fG,)=L,(-, -, A, p), (A.6)
X =CU, (A.7)

and in the case of the output prediction and balance method (opBM) in
section 2.5.4. we would have

fG,)=Ly( A p), (A.8)
X={(c,v)e€X ¥ :(c, Hv)e CU}. (A.9)

429
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The problems to be discussed are closely related to some aspects of the
direct method presented in section 2.2.; in particular, if we put

fG,9)=QC, "), (A.10)
X={(c,v)eeXx ¥V :(c, Hv)e CU Av =F(c, Hv)} (A11)

we would get precisely the case of the direct method. Therefore, we will
refer to the results of section 2.2 even though we will focus on prM™, IPBM,
and opBM. These methods differ from the direct method in two ways
because (A.5), (A.7), and (A.9) do not have the output equality constraint
v = F(c, Hv). First, the set X can have a nonempty interior, and second,
there is an important class of problems whose control and interaction sets
CU are separable. This means that

CU=CxU= X (CxU), (A.12)

which implies that the point-to-set mapping C(*) is constant. In this case, the
set C =X, C; will be used instead of (A.2); of course V| can be assumed
to be the whole space and is therefore unessential. In the case of (A.12),
PFM, IPBM, and oPBM are especially applicable.

The following optimization problem

for given v e V{ find é(v)=arg min f(-, v)
C(v)
will be referred to as the Alower-level problem (Lp).
First, the continuity of f(-) should be considered.

THEOREM A.l. If we assume that (a) the set X is compact, (b) the point-to-set
mapping C(+) is continuous, and (c) the function f is continuous, then the
functional f is continuous.

Remark. In the separability case (A.12), assumption (b) is always fulfilled.

The differentiability properties of the functional f create a more complex
question. Generally, differentiability of f cannot be ensured even if f is
differentiable, and only existence conditions and formulae for subgradients
can be derived. This can be done as in Theorem 2.7 for the direct method
and will not be reformulated here. We concentrate on a stronger result
concerning differentiability which can be achieved in the separable case
(A.12).

THEOREM A.2. If we assume that

1. C(v)=C, does not depend on v,
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2. The partial (Fréchet) derivative f!, of the functional f exists and is
continuous on C XN, where N is some open subset of V,

3. For every ve N there exists a unique solution ¢(v) of the lower-level
problem LP,

4. The mapping ¢(-) is continuous on N,

then f is differentiable on N with Fréchet derivative

fi()=fy(é(v), v). (A.13)

Proof. For some point v°c N and element he ¥, consider a sequence
v" =v°+¢.h such that ¢, — 0*. Denote ¢®=¢(w° and ¢" =é(w"). Then for
some a, €[0, 1]

f(c® v™)—f(c® v%) = (fi(c® v+ anth), th),
hence

) 2 (fw") = FOO) = (e, 00+ atih, ).
On the other hand, for some B8, €[0, 1]
Flem, v™) = f(c", v°) =(fy(c”, v+ Botih), toh),

hence
) %(f(v")—f(u"))z@:,(c", v+ B.t:h), h).

When o™ — 0°, v°+a,t.h— 0v° and v°+B,t.h — v°. The continuity of f,
implies then that the right-hand sides of inequalities (1) and (2) tend to

(3) (filc® v°), h),

i.e., there exists a directional derivative of f at v, and it is equal to (3). But (3)
is linear and continuous with respect to h, hence there exists a Gateaux
derivative

V£, (0) = V£, ((v), v) = fi(é(v), v).
From the assumptions that f/(¢(v), v) is continuous on N, it follows that \/

is continuous and is therefore a Fréchet derivative f,. []

Remark. The continuity of mapping é(-) can be derived if we assume that
set C is compact; the assumption is reasonable in finite-dimensional cases.

Proof. Taking any sequence v" — v°€ N, we can assume without loss of
generality that ¢(v") — ¢ € C. We have

VeeC  f@("),v™)=f(c, v"),
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hence, due to the continuity of f,
VeeC (G v)=f(c,v°),

which implies that ¢ = é(v°) since local problem solutions are unique. Thus
é(+) is continuous. [

Among the rather natural assumptions of Theorem A.2 concerning con-
tinuity or differentiability, the requirement of a unique minimization of the
lower-level problem Lp stands out. This requirement is essential and virtu-
ally determines the differentiability. When it is not satisfied at some point v,
then the existence of only a subdifferential can be ensured.

Theorem A.2, together with its proofs, can be extended to the general case
with a lower-level set dependent on v if this set is of the form

C(v)={ce€¢:G(c,v)e S}, (A.14)

where S is a closed, convex cone in a Hilbert space ¥. Some essential
assumptions have to be made, and differentiability can be achieved only in
the interior points of the set VJ,.

THEOREM A.3. If we assume that

1. C(v) has the form of (A.14) with G continuously differentiable on
Xn = Upen (C(0) x{v}), where N< V4= ¥V is some open set,

2. The partial (Fréchet) derivative f, exists and is continuous on Xy,

3. For every ve N there exists a unique solution ¢(v) of the lower-level
problem Lp,

4. The mapping ¢(-) is continuous on N,

5. For every ve N there exists a unique Lagrange multiplier n1(v) corres-
ponding to constraint G and continuous on N,

6. For every ve N the functional L(-, v, 5(v)) is pseudoconvex on Il (Xy),
and 11, (Xy) is convex, where

L(c, v, n)2f(c, v)+(G(c, v), n),
then { is differentiable on N with (Fréchet) derivative
/()= Lie(@), v, #(v) = filé(v), v) +[GLE(@), V) A(v).

Proof. The idea of the proof is identical to that of the proof of Theorem
A.2, but the estimates are not so easy to obtain. For some point v, N and
element h e ¥, consider a sequence v" =v°+t,he N such that t, - 0" and
denote c®=¢é(1°), ¢” =¢(0"), n°=7®%, n"=14("). For some «, €[0, 1]
L(c® v", m°) —L(c® v°, 1°) =(Li(c® v° + aut.h, 1), t.h)

=L(c°% v",n")—L(c°% v°% n°) +(G(c’ v"), n°—7")

=f(")—f(0°) +(G(c® v"), n°—7"),
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since L(-, v", n™) is pseudoconvex on the convex set I14(Xy). Furthermore,
(L(c® v°+ant,h, 1°), t,h) = F(0™) — f(1°)

+(G(c% v") = G(c% 09, " —1")—(G(c’ v°), ")
=f(v") - f(v°) +(G(c® v") ~ G(c® v°), n°~7")

since n" € —~S* and G(c°, v°) e S. Hence, for some B, [0, 1]
1 . o
. (f(v™) = f(v)) =(L(c® v° + ant,h, m°), h)

—(Gi(c® v+ Butsh)h, n° —7").
Arguing as above, one can also obtain
1 . R
= (Fm) =@ =ALYc™ v +anth, m"), b)
+(Gi(c", v +But )b, 1 — 1)
The remainder of the proof closely follows that of Theorem A.2. []
It should be noted that Theorem A.3 is not a special case of Theorem 2.7
combined with Corollary 2.8 or vice versa, even if one neglects the obvious
differences of the more complex form of local set C(v) in the direct method.

It simply creates another approach to the highly complicated problem of
differentiability in the general case.

A.2. PROOF OF LEMMA 2.13

Using norm ||, we can obtain the lower and upper bounds for the scalar
product;

<T(A(n) + h(n)) _ T(A(")), h(n)>’

where h™ =—¢ AT(A™) and A™, A™ +h™ e®,. The lower bound results
from the inequality:

(TA™+h™)=TA™), k) 2 e, [TA)R — e2p,0H TAW)R.
On the other hand
(T()t(")+ h(n))_ T()t(")), h(n)>
=(WA"+h"™)+s(A+h™)]-[WQA™)+s(A™)],
— e, A[WQA™)+s(A™)])
— ([W()t(")+ h("))+ s(A‘")+ h(n)) —[W()\("))+s()¢("))],
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e A[WA™ +h™)+s(A™ + h™)]— e, A[WQA™)+ s(A™)])
—e, (WA™+h™)+s(A™ +h™) |- [ WA™)+s(A™)],
A[WAD+h™) +s(A™+h™) =g, [WA™+h™)— WA A
+2e, [lsA™+h™) =sAD) 4 [WA™ +h™) = WA )[4
+en s +R™) = s - ea ITA™ + H )R
+6, [TA™+h™)a - [TA™)a =eapdof ITA™)A
+2eapdoroy [TAMNA +enpiof ITA™)IA
—&n ITA™ + RN + £, [TA™ + RO AN T

From the above inequalities we obtain

ITA™ + RNE = ITANa ITA™ +h™)||
+{(oE 1 — €20 — 8,2,1.1,%(0', + 0'11)2) "T()\("))“fx =0.

We may solve this inequality for || T(A™ +h™)||,:

1+vA,
2

ITA™+h™)\ = ITAa,

where
A;=1-4o0gp+ e, 000 + 45:#%(0'1 + 0'11)2

is positive Ve, =0. We solve for g, the inequality

1+vA,

(1) qu, where %Sq<1.

After rearranging the terms, we have
4us(oy +op)’el—(dop, —doyu,y)e, +1— (29— 1)’=0.

According to assumption 3 and because, 3=q < 1, the above inequality has
real positive solutions whenever

A, =16(op, — 0'11#2)2 - 16#%(0'1 + 0'11)2 + 16#%(0'1 + 0'11)2(261 -1)*=0.

This condition is equivalent to the following

1 ( \/ (o, _O'HI-L2)2)
=—\1++\/1-——5|=q0, h <1.
4 2 I»‘v%(o'r'*'o'u)2 o WhETE o

For any given q €[qq, 1), inequality (1) will be satisfied if all g, satisfy the
condition;

”
q

=40'I-L1_40'HIL2_‘/A2< <40'I-L1_40'HI-L2+‘/K2=

0=¢] =g, =<

q

8#%(0'1 +O'H)2 8“%(0'1 +0'H)2
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Note that if g—1", then ¢,— 0* and

-1
E,,_)(O-‘-LI_O-H‘JQ) O

4 M%(O'I"'O'H)z

A.3. PROOF OF THEOREM 2.18

It can be shown that A e &,; indeed
IAD =A@ = g0 JATOA )= £1v 2 [ TAO)a
e, [TAO)= gaka T ||T(A‘°’)||

Therefore, from Lemma 2.13 we can write
[A@ =A@ =A@ = AD||+[APL =1

=gV plITAD)la +ITA)]
< e IITA) A + g TAO)A]
1

=equa(1+9) [TA)=eqm, 1-q [TA).

Similarly, we can show that Vn=1
A=A =equn 1— ITA ).
Therefore, the sequence {A}7_, belongs to %, and it follows from Lemma
2.13 that
ITA)|ly = 0, hence [TA™)—0

Now, Vm >n we have:

o o A(M)‘—)\(")
T\ Z<T AT, ——>
H ( )” ( ) “)t(m)—)\(")“
(M)—)t(")

= (o) -0, e

)i
1
> 8§ A(M)—A(") 2 _ T A(n)" ,
”)t(m) _ )\(")” " “ “ ( »H
where 6 = o —oy and >0 (since op; >0y, and py=u,). But
1T ™) <ITA™)a
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and thus

Vi [TA™) =V [T,

1
== (1422 e,
1

Since [T(A™)|— 0, {A™};_ is a Cauchy sequence, so )\("’~—>):e9§1 and
because T(-) is continuous, T(A™)— T(A)=6. Of course, A is a unique
solution of Eq. (2.66) in #,. Indeed, let us assume that

IAL, A2e®, and TAH=T(\A»)=6.

Therefore

Then
0=(T(AY)—T(X?),A'—AH =5 A — AP
Since §>0, A'=A2 O

A.4. PROOF OF LEMMA 2.14

We show first that condition 1(ii) of Lemma 2.13 is fulfilled. Let us take any
two points A, A*e@®,. For any we D and Vpe[0, 1] the following ine-
qualities are satisfied:

(1) pL(w, A)=pL(WQA"), A)+a3p(1-p)|W(A ) — wi?
(1—p)L(w, A% = (1-p)L(W(A%), A%+ a3p(1 = p)W(A®) — wl.

From this we obtain

p(—e(AN)+(1—p)—@(A?)+305p(1—p) [W(AH = WA
= pL(w, A")+(1—p)L(w, A%)=L(w, pA' +(1—p)A?)
where ¢(A)=—¢,(A) and VA e P,

@1(A)=min L(w, A)=min L(w, A) [assumption 1].
CcuU D

The above inequality holds for any w e D. Therefore, it follows from the
inequality and from assumption (3) that VA', A?e®, and Vp<]O0, 1]:

pe(A)+(1-p)e(A)=¢(pA' +(1-p)A?) +ioiosp(1—p)|IA' — A7
Since VA€ P, Ve(A)= W(A) we have

VA A+he®, and Vie(0,1):
to(A +h)—te(A) = (A +th) — @(A) +30703t(1— 1)l
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After dividing the above inequality by ¢t and taking the limit at t — 0%, we
obtain

e(A+h)—e(W)=(W(), h)+3070s Al
and similarly,
e(A)—e(A+h)=(W(A +h), —h)+3070s ||h|.
Therefore
(W(A+h)— W), hy=oios ||kl

Thus, condition 1(ii) of Lemma 2.13 is satisfied on ®, with o =0c205>0.
Now it can be seen that condition 1(i) of Lemma 2.13 will be satisfied if
VAL A2eo,

WA= WA =05 A" =A%

From assumptions 1 and 4 of Lemma 2.14, and inequality (1) above, it
follows that Vpe (0, 1)

pL(W(A%), A —pL(W(A"), A= a3p(1-p)|[WA) —wA)

pL(W(A"), A%) = pL(W(A?), A?) = a3p(1—p) [W(A 1) = W(AZ)|%.
After dividing the above inequalities by p, adding, and taking the limit at
p — 0" we obtain:
205 WA = WP =(V(WA ) = V(W(A?)), A2 —AT)

= 0o, [WAH = WA IAZ— A%

Therefore, VA, A + h € ?, we have
WA +h)= W)=l V(#Q +h)+ VR

2
=l W+ 1) === [l
g3

Thus, condition 1(i) of Lemma 2.13 is fulfilled on @, with oy = 03/205. O

A5. PROOF OF LEMMA 2.15

From the strong convexity of Lagrangian L (assumption 4) and from assump-
tion 3, it follows that (see section A.4)

VAL AZe P, WD) —wA)=os At —A%.

Since V() is Lipschitz continuous on D, condition (i) in assumption 1 of
Lemma 2.13 is satisfied.
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Let us define the following functional
Z(w, A,n)=L(w, A)+(n, G(w)), (A.15)

where n€@*. It follows from assumption 1 that 1p satisfies the Kuhn-
Tucker conditions for all A €2,; in particular

L, (W), A, m)=0
or
Q. (W) +[ VL (WANTA+[GL(W(A)]*n, =6, (A.16)

where m, € —D* and |n,|| is uniformly bounded for A € P, (see assumption
5). Therefore
V/\ € @1 ”gxw(wa /\7 711\)“5#5

VAL, A?e®, we can write

Q. (WA +[VLWANTAZ+[GL (WA *n,,
— QL (W) —[VL(WANT* A =[G, (WA T*n,,
+H[ VLW AT -[ VLA TFA?

or +[GL WA A, —[GL (WA )], =0

L (WAN, A%, my) = LL(W(AD), A%, ) +
HVLWADFA = A +[GLWA D) *(ny, — 1) = 0.
From the above equality and assumption 5 we obtain
v [T = A =[[VE WA TFAT = A2) +[GL R A, — m )
=L WAN, A%, my) — L (WA, A%, )
=sup L0 (w, A2, ) - IR (A~ w(A2)]

= us W) - WA
Therefore VA, A2e @,

N ~ v
W)= WA =— At =A%,
s

and assumption 3 of Lemma 2.14 is satisfied on @,. The rest of the proof
follows from Lemma 2.14. O

A.6. CONSTRUCTION OF OPERATOR A FOR
ALGORITHM (2.68)

Let us suppose that the assumptions of Lemma 2.15 are satisfied and make a
temporary assumption that w(-) and #(-) are differentiable functions of



439

A VA e®,, where n(A) =n,; see section A.5. Then we can write the deriva-
tive of mapping W(-) in the form (see Eq. (2.65))

WiA) ==V, (W(A)) - w'(A) (A-17)
After taking the derivative of Eq. (A.16), we obtain (see Eq. A.15):
L3 W (A), MW (A) +[ VL (WD + ([ Gl (WANT* (X)), W'(A)
+[GL (WA R (M) =6.

Discarding two last terms in the above equation, we can compute the
approximation of w'(A) in the form:

W'(A) = —[L%, (W), D] Ve (b (AT

Substituting this into (A.17), we obtain the approximation of W’(A). This
expression can be further simplified if we fix the value of A at, e.g., A = A¥;
then

Wi =Ao= Vi, (W AODLL (WA), AV, (WA PN,

In many cases, it is convenient to take the identity operator I or some other
self-conjugated, strongly positive definite operator B instead of
(L., (WA®), A"] . Then we obtain

Ao= V,(WAMBIV,, (WA )]
and operator A in algorithm (2.68) can be defined as
A=Aj'. (A.18)

Of course, from the considerations presented in section 2.4.3, it follows that
we can use any strongly positive definite self-conjugated operator A. How-
ever for practical reasons it is often convenient to use Eq. (A.18) for
determining A, for example, it usually simplifies the choice of a good value of
€ =g, in (2.68).



B Appendix to
Chapter 3

B.1. PROOF OF THEOREM 3.5

Let us take any point (c°, u®) € CU, and define se@ as s= HF(c’, u%)—
HF(c®, u®). Then s € S and according to assumption 3 there exists A € % such
that A, coordinates problem (3.35) and thus u™(s) = iz(A,). Therefore

u™(s)—HF(c™(s), u™(s)) = s = HF4(c®, u®) — HF(c°, u").
Let us now define mapping W:CU — CU as W= W,°W,, where

W.:CU3(c,u)— s = HFg(c, u)—HF(c,u)e S
and

W,:S3s— (¢™(s), u™(s))e CU.

According to assumption 2, W, is weakly continuous on CU. Since W, is
also continuous from assumption 4, we know that mapping W is continu-
ous. Therefore, by application of the Shauder fix point theorem, for exam-
ple, there is at least one point (cf, uf)e CU such that
W(cf, uf) = (cf, uf).
Thus 3 )
df=er)=cmhH,  u=al)=um(sh
and
a(A,)—HF((X,), a(A)) = s’ = HFE(E(A,), a(A,))— HF(E(A,), &i(X,).

Therefore

i(X) = HF(&(A,), B(A,)),

440
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and

A, =X,

is the solution of the BMF supremal problem. [

B.2. PROOF OF THEOREM 3.6
As in the proof of Lemma 2.10 in section 2.4, it can be shown that the dual
function ¢,(-) given by
&, (A)=min [Q(c, u)+{A, u—HF(c, u)—s)]
CcuU

satisfies the following inequality for every se S
. ky—kg
(1) (0=, (N) if [A|z=r=T2"72
kl - k2
Indeed, assumptions 1 and 2 imply that
b (N)=kb~(ky—k)[IA].

from which it follows that (1) holds. Therefore, for any s S
argmax ¢,(A) =X, € A.
U

But é(A) and (M) are unique for given A € A and it may be proved (see
Theorem 2.16 of sect1on 2.4), that Ve, (A)=a(A)—HF(E(A), (A)) emsts for
every A €A. Since A,eA, we have Vo, (A,)=0, and therefore A, is the
coordinating price vector for problem (3.35) of Theorem 3.5. Thus, assump-
tion 3 of Theorem 3.5 is satisfied. [

B.3. PROOF OF THEOREM 3.9

It follows fromn the assumptions of the theorem that [[s™(A)||< 8,. From the
definition of W™(A) (Eq. (3.51)) and from Eq. (3.49) we obtain

WA <B,d

Since W®(X ™)=0 then using a condition (i) of assumption 1 in Lemma
2.13 (section 2.4) we obtain

P ||X(") — ):(n)llzS <W(n)():(n)) — W(n)(x(n))’ X(n) _ X(n))
< (W R - JE =K = B, [ K=K,
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From the above inequality, it follows that

”X(n)_x(n)llsﬁ. D

a

B.4. PROOF OF LEMMA 3.5

From the assumptions, there exists €, >0, such that K(ii; e,) < ¥(&1). Let us
take any £ >0 such that &, >¢e. Thus, K, =K(i, €)= ¥ (). Set T(K,) is
open. Hence, there exists a positive number § such that an open ball
K, = K(0, 8) is contained in T(K,). Let us define mapping W, as follows:

K;ou— W (w)=T '(u)ek,.
Let us assume that Ty is such that
(1) Vueo(a) T(u)— Tx(u)l|<é.
Next let us define mapping W, as follows
K su— W,y(u)=ickK,,
where @ € K| and satisfies the following equation
T(@)+(Ty(u)—T(u))=0.

Owing to relation (1) and assumption (3) of the theorem, mapping W, is
well defined. Note that mapping W, is the composition of mappings W, and
W,, where W,(u)= Ty(u)— T(u). Since mappings W, and W, are continu-
ous and the closed ball K, is compact in 4, then, using Schauder’s theorem,
we conclude that there exists fixed point ity of W, in K,. From the definition
of W, we have

T (i) +(Ty(ity) — T(ig)) =0,

which implies that T,(itu)=0 and ||@—isl<e. Hence, the proof is
completed. O

B.5. PROOF OF LEMMA 3.6
Let us define the following set:

U4 {ueU": (3 neighborhood v(u) of u in U°) (Yu', u”" € v(u))
L&', M) = I(E(u", A)).

The set U is open by definition. Let us take any u'e U\U and any



443

neighborhood v, (u') = U®. It will be shown that there exists in »,(u") a point
that belongs to U. For any i¢ I{¢(u',A)) we have h(&(u', ), u")<0.
Functions h; are continuous by assumption (2), thus

(1) AK, s exu(V(c, u)e K )(Vig [(E(u', M) hilc, u)<0
where

K =K{((E(u',A),u');e), e>0.
Due to assumption (1), mapping

Usu— (Eu, A, ) 2 Wu)egxa
is continuous. Hence,

(3 neighborhood +;(u') < U )W(i{u") < K,

and
(2) W(ey(uh) = K,

where
'uz(ul) é'u'l(ul) ﬂ'ul(ul).

From the definition of W and relations (1) and (2) we conclude that

3) Yue vy(u') I(é(u, A))c I(E(u', A)).

Since u'¢ U, from the definition of U and relation (3) the following holds:
Ju?e wvo(u') I(E(u? A= I(Eul, N)).

If u2e U then the proof is finished. If not, then we can repeat the
procedure and obtain the following relations:

Vue o(u?) I(E(u, A)) < I(&(u? A)),
Au’e vy(w?) I(Ew? N)) < I(E(u?, ),
where

vs(u?) =v5(u?) Noy(u?) v (uh).

If u?>¢ U then we can repeat the procedure again. We will then obtain the
following sequence of index sets:

(4) I, M) c e (w?, M) - - Ie(um A) < TEW T, ). ..,
such that

Yue v, (u*) [E(u X)) < I{E", X))
and
v (o (ut) for k=1,2,...,

Since the number of constraints is finite, we conclude from relation (4) that



444

the sequence {I(¢(u*, X))} is finite. Hence, there exists a point u* € [:I which
is contained inrv(u‘). As a matter of fact, it has been shown that U #O if
U°# & and (U)> U°. Since (U)< U°,

(5) (0)=U".
Let us introduce in U the following relation:
Vu,ueU (u'~u") eI, V)= IEw",A).

It is obvious that ~ denotes the equivalence relation in U. Let us denote by
U, iel, L, the abstract classes generated by this relation. Hence

(6a)

Vi jel,L UNU =0
and

(6b)

U=0.

iC-

Let us note that from the definition of set U, for any ue U, iel,L, there
exists neighborhood «»(u) < U, such that

Viel,L U= »(u),

uel,

which implies that U, is open in U° for any i €1, L. Hence, the proof of the
lemma is completed as a result of relations (5) and (6). [

B.6. PROOF OF LEMMA 3.7
Let ue U° be given. From assumptions (2), (3), and (4) and the Kuhn-

Tucker theorem (Luenberger 1969), there exists vector w=(g;s,- .., i)
such that

(1) (Qmoa)ic (u, A), u)+hI (c'(u, A), u) p=0.

and

h(c'(u, A), u)=0.
Let us define operator ®:€xUXR* (¢, u, u)— € xR* as follows:

(Qmod)i(c, W) +hT (c, u)p
@(c,u w2 e }
(e 6 ) h'(c, u)
According to (1) we have
(2) Yue U® ®(c'(u, A),u, u)=0.

Thus, thanks to assumption (5), we can apply an implicit function
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theorem. By this theorem, there exists an open set 0°, U°>U° and
continuously differentiable mappings T': U°— %, M': U°—R® such that

(Viel, hH(Vuec U Ti(u)=ci(u,A),

3 (Viel, )Vue U% ®(Ti(u), u, M'(u))=0

and
@ (VieLDVuel) (Tiw), Miw)
= —[® (T (), u, M* (W) 1o @, (T (u), u, M'(u)).

It will now be shown that
(5) (Viel, D)(Vue U,) T'(u)=é(u, A).

Let us assume that u <€ U, From the definition of ¢(-, A) and the Kuhn-
Tucker necessary conditions we have

(Omod)é(é(uy A)’ u)+ h;r(é(uy A)’ u)l“‘ = 0
and
h(é(u, A), u)=0.

Hence, because Eq. (2) has a unique solution, we know that é(u,A)=
c'(u, A) and, from (3), that é(u, A) = T?(u). We next assume that u € U,. So,
there exists sequence {u*}— u such that (Vk=1,2,.. . )u*e U. From the
continuity of é(-, A) (see assumption (1)) and T, the following holds:

é(u, )\)=,1i_r2 Uk, A) =g£r1m T u*)=T"(u).

Hence, Eq. (5) is true and the proof of part 1 is complete. From Eq. (4) and
the assumption of part 2 we can easily derive the formula on T%(u), which
completes the proof. [

B.7. CONDITIONS FOR SATISFYING ASSUMPTION 3 OF
THEOREM 3.13

Let A be fixed in A,.

LemMA B.1. Let us suppose that int U°+ & and let us take u € int U°. We
denote J&{ic1,L: ue U}. If we assume that

1. The assumptions of Lemma 3.6 are satisfied,

2. 'There exists neighborhood +'(u) of u such that the assumptions of
Lemma 3.7 are satisfied on v'(u),

3. Mapping K is differentiable,
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4. Any convex combination
o, (H), +...+o (H),
where
i.eJ for n=1,...,s,

Zai"=l and o, =0 for n=1,...,s5,

n=1

Hi"(u)éu—HK(ci"(u,)\)) for n=1,...,s5,

is a homeomorphism,

then there exists neighborhood +(u) such that v(u)<<'(u) and mapping
I—-HK(E(-, A)) is a local homeomorphism on v(u).

The proof of this lemma is given in Ulanicki (1978). The lemma is an
extension of the well-known local inverse theorem (Kantorovich and Akilov
1964) for nondifferentiable operators. The main assumption of this theorem
is that the operator is differentiable with a reversible derivative. The
theorem cannot be used here because the operator is not differentiable.

B.8. PROPERTIES OF AN ITERATIVE SCHEME

Consider a functional f:R" x A —R, where A <R™. Let us assume that the
following parametric optimization problem:

min f(x, )

has a solution for any « € A. For given parameter sequence {a*} such that
a* — a if k — o, let us consider the following iterative scheme:

(1) x"+1=xk—pkf;(xk,ak)
where p*, k=0, 1,..., are positive step coefficients such that
la*"' —a*|<=8* >0 if koo

and
o 8k
pk—0, D pk =0, ——0 if k-
k=0 P
The property of sequence (1) is formulated in the following theorem
(Nurminsky 1977).
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THEOREM. B.1. If we assume that
1. Set A is compact
2. Functional f(-,a) is convex and a functional f(x,-) satisfies the

Lipschitz condition with a constant independent of a € A
3. Sequence {x*} is bounded

then the following holds:

lim [f(x", a®)—minf(x, a*)]=0.

Kk —»o0

B.9. CLARIFICATION OF THEOREM 3.21

We say that the mapping f: X XY — Z is convexlike on set X(Y) with
respect to set S if and only if the following relation holds

(Vxq, x,€ X)(Vt€[0, 1NEx e X)(VyeY) tf(x,.y)

+(1=0f(xz, y)—flx, y)€S,
or, for a concavelike function,
(Vy1,y2€ Y)(Vt [0, 1D 3y € Y)(Vx € X) flx,y) = tf(x, 1) — (1= f(x, y2) € S.
The definition of a convexlike function, that is, the case when Z=R and

S={zeZ:z=0}, is given in Sion (1958).

THEOREM B.2. (Kneser—Fan). Consider a pair of topological spaces X and
Y, and functional f: X XY —- R. If

1. Functional f is convexlike on X and concavelike on Y,
2. Space X is compact and for each y€ Y the functional f(-,y) is lower
semicontinuous on X.

Then the following relation holds:

sup inf f(x, y)= inf sup f(x, y).

yeY xeX xeX yeY

The proof is given in Sion (1958).

B.10. PROOF OF PROPOSITION 3.28

Let us assume that X* is fixed and that there exists sequence {A"} that
converges to A° such that for each n, x"¢ w where x" =%(A", X*). We can
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write:
(1) Q(x%) +(A", P(x%) = Q(x°) +{A° P(x)) +{(A" = A, P(x)).
The assumption implies that
(2) Q) +A°% P(x)=Q(x")+{A° P(x"))—d

= Q(x%)+{(A", P(x"))+{A°—A", P(x"))—d.
Combining (1) and (2) we have the following
Q(x%)+A", P(x?))=0Q(x")+(A", P(x™)—d

+(A" =A% P(x))+(A° =A™, P(x")).

Because {A"} — A? and P is bounded on CUj (see assumption (Al)), we can
choose n,=0 such that for all n=n,

Q(x%)+(A", P(x%) = Q(x") +(A", P(x™))—2d,

which contradicts the assumption that x" is the infimal problem solution for
A=A O

B.11. PROOF OF LEMMA 3.13

Let us assume that the thesis of Lemma 3.13 is not true. This means that
there exist A € Q(A,), sequence {A"} tending to A, and point x =X%(A, X*)
such that ||x"—x||=8 where x"=%(A", X*) and §>0. From assumption
(A4) it follows that:

QX))+, PX))Y=0Q(x™M)+\, P(x™)—o|x" —x|P= Q(x™)+{A, P(x™)) —v8°.
We can also write

(A, P(x"))=(A"™, P(x"))+{(A — A", P(x"))
and

(A, P(x))y=(A™, P(x))+{(A — A", P(x)).

Combining the above relations we find that

Q(x)+(A", P(x))=Q(x") +(A", P(x")) —¢8”+ (XA = A", P(x"))
+(A" =X, P(x)).

Taking into account that P is bounded on CU4 and A™— A, we conclude
that there exists n, such that for each n=n,

Q(x) +(A™, P(x)) <Q(x") +{A", P(x")),

which contradicts x" = £(A", X*). O
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B.12. PROOF OF LEMMA 3.14
Let us define, for fixed X*, an operator ® in the following way:
D XXR' X (tg— 1, to+ T)— X XR

L(x) + PN+ HE*(A,
q)(x,“’t):[()x(x) x}(Ii)(A N ( x)u].

(1)

We will show that by operator equation ®(x, y, t) =0 we can determine an
implicit function t — (x(t), w(¢)) that is differentiable in t;. Owing to the
convexity of the infimal problem and assumption (A6), the Kuhn-Tucker
necessary conditions are satisfied. Hence, there exists vector m(A,, X*)
depending on A, and X* such that

(2) D(E(A,, X*), Ay, X5), 1) =0.

Let us consider an operator C£ H. W™'H¥. Suppose that for certain z from
R', Cz=0. Thus, (H*z, W 'H*z)=(z, HW 'H¥z)=0. Because W>0
(see (3.165)), W™ '>0. Hence, H¥z =0. It follows from assumption (A6)
(R(H,)=R") that /(H*) ={0}. This implies that z =0 and that operator C is
reversible. Note that R(C) is a closed linear subspace in R' (C is finite
dimensional). Let us suppose that z€R' and z L ®(C). Hence, we have
(z,Cz)=0 or (H¥z, W 'H*z)=0. It has been shown above that the last
equality implies that z =0. This means that R(C)=R'.

Using Banach’s inverse operator theorem, we conclude that the operator
(H,W'H¥)™! exists and is bounded. Let us define an operator T: X xR' —
X xR as follows:

W' - W HY(H,W HY) "H,W™! W'lHi"(HxW_lHi")‘l]

A
3) T‘[ (HW 'H¥ '"HW! —(H,W 1 H*)!

By simple calculation we can check that

T(D’X,u(i(Alov Xk):- “’(A Xk); tO) = q);.u(i(Atns Xk)s "L(Ato’ Xk); tO)Tz I

o2

Hence
(4) (@, T (R, X*), w(A,, X*), 10)=T.

We now compute the derivative of ® with respect to t at (2(A,, X*),
(A, X*), to). Because I§(A,) is constant for to—7<t<to+7, H*(:,x) is
also constant for these values of ¢ and

LR X0 =0 |

5) PUEO, X, w0y X1, )= | ¢

Using the implicit function theorem (Schwartz 1967) and taking into account
relations (3), (4), and (5), we obtain part 1 of the lemma with I§(A,) # .
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For I§(A,) = &, the proof is trivial. Hence, the proof of part 1 is completed.
Note that for all AeQ(A%) and X* e E, B(A, X¥)=B*(\, X*).
For simplicity, we denote B = B(A, X*). From the definition of B (see Eq.
(3.167)), it follows that BH* =0, which implies that

(6) R(HF)= N(B).

Because operator W ! is positively defined, for all z, v € X we have
{(z+v, W {(z+0v))=0.

Let us take

(7 z=—H¥H W 'H)N 'HW 'u

We can write:

(z+v, W (z+0))=(z, W '2)+ 2z, W 'v)+ (v, W 'v)

=(H}(H,W'H})'H,W 'v, W HY(HW 'Hf) *"H. W)

~UH¥HW ' 'HHH W v, W o)+ (v, W)

= (W 'H¥HW 'H '"H W v, )+ (v, W 'v) =(Bu, v)

(8)

If veN(B) then (By,v)=0 and from the above equality it follows that
(v—(~2), W v—(-2)))=0,

which implies that v =—z and, by (7) ve R(HY). Hence, ¥ (B)c R(HY),
which, together with (6), implies Eq. (3.168) in part 2 of the lemma. Note
that it follows directly from (8) that B =0.

To prove inequality (3.169) in part 2 of the lemma, let us ob-
serve that H,W 'H*>0, which implies that (H,W 'H¥*)"'>0 and
W IH¥H W ' 'HHH W '>0.But B=W '-W 'H¥*HW 'H¥ 'H W
Thus B =W ' and the proof of part 2 of the lemma is completed. O

B.13. PROOF OF PROPOSITION 3.24
Assumption (1) yields Q(x,)=Q(ZX,). Let y€ X, be a point such that

Iy =2l = inf x5l

Of course, such a point exists because X, is the closed convex subset of the
Hilbert space. From the mean value theorem (Schwartz 1967), it follows
that there exists 7€[0, 1] such that

Q(y) =0Q(x) HQilry +(1 —1)X,), y — X,).
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Therefore, according to assumption (5)
Q(y) = Q(%,) + M|y — £,||= O(%,) + M dist (X, X,).

Taking into consideration assumption (2), we obtain the following
inequality:
(1) Qx)—0O(x,) =M dist (X, X5,)
On the other hand, for certain r<[0, 1],
(2) Q%) — Q&) =(Qi(%r), X, — %2)

+3(%1— R, Qliex (12, + (1= 7)2,)(X, — %2)).
Set X, is convex and therefore the section

[, x,]={x =%, +7(%,—%,),0=7=1},

is included in X,. Hence, assumption (3) implies that the following must be
true:

<Q;(£2)’ il - £2> = 0’
Consequently, we obtain the following inequality from equation (2):
(3) Q(il)—o(i2)2%m ”321_322“2,
and from inequality (1) and equation (2) above:
zm "xl —x2||_<..M dist (X, X5),

which was to be demonstrated. [

B.14. PROPOSITION NEEDED FOR PROOF OF LEMMA 3.16

Consider a linear, bounded, self-conjugated, and strongly positive operator A
defined on Hilbert space X. Then

1
VxeX (x, A 'x)=—:|x.
llAll

Proof. The assumptions of the lemma imply that operators A~' and
(A™")? exist and are linear, bounded, and self-conjugated operators. Addi-
tionally, (A™")'? A = A(A™")2 Hence, we can write

7= (x, xy=¢x, A1 Ax) = (x, (A7) VHAT) 2 Ax)
=(A™)""x, (A7) 2 Ax)
=((A™)"2x, A(AT) )y =[I(A™) 2P IAl
=AKA ™) 25, (A7) 2y =(x, (AT HAT) o)A
=(x, A™'x) - [|A]]

which completes the proof. [
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in dynamic multilevel control, 56
in 1BM, 48, 129
in ipBM, 136, 138
in price coordination, 351
simplified, 317
Lagrange multipliers, 283
Lagrangian problem, 319
Lasdon, L., 72, 73, 80, 118, 179
Laub, A., 373, 390, 400, 422, 424
Lefkowitz, I.,9,18,72,73,74,177, 179,
180
Lika, 216, 308
Limit coordinator problem, 202
Limit local problems, in direct coordi-
nation with feedback, 201-202
Linear dynamic system, 296-299
Linear oscillator, 368
Linear-quadratic  control
366-369
Linear-quadratic state feedback theory,
369-389
Linearized augmented
method, 132-135
simulation of, 167-168, 169t
Lininger, W., 179
Linton, T., 390, 391
Lipschitz constant, computation of, in
decentralized control, 233-236
for convergence in decentralized
control, 237-238
Local constraints, for iterative coordi-
nation in steady state, 186
for steady-state optimization, 80
Local control, 330, 345-347
Local decision makers, coordination of,
39-40
Local decision making, in dynamic con-
trol, 55
Local decision units, 14
in direct coordination with feedback,
189
in multilevel control, 12, 13
in steady-state hierarchical control,
182-183
Local dynamic control problems, 55
Local feasible set, in direct coordina-
tion, 90-91, 91
Local performance index. See also Per-
formance index
for ammonia plant, 42-43
of steady-state control problem, 36

problem,

Lagrangian

for sugar plant, 71
Local problem, 85-86
in conjugate variables method, 324,
345-347
in direct coordination, 36, 81
simulation, 159-160
in direct coordination with feedback,

188
with partial knowledge of feasible
set, 191, 197

with penalty functions, 199, 201
in dynamic price coordination, 319,
330-331, 336-339
in 1BM, 47,117
simulation, 165
in 1BMF, 50
for nonstationary system, 251
in ipBM, 136, 170
in linearized augmented Lagrangian
method, 133, 167
methods of solving, 100
no solution for, 37
off-line, model-based solution of, 39
on-line, 336-339
in opBM, 145, 172
with penalty function, in direct coor-
dination, 38-39
in peM, 105, 114, 115, 116
simulation, 162-163
in price coordination with feasible
set identification, 278-279, 298,
304
static, 324, 325
Local problem solution, in dynamic
multilevel control, 57
Long-horizon problem, 16. See also
Global problem
Long-horizon solution, 15
Lower-level iterative scheme, 226-227
in decentralized control, 236, 238
Lower-level solution, in direct coordi-
nation, 83-84
Lower semicontinuity, of perfor-
mance index in  PFM, 112
Lowest-layer solution, 17
Luenberger, D., 275, 281, 283, 285,
308, 444
Lyapunov equation, 374

Macko, D., 73. 180
Mahmoud, M., 345, 390



Malinowski, K., 72, 73, 100, 123, 124,
130, 179, 210, 308, 318, 340,
357, 367, 368, 380, 389, 390
Manipulated inputs, in choice of con-
trolled variables, 23-25
Manitius, A.. 72
Mapping K, continuity of (Opoytsev
theorem), 85T
Mappings, open, in direct method,
195-197, 196, 196T
Marginal benefit, 67
Marschak, J., 403, 410, 411, 412, 424
Marschak, T., 423, 424
Maximum principle, 298, 349
McCormick, G., 205, 308
Mechanistic control. See Computers
Medium-horizon problem, 16
Mesarovic, 9, 73, 80, 84, 118, 136, 180
Message generation, 61
mieMF (Modified interaction balance
method with feedback), 213-
215
simulation of, 222-225
Michalek, P., 226, 227, 245, 307
Milkiewicz, F., 73
Minimax theorem, 266
Miyasawa, K., 411, 424
Model, 2, 16, 17, 267. See also Model-
reality difference
accuracy of, 295
aggregated, 18
coordination by, 39
level of detail in, 16
simplification of, 16
for simulation of iterative coordina-
tion with disturbances, 259
in steady-state hierarchical control,
183
Model-based infimal problem, in de-
centralized control, 232
Model coordination. See Direct coordi-
nation
Model-reality difference, 186, 297, 304
in 1BMF, 50, 51-52
and iteration convergence in decen-
tralized control, 54
in MIBMF, 214
in subcoordination, 45
Madified interaction balance method
with feedback. See miBmF
Moisees, N., 74
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Multihorizon control, feedback in, 18
of water supply system, 15
Multihorizon hierarchy, 15-19, 19
Multilayer concept, and multihorizon
dynamic control. 17
Multilayer hierarchy, by function, 9-10,
10, 21
in steel industry, 18, 19
Multilayer systems, 9-11, 10, 11, 14—
33
Multilevel concept, 9, 11-12, 13
Multilevel control, of ammonia plant,
41-45
Multilevel solution algorithm, in on-
line, open-loop optimization,
176
Multilevel  structures, for on-line
dynamic control, 314-328
Multilevel systems, 34-58
steady-state control in, 34-36
Multiplier strategy, 142, 156
Mutual information, 414

Newton’s method for solving nonlinear
equations, 216, 226

Noiseless information functions, 408-
410

Noisy information functions, 410-411

Nonconvex problems, and augmented
Lagrangians, 131

Nonemptiness conditions, in direct
coordination with feedback, 193

Nonemptiness of interior, of solvability
set, 87-88L, 204

Nonlinear dynamic system, 299-30S,
302

Nonlinear problems, applicability con-
ditions of 1M to, 123-124,
1237, 124L

Nonlinear programming, 49

Nonstationary system coordination,
with 1BMF, 251-258

Nowosad, K., 364, 367, 368, 390

Nurminsky, E., 308, 446

Obel, B., 400, 424

Objective function. See Performance
index

Observation process, 58-59

On-line control, vs. single solution of
optimization problem, 178
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On-line coordination strategy. in IBM,
125-126
On-line dynamic price coordination,
55-58. 57
On-line local problem. 336-339
On-line open-loop optimization, 174-
178
On-line parameter estimation. 33
On-line price coordination, 52-53
for electric power system, 53
One-level coordination strategies,
in mm, 141-143
in opBM, 156-157, 172, 174¢
opeM (Output prediction and balance
method). 144-157
vs. 1PBM, 154
simulation of, 172-173. 173t
Open-loop compensation, 321
Open-loop control, 11-12, {2
in dynamic price coordination, 342
in 1BM, 49
vs. repetitive control, 367-368
Opoytsev, V.. 85, 180
Optimal control, 7
in state feedback concept. 321
Optimal control problem. See Control
problem
Optimal solutions, in direct coordin-
ation simulation, 161
in dynamic price coordination, 329
for pFM simulation, 165
for sample problem. 159
Optimal trajectory. in dynamic optimi-
zation problem, 21. 20
in steady-state optimization, 30-31,
31
Optimality, in dynamic price coordin-
ation, 331-332
Optimality of solution, in decentralized
control, 228-230
in 1BMF, 211-213
in price coordination with projection
on the set of safe controls. 272
Optimization. in control task, 64
in multilayer concept, 9., 10
Optimization horizon, 19-21, 20
in dynamic multilevel control, 55
intervals within, 32
Optimization layer. in functional mul-
tilayer hierarchy, 22
Optimization objectives, 64-66. See

also Performance index
Optimization problem, for ammonia
plant, 42
augmented Lagrangian for, 131
in conjugate variables method, 324
in decentralized control, 238
in decomposition, 79
in direct coordination with feedback,
with partial knowledge of feasible
set, 192
with penalty functions. 202
for dynamic system, 312-313, 328
in dynamic price coordination, 316—
317, 324
M, 116-117
in 1BMF, 49
in oPBM, 144
in price coordination, 351
in repetitive control, 363
for stirred-tank reactor, 28-29
Optimizing control, 326-327
Order-preserving function, in opPBM,
146-147. 154
in sample problem, 158
Order-preserving performance. 36
Ordering matrix, 8
Ostrovskit. G.. 118, 180
Outcome. See Output
Output. See also Subsystem equations
in direct coordination, 36-37
and state variables, 5
and penalty function in direct coordi-
nation, 39
Output equation, 311
of complex system. 34, 76
in steady-state control problem, 34
Output prediction and balance method.
See orBm
Output variables, in direct coordination
simulation, 159
in penalty function method simul-

ation, 162
Overall problem, in direct coordin-

ation, 81

existence of solution of, 84-85T,
99T

with global resource constraint,
99100

relationship to control problem,
82-83, 82T

for linearized augmented Lagrangian



method, 132
in penalty function method, 104, 114

Parameter adjustment, in adaptation
layer, 32-33
Parametric coordination. See Direct
coordination
Parametric problem, 105
solution of, in pFm, 113
Partial coordination, 227
Partitions and subfields, 407-408, 416
Pay off. See Performance index
Pearson, J., 72, 73, 104, 118, 179, 180
Penalty coeflicients, with augmented
Lagrangians, 131
in direct coordination with feedback,
200-201, 200T, 205
in direct coordination simulation.
161
in dynamic price coordination, 315
in 1pBM, 139-140
in pFM, 113
in PEM simulation, 163-165
Penalty function, in direct coordin-
ation, 38-39
in direct coordination with feedback,
198-204, 205
Penalty function method. See prm
Perfect information, 59, 60, 405
Performance, in functional multilayer
hierarchy, 22
Performance index. 3, 36, 63-66, 78—
79. See also Local performance
index, Global performance
index, Subsystem equations
for ammonia plant, 42
in decentralized control, 227, 229
in different layers, 68
in direct coordination with feedback,
191
for dynamic system, 312
in iterative coordination with distur-
bances, 242, 259
in iterative coordination in steady
state, 93-99, 103, 187
continuous extension of, 101
evaluation of, in peMm, 113
integral formulation of, 64-65
in linear-quadratic control problem,
366, 372
in pFM, 105, 107
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in price coordination, 269, 307, 351,
359

in sample problem. 158

for stirred-tank reactor, 302-303

for sugar plant, 70-71

in water system problem with mul-
tihorizon hierarchy, 16

Performance loss, 419-420
in decentralized control, 230, 249-

250

in dynamic price coordination, 334,
339

minimization of, in adaptation layer,
33

Periodic coordination, 382-389
Periodic price coordination. for deter-
ministic control problem, 384~
387
for stochastic control problem, 387—
389
Pervozvanski, A., 73, 80, 180
prv (Penalty function method), 104-
116
generalization of, 114-116
infeasible coordination during itera-
tions, 40
simulation of, 162-165, 165T
Plant, 2
Pliskin, L., 73, 241, 308
Polak. E., 103, 180, 205, 308
Pollution constraints, 67
Polyak, B., 122, 180
Polyhedron, solvability set as, 87T
Pontriyagin. L., 339, 390
Powell, M., 131, 180
Powell procedure, 161
Preference ordering, 6
Price coordination, 45-46, 116-130,
208-225. 209. See also 1BMm,
IBMF,
application of, 47
with feasible set identification, 277-
307
vs. open-loop control, 305
with projection on the set of safe
controls, 270-277
for static nonstationary system with
dynamic inventory couplings,
350-362
structure of, 271, 276, 279, 315
Price vector
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in dynamic multilevel control, 56-57
in 1BM, 47, 48
in 1BMF, 218-220
simulation of, 223, 224
in 1BMFAL, 222
search for, 48-49
Primal coordination. See Direct coordi-
nation
Primal-dual function, in opBm, 146—
147
Primal problem, 106
Privacy constraints, 61-62
Process information, 393, 399
Production constraint, 67
Profit function, in multihorizon hierar-
chy, 16
Przeworska-Rolewicz, D., 285, 308
Pulaczewski, J., 72

Quadratic growth condition, 139

Radner, R., 403, 410, 412, 424
Raiffa, H., 402, 425
Ramapriyan, H., 374, 389
Rate distortion theory, 418-421
Real-optimal control, in 1BMF, 50
Reinisch, K., 73
Reflexive Banach space, 86
Regret. See Performance loss
Regular synthesis, 364
Regulatory control, 327-328, 342
Repetitive compensation, 321
Repetitive control, 362-369
Repetitive optimization, 18, 58, 313.
See also Feedback, Iterations
Resource constraint, 78
in direct coordination, 36-37
global, in 1BM, 49
in steady-state control problem, 36
Resource price, in 1BM, 49
Restricted information 33
Riccati equation, 367, 374
Rice, J., 197, 308
Robust regulator, 380-381
Robustness of hierarchical structure,
14
Rockafellar, R., 106, 125, 139, 180
Rolewicz, S., 285, 308
Ruszczynski, A., 73, 74, 210, 257, 279,
280, 307, 308

Saddle points. See also Applicability

conditions, Coordination strat-
cgy
in 1pBM, 137-138L, 142-143
for Lagrangians, 131
in oreM, 146
Safe control, 263-270. See also Feasi-
ble control
defined, 264
generation of, 268-270
Safe feasible set, 278
Safe solution set, 37, 276
Sage, A., 74, 136, 141, 180
Sample program, 159
Sandell, N., 74, 383, 384, 390
Sanders, C., 379, 390, 391
Saques, C., 389
Schlaifer, R., 402, 425
Schmitt, R., 73
Schoeffier, J., 84, 180
Schwartz, J., 151, 179, 281, 308
Schwartz, L., 196, 308, 450, 451
Sensitivity to disturbance, 334
Separated local problem, in direct
coordination, 190, 199
Set-points, in functional multilayer
hierarchy, 22
Shor, N., 180
§hort-horizon problem, 17
Siljak, D., 74
Simon, H., 62, 74
Simplified models, 317
Simulated system, for iterative coordi-
nation with disturbances, 259
Simulation results, for coordination
without feedback, 157-178
for direct coordination with feed-
back, 206-208, 207¢
for dynamic price coordination, 340
for 1BMF and miBMF, 222-225, 225¢
for iterative coordination with distur-
bances, 258-263, 261-263
for price coordination with dynamic
inventory couplings, 357-362
for price coordination with feasible
set identification, 295-307
for price coordination with projec-
tion on the set of safe controls,
275-277, 277t
Singh, M., 74, 118, 136, 180, 345, 391
Single-loop coordination strategies. See
One-level coordination strat-
egies



Sion, M., 308, 447
Smith, N., 74, 136, 141, 180
Solvability set. See also Feasible set
in direct coordination with feedback,
189, 204-205
in direct method simulation, 160
properties of, 86-93
replaced by V,, 86L
Stability, of simple decentralized con-
trol structure, 375T
Stabilization. See Follow-up control
State, aggregation of, 16
State equation, 298
of complex system, 34, 75-76
for steady-state control problem, 34
State feedback, 55, 321-322, 326¢
for linear-quadratic systems, 369~
389
State trajectory, 327
in dynamic price coordination, 339
long-horizon solution for, 15
State transformation, 310, 344
State variables, 5, 28, 416-418
State vector. See System state
Static optimization. See Steady-state
optimization
Steady-state, time-varying, 35
Steady-state condition, 5-6
Steady-state control, in 1BMF, 49
in multilevel systems, 34-36
Steady-state control problem, subsys-
tem state equation in, 34
Steady-state elements in dynamic sys-

tem, 316-317
Steady-state hierarchical control, 182-
183

Steady-state local problem, 324, 325
Steady-state optimal control, for am-
monia plant, 41-45
Steady-state optimization, applicability
of, 30-32, 31
in conjugate variables method, 346
input-output equation for, 80
local constraints in, 80
on-line, open-loop, 127
on-line control in, 52
replacement for dynamic optimiz-
ation, 32
Steady-state system, 6
for simulation of coordination
methods, 157-159, 158
of sugar plant, 69-70
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Steel industry, multilayer hierarchy in,
18, 19
Step coefficient, 246-249
Step controls, 298
Stephanopoulos, G., 132, 180
Stiff interconnections, 311-319
Stiff subsystems, 104
Stirred-tank reactor, 27-30, 38, 299-
300, 302
Stochastic control, 327
Stochastic system, 378
Stoilov, E., 134, 135, 180, 221, 308
Storage elements, 318-320
Strict complementary condition, in
linearized augmented Lagran-
gian method, 134
in opeM, 149
Striebel, C., 418, 425
Structure matrix, in sample problem,
158
Subcoordination, 45
model-reality differences in, 45
Subdifferentiability, of performance
index, 95T
Subgradient, of performance index,
95-97T
Subgradient algorithms, as basis for
coordinator strategy, 100
in 18BM coordination algorithms, 124-
125
Suboptimality. See Optimality of solu-
tion
Subsystem equations, of complex sys-
tem, 75-77
as differential equations, 295
dynamic, 310-312
in dynamic price coordination simu-
lation, 340-341, 357-358
in 1BM, 130
in iterative coordination with distur-
bances, 241-242, 258
of linear dynamic system, 296
in model and reality, in 1BMF, 50
for nonlinear dynamic system,
302-303
in price coordination with feasible
set identification, 296, 302
in price coordination with projec-
tion on the set of safe controls,
275-276
in safe control concept, 263
Subsystems, of ammonia plant, 43, 44
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defined. 396
Sufficient applicability conditions. See
also Applicability conditions
for 1BM, 121-122L
for opem, 148
Sufficient conditions for existence
of solution in decentralized
control, 231-233
Sufficient statistics, 415-416
Sugar plant, control of, 69-71. 69
Sundereshan, M.. 74
Supremal problem. See also Coor-
dinator problem
in dynamic price coordination, 329,
351
in iBMm, 332
in MiBMF, 214-215
in pFM simulation, 163
Supremal unit. with conjugate vari-
ables, 334~335
System couplings. 311. See also Inter-
connection equation
System equations, for linear-quadratic
control problem, 366-367
System model, 5, 394-395
System optimization problem 312-313,
328
System reliability, 176
System state, 16, 31, 32
Systems, examples of, 396-399
Szymanowski, J., 74, 100. 180, 279,
307, 308
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Tuning, 382
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Two-level coordination strategies, 140
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in opBM, 155-156, 172, 173t
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nation, 83-84, 83
of system optimization problem,
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nation, 83
Utility. See Performance index
Utility function, in pFM, 107
Uzawa, H., 178

Varaiya, P., 74, 390
Vatel', 1., 75
Vietoris topology, 93
Volin, Yu., 118, 180
Vukcevié, M., 74

Wang, F., 376, 389
Wang, S., 377, 381, 391
Water supply system, multihorizon
control of, 15

performance indices for, 68-69
Weak coupling, 237-238
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