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Chapter 1

Introduction to
Diffusion Theory

Arnulf Gribler

\What is the pattern and pace of the spread of new ideas and artifacts (in-
novations)? How are new process technologies incorporated into the capital
stock of an economic sector or the whole economy? How do new products
become part of the consumption patterns of a population? These questions
are addressed by diffusion research, which evolved as a discipline after World
War 1L

Diffusion research studies the spread, adoption, and effects of innovations
within a social system. The research tradition originates from a variety of
disciplines including anthropology, sociology, education research, communi-
cation theory, marketing. economics, and geography. The status of diffusion
research has been reviewed recently at two conferences: one in Venice in 1986
and the other at IIASA in Laxenburg, Austria, in 1989.[1] Because of the
heterogeneity of the originating research disciplines, it is not surprising that
diflusion research has not yet evolved into a coherent, interdisciplinary re-
search topic. Insiead, one of the most prominent characteristics of diffusion
research is the lack of diffusion of the research findings from one discipline to
another (Rogers, 1983). Consequently, a single, universally accepted model
dealing with the diffusion of innovations does not exist. However, Rogers
provides a number of synthesizing generalizations drawing on the findings
from various disciplines (Rogers, 1962, 1983; Rogers and Shoemaker, 1971).
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1.1 Innovation Diffusion and Adoption Models

According to the definition given by Rogers (1983), diffusion is the process
by which an innovation is communicated through certain communication
channels over time among the members of a social system.

An innovation may be an idea, object, or practice that is perceived as
new by an individual or another adopting unit (e.g., an organization or a
firm).

Communication, via communication channels, refers to how knowledge
about an innovation is transferred to the members of a social system. Com-
munication takes time, and is therefore an important aspect of innovation
diffusion. In fact, all theoretical and empirical diffusion studies agree that an
innovation does not instantly diffuse into a social system. Instead a typical
time pattern of diffusion along an S-shaped trajectory seems to be the rule.
The S-shaped pattern of diffusion appears to be a basic anthropologic phe-
nomenon, as it is also confirmed by several studies of preindustrial societies
(see Rogers, 1983; and Rogers and Shoemaker, 1971).

The typical diffusion pattern stems from the last element of the diffusion
process, i.e., from the heterogeneity of the members of a social system with
respect to their attitudes toward an innovation. Members of a social sys-
tem have diverse expectations about the potential benefits of an adoption
decision. However, at the same time, they are not isolated: they exchange
experience (learn) and imitate the behavior of others.

The French sociologist Tarde (1895) was the first to describe the pro-
cess of social change as an imitative “somnambulistic” mechanism and an
S-shaped pattern in this process. It is, however, only the aggregation of in-
dividual behavior that portrays such a characteristic pattern. Individuals
with different expectations, value systems, communication networks, etc.,
interact with each other (sharing information and experience), and the ag-
gregate diffusion pattern is merely an expression of this interaction between
the economic agents or members of a social system.

A necessary step for diffusion is therefore the transfer of knowledge and
experience about an innovation from its early adopters to the rest of the pop-
ulation. Hagerstrand (1952) was one of the first to recognize the importance
of information flows (either via mass media or interpersonal communication)
in the diffusion of innovations. Whereas mass media are more effective in
communicating the knowledge about an innovation, interpersonal contact
appears to be more effective in influencing the adoption decision of individ-
uals.
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Thus, information transmission is the first step in innovation diffusion.
The next step concerns how information is used to arrive at a decision.
Rogers (1983) developed a four-stage model of the innovation decision pro-
cess consisting of (1) knowledge, (2) persuasion, (3) decision and implemen-
tation, and (4) (re-)confirmation.

In the knowledge stage, individual characteristics of the decision maker
(social, economic, communication behavior, innovativeness), his or her pre-
vious practices and perceived needs, and the general norms of the social
system act as “filter” mechanisms for incoming information. In this context
Gatignon and Robertson (1986) propose (from a marketing perspective) the
following influencing parameters on information “filtering” and, in conse-
quence, on the persuasion stage:

o Availability of positive information (negative information will have greater
impact than positive information).

o Credibility of information (“objective” information or information from
persons with high personal or societal influence will have higher credibil-
ity).

o Consistency of information (the more consistent, the higher the impact
of the information).

e The information source (media or personal influence, the latter being
more influential).

e Personal characteristics (information processing style, life stage, and so-
cial integration).

In the next stage (the persuasion stage) the actual adoption/rejection
decision is made. The obtained knowledge is evaluated in terms of the
perceived characteristics of the innovation (relative advantage, compatibil-
ity, complexity, “trialability,” and observability). These characteristics are
treated further on in this section when discussing the determinants of the
diffusion speed. In the third stage the decision to reject or to adopt and
implement an innovation is made. Finally, the decision is reassessed in that
confirmation from other members of the social system is sought, which may
lead to the (dis)continuation of the adoption decision.

This is a general model (the stages and influencing variables of which are
confirmed by numerous empirical studies) of the individual decision-making
process. However, the population of potential adopters is not homogeneous
with respect to the innovation decision process. Consequently, Rogers (1983)
divides the population of adopters according to their adoption date and cat-
egorizes them by their standard deviation from the mean adoption date
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Figure 1.1. Distribution of adopters as a function of mean adoption date
z. Source: Rogers, 1983.

(Figure 1.1). He presents extensive empirical evidence to suggest a sym-
metric bell-shaped curve for the distribution of adopters over time. This
curve resembles the first derivative of a logistic function; consequently, the
cumulative number of adopters will yield a symmetric S-shaped pattern as,
for instance, described by a logistic curve that has been used as a descriptive
tool in several diffusion studies.

The symmetric diffusion pattern as postulated by Rogers shows hou the
members of a social system learn from the experience and imitate the be-
havior of the innovators (i.e., the first ones to introduce an innovation). The
Jearning aspect is described by Casetti (1969), and in terms of social learn-
ing theory by Bandura (1977). The main trait of the argument is that the
potential adopters show different degrees of resistance against an innovation
as a function of their diversity in expectations, experience, etc. Resistance
may be gradually overcome by appropriate stimulus, like the frequent repeti-
tion of messages (Casetti, 1969). The learning behavior of individuals is the
deeper underlying cause of the symmetry of the diffusion process according
to Rogers (1983).

Decision processes for adopting an innovation can be understood as learn-
ing processes. At the beginning, when an individual is confronted with a new
situation he or she makes many mistakes. These mistakes are gradually re-
duced (by learning) over time because more information is received and acts
as a stimulus. The gain in learning from each trial is proportional to the
amount already learned and the amount remaining to be learned before the
limit of learning is reached. This is equivalent to the linear transformation of
a logistic curve [equation (1.6) in Section 1.2.2]. It should be emphasized that
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these properties of the learning process were found in real learning situations
and are confirmed by laboratory and field experiments (for a bibliography
see Rogers and Shoemaker, 1971). Thus each adoption of an innovation in a
social system is equivalent to a learning trial by an individual (Rogers, 1983).
Thus, the symmetric diffusion pattern results from the way messages about
an innovation are emitted and processed by social learning.

This completes the overview of diffusion models, primarily based on so-
ciology and behavioral sciences. We now discuss the rate of adoption of an
innovation, i.e., the diffusion rate or adoption speed (denoted by At in this
chapter {2]).

Rogers (1983) identifies five variables that determine the rate of adoption
of innovations.

(1) Type of innovation decisions (optional, collective, or authoritative).

(2) Communication channels (external via mass media or internal through
interpersonal contact, a categorization based on the work of Hamblin et
al., 1973).

(3) Nature of the social system (norms, degree of interconnectness).

(4) Extent of change agent’s promotional effort.

(5) The perceived attributes of an innovation.

To date little research has been devoted to determining the relative con-
tribution of each variable. For the diffusion of an innovation inside a larger
social and economic system (like a country), it is (with the possible excep-
tion of the role of change agents) primarily the attributes of an innovation
that should determine the diffusion rate. The attributes of an innovation
that influence the rate and extent to which it becomes accepted inside a
social system are relative advantage, compatibility, complezity, trialability,
and observability.

Relative advantage is the degree to which an innovation is perceived as be-
ing beneficial and, in particular, better than the idea-product-organizational
form it supersedes. Perceived relative advantage may in reality be a com-
plex vector of costs, performance, personal utility, social prestige, and so on.
Compatibility is the degree to which an innovation is considered as being
consistent with existing values, past experience, and individual needs and
expectations. Complezity relates to the extent to which an innovation is
perceived as being difficult to understand and to use (the learning require-
ment needed for its adoption). Trialability is the degree an innovation may
be experimented with before making a final commitment on its adoption,
and observability is the degree to which the results of an adoption and/or an
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innovation are visible to other members of the social system. All variables,
except complexity, are positively correlated to the adoption rate.

In Section 1.2 diffusion models in economics are discussed in more detail.
These models try to explain the pattern and rate of diffusion of new tech-
nologies or consumer products primarily based on the (perceived) relative
advantage of an innovation, as reflected in conventional economic variables.

1.2 Diffusion Models in Economics

This section presents the oldest and most influential difflusion mode] in eco-
nomics. In a seminal contribution, Mansfield (1961) proposed a model ex-
plaining the adoption rates of industrial innovations and provided empirical
tests of his model for a number of innovations in various sectors.{3]

We continue with an overview of the literature on first generation dif-
fusion models and their empirical findings and then proceed to subsequent
extensions of the basic model to include additional explanatory variables.
As a result, several second generation models have been proposed, which
one might group together as “equilibrium” type of diffusion models. Here,
diffusion is seen as a sequence of equilibria determined by changes in the
economic attributes of an innovation as well as in the environment. These
models are mainly discussed in terms of their relevance to the most recent,
and most promising, research direction: the evolutionary type of diffusion
models.

Evolutionary models, which describe diffusion as an evolutionary process
under conditions of uncertainty, diversity of economic agents, and disequi-
librium dynamics, try to model the complex feedback mechanisms at work
at the micro level between economic agents, while still being consistent with
the overall ordered diffusion pattern at the macro level. Thus, these models
integrate the concept of self-organizing systems as, for instance, formulated
by Prigogine (1976) into economic theory. This is illustrated by the Dosi-
Orsenigo-Silverberg model in Section 1.3.

1.2.1 The Mansfield model

The expression m;; denotes the number of firms in the i-th industry having
introduced the j-th innovation at time ¢ and n;;, the total number of firms;
the model proposes that the number of firms at time ¢ that will introduce the
innovation at time ¢ + 1, A;;, is a function of (1) the proportion of firms that
have already introduced the innovation, (2) the profitability of the innovation
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relative to other possible investments, x;;, (3) the size of the investment S,;,
and (4) other unspecified variables:

Mij(t) = filmij(O)/nijs mij Sijy -] - (1.1)

The postulated relationship between the number of adopters and the
number of firms having already adopted an innovation is a typical learning
model where the rate of learning depends on the already accumulated knowl-
edge. The asymptote of this learning process is reached when all potential
adopters have adopted the innovation. The structure is similar to the lin-
ear transform of the Fisher-Pry model discussed below, where the ratio of
adopters to non-adopters, F/(1 — F), is a function of time. Consequently,
Mansfield derives from equation (1.1) a logistic function to describe the dif-
fusion process. Assuming that A;;(?) can be approximated by a Taylor’s
expansion, which drops third- and higher-order terms, and assuming that
the coefficient of [m;;(t)/n;;]? in this expansion is zero and that for t — —oo
the number of adopting firms tends to zero, i.e.,

Jim mi;(t) =0, (1.2)
it follows
m;;(t) = ny; [1 + 6_{1’-’-_“)""1)] - (1'3)

which is the logistic diffusion function (see Appendix). Mansfield’s original
notation has been retained.

The rate ®;; is equivalent to the growth or substitution rate b or b;
(i.e., At) as used in the Appendix, and describes the “steepness” of the
diffusion curve, i.e., a measure of the rate of adoption (or rate of imitation
in Mansfield’s terminology). The expression /;; is equal to the variable a and
a; (1o) used in the Appendix and represents a shift parameter determining
the positioning of the diffusion curve in time.

The diffusion (imitation) rate in turn depends on the profitability and
the size of inves;tments 7;; and S,;, in particular,

®ij =ai+bmij +cSi; + 25 e

where z;; is an error term.[4] The model assumes that only the intercept a;,
but not the coefficients b and ¢, varies among industries. Thus, the diffusion
rate is determined by two categories of driving factors: those related to the
industry (i.e., a; represents an innovation index measuring the propensity
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toward innovation in various industries) and those related to the innovalion
(i.e., m;; and §;;). Empirical measures for the first category are, for instance,
provided by Blackman et al. (1973) for 15 industrial sectors in the USA.

In an empirical test of 12 important innovations in four industries (brew-
ing, coal, steel, and railroads), Mansfield concludes that the logistic curve
describes the diffusion pattern of innovations among firms quite well. He
observes that the (relative) profitability, in relation to other possible invest-
ments, is positively correlated (i.e., the higher the relative profitability of an
investment, the faster the rate of adoption) and that the required investment
is negatively (i.e., the higher the investment for a particular innovation, the
slower the rate of adoption) correlated with the diffusion rate @;;. Mansfield
finds that the influence of both variables on the diffusion rate was statisti-
cally highly significant; the significance of S;;, however, depends on a single
observation in the data sample. Also significant interindustry differences
(for given =,; and S;;) are found.

For the data sample of 12 innovations in four industries, Mansfield tested
four further hypotheses regarding additional influencing variables on the rate
of diffusion: the diffusion speed is negatively correlated with the average
lifetime of the equipment to be replaced; the diffusion rate is positively
correlated with the industry growth rate; the diffusion rate tends to increase
over time (due to better communication channels, etc.); and the diffusion
rate depends on the time period in the (10-year) business cycle (expansion
or contraction phase) when the innovation is introduced. Statistical analysis
showed, however, that none of these variables had a significant influence on
the diffusion rate of an innovation.

Thus, the mode! supports the conclusion that the rate of diffusion of a
new innovation is, to a large extent, determined by the proportion of firms
already using the new technique, the profitability of introducing it (com-
pared with alternative investments), and the size of the investment required.
Finally, significant interindustry differences in the rate of diffusion were ob-
served.

In subsequent studies (Mansfield, 1968a, 1968b, 1977, and 1984; Mans-
field et al., 1971, 1977) the basic model was extended to include:

o Additional industrial sectors, including the chemical industry and the
introduction of numerically controlled machines.
o Consideration of product innovations.
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¢ Different measures of the diffusion process (in addition to the number of
adopting firms, share of output produced by a new industrial process,
share of numerically controlled machines in new installations).

o Analysis of intrafirm diffusion rates in addition to industry diffusion
rates.

o Tests of hypotheses associated with additional variables influencing the
rate of adoption of industrial innovations.

In his analysis of the intrafirm rate of diffusion, Mansfield (1968a, 1968b)
analyzed two aspects of the way in which particular firms respond to a
new technique: first, the time delay, i.e., the length of time a firm waits
before introducing an innovation; second, the intrafirm rate of diffusion,
i.e., the pattern and driving variables of innovation diffusion inside different
firms. It is important to consider these two aspects separately, because
in the subsequent reception of the Mansfield model they have often been
put together and misinterpreted — in particular with regard to the wide
acceptance of the positive correlation of firm size to diffusion speed.

The main conclusions from these extensions to the original Mansfield
model are the following:

(1) The same kind of model, i.e., logistic type, can be applied to represent
diffusion among, as well as within, firms pointing at the unity and simi-
larity between the two processes.

(2) The influence of the profitability and size of investment variables found
in the original study are confirmed.

(3) The influence that a firm’s size may have on diffusion is more differen-
tiated: whereas the size of a firm appears to influence significantly the
amount of time a firm waits before introducing an innovation, it “ap-
pears that small firms, once they begin, are at least as quick to substitute
new techniques for old ones as their larger rivals” (Mansfield, 1968a).
Company liquidity and possibilities for learning through the experience
of other firms already using the innovation appear also to influence the
intrafirm rate of diffusion.

Before turning to a discussion of the reception and critique of the origi-
nal model and the subsequent second generation of diffusion models, it may
be useful to summarize the basic conclusions from the model applications.
These conclusions, as put forward by Mansfield (1968a, 1968b, 1984) and
Mansfield et al. (1977), also integrate the empirical findings of other studies
supporting the basic model at the phenomenological and economic interpre-
tative level, in particular those of Blackman (1971), Hsia (1973), Nasbeth
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and Ray (1974), Simon (1975), and Romeo (1977). Mansfield concludes
that innovation diffusion is essentially a learning process, characterized by
a “bandwagon” or “contagion” effect. There appears to be an economic
analogue to classical learning models and psychological laws, in that the ex-
tent of learning (diffusion) is a function of accumulated knowledge. Firms
learn from the experience of others, who have already adopted an innova-
tion. Furthermore the “reaction time” (time lag for adoption) and the rate of
learning (adoption) are dependent on the intensity of the “stimulus,” which
in economic terms is represented by the profitability of the innovation.

The determinants of the rate of diffusion may therefore be summarized
as follows (Mansfield, 1968b):

Four principal factors seem to govern how rapidly an innovation’s level ap-
proaches its ultimate, or equilibrium level: (1) the extent of the economic
advantage of the innovation over older methods or products, (2) the extent
of the uncertainty associated with using the innovation when it first ap-
pears, (3) the extent of commitment required to try out the innovation, and
(4) the rate of reduction of the initial uncertainty regarding the innovation’s
performance.

In Mansfield (1984) the following additional determinants were proposed:

(1) Scientific capabilities and skill level of industry (science-based industries
with high levels of R&D and consequently higher capabilities to evaluate
proposed innovations would have higher rates of adoption).

(2) Industry and market structure, as reflected in the concentration of an
industry and the dispersion of the profitability of an innovation among
firms.

(3) Experience with the innovation gained outside the industry, thus reduc-
ing uncertainty via external learning.

These determinants still constitute the backbone of any satisfactory eco-
nomic modeling of innovation diffusion. They are taken up again in the
rationale underlying the self-organizing model of technology diffusion and
structural change discussed in Section 1.3.

1.2.2 Second generation diffusion models

Since the publication of Mansfield’s study, the literature dealing with diffu-
sion in the areas of technology, economics, and marketing has grown enor-
mously; it is beyond the framework of this chapter to provide a detailed
overview. A good compendium of earlier papers can be found in Linstone
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and Sahal (1976), and concise overviews of proposed models are presented
in Hurter and Rubinstein (1978) and Mahajan and Peterson (1985). This
chapter provides an overview of second generation diffusion models. We start
with those that can be considered in the tradition of the original model and
then discuss subsequent models using four areas of critique of the diffusion-
modeling approach in economics.

Several subsequent studies have confirmed the findings about the reg-
ularity of the diffusion process, as well as the role of profitability and size
of investment on the diffusion rate, in particular, Blackman (1971, 1974),
Hsia (1973), Simon (1975), and Romeo (1977). Others, using a different
analytical framework to describe the diffusion process (alternative models to
the logistic or no formal model at all), have confirmed the empirical findings
on the determinants of the diffusion speed postulated by first generation
diffusion models, including Metcalfe (1970), Nasbeth and Ray (1974), and
Davies (1979, 1980). In an international comparative study reported in Nas-
beth and Ray (1974), technological and institutional differences and industry
characteristics are said to influence the differences in the adoption rates be-
tween countries. An exception is the study by Martino et al. (1978), which
could not identify any influence of an innovation’s profitability on the dif-
fusion speed; however this study is affected by a number of methodological
shortcomings, and the negative conclusions should therefore be read with
caution.[3]

Finally, several conflicting propositions have been discussed with respect
to the relationship of firm size to innovativeness and adoption rates of new
technologies. The above-mentioned studies confirm Mansfield’s findings,
especially if we keep in mind that size appears to influence primarily the
amount of time a firm waits before starting to adopt an innovation, but that
subsequently the firm may not necessarily be slower than earlier innovators.
However, it has been argued that large firms concentrating on domestic
markets tend to be technological laggards, such as in the case of the US
steel industry (Oster, 1982), and that high-cost firms (i.e., small companies
with lower economies of scale) are more likely to adopt a new technology
(Reinganum, 1983). This issue is therefore still open for debate. The most
likely outcome of such a discussion is that the influence of the firm-size
variable can go in either a positive or negative direction depending on the
structure of the industry and the market, the existence of different economies
of scale, and so on. Still, size apparently matters, not only with respect to
explaining differences in the propensity to introduce an innovation and the
economics of adoption but also with respect to differences in communication
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and information networks which can be shown to be instrumental to explain
differences in diffusion characteristics especially of small firms (e.g., Kellev
and Brooks, 1991). This problem appears thus to be adequately tackled
only when market and industry diversity in diffusion models is explicitly
considered, as done in Section 1.3 or by Tani in Chapter 2.

The following discussion summarizes the critique on second generation
diffusion models based on four areas that have been advanced within diffu-
sion studies in economics (see, e.g., Davies, 1979; Rogers, 1983; or Sahal,
1981):

(1) The mathematical properties (especially the symmetry aspect) and the
adequate application of a logistic model to describe the diffusion process,
and the fact that the model is not derived functionally from an underly-
ing economic rationale or the driving force model explaining the rate of
diffusion.

(2) The nature of the adoption process, in particular, the binary nature of
diffusion models (regarding both the population of potential adopters and
the pool of innovations available) and the static assumption on the size
of the potential adopters, i.e., the competitive “niche” for an innovation
(be it individuals, firms, and, by extension of the model, market volume).

(3) The process innovation bias of model] applications, which has led to the
foundation of a second stream of innovation diffusion models (marketing
models) for consumer products.

(4) The narrow definition of the group of influencing variables, the ignorance
of other factors affecting diffusion, and the model’s (implicit) assumption
that both the economic (social) and the technological environments in
which the innovation is embedded remain unchanged over time. Finally,
there are objections against the somewhat atheoretical nature of the
definition of the object of diffusion research (i.e., of an innovation).

(1) Mathematical Properties of Diffusion Models

This criticism deals with the use of a Jogistic model to describe diffusion
patterns when it is not derived functionally from an underlying economic
theory of diffusion. It is claimed that the model has been taken from a
different field of reasoning, i.e., the spread of contagious diseases as applied
to the dissemination of information, as well as from (social) learning theory.
In addition, the assumptions underlying the behavioral (learning) rationale
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of the logistic model (resulting in its symmetry around K/2) are considered
to be too constraining. In particular, the model assumes that the probability
to adopt an innovation (or the “infectiousness” of the innovation decision),
as reflected in the growth rate parameter of the logistic At, stays constant
over time.[6] In other words, the logistic model assumes that the interaction
between adopters and non-adopters does not change over time. A second
corollary of the logistic is that it assumes a homogeneous population, in the
sense that potential adopters broadly speaking share the same value system
(e.g., profit maximization), and that each potential adopter is susceptible to
a new innovation.

In response to this perceived “lack of flexibility” several alternative mod-
els have been proposed (the mathematical properties are discussed in the
Appendix). These include the use of a modified exponential curve follow-
ing Bass’ (1969) distinction between external and internal influence driven
diffusion [see Hamblin et al. (1973) on the sociological rationale for these
models, first proposed by Coleman et al. (1966)]; the Floyd curve (1968); the
Gompertz curve (e.g., Dixon, 1980); or a cumulative normal or cumulative
lognormal pattern (e.g., Davies, 1979).[7] Other models tried to develop
more comprehensive formulations with additional parameters to accommo-
date a whole set of different S-shaped diffusion patterns. Examples of these
models include the Sharif-Kabir model (1976a), the NSRL (nonsymmetric
responding logistic) model (Easingwood et al., 1981), and the model pro-
posed by Skiadas (1986).

In view of the amount of effort devoted to the development of various
asymmetric diffusion models, one has to note that the flexibility of these
models (describing a wide range of diffusion patterns) is achieved by paying
a high theoretical price. Model developers do not explain why a particu-
lar diffusion pattern should follow their models or what the economic and
behavioral interpretation of the additional model parameters might be. It
appears that this line of research has to some extent thrown out the baby
(behavioral-economic rationale of diffusion models) with the bathwater (the
supposedly too constraining conditions underlying the behavioral rationale
of the logistic model).

The only remaining justification for these models appears to be that they
can describe ez post the diffusion patterns more accurately.[§] Whereas
we do not argue that there are diffusion-substitution processes that do not
conform to logistic trends, we find it somewhat ironic that in the majority
of cases the logistic performed better than the “more flexible” models. For
instance, the fit of the logistic turns out to be superior in nine out of ten
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cases analyzed by Sahal (1981) and in six out of eight cases analyzed by
Sharif and Kabir (1976a).

With respect to the frequently postulated asymmetrical diffusion pattern
a final point has to be considered. Hardly any innovation is in fact intro-
duced into a vacuum. In fact, in most innovation diffusion-substitution cases
more than two technologies (innovations) compete in the market. Therefore
it is entirely inadequate to arrive at conclusions with respect to a particu-
lar innovation diffusion pattern by looking at it in isolation. An extremely
illustrative case is provided by Skiadas (1986) in his comparison of vari-
ous asymmetric diffusion models of the adoption of the oxygen steel process
in different countries. It can be shown that the process of leveling off the
diffusion of oxvgen steel (i.e., the “retarding” of diffusion, resulting in asym-
metry) is simply the result of the oxygen process being replaced by a newer
process, namely, the electric arc process (growing itsell logistically, see, e.g.,
Nakiéenovié, 1987). Therefore, it is completely pointless to argue in favor of
a particular model in the absence of a theoretical basis for the functional form
of the diffusion process and without a complete analysis of the technological
and market environments (i.e., the competitive “niche”) the innovation is
embedded in.

The last area of criticism in relation to logistic diffusion-substitution
models is the fact that the models are not derived functionally from an
underlving economic rationale. This critique was certainly valid for first
generation models. However, several formulations have been proposed to
show that a particular diffusion curve can be deduced functionally from an
underlying economic rationale. Davies (1979) deduces a cumulative normal
curve (i.e., a symmetric diffusion curves, which he considers equivalent to
the logistic curve), based on the plausible assumption of a lognormal distri-
bution of firm size. Russell (1980), considering marketing diffusion models,
argues that income distribution is lognormally distributed and that, if the
price of a new consumer item falls linearly, the resulting diffusion process
will yield a lognormal curve. A similar line of argument is followed by Got-
tinger (1986), who takes a probabilistic perspective of adoption and derives
a logistic diffusion curve from a logistic probability distribution of the utility
function vector of the possible entrants. Finally, Tani (1988) derives a Gom-
pertz curve for the diffusion of industrial robots in Japan based on a rank
size distribution of firm size and a size-dependent distribution of the poten-
tial benefits of adoption. The underlying rational is that the labor reduction
effect of robots is higher in large firms than it is in small ones; this is due
to different economies of scale. Tani (Chapter 2) illustrates a further refined
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diffusion model providing an integration from the micro to the macro level.
Thus both symmetric (like logistic or lognormal) and asymmetric diffusion
curves (like the Gompertz) have been analytically derived from underlying
economic rationales. This would justify the use of these models even in cases
where data limitations (distribution of firm size, income, etc.) do not allow
the inclusion of these additional variables into the diffusion model proper.
In this context, however, critical observations on the link from the micro to
the macro level have been advanced. In view of the multitude of feedback
mechanisms at work during diffusion (e.g., it is likely to expect that the
distribution of firms inside an industry will change during — and due to -
diffusion) any analytical aggregation formulation will always rely on a num-
ber of simplifying ceteris paribus assumptions, whereas in reality complex
(nonlinear) feedback mechanisms may be at work (cf. Section 1.3) which
would render a clear-cut aggregation impossible to derive analytically.

(2) The Nature of the Adoption Process

The binary nature of most diffusion models with respect to the adopting
population (by considering just adopters and non-adopters) is certainly an
oversimplification of the various stages of the adoption process (awareness,
knowledge, etc.) formulated, for instance, by Rogers (1983). However, in
an economic context such a model simplification appears justified; as we are
mainly interested in the impact of the adoption decision and its resulting
economic consequences. Within this context another critical point has been
raised; diffusion models tend to be pro-innovation biased and do not explain
why an innovation is not adopted (see Rogers, 1983). Clearly this is both
an empirical problem and a philosophical problem; unsuccessful innovations
are usually badly documented, if at all, and to date practically no diffu-
sion researcher has pursued a Popperian falsification approach in analyzing
technological change. However, we do not consider it a major deficiency in
the approach as long as one is primarily interested in studying the economic
effects of innovation adoption.

Diffusion models generally assume implicitly only one adoption per
adopter (i.e., excluding repeat purchases), and the models do not consider
the possibility that an adopter might give up the innovation (“curing”) and
readopt it at a later stage (“reinfection™). The exclusion of repeat pur-
chases is certainly a drawback for the marketing analysis of the diffusion of
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consumer durables, where most models (e.g., Bass, 1969) are concerned only
with initial purchases. There appear to be only two pragmatic ways out of
this situation. The first is to consider stock variables (like items in use or
per capita values) rather than flow variables (like sales). Thus, only the in-
crease in stock would be used to measure the diffusion of a new product into
the market. The second more difficult, but at the same time more realistic,
possibility would be to model initial purchase and replacement demand sep-
arately. This is more plausible; the time constant involved in diffusion and
the resulting annual sales might be very different from the annual replace-
ment demand, which depends on the size of the age cohorts of the product
and its average lifetime, for instance, represented dynamically by a “death
curve” [see, e.g., Marchetti (1983) for such a model of the Japanese car mar-
ket]. A diffusion model incorporating replacement, in addition to expansion
investments, is discussed in Section 1.3.

The critique on the binary nature of the population of innovations treated
by most diffusion models is to be taken seriously. In fact, most models cannot
even be considered to be of a binary nature in dealing strictu sensu with the
case of diffusion, e.g., in analyzing the number of firms adopting a particular
technique or the aggregate number of new equipment installed. Whereas
such approaches apparently describe the dynamics of the introduction of new
process technology at the macro level (cf. Chapter 12 by Tchijov) there are
limitations of such models to capture in more detail what happens inside an
industry and its capital stock during the diffusion process. Such models tend
toignore the fact that potential adopters do not introduce the innovation into
a vacuum, but instead replace existing techniques, equipment, etc. Therefore
the process of technological change should in most cases be considered as
a substitution rather than a diffusion phenomenon. This argument was
convincingly put forward by Sahal (1981) and Mahajan and Peterson (1985),
among others.

The analysis of technological competition and substitution draws from
biological analogies. In biology a competitive substitution pattern was first
described by Lotka (1924) to describe the evolution of two types of a species
inside a population in which selection operates subject to Mendelian inheri-
tance. Volterra (1927, 1931), as discussed in d’Ancona (1939), analyzed the
evolution of two species competing for a limited food supply. If one species
outnumbers the other (even by very small numbers) at the initial stage of
the process, then the system converges to a state where one species com-
pletely replaces the other. Thus, initial random fluctuations in the number
of a competing species may “lock-in” the competitive pattern, which via a
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positive feedback mechanism (in economic terms referred to as increasing
returns to adoption) becomes self-sustained with one species completely re-
placing the other. Such a concept has been proposed for the initial selection
mechanism of competing technological designs by Arthur (1983).

As the total population in both competitive situations (the two types of
a species and the two species inside the population competing for the food
supply) remains constant, the evolution of competing species is renormalized
in considering only the relative share of the competing species in the total
population. This relative share evolves according to an S-shaped trajectory
with the obvious constraint K = 1, i.e., no species can have a higher share
in the total population than 100%.

Such a model was first proposed by Fisher and Pry (1971) and Blackman
(1971) to analyze technological change. They analyzed diffusion and sub-
stitution on the basis of measuring the relative market share of old versus
new competing in a market. The basic assumptions of the Fisher-Pry tech-
nological substitution model are the following: (1) the substitution process
is competitive; (2) once substitution has progressed as far as a few percent
(i.e., “lock-in™), it will proceed until a complete takeover occurs; (3) the
rate of fractional substitution Fy is proportional to the possible remaining
substitution 1 — Fj,

T-:-]-E = exp(a + bt) , (1.5)
where the share of the two technologies Fy (for technology 1) and 1 - Fy (for
technology 2) in the total market is calculated: Fy = Ni/(N; + Ng). The
Fisher-Pry model is equal to the logistic model with a linear right-hand side,
which is discussed in the Appendix. Of course, the fractional shares may be
calculated not only by measuring the number of economic or technological
“species” (e.g., number of firms, number of technological objects), but also
by measuring production capacities, output, and so. In equation (1.5) @
and b are constants and ¢ is the independent variable, usually representing
time. Figure 1.2 shows the fractional logistic substitution curve for the
introduction of 17 technological innovations (basic oxygen steel production,
synthetic fibers, etc.) studied by Fisher and Pry. The curve on the left
shows the linear transform log [F/(1 — F)], i.e., market share of the new
innovation divided by the market share of the old technology on alogarithmic
scale, highlighting in particular the early and late phases of the substitution
process. The same model was applied by Blackman (1971, 1972, 1974), and
numerous studies have since confirmed the descriptive power of this simple
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Figure 1.2. Life cycle of the introduction of 17 different technological in-
novations measuring fractional market shares. Source: adapted from Fisher
and Pry, 1971.

substitution model not only in market economies but equally for centrally
planned economies (e.g., Astakhov et al., 1989).

The main drawback of the Fisher-Pry model is that it deals with only two
competitors, whereas in reality more than two technologies may compete in
the market. An extension of the Fisher-Pry model to a multiple substitu-
tion mode] was first proposed by Marchetti and Nakifenovi¢ (1979).[9] In
this mode)] each technology undergoes three distinct phases as measured in
the market share F; — logistic growth, non-logistic saturation, and finally lo-
gistic decline. The growth and decline phases of technologies are described in
the model in the same way as the Fisher-Pry model, however, two additional
assumptions are made: (1) when more than two technologies compete in a
market, one technology is in its (non-logistic) saturation phase, defined as
residual after the logistic growth-decline trajectories of the other téchnolo-
gies are calculated; and (2) the technology that enters the saturation phase
(which is due to the increase of newer competitors) is the oldest of the grow-
ing technologies. Thus the market share of growing-declining technologies
15

F;
. = = . f B
y(t)=logr—p =aith (1.6)
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Figure 1.3. World primary energy substitution. Source: Nakicenovi¢, 1984;
after Marchetti and Nakicenovi¢, 1979.

and the market share of the saturating technology is then given by

Fj=1-Y F . (1.7)
t#]

The saturation phase is represented by a parabolic transition function
between the linear growth and decline phases in the log [F/(1 — F)] trans-
formation of the logistic-substitution curves (see Figure 1.3). The model is
thus nearly complete; growth and decline as well as entry into the satura-
tion phase (defined by the growth of the j + 1 technology) are determined.
The point where the non-logistic transition trajectory ends and the logistic
decline phase for technology F; begins remains to be defined. This is done
by using the properties of the non-logistic transition function. This function
has negative curvature, passes through a maximum (peak of market share
of the technology Fj), and then starts to diminish again.

The end of the saturation phase and beginning of the logistic decline
phase is then defined as the point where the curvature of y;(t) relative to its
slope reaches its minimum value:

v, (1)/y;(t) = minimum . (1.8)

Note that y” and yr are both negative in the region of the minimum.
When this minimum condition is satisfied at time point 1,41, then technology



22 CIM: Models, Case Studies, and Forecasts of Diffusion

j 41 may in turn enter the saturation phase. The logistic decline trajectory
of technologyv j is determined by

b; = yi(tj+1) (1.9)
a; = y;(tis1) = bjtina - (1.10)

This mechanism is continued for the successive technologies until the
penultimate technology n — 1 enters its saturation phase, leaving the market
ultimately to the winner - which in the model is assumed to be the most
recently introduced technology.

Figure 1.3 illustrates this multiple substitution case by analyzing the
share of different primary energy forms in the world energy balance
(Nakiéenovié, 1984). The parameters of the model defining the slopes and
the position of the various estimated substitution curves in Figure 1.3 are
determined using an ordinary least squares regression algorithm from his-
torical data. Because the share of nuclear energy has hardly penetrated the
market, its slope is assumed to be similar to the introduction of fossil fuels
- coal, oil, and natural gas. It thus represents a scenario. The technology
referred to as solfus (solar or fusion technology) is introduced to analyze the
system’s response to a new technology.

The development of (relative) market share models resolves most prob-
lems dealing with changing market sizes. However, it leaves one question
unanswered: What is the impact of the diffusion of an innovation on mar-
ket growth? The answer is discussed below in considering Metcalfe’s (1983)
model. In this model diffusion is regarded as an adjustment process between
two equilibria (technology and market volume) and the increase in market
volume is determined by the shift in the demand-supply curves as a result of
changing prices that are due to the introduction of an innovation. With re-
spect to the critique on the constant geographical size of the market niche for
diffusion assumed in most models, we mention that temporal diffusion mod-
els may also be coupled with the spatial spread of innovations (for instance,
illustrated by Mahajan and Peterson, 1979).

(8) Process Innovation Bias
The critique on the process innovation bias of diffusion models has led to

a second stream of innovation diffusion models (marketing models) for con-
sumer products.[10] The formal descriptive characteristics of these models
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is very similar to the S-shaped models of technological innovation diffusion
and substitution, including a large variety of models developed to represent
asymmetric S-shaped diffusion patterns [for an overview see Mahajan and
Peterson (1985), Mahajan and Wind (1986), and Mahajan et al., (1990)].
However, marketing diffusion models differ somewhat in their underlying
behavioral rationale and in the driving forces of the diffusion process. In ad-
dition to the relative advantage and costs of a new consumer product, mar-
keting models also emphasize other factors relating to the potential adopter’s
perception of an innovation and its attributes such as product complexity,
its compatibility with existing consumer experience, and its trialability.

Of particular importance for marketing is the two-dimensional approach
underlying the behavioral assumptions of marketing models. This approach
was first proposed by Bass (1969), who developed a diffusion model of the
initial purchase (excluding replacement purchases) of “new” generic classes
of consumer products. Bass proposes that the diffusion of a new consumer
product is dependent on two factors: the coefficient of innovation and the
coefficient of imitation. The innovation coefficient relates to the number
of initial innovators buying a product, whereas the coefficient of imitation
refers to the rest of the population assumed to be imitating the behavior
of the innovators and learning from their experience. Usually innovators
are characterized by high levels of income and education and influence the
decision-making processes of the rest of the population. Related to this two-
dimensional behavioral foundation of the model is the distinction between
external and internal influence diffusion models in marketing. This distinc-
tion relates to the communication channels through which information about
a product is communicated (see Hamblin et al., 1973).

External influence refers to information spreading vertically to potential
adopters through mass media, advertising, etc., whereas internal influence
refers to horizontal communication channels, i.e., interpersonal communi-
cation. It is generally argued (e.g., Gatignon and Robertson, 1986) that
products that involve low consumer learning (are of low social relevance
and are characterized by high marketing/advertising efforts) diffuse via ex-
ternal influence communication, yielding a modified exponential diffusion
pattern as first proposed by Coleman et al. (1966). More complex and
socially visible products, which require experimentation as well as observa-
tion of the experience of early adopters, frequently entail some economic
or social repercussions if they are not adopted. These products diffuse pri-
marily through interpersonal communication channels with a resulting S-
shaped diffusion pattern, usually represented by a logistic curve. The model
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proposed by Bass (1969, 1980), which can be considered a “classic” market-
ing model, combines both external and internal communication mechanisms.
Bass claims that the internal mechanism (i.e., interpersonal communication,
as reflected in the coefficient of imitation) exerts much greater influence on
the successful diffusion of a new product than the external mechanism.

Thus the rationale underlying technological diffusion and substitution
models has also provided the basis for marketing models analyzing the dif-
fusion of new consumer products. Whereas the relative role of influencing
factors in diffusion and substitution models may be different from those in
process innovation models, the formal analytical descriptions are very similar
in both fields and similar conclusions can be made about the regularity and
driving forces of the innovation diffusion process. Still, it is somehow surpris-
ing that these two streams of diffusion research have never really converged
or even interacted with each other. The relationship between marketing and
technological substitution models has hardly been explored; this fact has
been emphasized by marketing researchers (see, e.g., Bass, 1986).

(4) The Narrow Definition of Influencing Variables and Their Static Nature

This section considers the critique on the narrow definition of influencing
variables included in diffusion models, as well as their static nature (e.g., the
profitability of an innovation is assumed to stay constant over the diffusion
process). It has been argued that changes in the environment in which an
innovation is embedded, for example, a changing competitive structure, is
ignored by the models.

Probably the most extreme line of argument in this direction was followed
by Gold et al. (1970). They claim that innovation diffusion is affected by
such a large diversity of variables that it is almost pointless to build general
models of innovation diffusion. However, this appears to be an unnecessar-
ily pessimistic view. Our main interest is in the general factors influencing
diffusion against which special or random influences can be assessed further.
The criticism of a narrow definition of influencing variables was certainly
valid for first generation diffusion models; for instance, the models would
not hold if the (relative) profitability of an innovation would be close to one.
However, several additional influencing variables have since been studied
both in the technological literature (e.g., Sharif and Hag, 1979, who in addi-
tion to profitability and investment size, analyze factors like product quality,
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marketing, and price ratios) and in the marketing literature (e.g., Gatignon
and Robertson, 1986). Ayres (1969) proposed an industry classification
scheme, in which the driving variables of diffusion might be regrouped into
(a) performance maximization, (b) sales maximization, and (c) cost mini-
mization. Thus, the models have been considerably extended in the direction
of a multidimensionality of influencing factors. Monocausality appears thus
to be no longer a valid objection to the formulation and application of dif-
fusion models in both technological change and marketing.

Related to the missing multidimensionality of influencing factors is an-
other critique on diffusion models: the static nature of the influencing vari-
ables considered. In reality these variables change continuously over time
and interact with each other: e.g., technological performance will increase,
prices will go down, uncertainty in applications will be reduced. This pos-
sible interaction has been neglected by a number of researches arguing that
the profitability of adoption (and thus the diffusion rate At) should decrease
over time, resulting in an asymmetrical diffusion trajectory. However, it is
rather the ezpected profitability, i.e., the vector of profitability and uncer-
tainty about the future, that determines the diffusion rate. As profitability is
reduced in due course in the diffusion process, uncertainty is reduced as well,
so the resulting vector may also stay constant over time. In addition, there
have been objections to the er post nature of the measurement of the driv-
ing variables, like profitability or comparative advantage. Thus, the power
of these variables to explain the behavior of individual consumers or firms
would appear to be limited; the decisions to adopt are rather the result of
an er ante (subjective) assessment of the comparative advantage of an inno-
vation under conditions of uncertainty. This is contrary to the “objective”
nature of the ez post assessed variables, assuming no radical uncertainty and
quasi-perfect information, usually taken for granted in traditional economic
theory (for a critique of assumptions in classical, equilibrium economics see
the papers contained in Dosi et al., 1988).

The dynamic nature of the driving forces influencing innovation diffusion
not only applies to the innovation itself (e.g., through changing performance-
price relationships, i.e., the well-established learning-curve effect) but has to
be extended to the whole environment in which an innovation is embed-
ded. Even an old technology when challenged by competition may improve
its technical-economic performance. This phenomenon has been termed the
“sailing ship effect” (Ward, 1967; Rosenberg, 1976), referring to the consider-
able improvements in the technology of sail ships (clippers) when challenged
by the introduction of steamships. This effect certainly cannot be denied;
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however, some doubts exist about its impact on the diffusion of new tech-
nologies. Montroll (1978) determined a time shift (of 1p) in the diffusion
curve of steamships of 11 years is due to this effect which, in view of the
time constants of steamship diffusion (75 years to diffuse from 10% to 90%
market share in the USA), is certainly not dramatic. Similarly, by inspecting
the empirical substitution curves (see Nakicenovié, 1987) one can observe a
certain distortive influence of this effect. However, it does not seem to affect
significantly the diffusion rate proper.

Although both old and new technologies are affected by changing perfor-
mances, prices, and profitabilities over time, it appears that the most impor-
tant element influencing diffusion is the perceived relative performance-price
relationship between the old and the new technology. To go one step further,
one might argue that it is not so much the perceived relative relationship at
the time of adoption, but rather the subjectively assessed difference between
the ultimate performance-price relationships of competing technologies, i.e.,
including the subjective assessment of likely future improvements along the
learning curve.

Another criticism deals with the fact that diffusion models tend to ignore
the interaction between the various influencing variables. In particular, the
interaction between the supply and demand aspects of innovation diffusion
has been noticed. This aspect is highlighted and incorporated into a diffusion
model by Metcalfe (1983) and Cameron and Metcalfe (1987). Metcalfe is a
prominent proponent of the “equilibrium” diffusion modeling approach [for
similar arguments and models see, e.g., Peterka (1977) and Silvennoinen and
Viidninen (1987)]. Here, diffusion is seen as a transition between equilibria
levels, defined by changing economic attributes (e.g., costs, prices) and a
changing environment (e.g., differences in the market structure). Diffusion
is not so much interpreted as a learning phenomenon, but as a result of
the interaction of changes in the innovation and adoption environment, i.e.,
the interaction between suppliers and customers of an innovation, e.g., via
licensing, price strategies, and so on.

Figure 1.4 illustrates the most important relationships in the model pro-
posed by Metcalfe. The term equilibrium is used in this model in two ways:
first, supply diffusion and demand diffusion (i.e., the dynamics of demand
growth and capacity expansion) are treated separately, in that each has
a different equilibrium asymptote, but are kept in balance (equilibrium)
via price adjustment; second, innovation diffusion is seen as the transition
from one level to another. During this transition, relative prices, produc-
tion costs, and the relative profitability of using and producing both the old
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Figure 1.4. Innovation diffusion within an equilibrium framework. Inno-
vation seen as impulse on the economy creating growth potential (from 2 to
C), filled by the innovation. Source: Metcalfe, 1983.

technology and the new technology vary endogenously, with their variations
being in turn driven by the substitution process. Without going into detail
about the structure and mathematics of the model we summarize its main
conclusions.

The substitution trajectory is determined by the long-run market share,
the pre- and post-innovation market ratio, and the (supply-demand) bal-
anced output growth of the innovation, as well as the initial conditions that
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exist between the old and the new product or process. Yet, despite this com-
plexity the substitution curve is reduced to a simple logistic [Figure 1.4 (a)].

The innovation acts as an impulse in the economy creating a potential for
growth, which is filled by the innovation. Adjustment to the new equilibrium
level is achieved via the continuously retarding combined growth rate g(t)
[Figure 1.4(b)). However, the price and costs of the new innovation change
continuously over time producing a profitability squeeze, as shown in Figure
1.4(c). Finally, Figure 1.4(d) shows the equilibrium demand and supply
curves. The price-output trajectory of the new innovation, i.e., arrowed line
in Figure 1.4(d), does not lie on either the equilibrium demand or the supply
curves until the final equilibrium (end of diffusion) is reached. This points
to the transient (nonequilibrium type) nature of the diffusion process.

Recent models such as those based on the principles of self-organization
are presented in Section 1.3. These models represent to some extent the
end point of a long line of increasing complexity in the economic modeling
of causal relationships underlying the diffusion process, a line of research
initiated by the Mansfield model. Innovation diffusion models are becoming
increasingly complex, yet they are still consistent with the empirical regu-
Jarities of diffusion identified and described by behavioral diffusion models.
Thus empirical regularities, as identified by diffusion researchers, are consis-
tent with the causalities of diffusion models formulated in behavioral sciences
and economics. Structured evolutionary paths at the aggregate level emerge
from diversity in behavior, technological characteristics, and economics at
either the microeconomic level or the individual level.

A valid point of critique on diffusion models has always been that the
models tend to simplify the complex dynamics and transformations of both
the market environment and technological characteristics of innovations dur-
ing the diffusion process. In other words, it is during its diffusion throughout
the economy that a technology acquires its industrial and economic proper-
ties, transforms itself, and widens the initial market in which it was adopted.
On the basis of these dynamic properties of the diffusion process, some au-
thors have been hasty in inferring the theoretical impossibility of formal
representation, since the object of diffusion is not the same at the begin-
ning, in the middle, and at the end of the process. It appears, however, that
the interest of a formal representation resides precisely in the possibility of
periodizing the diffusion process, with the aid of criteria which can take
into account the principal transformations of the technology under consid-
eration. This, however, requires a framework to define the technologies that
are diffusing or competing in a particular market.
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In a best-case situation, such a definition is based on expert knowl-
edge; whereas in a worst case, the definition of technologies remains rather
arbitrary, based on the disaggregation level availablein industry statistics. In
any case the definition of the object of diffusion research is generally derived
ez post, following research interests or application-oriented priorities rather
than a comprehensive methodological analysis of the whole technological
“space” in which technologies evolve. Such a situation appears unsatisfac-
tory both from the atheoretical nature of the approach and from the perspec-
tive of identifying possible technological routes which might emerge in the
future or which have been “locked-out” from diffusion in the past. Griibler
and Foray (1990) have proposed morphological analysis as a methodologi-
cal framework for the definition of technologies diffusing or competing. As
such, it opens the possibility of ultimately developing a taxonomy and clas-
sifying technologies and their diffusion processes, which appear necessary for
the advancement of the theoretical foundations and practical usefulness of
diffusion studies.

1.3 A Self-organizing Model of Technology
Diffusion and Structural Change

This section based on Dosi et al. (1986) and Silverberg et al. (1988) presents
the underlying rationale and structure of a model in which the evolution of a
particular system (i.e., the structural change induced by the diffusion of an
innovation) is regulated by changing technological and behavioral diversity,
learning, and selection mechanisms. These, together with their interrelated
feedbacks, generate continuous adjustment processes to a changing techno-
economic environment and result in ordered evolutionary paths at the macro
(industry) level. The model proposed by Dosi et al. (1986) and Silverberg
et al. (1988) appears particularly appealing as it reconciles both a set of
economic driving variables and their interactions (and thus most of the hy-
potheses generated by first and second generation diffusion models discussed
_in Section 1.2) at the micro level (i.e., the level of the firm), while still being
consistent with the ordered evolutionary paths at the macro-industry level,
suggested by behavioral diffusion theory and empirical observations.
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1.3.1 Characteristics of technology and
industry environments

Technology in a broad sense (i.e., including both process and production in-
novations) is characterized by varying degrees of appropriability (e.g.,
existence of patents and access to information), a priori uncertainty about
its future technical and economic characteristics and prospects, cumulative-
ness in the patterns of innovation and capabilities to innovate (i.e., an ana-
log to “learning by doing” as formulated by Arrow, 1962}, and tacitness of
knowledge and expertise on which development and successful adoption of
an innovation is contingent. Adoption decisions are characterized by par-
ticular search and learning processes, drawing on specific knowledge bases,
containing both freely available information and internal and external skills.

A fundamental characteristic of any industrial environment undergoing
technological change is the diversity of the economic, technological, and
behavioral environment in which a particular innovation is embedded. Di-
versity in the economic environment implies that at any given point in time
the economic population (be it firms or consumers) is in fact heterogeneous.
Firms have different technological capabilities to innovate (for instance, the
different R&D expenditures and capabilities among companies), show dif-
ferent degrees of success in the development and adoption of innovations,
and finally have different cost structures. Economic structure is the result
of differences in economic performance, rates of innovation and adoption of
innovations, search procedures, production techniques, combination of fac-
tor inputs, and products. The diversity between firms influences the rate
and nature of the diffusion process in the following way: if the average level
of technological capabilities in an industry is high, diffusion will proceed
fast: if the variance of the distribution of capabilities between firms is high,
diffusion proceeds ceteris paribus through competition rather than through
learning or imitation.

Diversity between economic agents implies that any economic system
undergoing change through innovation and diffusion is in a disequilibrium
situation in the neoclassical sense. “Better” and “worse” firms coexist. Their
technological base is different (even to the extent of a redundancy of the tech-
nologies present in the market); they differ in their skill levels, cost structure,
and so on. Decisions are affected by uncertainty about the technical and
economic outcomes of the introduction of an innovation, because of inter-
actions and interdependencies of firms with respect to prices, technological
and market competition, and so on. In fact, the outcome of a decision of any
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particular firm depends on the actions of other firms. Thus, it is difficult
to reduce the behavioral diversity to a simple maximizing behavior (and
implied quasi-perfect information) underlying traditional equilibrium-type
diffusion models.

The basic task of a self-organizing model consists thus in representing the
feedback loops between the structure of an industry, the behavior of firms,
and finally the evolution of the industry in general. The coupled dynamics in
the areas of technology, economic structure, and diverse behavior interact to
produce ordered evolutionary paths at the industry level, and in total at the
level of the whole economy. The changing nature of the system in turn feeds
back on technological capabilities, incentives, constraints, and behavior of
economic agents.

1.3.2 Model description

This section presents an overview of a model proposed by Dosi, Orsenigo, and
Silverberg (1986). Further discussions of the underlying economic rationale
of some of the model assumptions and equations are contained in Silverberg
(1984, 1987). Dosi et al. (1986, p. 9) state:

Innovation/imitation/diffusion [are] represented as the process through which
endogenously generated fluctuations of a system become “autocatalytic”
and, under certain conditions, progressively change the morphology [the
structure) of the system itself. Diffusion of new products and production
technologies is the outcome of evolutionary processes whereby the interac-
tions between agents (the carriers of capabilities, technologies and behavior)
induce changing incentives, selection mechanisms and learning processes.
Innovation and diffusion processes are thus governed by (different combina-
tions of ) selection and learning mechanisms. Selection tends to increase the
economic dominance of the firms which carry the innovation and penalize
others, while learning spreads innovative/imitative capabilities throughout
the (changing) set of potential adopters.

The balance and composition of these two different modes of diffusion
contain technological, structural, and behavioral components. More specifi-
cally, diffusion depends on (Dosi et al., 1986, pp. 8-9):

(a) the characteristics of each technology (sources of basic knowledge, de-
grees of appropriability and tacitness of innovation, complexity of re-
search, production and products, existence and role of various forms
of economies of scale, cumulativeness of technological learning, etc.),
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(b) the degrees and forms of diversity between economic agents (including
their levels of technological capabilities and variety of search proce-
dures and behavioral rules), and

(c) theendogenous evolution of incentives, constraints and selection mech-
anisms (including the evolution of relative profitabilities of different
technologies, firm sizes, cash flows and market shares).

The assumed industry situation for which the model has been developed is
characterized by a supplier-dominated industry, which in turn purchases its
investment goods from outside suppliers where no availability constraints are
assumed. The market is characterized by strong price competition, although
for the sake of simplicity no difference in product quality is assumed. Only
one existing technology and one new technology are considered.

The diffusion of a new technology is represented by its incorporation into
the capital stock of a firm, constrained by cash flow —i.e., there is no negative
cash flow and self-financing is assumed to make the feedback {from profitabil-
ity and investment (diffusion) more straightforward (but at the same time
also less realistic). In addition, the scrapping of old capital stock is included
in the model. Demand and supply are represented and linked by the vari-
able orders, delivery delays (in case orders exceed productive capacity in the
time interval), capacity utilization, and shipments. Obviously production
is constrained by maximum capacity, and average and marginal costs are a
decreasing function of the production level up to full capacity utilization.
Total demand is assumed to be exogenous: growing at an exponential rate,
and demand (orders) for a particular firm is a function of competitiveness
(price).[11] The change in the market shares of a company over time is due
to disparities in its relative competitiveness. The competitiveness of a firm
is defined in relative terms, i.e., the difference between its competitiveness
and the average competitiveness for the industry.

Initially, the model consists of a system of equations in which a single
best-practice technology is available to all agents. It is assumed that the in-
vestment process (implicit in the payback method of the model) ensures that
productivity gains from technological advances (incremental innovations) are
continually incorporated into the capital stock, even under different payback
criteria used by different firms. Thus, the investment policy as represented
in the model assures the diffusion of technical progress within the capital
stock installed.

However, one has to go further. First, one must consider more than
one (old) best-practice technology, although it too evolves in the direction
of productivity improvements, and take into account the introduction of a
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new technology that may, however, not be freely available to everybody.[12]
Second, one must consider that although an innovation may initially have
a lower productivity level than the best existing technology, it has a larger
ultimate improvement potential. A new innovation might consist of improve-
ments in the existing technology in its economic and technical performance
and capabilities. It could also constitute a “quantum leap” opening up
entirely new performance dimensions, new markets, etc., which might not
be apparent at the initial stage of introduction.

Firms making investment decisions have to (subjectively) weigh the im-
provement potentials of the old versus the new technology, i.e., the remain-
ing improvement potentials of their respective learning curves. However, the
exact rate of and ultimate potential for improvements are unknown. In addi-
tion, improvements in the technology not only are of a technical or economic
nature, but also involve changing levels of expertise (scientific/engineering,
qualification of work force, etc.) available both internally and externally to
the firm. Different strategies are therefore pursued by individual firms with
respect to developing their knowledge base: either by in-house development
or by waiting for the competitor to act and thus avoiding (initially high)
development and learning costs. These different strategies imply that an
innovation might not be introduced at all if no one takes the initiative to
develop it. On the other hand, there is also the possibility that a firm might
acquire a new technology free or at a moderate cost after it has been devel-
oped, improved, and demonstrated as technically and economically feasible
by a competitor. In fact, it can be shown by simulation runs that if the
subjective assessment criteria (represented by an anticipation bonus related
to the future improvements of the technology) for a firm adopting an in-
novation and being the net “winner” are fixed uniformly for all firms in a
subsequent simulation run, the innovation is not adopted at all. No firm is
ready to incur the costs of developing the technology and bringing it to the
commercialization stage.

Therefore the notion of a single “optimum time” for adoption has to
be questioned due to the uncertainty and diversity of expectations about
the future “trajectories” of existing and new technologies, and the actions
and outcomes of the different agents thereof. Dosi ef al. (1986) consider
this diversity of expectations as not only unavoidable in any assessment
for investment purposes, but almost a prerequisite for the adoption of an
innovation. They claim that this diversity is socially superior, despite the
fact that it forces firms to profit or incur losses unevenly in the process of
innovation adoption.
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To model the dynamics of different technological trajectories several as-
sumptions are made. Two changing technological trajectories represented
by maximum productivities are available. It is assumed that the new tech-
nology is superior to the old one. The actual productivity realized by a
firm is the result of the changing inherent productivity value of the tech-
nology and the changing specific skill levels of the firm. In the model firms
are assumed to know only the product of the inherent technology efficiency
and their respective efficiency in adoption and exploitation. They may (in
fact must) make subjective assessments about the rate at which the new
technology will achieve further productivity improvements as well as the in-
ternal rate of application efficiency (learning by doing). The latter can be
improved by internal learning and/or by obtaining skills from outside (e.g.,
hiring engineers and workers from competing firms). For reasons of simplic-
ity the model assumes that the old technology is mature, i.e., its efficiency of
application cannot be improved. Modeling the evolution of the efficiency pa-
rameter of the new technology is quite simple as it is nothing more than the
well-established learning-curve effect, where the rate of improvement (in use)
is a function (power law) of the cumulative output (experience) associated
with the technology.

The choice of a new technology will thus depend on a firm’s assessment of
its future learning-curve potential. Investment decisions are awarded on the
basis of an anticipation “bonus” with respect to its future prospects. The
current realizable productivity of a technology is multiplied by this bonus
and then compared with the best practice productivity of the old technology.
The new technology will be adopted when its adjusted productivity is higher
than the old one and the new technology is either cheaper per unit of capacity
at the time of comparison or more expensive, but the investment difference
can be compensated for by reducing production costs within the desired
payback period.

Despite some simplifving assumptions, the model contains a clear eco-
nomic rationale for the interaction and feedback mechanisms between eco-
nomic agents. The complex structure of this model illustrates that many
more mechanisms affect the diffusion of innovations at the micro level than
have been captured even in the most detailed diffusion models proposed in
economics to date. It would be difficult indeed to infer the relative strate-
gies, fate, and performance of economic agents at the micro level from a
relatively small number of postulated driving variables, notwithstanding the
descriptive power of these simpler models at the macro level.
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Figure 1.5. Diffusion curves of incorporating an innovation in the capital
stock of an industry: (a) share of adopting firms in total number of firms, (b)
market share of adopters, (c) percent capacity installed with new technology.
Source: Dosi et al., 1986, and Silverberg et al., 1988.

Figures 1.5, 1.6, and 1.7 document some model simulation runs and
illustrate the way in which structured, evolutionary paths at the macro
level evolve out of uncertainty, interdependence, and competition at the
micro level. The feedback mechanisms link the “whole” and the “parts” to
demonstrate their mutual coevolution through a self-organizing mechanism.
The characteristic diffusion pattern, formulated by traditional macro-level
diffusion models and observed empirically, emerges as the outcome of the
joint dynamics of technological and economic interactions at the micro level.

Figures 1.5 to 1.7 show the results of a simulation run in which the
pre-innovation equilibrium is disturbed by the availability and consequent
diffusion of a new technology.[13] The different strategies followed by dif-
ferent firms produce a complex set of phenomena and outcomes at the micro
level, while resulting in an ordered path at the macro level.

Figure 1.5 shows the aggregate macro-level behavior of the system repre-
sented by three classical measures of diffusion: percentage of adopting firms
(curve a), percentage of the market share held by those firms who adopted
the new technology (curve b) [14], and percentage of installed capacity, i.e.,
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Figure 1.6. Market share of individual firms as a result of changes in com-
petitiveness through adoption (or lagged or non-adoption) of an innovation
by individual firms. Source: Dosi et al., 1986, and Silverberg et al., 1988.
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Figure 1.7. Realized average productivity of capital stock of different firms
as well as industry average (dashed line) as a result of innovation adoptions.
Source: Dosi et al., 1986, and Silverberg et al., 1988.
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the result of inter- and intrafirm diffusion as well as of the changes in the
relative sizes of firms (curve c). Dotted lines indicate the adoption dates of
particular firms. All three measures display the classic S-shaped diffusion
pattern.

Figures 1.6 and 1.7 illustrate the microeconomic “drama” going on un-
derneath the smooth macro-level surface. The relative success of the different
firms in terms of their market share (Figure 1.6) and in their productivity
of the capital stock (Figure 1.7) is very different.

In terms of market share, early adopters of technology 2 do not perform
as well as later adopters. This particular simulation outcome is (among
other factors) the result of the assumed appropriability of technology 2, as
reflected in the rate of internal learning. If the respective coefficient is set
higher, the appropriability of technology 2 is accelerated; the adopters be-
come net benefiters. Particularly noteworthy is the market share of the
“laggard” in adopting the technology 2: it is completely driven out of the
market. This demonstrates the “pitfalls of missing the boat by not providing
for an anticipation bonus in the productivily assessment of a new technol-
ogy” [Dosi et al. (1986, p. 33)]. The results show that the relative payoffs
of different adoption strategies depend partly on factors beyond the control
of an individual firm, such as the adoption decisions of other firms, appro-
priability conditions of a technology, etc. This illustrates the disequilibrium
nature of the diffusion process, i.e., there is no individual optimal strategy
independent of the strategies of one’s competitors.

Figure 1.7 shows the productivity of the capital stock for each firm, as
well as the industry average (dashed line in Figure 1.7). It shows, in par-
ticular, how successful adopters realize above-average productivity levels,
which contribute to their market share gains, whereas late adopters stay
consistently below this average. This is a result of the differentials in the
internal efficiency (skill) levels of firms. Whereas the innovation pioneers
build up their skill levels, later adopters benefit from this experience via ex-
ternal learning and eventually overtake the earliest adopters in skill level and
realized productivity. It should, however, be remembered that productivity
is only one variable influencing competitiveness and thus market shares.
The dynamics of the delivery delay incorporated into the model contribute
equally to the changes in the market shares and the price margins realized.

Of course the outcome of the simulation run presented is the result
of the particular technological, market, and behavioral variables assumed.
The main purpose here is not to discuss the simulation result in terms of
how well it represents reality, or in terms of “robustness” of innovation
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policies responding to the diversity in, and uncertainty about, the behavior
of economic agents and the interdependencies of their strategies. Instead,
the model demonstrates only the dynamic behavior of such an evolutionary
self-organizing system. The main lesson to be learned is that the dynamic
interaction between the macro and micro levels in such a system leads to
the emergence of spatial and temporal patterns, which are driven, rather
than dissipated, by micro-level diversity. This becomes especially important
when interpreting the empirical long-term regularities of diffusion and tech-
nological substitution (see, e.g., Ausubel, 1989; Griibler, 1990, Nakicenovic,
1986). From this perspective, regularity in the evolutionary paths at the
macro level is not a contradiction but rather a consequence of the diversity
of technological expectations, designs, dynamic appropriability, and behav-
ior of economic agents.

1.4 Conclusion

The characteristic S-shaped diffusion pattern, and the resulting rates of
diffusion, is a macro aggregate of an underlying complexity of adoption
causes. Diffusion phenomena are probably best conceptualized as proceed-
ing through various stages of a “diffusion life cycle,” in each of which the
process is characterized by different market niches, different determinants of
diffusion, and different relationships to other diffusion processes, of both a
competitive nature and an interdependent nature. Diffusion processes should
therefore be analyzed based on multivariate (i.e., considering an innovation
diffusion case not in isolation) and multiattribute (i.e., using a number of
measures to describe diffusion trajectories and develop comprehensive vec-
tors of driving variables) types of approach.

This multistage view of diffusion also raises the issue of whether the term
“diffusion” is at all appropriate to capture the essence of most processes of
technological or social/institutional change. Hardly any innovation in fact
diffuses into a vacuum. All along its growth trajectory an innovation inter-
_ acts with existing techniques, depends on the development of a mediating
framework for its effective absorption into the socioeconomic system, and
changes its technological, economic, and social characteristics. From such
a multistage perspective diffusion is probably best described as an “evolu-
tion resulting from a sequence of replacements” (Montroll, 1978), i.e., as a
succession of substitutions along various specific (expanding) market niches.
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These processes must be analyzed comprehensively. It appears that much
of the uncertainty of the appropriate mathematical model(s) of diffusion, in
particular, the issue of symmetrical versus asymmetrical diffusion models,
may be the result of looking at an innovation from a unary (i.e., an innovation
grows in a vacuum) or a binary (an innovation's market share, vis-d-vis the
remainder of competing technologies, is analyzed) perspective.

Diffusion and substitution phenomena can be observed all along a spatial
and temporal hierarchy. They range from very short-term processes, such as
the rapid spread (and disappearance) of fashion gadgets, to extremely long-
term and pervasive transformations in the technological and social fabric as
reflected in the growth of infrastructures, new forms of social and institu-
tional organizations, etc. Whereas shorter-term diffusion processes operate
within a more or less equilibrium configuration, very long-term and pervasive
diffusion processes are of an evolutionary, nonequilibrium type because they
profoundly transform the boundary conditions of the system within which
they operate.

At this point also a caveat on the too frequent overoptimism of the rapid
diffusion of new technologies appears appropriate. The historiography of
technological change clearly demonstrates that the diffusion of an innovation
of some economic or social pervasiveness is a long process: diffusion time
constants (Ats) range in the order of decades and even centuries. Even
in the case of the diffusion of process innovations, diffusion time constants
are considerable. Ray (1989), for instance, reports that “the time period
to reach or to approach saturation is long - about three decades or even
more — in a completing discussion of a pioneering international comparative
technological diffusion study” (Nasbeth and Ray, 1974). Thus decades are
required for the diffusion of innovations of any economic significance and even
longer time periods are involved in the pervasive transformation of economic
activities by whole clusters of technological and organizational innovations.

If the diffusion of CIM technologies indeed represents an “industrial rev-
olution,” an isolated view of specific technologies or application areas alone
could be misleading. Instead, one would have to analyze comprehensively
what is happening in the industry as a whole, e.g., the important interlink-
ages to other technologies like the need for more storage and logistics, the
dependence on increased technological performance and improved skill lev-
els of the work force (i.e., of the application efficiency of a new technology),
among others.

Although well established in geography, the importance of the spatial as-
pects of diffusion appears to have found only limited attention in
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economics and the technological and marketing diffusion research disciplines.
For instance, spatial diffusion research has identified the importance of in-
novation centers as well as the spatial heterogeneity in the ultimate diffusion
(adoption) levels between innovation centers and their periphery [see, e.g.,
Higerstrand (1967); for an overview of spatial diffusion, see, e.g., Morrill
et al. (1988)]. These findings are frequently ignored in diffusion studies of
technological change or marketing and in normative approaches to diffusion,
i.e., when inferring from the diffusion levels achieved by early starters as mar-
ket potential for followers. Thus, taking the spatial dimension of diffusion
processes into consideration could yield useful additional insights into the
diflerences in diffusion levels and diffusion rates because there is little rea-
son to expect similar diffusion rates and penetrations levels across different
economic and geographical spaces.

Multiple interaction, sequence of successive replacements, importance of
specific market niches in introduction and phase out of technologies, and
a constantly changing environment of relative technological performance,
costs, and prices all appear to be inherent characteristics of diffusion and
substitution processes. From such a perspective diffusion can hardly be re-
duced to single, determining variables but emerges from a complex vector
of influencing factors. The importance of any individual driving variable
such as relative costs or prices is different not only in the various phases
of the diffusion life cycle of an innovation (e.g., relative costs appear to be
of minor importance compared with technological performance in the ini-
tial diffusion phase) but also between successive technological generations.
The diversity and complexity, along with the ordered evolutionary struc-
tural change patterns at the macro level, suggest that the diffusion of large
pervasive systems, which can span several decades in time, occurs in a con-
stantly changing adoption environment. As such it portrays the features
of dynamic self-organizational systems rather than operating in a classical
equilibrium-type framework.

Notes

[1) Arcangeli et al., (forthcoming). Selected papers from the IIASA diffusion con-
ference are to appear in a special issue of Technological Forecasting and Social
Change (Vol. 39, No. 1-2, 1991, forthcoming). A more exhaustive selection
of papers is combined in N. Nakiéenovié¢ and A Gribler (eds.), Diffusion of
Technologies and Social Behavior, Springer-Verlag, Berlin, Heidelberg, New
York, 1991 (forthcoming).
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(2]

(3]

[4]

(6]

(7]

(8]

That is, the time interval required to go from 10% to 90% adoption level of
the population of potential adopters, or from 10% to 90% market share. For
symmetrical diffusion curves like the logistic At corresponds also to the time
interval to go from 1% to 50% adoption level (see Appendix).

The first model of this type was actually proposed by Griliches (1957), who
analyzed the diffusion of the use of hybrid corn seeds in various states in the
USA. The approach followed is very similar to that of Mansfield’s in terms
of both using a logistic curve to describe the diffusion patterns and linking
the (empirically) estimated diffusion rate to the profitability of adopting the
innovation. Because Griliches’s study deals only with the diffusion of a single
innovation and lacks a strong technological component, we prefer to discuss
the Mansfield model within the present context.

The expression ;; is defined as the average pay-out period required by the firms
divided by the average pay-out period for the innovation. For relatively long-
lived investments, the reciprocal of the pay-out period is an approximation of
the rate of return, i.e., m;; is approximately equal to the average rate of return
derived (ez post) from the innovation divided by the average rate of return firms
required (ez ante) to justify investments. Sj; is defined as the percentage of
the average initial investment in the innovation as a percentage of the average
total assets of firms.

The shortcomings relate to (1) the procedure in determining the independent
variables considered in the model; (2) a large number of apparent mistakes in
the data-gathering process from original references; (3) a restrictive definition
of the appropriate market in which the innovations compete; and (4) the in-
appropriate use of a simple (binary) diffusion model of the Fisher-Pry type
{for innovations which compete simultaneously on the market (i.e., in multiple
substitution cases).

There is a certain semantic difficulty in the argument. Of course the growth
rates (i.e., the first derivative of the logistic function) vary over time in the
form of a symmetric bell-shaped curve with a maximum at K/2, resulting in
the particular shape of the diffusion process over time: slow growth at the
beginning, followed by very fast growth (the bandwagon effect), and finally
leveling off toward the saturation level. The argument about the constant
value of the diffusion rate (At, b, or &) merely refers to a perceived “lack
of flexibility” (Mahajan and Peterson, 1985) of the logistic to represent data
exhibiting a certain skewness (see also Davies, 1979; Sahal, 1981).

Davies reasons that a cumulative normal pattern (a symmetric S-shaped curve)
describes adequately the diffusion of innovations characterized by relatively
large capital outlays and complex technology, whereas the (positively) skewed
cumulative lognormal curve is assumed for relatively inexpensive, uncompli-
cated processes (often of a supplementary nature).

Er ante use of these models does not appear reasonable in view of the absence
of a theoretical rationale underlying the model application.
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[9] See also Marchetti (1975), Peterka (1977), Marchetti et al. (1978), and Peterka
and Fleck (1978). For the algorithmic and computer implementation of the
mode] see Nakiéenovié¢ (1979). In this context we note also a simple three-way
substitution model proposed by Sharif and Kabir (1976b).

[10] This bias is represented by the fact that models generally deal with important
(contrary to small incremental), investment intensive process innovations, the
diffusion of which is not impeded by patents. The dominant role profitability
plays as a causal driving force of the diffusion process relates only to process
innovations, for which it represents the paramount adoption criteria used by
firms.

[11] This model simplification appears problematic in view of the link between dif-
fusion and market expansion, argued by Metcalfe (1983), and discussed above.

[12] The model deals just with the rather special case of a one-to-one competi-
tion between two process innovations producing the same type and quality of
output, i.e., a fully standardized commodity. Quality differentiation, multiple
competition, and/or the possibility that a (radical) innovation opens com-
pletely new product lines or markets are not considered.

[13) The (new) technology, 2, is potentially 100% more productive. Both technolo-
gies evolve at a rate of 4% per year as do nominal wages (production costs).
The initially higher price of technology 2 decreases at a rate of 1% per year.
All firms start with identical conditions (model parameters) except for their
“anticipation” bonus used to estimate the improvement potential of technol-
ogv 2. This bonus ranges from 3.3 (i.e., the firm that introduces technology
2 first, evaluates its potential productivity a factor 3.3 higher than its present
productivity) to 1 (i.e., the firm does not consider technology 2 to have any
future productivity gain potential).

[14] In this particular example the adopters aggregate together and have not gained
significant market shares over the nonadopters. See, however, Figure 1.6 for
the drastic differences in the market shares of the individual adopting firms.

Appendix
Mathematical Characteristics of Diffusion and Substitution Models

Diffusion models can be grouped into two broad classes: growth models with a prior
unknown asymptote K; and technological substitution models, based on measures
of relative market shares with known asymptote (K = 100%). All the functions dis-
cussed contain (at least) three parameters, which have the following interpretation:

(i) Ast tends to infinity, y = f(t) approaches an upper bound that represents the
level at which the growth process saturates,

lim f(t) =K , (1A.1)
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where K is positive and finite. Furthermore we consider only curves with
Jlim f(t) =0 .[1]
(ii) There exists a time tg, at which the curve has a point of inflection,

d?
=0, (14.2)

where the growth rate reaches its maximum. A growth curve is called symmetric
if it is point-symmetric around g, i.e., f(to)— f(to —1) = f(to +t) —f(i0). A
necessary condition for symmetry is

yo = f(to) = % (1A.3)

(i) A third parameter, denoted by At, gives the length of the time interval needed
to grow from 10% of K to 90% of K. More precisely, let t, be defined by

4
t,) = — g
flty) = 75 K,0<p< 100, (1A 4)
then At is given by
At = tgg — tlﬂ - (1A5)

As a first example of an S-shaped curve we consider the logistic function.

(1) Three parameter logistic: This curve is given by

K
y=f(t) = W . (1A.6)

The curve is symmetric around £o.[2] A simple calculation shows that the parameter
At is related to the growth rate b by

1
At = Elog 8l = %4.39444915 bl £ (1A.7)
It was first proposed by Verhulst (1838) as a model for human population growth
and then rediscovered by Pear] (1925) for the description of biological growth pro-
cesses. Often the logistic function is rewritten with a linear right-hand side:

y
log y bt — o). (1A.8)
Here the interaction between the growth achieved (available resource used, growth
potential realized), y, and the growth remaining to be achieved (resources remaining
to be used, remaining growth potential), K —y, when plotted on a logarithmic scale
yields a linear function. When plotted this linear function highlights, in particular,
the early and late phases of the growth process.
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(2) Positively skewed S-curves: A growth curve displaying asymmetry was proposed
by Floyd (1968) within the context of technological forecasting for the description of
the evolution of technical performance or “figures of merit,” with very rapid initial
takeofl, i.e., an asymmetrical growth pattern:

F(K,y):loghf’i—;+?{-§’_——y=bt+c : (1A.9)
Here the inflection point, yo, is given by

vo = f(lo) = -% (1A.10)
instead of K /2 for the logistic. The parameter At is given by:

At = % (iog81+ %9) = —;—12.28333803 cee (1A.11)

(8) Gompertz function: This nonsymmetric growth function was first proposed by
Gompertz (1825) for the description of human population growth. It is given by:

y= f(t) = K exp[—e~¥-1)). (1A.12)

The value at the point of inflection is given by

K 1
vo = f(to) = = where = 0.36787944 ... (1A.13)
e ... denotes the basis of the natural logarithm, and the parameter b is related to
At via

1 log 10 1 -

The Gompertz function can be rewritten with a linear right-hand side:
K
F(K,y) = —loglog-; = b(t ~ o), (1A.15)
for instance, if a linear regression algorithm is used to estimate to and b.[3]

(4) Modified ezponential: This function, which is not a genuine S-shaped curve but
has been proposed several times in the diffusion literature (e.g., Coleman et al.,
1966), is defined by

y=f(t)= K[1- e—b('-fu)]. (1A.16)

For this function the parameter t; does not indicate the point of inflection. The
curve exhibits constantly decreasing gradients; it has no inflection point; and f(1) <
0 for 1 < 1. The parameter b is related to At by
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At = %logg = %2.197224577... : (1A.17)
and the “linear form” of the function is given by

B ) =Tog e bl sl 1A.18

( YY) = g K— y - ( 0/ ( % )

(5) Substitution models: Any of the above-described diffusion curves may be used
for describing technological substitution processes setting K = 1. Simple logistic
and multivariate logistic substitution models have been discussed already in the
chapter.

Sharif-Kabir Model

The only additional (binary) substitution model is the substitution model proposed
by Sharif and Kabir (1976a). This is a so-called flexible substitution model, in that
an additional parameter is introduced to accommodate a whole range of substitu-
tion patterns from the symmetric logistic to various degrees of positively skewed
(asymmetric) ones. The model, originally proposed as a substitution model (with
K = 1), becomes a growth model when the parameter K is allowed to take positive
values other than one. Using the notation (K = 1), this model is given by

Fy Fy

1 — <y<1l. Al
Og]~F1+71—F1 bt+¢,0<y< (1A.19)

This model contains two special cases: for v = 0 it reduces to the Fisher-Pry model
and for v = 1 it corresponds to the Floyd model presented in equation (1A.9) above
(with K = 1). For v # 0 it is a nonsymmetric function; the value at the inflection
point, yo, 1s given by

2
e e 1 & mpodt | 1A.20
3+ VT+8y =¥= ( )

showing that yo drops from 1/2 to 1/3 when v increases from 0 to 1. Introducing
the parameter 1o, equation (1A.19) can be rewritten in the following way:

vo = f(to) =

Fl F1 2 2':(
] = b(t — ] . (1A,
ogl__Fl-i-‘)’l_Fl b(t to)+og1+ =5 7+]+ 5 (1A.21)

The parameter At now depends on 7 and is given by

Ap= % (logSl 3 %7) ” %(4.39444915...+ +8.88888888....) . (1A.22)
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K

22

Figure 1A.1. Sharif-Kabir substitution functions for y = 0 (logistic curve), ¥ =
0.10, v = 0.25, ¥ = 0.50, and ¥ = 1 (Floyd curve). Source: Posch et al., 1988.

Figure 1A.1shows some substitution curves resulting from the Sharif-Kabir model
for different values of the parameter 7.

This particular model offers considerable flexibility to describe a whole range
of binary substitution processes, when the empirical data cannot support the sym-
metry assumption underlying the logistic Fisher-Pry model. However, before a
conclusion with respect to a deviation of a particular data set from the functional
form of a substitution model can be reached, a careful analysis has to be carried out
on whether the process under investigation is indeed a binary substitution process.
In a most cases asymmetric substitution patterns are an indication that additional
technologies compete in the market. In such cases the substitution process can only
adequately be described by a multiple substitution model such as the Marchetti-
Naki¢enovi¢ model discussed in Section 1.2.2.

For a computer program implementing these diffusion-substitution models, see,
Posch et al. (1988). For statistical uncertainty in parameter estimation, see De-
becker and Modis (1986).

Notes

[1] Of course a growth process may “takeofl” also at initial levels > 0. In such a
case the original level is subtracted from the data and reintroduced thereafter
in the model in the form of a constant intercept.

[2) Other symmetric growth curves like the cumulative normal derived from prob-
ability theory (see, e.g., Davies, 1979) are not discussed here because they are
only gradually different from the logistic function.
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[3] Because of the twofold exponential factor, nonlinear least square fit algorithms
do not easily converge, therefore linear regression of the transformed data based
on equation (1A.15) is preferred.
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