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1. Context

- 2°C limit (UNFCCC, Ref. 1)
- Greenhouse gas budget (Ref. 2)
- Country pledges for 2020 reductions

Poorly quantified of relationship between
short-term policy and its long-term cli-
mate outcome

2. Research question

“What is the window of emissions in
2020 for which technologically and eco-
nomically feasible emissions scenarios
exist that limit global temperature in-
crease to below 2°C with a likely (>66%)
chance?”

In other words,
“Is there a ‘point of no return’ by 2020

that, if exceeded would foreclose reach-
ing 2°C in the long term?”

3. What is ‘feasible’?

Feasibility i1s a subjective concept, en-
tirely dependent on what is deemed pos-
sible or plausible in the real world.

Feasibility is judged here based on:

a) short-term technological feasibility
b) long-term technological feasibility
c) strong economic penalties

d) very strong economic penalties

4. Methodology

Integrated modelling approach:

a) MESSAGE (Ref. 4,5)
- detailed representation of GHG
emitting sectors
- create feasible energy system
transformation pathways to stay
<2°C in a 2-stage approach

b) MAGICC (Ref. 5,6)
- probabilistic climate model
- computes transient temperature
increase ranges over the 21t c.

Twenty-four cases (based on Ref. 7):
- technology portfolio - 6 variations
- energy demand - intermediate, low
- political framework - delayed
participation, 1.5°C emission budget

Feasible 2020 emission windows
for staying below 2°C
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6. Results

feasible 2020 emission windows for staying below 2°C
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7. Main conclusions
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a) Current pledges (50-55 GtCOZ2¢e/yr, Ref. 8)
not on robust path to 2°C

b) 41-47 GtCO2e/yr emission window in 2020
keeps most options open to stay <2°C,
and the possibility to return below 1.5°C by 2100

c) Lowering future energy demand and CCS is paramount

d) Delay in full participation significantly reduces options

e) High 2020 emission imply higher long-term costs

3. Additional results

a) Costs (energy system)
- until 2020:
higher costs for lower 2020 levels
- post 2020:
~44 GtCO2e/yr in 2020 minimizes
costs over the 21st century

Current pledges (50-55 GtCO2¢e/yr)
imply higher long-term costs

- 13-21% higher from 2020-2050

- 20-41% higher from 2020-2100

b) Reduction rates
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c) Renewable shares in 2020
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