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Abstract

A model is presented that endogenizes the two most important sources of
technological change –uncertainty, and technological learning through re-
search and development (R&D) and learning by doing (investments)– into an
intertemporal optimization framework. Mathematically, the resulting prob-
lem is one of non-convex, non-smooth, stochastic optimization. The simple,
stylized sectoral (energy) model includes one demand and one resource cat-
egory. The model selects from three competing technologies, which differ in
their current costs and in their (uncertain) potentials for future cost reduc-
tions through learning. The resulting model fully endogenizes the process
of technological change, which is driven by expected, but uncertain, returns
from investments into R&D and niche-market applications. These in turn
can render new technologies increasingly competitive, ultimately leading to
pervasive diffusion. The model, while definitely oversimplified, nevertheless
allows several robust conclusions. First, it was possible to find an opera-
ble analytical solution for an optimization problem that simultaneously in-
volves stochasticity (uncertainty) as well as non-convexity (increasing returns
through technological learning). Second, the S-shaped patterns of technolog-
ical entry and diffusion endogenously generated by the model are consistent
with those observed historically and in the empirical literature on technologi-
cal diffusion. Third, the model illustrates the possibility of wide-ranging tech-
nological outcomes resulting from even small differences in initial conditions
and the (uncertain) rates of technological learning. Fourth, the resulting dif-
fusion of new technologies of our model can yield pronounced discontinuities
in the environmental performance of technologies. For instance, future emis-
sions could decline radically even in absence of environmental constraints.
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Fifth, and perhaps most importantly, the model demonstrates an entirely
endogenous mechanism of technological change in which technologies that
appear to be extremely economically unattractive from today’s perspective
(e.g. a factor 40 more expensive) can diffuse into the market under both
criteria of uncertainty and intertemporal optimization (cost minimization),
if upfront investments into R&D and niche market applications are made.
These are shown also to constitute an optimal contingency policy vis à vis
uncertainty in future energy demand and possible (uncertain) emergence of
environmental constraints (e.g., a tax on carbon emissions).

1 Introduction

It is an often stated truism that new technologies do not fall like “manna from
heaven.” Technological change is both costly and uncertain; it requires dedi-
cated efforts in form of research and development (R&D) and demonstration
projects (application in niche markets), subsumed under RD&D, and finally
also (initially risky) commercial investments. In turn these efforts can reduce
uncertainty and affect also other characteristics of new technologies, such as
performance, efficiency, productivity, and of course costs. These potential
future benefits and resulting economic returns provide the rationale why pri-
vate firms and society at large invest in the pursuit of new technologies (e.g.,
Mansfield et al., 1971 and 1977) In short, as Joseph A. Schumpeter observed
long ago (in 1934), technological change arises from “within” the economic
system, and is central to its growth.

That technological change is the most important single source of long-
run productivity and economic growth is confirmed by theory (for a review
see e.g., Metcalfe, 1987; and Freeman, 1994), historical evidence (e.g., Mad-
dison, 1991, 1995; and Mokyr, 1990), and calculations performed within
(neoclassical) growth models ever since the first contributions of Tinbergen
(1942) and Solow (1957, cf. Griliches, 1996). In fact, its importance may
even be understated in growth accounting models that assume independence
between factors of production (capital, labor) on one side and technological
change on the other (Abramovitz, 1993). For instance, there is a evident
relationship between technological change and capital. Embodied technolog-
ical change requires investment, i.e. capital. In turn capital productivity
increases through technological change, e.g. through cost reductions. This
relationship in form of technological learning is at the core of the model of
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endogenous technological change presented here.
Yet, for all these arguments and evidence technological change has largely

been treated as exogenous in existing models. This is true of models devel-
oped developed within the tradition of growth theory and associated pro-
duction function models (so-called “top-down,” models), as well as those
developed within an systems engineering perspective (e.g., detailed sectoral
“bottom-up” optimization models). In both modeling traditions, technologi-
cal change is either reduced to an aggregate exogenous trend parameter (the
“residual” of the growth accounts), or introduced in form of numerous (exoge-
nous) assumptions on costs and performance of future technologies. Common
to both modeling traditions is that the only endogenous mechanism of tech-
nological change is that of progressive resource depletion and resulting cost
increases. Such constraints which are at odds with historical experience (cf.
Barnett and Morse, 1967) trigger both substitution of factor inputs as well as
the penetration of otherwise uneconomic technologies. These are either rep-
resented generically as aggregates in form of so-called “backstops” (a term
coined by Nordhaus, 1973), or through detailed assumptions on numerous
technologies individually.

Perhaps one of the reasons for this apparent impasse is that both modeling
traditions usually operate within an optimization framework. However, in
reality, future characteristics of technologies are not known ex ante, but result
from the (uncertain) results of intervening actions (R&D and investments),
i.e. technological learning. Endogenization of uncertainty and of R&D and
technological learning into models is therefore mathematically cumbersome
involving stochasticity and recursive formulations.

Technological learning is a classical example of increasing returns, i.e.
the more learning takes place, the better a technology’s performance. It
is the technology counterpart of the increasing returns resulting from the
accumulation of knowledge or increases in human capital that are the focus
of endogenous growth theory (e.g. Romer, 1986, and 1990; or Grossman and
Helpman, 1991) and as discussed increasingly also in the technology domain
(cf. Arthur, 1983, and 1989).

Our paper and model aims to make a contribution in the domain of endog-
enizing technological change as arising from uncertain technological learning.
As such, the model formulation complements more traditional approaches of
induced technical change focusing on relative resource and factor endowments
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and prices (e.g. Hyami and Ruttan, 1985).1

We do not claim to develop any form of a “realistic” model in the sense
of technological or sectoral detail. Instead, our model is deliberately highly
stylized and simple. Our main objective is to demonstrate the feasibility of a
mathematical formulation that simultaneously involves technological uncer-
tainty and increasing returns (learning). Formally, this means dealing with a
non-convex, non-smooth, stochastic optimization problem. We will also show
that, despite its simplicity, the model yields interesting insights into dynamics
and patterns of endogenized technological change. The model reveals both
patterns of possible technological bifurcations as well as diffusion patterns
that are consistent with historical observations. Perhaps the overall most
significant result is that the model (given certain plausible assumptions on
parameter distributions) can endogenously generate radical departures from
existing technological practices. New technologies can penetrate the market
even if they are initially by a factor of 40 (or more) more expensive than
the existing dominant technology. Moreover such a strategy is both “ratio-
nal” and “optimal” given risk diversification considerations and the potential
returns from R&D and upfront investments that both enable technological
learning.

The plan for the remainder of the paper is as follows. Section 2 sum-
marizes the major sources of technological change considered in the model:
Uncertainty and learning (R&D, demonstration, and investments). A distin-
guishing feature of our model is that all components are integrated. Section 3
gives a brief overview of the model structure and solution algorithms that
are deployed. (More detail is given in the Mathematical Appendix to the
paper). Section 4 presents some illustrative simulations performed with the
model and the insights that these provide. Section 5 extends the simulations
to perform sensitivity analyses of four important model parameters: the
distribution of uncertainty of future learning rates, uncertainty in demand,
variations in the discount rate, and an uncertain emission tax. Finally, Sec-
tion 6 provides a concluding discussion of the results obtained as well as a
(tentative) outlook on future research directions.

1For an overview see e.g. Binswanger, 1978; Jorgenson and Fraumeni, 1981; and Rut-
tan, 1996. Our model of course also includes prices (in form of rising resource costs), but
in our discussion we focus on uncertainty and technological learning as drivers of change.
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2 Sources of Technological Change

In this Section we discuss two (interrelated) sources of technological change:
Uncertainty and learning. Uncertainty, its associated economic risks and
opportunities, as well as the strategies adopted in face of both risks and op-
portunities are a main driver of technological evolution. Learning itself is
seen as a result of both the classical “learning by doing” (read: commercial
investments) as well as of research and development (R&D), and demonstra-
tion efforts (in niche markets), subsumed here under the heading of RD&D.
All these components are interrelated and have to be considered holistically
as has been repeatedly argued by critics of “linear” models of innovation (cf.
OECD, 1992), a point which we take up in our model formulation, where
both R&D and investments taken together are modeled as a single learning
process whose actual outcome is however subject to uncertainty. Learning
is not only the main endogenous mechanism for reducing uncertainty, but is
also a means of improving technical, economic, sometimes even social, char-
acteristics of new technologies that are the main drivers for their widespread
diffusion.

2.1 Uncertainty

There is only one certainty related to technological change: the technology
of tomorrow will be different from that of today. But to what extent, and
by which concrete configurations? The importance of technological uncer-
tainty has been recognized and explored ever since the earliest days of global
environmental modeling (e.g., Nordhaus, 1973; Starr and Rudman, 1973).
Different approaches have been followed for analyzing the impacts of tech-
nological uncertainty including the formulation of alternative scenarios (e.g.,
IIASA-WEC, 1995); model sensitivity analysis (e.g., Nordhaus, 1973, 1979);
and sensitivity analysis based on expert polls or Delphi-type methods (e.g.,
Manne and Richels, 1994).

In each of these types of analysis the subjective choice of the technologi-
cal uncertainty range investigated is made either by the modelers themselves
in the sensitivity analysis, or by the experts polled. Also, whereas scenarios
or sensitivity analyses yield insights into the variations in model outcomes
that result from changes in input assumptions, technological uncertainty is
not endogenized into the decision rules (usually based on some optimization
criterion) that have been employed in the models. In other words, although
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Figure 1: Range of investment cost distributions from CO2DB technology in-
ventory for biomass, nuclear, and solar electricity generation. Source: IIASA-
WEC, 1995.

we know of different future outcomes depending on when, how, and in what
direction uncertainty is resolved, largely we remain ignorant about robust
(or even “optimal”) strategies in the face of uncertainty. In the model of
endogenous technological change proposed here, uncertainty translates into
both economic risks and opportunities (benefits), and both are directly en-
dogenized into the model’s decision rules and the resulting technology strate-
gies.

A typical example of the range of “technological expectations” (Rosen-
berg, 1982) of near-term investment costs for biomass, nuclear and solar
electricity generating technologies derived from numerous engineering stud-
ies is given in Figure 1. The resulting frequency distribution curves around
the mean can serve as a convenient, empirically derived measure of technolog-
ical uncertainty. Such distributions have for instance been used to introduce
explicitly uncertainty into optimization models (cf. Golodnikov et al., 1995).
Note in particular, the two-sided “tails” in the cost distribution of future
technology costs for solar technology, which reflects comparatively higher
frequencies of optimistic and pessimistic technological expectations (a point
to which we shall return briefly below).
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A general methodology for endogenizing uncertainty in optimization prob-
lems is described in Ermoliev and Wets (1988) and an improved algorithm
was suggested by Ermoliev (1995). It was applied in a sectoral (energy)
model using stochastic optimization by Golodnikov et el. (1995) and Mess-
ner et al. (1996).2 (See also Grübler and Messner, 1996.) There, the sub-
jective nature of defining technological uncertainty ranges is replaced by an
empirical approach, that draws on a detailed statistical analysis (Strubegger
and Reitgruber, 1995) of investment costs of current and future energy tech-
nologies derived from engineering studies. The resulting empirically derived
uncertainty distributions are incorporated directly into the optimization al-
gorithm of the model –i.e., into its underlying decision-making rule. This is
done through adding a risk term3 in the objective function that integrates
(weighted by probabilities) stochastically drawn data samples into the final
solution. The algorithm assures short computation time and full endogeniza-
tion of uncertainty in the model solution4

The stochastic model responds to a frequent criticism of traditional op-
timization models: the inappropriate assumption of a decision-making agent
that operates under perfect foresight. Through endogenization of uncer-
tainty, decision making in the model no longer operates under perfect fore-
sight. The model behavior thus approximates the outcome of real-life decision-
making situations in which different economic agents with different expecta-
tions and risk attitudes show persistent differences in strategies and invest-
ment behavior that result in technological diversification.

Model simulations illustrate that compared with traditional determinis-
tic model representations, which assume perfect foresight, endogenization of
technological uncertainty yields more diversified technological configurations.
Even more important, the model results reveal a pro-innovation bias and no
risk aversion in investments into technological change. Diversification thus
becomes the optimal response strategy in face of technological uncertainty.

However, model simulations also illustrate that the inclusion of uncer-
tainty leads to technological diversification only along the lines of incremen-
tal innovations –in other terms, to technology changes within a “technolog-

2A similar type of application using the MARKAL model is reported in Fragnière and
Haurie (1995).
3This term represents the economic costs (added to the objective function) if a tech-

nology turns out to be more expensive than expected.
4For details see Golodnikov et al. (1995); Messner et al. (1996); and Ermoliev and Wets

(1988).
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ical neighborhood” (Foray and Grübler, 1990). Radical technological change
does not occur. Diversification into radical technologies is not an “optimal”
hedging strategy in this particular model formulation. This means that tech-
nologies with currently very high costs and uncertainty ranges do not make
it to the market in the stochastic model simulations. For this to occur –as
observed in the real world– additional important mechanisms of technolog-
ical dynamics (and uncertainty reduction) need to be incorporated into the
model: learning and R&D.

2.2 Learning

In this Section we discuss technological learning, a key driver of technologi-
cal change and diffusion. We begin by discussing the classical “learning by
doing” that usually takes place through (commercial) investments. We then
discuss research and development (R&D). We conclude in showing that suc-
cessful technological learning requires both R&D and investments and that
both go hand in hand. Investments begin with demonstration efforts (niche
market applications), gradually expanding into commercial applications, thus
sustaining the technological learning that enables new technologies to ulti-
mately diffuse pervasively.

Although learning is one of the empirically most corroborated phenomenon
of technological change, it nevertheless remains uncertain. In other words:
R&D and investments are performed in anticipation of future returns (learn-
ing). This anticipation of learning, but with uncertain outcomes, is the
conceptual core of the model presented here.

2.2.1 Learning by doing

The performance and productivity of technologies typically increase sub-
stantially as organizations and individuals gain experience with them. Long-
studied in human psychology, technological learning phenomena were first
described for the aircraft industry by Wright (1936), who reported that
unit labor costs in air-frame manufacturing declined significantly with ac-
cumulated experience measured by cumulative production (output).5 Tech-

5The aircraft industry however also provides examples that technological learning
should not be taken for granted. The other side of “learning by doing” is “forgetting
by not doing.” An example of “negative” technological learning is provided by the Lock-
heed L-1011 Tristar aircraft (Argote and Epple, 1990). Production started in 1972 and
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nological learning has since been analyzed empirically for manufacturing and
service activities including aircraft, ships, refined petroleum products, petro-
chemicals, steam and gas turbines, and broiler chickens. Learning processes
have also been documented for a wide variety of human activities ranging
from success rates of new surgical procedures to productivity in kibbutz
farming and nuclear plant operation reliability (Argote and Epple, 1990).
In economics, “learning by doing” and “learning by using” have been high-
lighted since the early 1960s (see e.g., Arrow, 1962; and Rosenberg, 1982).
Detailed studies track the many different sources and mechanisms of techno-
logical learning (for a succinct discussion of “who learns what?” see Cantley
and Sahal, 1980).6

Learning phenomena are generally described in form of “learning” or “ex-
perience” curves, where typically the unit costs of production decline at a
decreasing rate as experience is gained. Because learning depends on the ac-
tual accumulation of experience and not just on the passage of time, learning
curves are generally measured as a function of cumulative output. Frequently,
the resulting exponential decay function is plotted with logarithmically scaled
axes so that it becomes a straight line (see Figure 2). Because each successive
doubling takes longer, such straight line plots should not be misunderstood
to mean “linear” progress that can be maintained indefinitely. Over time,
cost reductions become smaller and smaller as each doubling requires more
production volume. The potential for cost reductions become increasingly
exhausted as the technology matures.

Technological learning is a classical example of “increasing returns”, i.e.,
the more experience is accumulated, the better the performance, the lower the

reached 41 units in 1974. It subsequently dropped to 6 units in 1977, and then increased
again thereafter. The drastic reduction in output led to large scale layoffs and the initially
gained experience was lost with the staff turnover. As a result, the planes built in the
early 1980s were in real terms (after inflation) more expensive than those built in the early
1970s.
6A stylized taxonomy of technological learning mechanisms includes inter alia: learning

by upscaling (e.g., steam turbines or generators), learning through mass production (e.g.,
the classical Model T Ford), and learning through both increasing scale and mass produc-
tion, referred to here as “continuous operation”, i.e., the mass production of standardized
commodities in plants of increasing size (e.g., transistors, or base chemicals like ethylene
or PVC, where cost reductions through learning have been particularly spectacular, cf.
Clair, 1983). This simple taxonomy is confirmed by a statistical analysis of learning rates
across many technologies and products (Christiansson, 1995). Learning rates are typically
twice as high for “continuous operation” as for either upscaling or mass production alone.
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Figure 2: Photovoltaic costs (1985 Yen per kW installed) as a function of cu-
mulative installed capacity (in MW). Japan 1976–1995. Data source: Watan-
abe (1995) and (1997).
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costs of a technology, etc. However, because accumulation of experience takes
ever longer (cf. the increasingly “packed” spacing of observations towards
the 1990s in Figure 2) and is more difficult to achieve, learning itself shows
decreasing marginal returns.

Figure 2 plots the costs of photovoltaic cells per (peak) kW capacity as
a function of total cumulative installed capacity for Japan. Starting off from
extremely high costs of some 30,000 Yen (in 1985 prices) in the early 1970s,
costs fell dramatically: from 16,300 Yen in 1976 to 1,200 Yen in 1985 (i.e.,
a factor close to 14 in less than 10 years), and then further to 640 Yen in
1995 (another factor 2 within the next 10 years). The resulting learning rate
of a 36 percent reduction in costs per each doubling of cumulative installed
capacity is at the higher end of the range of learning rates observed in the
empirical literature (cf. Argote and Epple, 1990; and Christiansson, 1995).
This high learning rate however is less surprising considering the infancy of
the technology and the significant progress through R&D7 that should, in
fact, not be separated from “learning by doing” via investments, a point to
which we return below.

Despite overwhelming empirical evidence and solid theoretical underpin-
nings, learning phenomena have been explicitly introduced only into few
models of intertemporal choice. The most likely explanation for this paucity
of model applications is the difficulties of dealing algorithmically with the
resulting non-convexities of the problem solution. A first detailed model for-
mulation was suggested by Nordhaus and Van der Heyden (1983) to assess the
potential benefits of enhanced R&D efforts in new energy technologies such
as the fast breeder reactor. A first full scale operational optimization model
incorporating systematic technological learning was developed by Messner,
1995 (see also Nakićenović, 1996). In a mixed-integer formulation, learning
rates for a number of advanced electricity generating technologies were intro-
duced into a linear programming model of the global energy system. These
learning rates were assumed to be known ex ante. Hence, future technology
costs depend solely on the amount of intervening investments that lead to
increased experience (installed capacity), that, in turn, stimulates learning
and subsequent cost reductions.

The model by Messner (1995) demonstrated the feasibility of including

7Note in particular the substantial cost decreases between 1973 and 1976 prior to any
installation of demonstration units.
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learning phenomena.8 The results obtained are especially significant for two
reasons.

First, the results indicate that providing for technological learning can
lead to radical technological change. Learning enables the diffusion of tech-
nologies that are very different in their technological and economic charac-
teristics of those predominantly used today. (The radical technologies that
diffuse in the model simulations are, incidentally, also less carbon-intensive.)
The resulting technology dynamics in the model yield diffusion patterns that
are remarkably consistent with the theoretical and empirical findings of the
diffusion literature (cf. Grübler, 1991, 1992): slow, but early, growth in niche
markets where initial experience is gained, subsequent widespread diffusion
that however, ultimately saturates when the technology eventually matures.
This is in stark contrast to the typical “flip-flop” behavior of optimization
models in which technological change (cost reductions) is introduced exoge-
nously. There, the initial necessary gradual slow growth in niche markets
and the resulting required upfront investments are entirely missed out sim-
ply because the learning that leads to the cost reductions postulated come
at no cost.

Secondly, the model simulations with an optimization framework of Mess-
ner (1995) demonstrate that upfront investments into new technologies stim-
ulate future costs decreases and can be economically optimal, even if at the
time of investment a new technology is more expensive and has lower per-
formance than existing ones. The results also contradict the policy advice
(e.g., Wigley et al., 19969) that environmental policies such as emissions
regulations should be delayed in anticipation of future technology improve-
ments. The viewpoint of technological learning suggests that earlier action
is better. Such early action may not necessarily imply the adoption of strict
environmental targets but rather might consist of enhanced R&D and niche
application efforts that stimulate technological learning.

There remain however two shortcomings in the modeling approaches dis-
cussed thus far. First, even if the empirical literature and statistical studies
(e.g., Christiansson, 1995) give some hints about possible rates and mecha-
nisms of learning in the past we remain uncertain about the rates at which
a particular technology may improve in the future. Thus, instead of treat-
ing learning rates as (deterministically) known ex ante one needs to con-

8On the methodology see Messner (1995) and (1997).
9For counterarguments see also Grubb, 1996.
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sider uncertainty explicitly. Second, viewing technological change as result
of R&D and investments, it is insufficient to consider only investments, even
if investments constitute the dominant share in total expenditures into new
technologies. Both domains are considered explicitly in the model presented
here.

2.2.2 Learning through (Applied) R&D

The importance of RD&D (research, development, and demonstration) as
source of technological change is evident and needs no further discussion
here. The demonstration component of RD&D, which takes up the highest
share in total RD&D costs, is well captured in the learning curve formulation
presented above. However, one needs also to consider R&D (research and
development) costs explicitly. In other words: include applied research10

efforts in our considerations here.
As a representative conceptual and empirical model we follow the formu-

lation of Watanabe (1995), who draws on the experience with MITI’s “sun-
shine” technology program. The data are particularly suited for illustrating
our main argument because they include both public and private R&D ex-
penditures and are also exceptionally comprehensive. (As a rule it is very
difficult to get a complete overview of technology specific R&D expenditures
by private industry.) The Watanabe model has also the added benefit of
empirical parametrization obtained through statistical/econometric analysis
of long time-series data. We use the example of photovoltaic cells (PVs) as
illustration.

In essence, the model of applied R&D (see Figure 3) describes a pos-
itive feedback loop (a “virtually spin cycle” in the terminology of Watan-
abe, 1995): public R&D (together with other incentives) stimulates industry
R&D, and both increase the “technology knowledge stock”11 of a particu-

10We recognize the importance of basic R&D as laying the groundwork, typically in
form of new scientific knowledge, for applied RD&D and subsequent technological change
(cf. Rosenberg, 1990). However, considering the frequently long lead times between the
generation of new basic scientific knowledge and first commercial applications as well as the
generic nature of scientific knowledge, i.e., it is relevant for more than just a few particular
technologies; basic research is not treated separately in our discussion and model.
11This is the sectoral or technology specific equivalent of the knowledge stock introduced

in the production function models of the so-called “new growth theory” (e.g., Romer, 1986,
and 1990), that can also exhibit increasing returns. Evidently there are likely additional
interindustry and cross-national R&D spillover effects (cf. Mansfield, 1985), including
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lar technology, which leads to performance and cost improvements. These
(amongst other incentives) in turn stimulate demand, increasing size of niche
markets, learning (and hence further cost reductions), widening markets (pro-
duction increases), that all feed back as a further stimulus for industrial R&D.

A flow diagram as well as the associated empirically derived model pa-
rameter estimates of the Watanabe model is shown in Figure 3.

For our purposes here, the model is particularly suited to demonstrate
the close interlinkages between research and development and demonstration
as well as the importance of the interplay between public and private R&D.
One of the interesting findings of Watanabe (1995) is also the identification
of the time lag between actual R&D expenditures and their returns in form of
improved technology performance i.e., lowered costs in this case. This time
lag is estimated by Watanabe (1985) to be less than three years illustrating a
rather effective application of improved technical knowledge gained through
systematic R&D improving design, production methods, etc. Combined,
they result in rapidly falling technology costs.

Retaining this time lag of three years, we replot the learning curve from
Figure 2 above, but this time using RD&D expenditures (including R&D and
investment costs) as independent variable (Figure 4).

Over the period 1973 to 1995 a total of 206 billion Yen (in constant 1985
money)12 were spent on photovoltaics in Japan. 78 percent (162 billion Yen)
of that amount were expenditures in actual investments in PV capacity, and
22 percent (44 billion Yen) on R&D proper. These statistics confirm the
dominance of investments in niche markets and early deployment in total
RD&D expenditures (and support our model simplification of adding R&D
costs to investments rather than the other way around). Even more impor-
tant is that R&D and investments cannot be treated separately as sources
of technological learning. A linear model of the form that R&D precedes
actual investments (demonstration in niche markets, even early commercial

those from purchases of equipment (cf. OECD, 1996) that increase this technology knowl-
edge stock too (working however, in both directions of give and take). These spill-over
effects are not treated in the simplified aggregate model presented here.
12This equals approximately 2.5 billion US$ in 1995 prices and exchange rates.
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from empirical data over the period 1976 to 1990. Source: Watanabe, 1995.
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Figure 4: Photovoltaic costs (1985 Yen per kW installed) as a function of cu-
mulative RD&D expenditures (billion (1985) Yen). Japan 1976–1995. Note
that both applied R&D expenditures (lagged three years prior to invest-
ments) as well as demonstration (i.e., investment) costs are shown. The de-
clining costs of PVs correlate well with total aggregate RD&D expenditures
along a classical learning curve pattern with an over 50 percent reduction in
costs for each doubling of cumulative expenditure (a proxy for the technology
knowledge stock). Data source: Watanabe, 1995, 1997.
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applications13) is not supported by the data.14

Functionally, total RD&D costs and technology costs again exhibit a clas-
sical learning curve relationship as shown in Figure 4. (The fact that the re-
sulting learning curve parameter is with 54 percent per doubling higher than
that given in Figure 2 above [36 percent per doubling] is self-evident: with
falling costs simply more capacity can be installed per unit expenditure.)

This simplifies our basic model considerably as both R&D and invest-
ments taken together can be modeled by a single learning curve,15 whose
actual value is however subject to uncertainty. This constitutes the essence
of our simple model of endogenized technological change integrating uncer-
tainty, R&D, and technological learning.

3 The Model

Our optimization model of technology choice is conceptually simple. (For a
mathematical description and parameter values see the Mathematical Ap-
pendix.)

We suppose one primary resource, whose extraction costs increase over
time as a function of resource depletion, while being sufficiently large for not
resulting in absolute resource scarcity over the entire simulation horizon (set
rather extremely at 200 years). The economy demands one homogeneous
good, the demand for which increases over time. Three technologies are in
principle available to perform the transformation from primary resource to
the good demanded: “Existing,” “Incremental,” and “Revolutionary.”

The “Existing” technology is assumed to be an entirely mature one, i.e.
its characteristics (costs and resource conversion efficiency) do not change
over time. The “Incremental” technology represents its incremental improve-
ment counterpart with a slight efficiency advantage, but with currently higher
(by a factor 2) costs. The “Incremental” technology has potential for tech-
nological learning; the mean learning rate assumed is set at 10 percent (for

13There can be quite an overlap between these two types of investments. Consider for
example the case of PVs: their use in remote locations constitutes both an important
demonstration effort, but in many cases may constitute already a commercial investment
as well. This is an additional reason of not separating artificially R&D, from demonstration
and subsequent early commercial investments.
14For further evidence see also Mori et al., 1992; and Baba et al., 1995.
15Technically this is done simply by increasing the intercept of the learning curve refer-

ring to investments alone through a fixed R&D component percentage.
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each doubling of cumulative production capacity16 installed) which is char-
acteristic for incremental technological change.

As mentioned above, this learning rate reflects the “expectations” of the
returns on RD&D efforts invested into the “Incremental” technology. The
learning rate is of course uncertain and we represent this through an uncer-
tainty range around the mean value adopted based on a lognormal distribu-
tion function.17

As its name suggests, our assumed “Revolutionary” technology is radi-
cally different. It hardly requires any resource inputs, and thus offers a sub-
stantial efficiency premium. But that premium comes at a very high cost:
Initial costs are assumed to be a factor 40 higher than those of the “Exist-
ing” technology in our base case simulations. However, high costs also imply
high potentials for technological learning, and we assume a mean learning
rate of 30 percent (per doubling of capacity) which is consistent with em-
pirical examples of radical technological change. Again, the exact learning
rate is uncertain, represented by a lognormal distribution function around
the mean value (cf. the Mathematical Appendix). And uncertainty of course
is also larger than that of incremental technological change: we assume that
the dispersion around the mean learning rate is three times the uncertainty
range of the less risky “Incremental” technology.

Current costs are assumed to be known perfectly which reflects the common-
sense notion that actual investment eliminates any uncertainty on current
costs of new technologies (provided of course a supplier is found). As men-
tioned above, costs are assumed to include both actual investment costs and
R&D costs.18 Resource quantities/prices are also assumed to be perfectly
known as well as the future evolution of demand (this restrictive assumption
is relaxed in simulations reported below which also treat also future demand
as uncertain).

Formally, our model works as follows. The learning rates of the “Incre-
mental” and “Revolutionary” technology are treated as random values. This
means that future technology (investment) costs are a random function of the

16As simplification (in order for not having to compute the costs of under-utilized in-
stalled capacity) we assume 100 percent capacity utilization for all three technologies.
17We also test below the sensitivity of our model results to using alternative functions.
18For the “Incremental” technology the R&D component is assumed to be comparatively

small, whereas for the “Revolutionary” technology R&D costs are much higher. Typical
empirical examples of R&D intensive technologies indicate that R&D costs can account
for up to 30 percent of total RD&D costs.
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intervening cumulative investments. The probabilistic characteristics of these
random values can be derived from the uncertainty distribution functions of
the corresponding learning rates. In our model we are using a simultaneous
approximation of these random future cost values by N sample functions of
the learning rate, where N is the sample size (see the Mathematical Appendix
for further details). For this simultaneous sampling of parameter values, the
non-convex and non-smooth optimization problem is solved by applying a
combination of a simple global search procedure, a modified Nelder-Mead
algorithm, and a BFGS quasi-Newton minimization. The solution path of
the optimal technology strategy for our problem with N approaching infinity
converges to an optimal solution of the original stochastic problem.

For each sample N we integrate the expected costs into the objective
function that consists of three parts. Part 1) corresponds to the expected
value for a deterministic formulation. Part 2) in the objective function repre-
sents the risk (costs) of having overestimated the technological learning rate,
i.e. realized investment costs are higher than expected. The additive term
is assumed to be quadratic, i.e. the costs added to the objective function
grow quadratically with the deviation of costs from sample N to the mean
expected value. Part 3) is it’s benefit counterpart, i.e. when costs turn out
to be lower than the expected (mean) value due to learning rates that are
higher than expected. This part added to the objective function is assumed
as a linear term.

In our approach, “risk” and “benefits” are non-symmetric and cannot be
expressed simply in terms of mean and variance of corresponding economic
gain and losses. This reflects our interpretation of reality characterized by
asymmetry of the costs associated with under- or overestimating future costs
and hence one’s future competitive position. Underestimating costs is penal-
ized more heavily in competitive markets than overestimation. (Though in
our stylized model we only have a single decision agent that however, does
not operate with perfect foresight.)19 Cost underestimation risks the very
survival on the market, whereas cost overestimation yields “merely” lower
profits than expected. In other words, our model (perhaps conservatively)
values survival higher than profitability.

The model is solved for a sufficiently large sample N, where the size of

19We are currently working on an extension of the model with multiple agents that can
have different valuations of risks and benefits associated with making a wrong “bet” on
future learning rates.
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N has been determined through successive experiments. Several successive
model runs with the same sample size (but because of the stochastic draw of
course consisting of different subsamples of learning rates) N are compared.
If no major changes in the solution structure and the objective function
can be observed then N is considered sufficiently large. The model then
determines an overall intertemporal cost minimum given all the individual
realized objective functions (plus and minus the quadratic and linear risk
and benefit costs terms respectively) of sample N using a discount rate of 5
percent.20 The resulting model solution represents the optimal technological
investment diversification strategy vis à vis uncertain returns from RD&D
needed to promote technological learning.

4 Base Case Simulations

In this Section we report quantitative simulations performed with the model
using a discount rate of 5 percent and the other model parameters such
as initial costs and learning rates set at their base case value given in the
Section above and in the Mathematical Appendix. In turn, these base case
assumptions are varied further in the Sensitivity runs reported in the next
Section below.

We start with the results in terms of the share of various technologies in
new capacity additions over time as shown Figure 5.

Simulation runs 0 and 1 represent the more conventional view of technol-
ogy as either static (run 0) or determined exogenously (run 1). The signifi-
cance of the run with static technology is what does not result: neither the
“Incremental” nor the “Revolutionary” technologies ever make it. Over the
entire simulation horizon all additional capacity growth is supplied by the
“Existing” technology (dotted line at 100 percent share level in Figure 5).
Run 1 portrays a typical pattern of models that employ exogenous techno-
logical change: at some future time (2020 in our case) a new technology
massively enters the picture due to an exogenously prespecified cost reduc-
tion.21 Similar patterns occur in models deploying an exogenous “backstop”
technology which enters the market only due to resource depletion effects or
additional exogenous constraints, e.g. environmental limits. “Running out

20This as it turns out very critical parameter is varied below in the sensitivity analysis.
21We assume simply that the costs of the “Incremental” technology fall like “manna

from heaven” to the level of the “Existing” technology by 2020.
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Figure 5: Share (in percent) of three technologies in new capacity additions,
“Existing” (dotted lines), “Incremental” (dashed lines), and “Revolution-
ary” (solid lines). Note that for clarity of exposition only growing shares are
reported (and the symmetrical declining shares of technologies being substi-
tuted are omitted). The simulation runs shown include:
0: static technologies
1: exogenous improvements in “Incremental” technology only
2: learning of “Incremental” technology only
3: uncertain learning of “Incremental” technology only
4: learning of “Incremental” and “Revolutionary” technology
5: uncertain learning of “Incremental” and “Revolutionary” technology (re-
tained as standard base case BC30 in the discussion below).
For a discussion see text.
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of resources” and environmental limits are not considered in the base case
simulations.

More interesting are the results from simulation runs 2 and 3. There we
allow technological learning for the “Incremental” technology (but not for
the “Revolutionary” one). In run 2, the learning rate (10 percent cost re-
ductions for each doubling of installed capacity) is assumed to be perfectly
known. Combined with the model’s perfect foresight, this results in a very
rapid market introduction. Allowing for uncertainty in the potential returns
of technological learning (run 3) yields a more cautious diversification strat-
egy with delayed and gradual experimentation, starting with a low level of
installed capacity which is gradually stepped up.

Simulation runs 4 and 5, repeat the runs 2 and 3, but this time also
allowing learning for the “Revolutionary” technology. Run 4 assumes perfect
knowledge of future returns to RD&D (learning), whereas run 5 assumes that
learning rates are uncertain. This run 5 with uncertain mean learning rates
of 10 and 30 percent for the “Incremental” and “Revolutionary” technology
respectively is retained subsequently as base case for the sensitivity analysis
(and is denoted as BC30).

Because of high initial costs and much greater uncertainty the market
entry of the “Revolutionary” technology is delayed into the future (compare
runs 4 and 5 in Figure 5). However, it is important to emphasize that from
very early on investments even in the “Revolutionary” technology do indeed
occur (and such investments are optimal in the sense of the model formula-
tion). These small initial investments, which are critical for continued tech-
nological learning, appear rather invisible on the linear scale of Figure 5. It
is important to emphasize again that the “Revolutionary” technology makes
it to the market only if learning occurs.

Overall, the most significant results of the model simulations is the demon-
stration of an entirely endogenous mechanism that drives technological change:
expected returns from RD&D which are uncertain but potentially large, make
(gradual) technological experimentation and learning the optimal strategy.
The decision agent in our model acts entirely rationally by investing upfront
into RD&D in expectations of returns in form of performance improvements,
cost reductions, etc. His/her rationality is however “bounded” (Simon, 1982)
by the inevitable uncertainty about the benefits and costs of such invest-
ments.

Figure 6 shows the results for one of our base case simulations (run 5
[BC30] from Figure 5 above) as total market share (in total installed capac-
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Figure 6: Market shares (in percent) of the three technologies in total in-
stalled capacity under uncertain technological learning with base case param-
eter specifications (simulation run 5 of Figure 5 above). Note in particular
the smooth S-shaped diffusion patterns.

ity) of each of the three technologies. The result is a pattern of technological
evolution characterized by a “sequence of replacements” (Montroll, 1978) of
older by newer technologies. This technological structural change is consis-
tent with the diffusion patterns observed historically (cf. Nakićenović, 1997)
and formulated by diffusion theory (cf. Rogers, 1983). Technologies enter
into small niche markets slowly, but with declining costs (through learning)
diffuse more rapidly and widely until markets are saturated and technolog-
ical improvement possibilities (learning potentials) become exhausted. The
result, graphically, is the familiar S-shaped curve pattern.

5 Sensitivity

In the simulations reported thus far we have used uncertainty distributions
only around the base case parameter values of the learning rate while as-
suming all other salient model parameters and input variable as perfectly
known. We now report several sensitivity analyses that relax successively
these simplifying assumptions. We have explored the model’s sensitivity in
the following domains:
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1. variations in the base case parameters of initial starting costs and mean
learning rates for the stochastic sampling;
2. variations in the (shape of the) distribution functions of technological un-
certainty;
3. different discount rates;
4. treating energy demand as uncertain; and finally,
5. including the possibility of an environmental constraint in form of an
emission tax, whose likelihood of occurrence and extent are uncertain.

5.1 Variation in start-up costs and learning rates

A model that incorporates increasing returns is obviously highly sensitive
to the parameter values adopted in the simulations. Two parameters are
of particular importance in our modr model: 1) the initial start-up costs
assumed from which technological learning (cost reductions) begin, and 2)
the learning rate (percent cost reduction per doubling of cumulative installed
capacity). Even small variations of parameter values in particular ranges can
lead to radically different model outcomes. The resulting non-linear behavior
is illustrated in Figure 7 which compares the “Revolutionary” technology
with the (static) “Existing” one.

The sensitivity analysis illustrates that it is the learning rate parameter
that is the most influential over whether a currently expensive technology
makes it to the market (see for instance the flatness of the curve with a 50
percent learning rate even when varying the initial costs between 10,000 to
100,000 $/kW). Conversely, if the learning rate is low, even initially low start-
up costs do not help much. This (together with simple plausibility) confirms
our approach in treating the learning rate as stochastic while assuming that
initial costs are well-known. Nevertheless, for some parameter combinations
comparatively small variations in initial costs can make a large difference:
varying the initial costs from 10,000 to 30,000 for a mean learning rate of
30 percent delays the break-even point of the “Revolutionary” technology by
more than five decades in this particular example.

5.2 Distribution of uncertainty

As an additional sensitivity analysis we have also varied the type of uncer-
tainty distribution function around the mean learning rate. Even maintaining
the same variance, using alternative distribution functions to the lognormal
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Figure 7: Time (year) by when the “Revolutionary” technology reaches eco-
nomic break-even with the “Existing” one as a function of initial start-up
costs (in 10,000 US$ per kW) and learning rates (percent cost reduction per
doubling of cumulative installed capacity). The vertical axis represents time.
Low values indicate the technology becomes rapidly competitive (right-hand
side, lower corner), high values (left- and right-hand side upper corners) in-
dicate it never would become competitive. Note in particular the non-linear
domain of the parameter space, where even small variations in parameter
values result in quite different model outcomes. Our model achieves opti-
mal investment solutions by sampling stochastically drawn samples in this
parameter space around the mean value of the learning rate adopted.
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(i.e. functions with long tails like Weibull or Gamma distributions) can make
a difference in model outcomes. Even with the same variance, the model is
sensitive to the existence of even extremely low-probability “outliers” param-
eter values. For instance, consider the technological “expectations” of future
learning rates: even in adopting the same mean and variance as in the base
case simulations but including the very small possibility of an extreme high
learning rate yields a different model outcome. The model moves in direction
of earlier and higher upfront investments into RD&D. Typically, the pene-
tration curves (run 5 in Figure 5) is shifted to the left by one to two decades.
Thus, if there is even a slight chance of ultimately doing better than in the
base case simulation the model results in an accelerated innovation pattern.
Obviously, the relationship goes in both ways: even a slight chance of much
lower than expected learning (or even no learning at all) can mean delayed
introduction of new technologies (or even their entire disappearance from the
market).

Such model runs with long-tailed uncertainty distributions reflect also
reality, especially for radically new technologies. Empirical distributions of
future technological “expectations” frequently show slightly higher frequen-
cies towards the extreme tails reflecting notorious technological “optimism”
and “pessimism” (cf. Figure 1 above). Taken together, the existence of such
widely different expectations about future cost improvement (learning) po-
tentials may enhance technological innovation, rather than hinder it, because
innovation is usually carried out by agents who are optimistic about a par-
ticular technology. In this aspect our optimization model can in fact portray
quite similar behaviors as simulation models developed within the framework
of evolutionary economic theories (cf. the insightful model of Silverberg et
al., 1988).

5.3 Discount rates

The influence of the discount rate on any intertemporal optimization problem
is evident and needs no further exposition. We have performed sensitivity
analyses for discount rates of 3 and 7 percent in addition to the base case
value of 5 percent reported above. Overall, technological change patterns in
the model varied as a function of the discount rate. Ceteris paribus, higher
discount rates result in postponed technological investment, experimenta-
tion and learning. This result was to be expected considering the decisive
influence of the discount rate on the objective function. The most inter-
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esting insight from this sensitivity analysis was obtained when combining
high discount rates (7 percent) with uncertainty of technological learning.
In this simulation experiment, the “Revolutionary” technology, which invari-
ably appeared as a robust technological diversification strategy in all earlier
simulations (albeit with different timing and market penetration profiles) did
not make it to the market. In other words, high intertemporal discounting
combined with high technological uncertainty favors “no change” technology
strategies.

5.4 Uncertainty in demand

We also have explored the sensitivity of the model to uncertainties in demand.
Because growth in demand is the result of complex interacting demographic,
economic, and lifestyle forces we can expect its future evolution to be highly
uncertain. Perhaps demand is even more uncertain than technological pa-
rameters. Hence the interest to explore its implications on technology RD&D
strategies.

For the demand uncertainty analysis we adopt a somewhat different pro-
cedure. Instead of sampling within one singular uncertainty distribution
around the mean expected value of a 13-fold increase between 1990 and the
year 2100, we divide the uncertainty distribution into four subsamples (see
Figure 8) and perform the stochastic sampling on basis of these subsamples.
We do not assign relative probabilities to these four samples as our interest
lies in examining different technology strategies that emerge from four dis-
tinct expectational domains of future demand. As previously, probabilities
are assigned to draws within each of the four subsamples.

As a result we obtain four distinct solutions (technology trajectories) cor-
responding to alternative technology strategies in face of demand uncertainty.
These are reported in Figure 9 for the “Revolutionary” technology. For com-
parison we also show simulations with uncertain technology learning rates
(around mean values of 30 and 40 percent respectively) and a simulation run
with an uncertain emission tax (cf. the discussion in the next Section below).

Figure 9 illustrates the wide variation in future diffusion pathways of the
“Revolutionary” technology as a function of differences in rates of technolog-
ical learning, demand, and environmental limits. Obviously, if the potential
for technological learning is higher, then new technologies penetrate the mar-
ket earlier (cf. the difference between the base case scenarios BC30 and BC40
in Figure 9). This is also the case if one is uncertain whether environmental
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Figure 8: Uncertainty distribution of demand (index 1990 = 100) by 2100
around the mean value of 1250 which is used for analysis of model sensitivity
to uncertainty in demand. Also shown are the four subsamples A, B, C, and
D used for stochastic sampling. Samples B and C represent “normal” uncer-
tainties below (sample B) and above (sample C) the expected mean value;
samples A and D represent low probability possibilities that the demand
could be vastly lower (A) or higher (D) than expected.
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Figure 9: Shares in new capacity additions (in percent) of a “Revolutionary”
technology in three different scenario classes:
solid lines: base case and sensitivity run (stochastic uncertainty with mean
learning rate of 30 and 40 percent respectively) denoted as BC30 and BC40;
dashed lines: base case with additional uncertainty of demand for four do-
mains of demand uncertainty denoted as A, B, C, and D (A and B represent
different degrees of realized demand being lower than expected, C and D
indicate domains where demand could turn out higher than expected);
dotted line: base case (BC30) with an uncertain environmental constraint
(emission tax), denoted as BC30+Tax. The time axis shows the (positive or
negative) diffusion lag (in years) compared to the base case (BC30) simula-
tion.
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constraints may appear in the future and how severe such constraints might
be. Again RD&D (learning) and the consequent gradual increased diffusion
of new technologies are optimal response strategies in face of uncertainty.
The downside risk for RD&D is obviously the case when demand growth is
much lower than expected. Although not as extreme as in the earlier sensitiv-
ity analysis with a much higher discount rate (in which radical technological
change did not occur at all), the penetration of radical technologies is post-
poned. In Figure 9, the extreme low demand sample (run A) results in a five
decade delay in the introduction of the “Revolutionary” technology, when
compared to the base case (BC30) simulation.

The most interesting case in the simulations is that of the possibility that
future demand is much higher than expected. The probability of extreme
high demands (cf. subsample D in Figure 8 above) is extremely low in our
example. Nonetheless, facing this uncertainty, in addition to the uncertainty
on the rate of technological learning, does not lead to any moratorium in
RD&D and experimentation in radical technologies. Because of the possibil-
ity of technological learning, experimentation is the optimal response strategy
in face of demand uncertainty on the upper end. It represents an adaptive
strategy that allows satisfying even high demand with low cost technologies,
despite accelerated resource depletion.

What are the implications of above model simulations for near- to medium-
term investment strategies? Figure 10 shows the actual time profiles of new
installed capacity for the “Revolutionary” technology from the simulations
reported in Figure 9 above. Invariably, with higher potential for technologi-
cal learning, higher future demand, or an uncertain environmental limit (the
simulated carbon tax) investment profiles are shifted earlier. The time shift
is shown in Figure 10, where the time profiles are renormalized to the base
case simulation BC30 at t=0. Thus, if indeed such possibilities are within the
realm of current policy concerns (and we feel that they are very much so),
then the implications on technology strategy are the same as in our simple
model: learn earlier, in order to prepare for later surprise.

5.5 An uncertain emission tax

Finally, let us address environmental issues as possible drivers of technological
change. The existence, timing, and extent of possible future environmental
constraints, e.g. in form of emission limits or taxes, are highly uncertain.

Consequently we study the model’s behavior when subjected to an un-
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Figure 10: Results from Figure 9 but shown as new capacity additions (GW)
of a “Revolutionary” technology in three different scenario classes (cf. Figure
9 above for a more detailed definition). The time axis shows the (positive or
negative) diffusion lag (in years) compared to the base case (BC30) simula-
tion.
Solid lines: base case (uncertain learning rates with mean of 30 and 40 per-
cent respectively) denoted BC30 and BC40;
Dashed lines: base case with additional uncertainty of demand (A and B
represent simulations in which realized demand could turn out lower than
expected, in C and D demand could turn out much higher);
Dotted line: base case (BC30) with uncertain emissions tax (BC30+Tax).
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certain environmental constraint. The existence, magnitude, and the timing
of the constraint are treated as uncertain. This is done as follows: First
we assume a cumulative probability distribution of the occurrence of the
emission tax over the entire time horizon. Starting (at quasi zero) in the
year 1990, the probability that an emission tax (for instance on emissions of
carbon dioxide) is implemented or not increases over time (i.e. uncertainty
about occurrence and timing is reduced). For instance, in the illustrative
distribution function used for this sensitivity analysis we assume that there
is a one third chance that some tax would be implemented sometime in the
future (and hence a two thirds chance that it would not). In conformity with
the problem at hand (even though it complicates our computations) we also
consider the timing of introduction and the absolute amount of the emission
tax to be highly uncertain. Concerning timing, we assume a probability of
introduction increasing to 50 percent by 2050, and to 99 percent by the year
2100 (if the tax is established at all). Concerning the absolute level of the
emission tax, we also assume a distribution with a very small probability of
an unpleasant surprise (i.e. a relatively high tax level). Formally this is done
by drawing a Weibull distribution around the mean expected value of the
tax, set at US$50 per ton (carbon)22 with a 99 percent probability that it
would not exceed US$125 per ton (C).

The result of the introduction of this additional uncertainty on the tech-
nology diffusion of the “Revolutionary” technology is reported in Figure 9
above. The existence of a possible environmental constraint alters the pat-
terns of technological change substantially. Again, RD&D and investments
that enable subsequent technological learning are shifted earlier in time to
prepare for the possibility of facing a costly future environmental constraint.
In that respect, the possibility of an environmental constraint yields similar
patterns as the possibility that future demand could be much higher than ex-
pected, or that learning rates might be higher than anticipated. In all three
cases, that represent the most important unknowns for the energy sector, ear-
lier RD&D and investments are the optimal response strategy. Short-term
investments into RD&D in new technologies are higher in order to stimulate
learning, even if these new technologies ultimately penetrate on a massive
scale only many decades in the future. In essence our model results indicate

22For illustrative purposes we assume conversion efficiencies and carbon emissions per
unit output (electricity) representative for conventional and advanced coal systems (“Ex-
isting” and “Incremental” technologies of our model) and of solar PVs as example of a
“Revolutionary” technology.
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as optimal strategy vis à vis future contingencies: “get prepared as early as
possible for potential surprises that might strike later.”

We conclude this overview of our model runs by pointing out a final po-
tential “surprise” emerging from our model runs. Allowing for technological
learning in an endogenous model of technological change could result in pro-
nounced discontinuities of future emission levels. These in fact might drop
substantially, not through an exogenous “shock” such as taxation or emis-
sion limits, but through the endogenous dynamics of technological change
(cf. Figure 11). Such a view is obviously in stark contrast to the typical
“business as usual” emission trajectories, which embrace either a static or
incrementalist technological change perspective. Our model results strongly
suggest that this divergence in future emission pathways might be not only
an issue of uncertainty of the future per se (e.g. of resource availability),
but also how technological change is represented in models: exogenous, or
endogenous.23

6 Conclusion

We have developed a model of endogenous technological change, which is
driven by expectations of uncertain returns from investments into research,
development, demonstration, and commercialization of new technologies.
Such technologies are initially unattractive, but they offer (uncertain) poten-
tial for future improvements. Lower costs, once realized, allow widespread
adoption, i.e. technology diffusion. As in the real world, investments result
in (uncertain) technological learning and are a main driver of technological
change.

Our model represents technological change as resulting from the (ratio-
nal) strategies of economic agents that know that technological change does
not come as a free good. Rather, improved technologies require dedicated
efforts and expenditures, and agents act accordingly. Albeit they remain
uncertain about the ultimate outcome of their strategies (i.e. there is a
difference between “technological expectations” and the ultimately realized
technological learning). In this sense, technological change arises out of the
“bounded” economic rationality of pursuing technological R&D and invest-

23Of course we can also imagine endogenous technological change trajectories leading
to higher emissions rather than lower ones –for example, energy-intensive hypersonic or
space travel.
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Figure 11: Carbon Emissions of a one-region, three technology model (in-
cluding a currently expensive, but potentially promising zero-carbon option).
Emissions (index, 1990=1) resulting from alternative representations of tech-
nological change (all other model specifications are identical): Static technol-
ogy (dotted line), incremental technological change (dashed line), full endo-
genized uncertainty and learning (solid line A), combined with an uncertain
emission tax (solid line B).
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ments in anticipation of future returns in form of performance improvements,
cost reductions, etc. that are also main drivers of technology diffusion. As in
the real world, uncertainty in outcomes of (returns to) of R&D and invest-
ment efforts is a key feature governing technological evolution.

At the analytical level, we were able to demonstrate a model formula-
tion involving simultaneously increasing returns and uncertainty within an
intertemporal optimization framework. The most important result is the
demonstration of an entirely endogenous mechanism of technological change.
In other words, we could show that the non-convex, non-smooth, stochas-
tic optimization problem resulting from stochasticity (uncertainty) and in-
creasing returns (learning) combined, is solvable. Moreover, the patterns
of technological change and diffusion exhibited by the model are consistent
with those observed historically and in the diffusion literature. As such, our
model responds to the frequent (and justified) critique of diffusion studies
and models as being phenomenological, lacking a clear endogenous causality
mechanism.

In model runs with plausible patterns of uncertainty and technological
learning, technologies that are economically unattractive today (e.g. a factor
40 higher costs) nonetheless diffuse into the market within 4–5 decades. Such
diffusion is economically optimal, but requires upfront investments into R&D,
demonstration (niche markets), and gradually into expanding commercial in-
vestments, all of which lead to pervasive diffusion. These upfront investments
initiate a process of technological improvements and cost reductions (learn-
ing) that is further sustained during subsequent pervasive diffusion.

Our model results also show, that investments into technological learning
(RD&D) constitutes an optimal contingency strategy vis à vis uncertainty in
future demand and the possible emergence of environmental regulations.

After demonstrating the feasibility of a model of endogenous technologi-
cal change, much remains to be done on both the conceptual and modeling
levels. Clearly, the highly stylized structure of the model must be expanded
to, at least rudimentarily, resemble the complexity of existing technological
systems. This constitutes a prerequisite also to study in more detail the crit-
ical issue of technological interdependence, i.e. technological change in one
domain (e.g. hydrogen cars) is insufficient if not accompanied by correspond-
ing changes in other technologies (e.g. hydrogen production, transport, and
distribution infrastructures). The complex issues of spillovers and learning
externalities –such as advances in general scientific knowledge or the possi-
bility of “free riding” on someone else’s learning efforts– also have not been

35



addressed by our simple, one actor model. In a next step a multi-region,
multi-actor model will be required to study the models behavior in the pres-
ence of technological interdependence and positive or negative spillovers.

Despite its simplifications and limitations our model of endogenized tech-
nological change offers several important insights that might be relevant to
policy. All are intuitive but have become corroborated through model sim-
ulations. Foremost is the conclusion never to dismiss the market potential
for a new technology based on its current state (e.g. costs). Through ap-
propriate strategies (i.e. learning) the costs and performance of technologies
can change drastically, as amply illustrated by technology history and also
our model simulations. Uncertainty is an important driver than can retard
change, or, rather lead to a more cautious and gradual learning strategy and
resulting investment profile. High uncertainty, combined with low expecta-
tions of learning potential can even stall radical change alltogether, as does
using a high discount rate of intertemporal choice.

However, there are also cases in which higher uncertainty can lead to
accelerated technological learning as a robust and low cost hedging, or con-
tingency strategy vis à vis extreme outcomes. Our results have indicated,
for example that surprises in form of much higher demand than expected or
(uncertain) environmental limits lead to strategies of early learning rather
than delay. It is in this domain that our model results may contribute also
to the current policy debate. We know that our knowledge on the future
evolution of demand, be it for energy, raw materials, food, or environmen-
tal amenities is extremely uncertain. We also remain ignorant even about
most basic drivers, such as how many people will inhabit Planet Earth some
100 years from now. No model can help to resolve these fundamental un-
certainties of the future. But a view of endogenized technological change
can yield some insights into possible strategies of how we can prepare for
such contingencies. From the perspective of the results obtained with our
model the answer is: invest. Invest in R&D, demonstration (niche markets),
in gradually expanding commercial markets, preparing pervasive diffusion.
Such investments strictly entail acting sooner than later. Absent investment,
the technological change needed to face future contingencies will not occur.

“Unlike resources found in nature, technology is a manmade resource
whose abundance can be continuously increased, and whose importance in
determining the world’s future is also increasing” (Starr and Rudman, 1973).
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Mathematical Appendix
The model contains three technologies i, i = 1, 2, 3, that share a common
single resource, whose extraction costs increase over time. Total annual pro-
duction of all three technologies must satisfy an exogenously given demand

D(t) ≤
∑
i

Xi(t), i = 1, 2, 3 ,

where D(t) is demand at time t, Xi is the annual production of technology i
and the time horizon extends from 1990 to 2200. Capacity constrains assure
that annual production for each technology does not exceed installed capac-
ity (100% capacity utilization is assumed).

Xi(t) ≤ Ci(t),

Ci is the total installed capacity of technology i. Capacities are built up by
annual new installations

Ci(t) =
∫ t
t−τi

Yi(τ )dτ ,

42



where Yi is the annual new installation of technology i and τi is the plant life
of technology i. τi is assumed (with 30 years) equal for all technologies.

The input-output relation for technologies is given by an efficiency rate
(of 30, 40, and 90 percent conversion efficiency respectively). All three tech-
nologies share the same input resource. Annual extraction is sum of resources
consumed by each technology

R(t) =
∑
i

1

ηi
Xi(t) ,

where ηi is the conversion efficiency of technology i. Extraction costs are a
function of cumulative extraction y

cR(t) = f
(
c̄R(t)

)
,

c̄R =
∫ t
−∞

R(τ )dτ ≡
∫ t
1990

R(τ )dτ + c̄(1990).

Technological learning

In the deterministic case future (investment) costs for technologies are a func-
tion of cumulative installed capacity

cIi (t) = AiC̄i(t)
−bi ,

where C̄i(t) is the cumulative installed capacity of technology i by time t.

C̄i(t) =
∫ t
−∞

Ci(τ )dτ ≡
∫ t
1990

Ci(τ )dτ + C̄i(1990),

bi is the progress ratio (1 − 2−bi , is the learning rate, expressed in percent
cost reduction per doubling of cumulative capacity) and Ai is the initial in-
vestment cost at 1GW.

In the stochastic case the progress ratio b is assumed to be a random
value β with a given distribution function24. As a result, future investment
costs are a random function of β.

24A distribution is completely specified when its distribution function is given. For more
details see Devroye, 1986.
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cIi (t) = AC̄i(t)
−β .

Objective function.

The objective function is the sum of three components

E
{∫ 2200
1990

cIi (τ ;ω)Yi(τ )dτ
}

+
∫ 2200
1990

δ(τ )
(
cR(τ )R(τ ) + cOMi Xi(τ )

)
dτ +

+ρ
∫ 2200
1990

δ(τ )Emax
{

0,
[
EcIi (τ ;ω)− cIi (τ ;ω)

]2
Yi(τ )

}
dτ− ,

−
∫ 2200
1990

δ(τ )Emin
{
0,
[
EcIi (τ ;ω)− cIi (τ ;ω)

]
Yi(τ )

}
dτ →min

where δ(t) is the discount rate; and t, cOMi are the specific O+M cost of
technology i (assumed to be constant over time). E stands for expectation,
with ω being an element from a probability space. Part two represents the
risk associated with overestimating learning rates (future investment costs
of a technology are higher than expected) with its associated risk factor ρ .
Part three represents the benefits in case of underestimating the learning rate
(future investment costs of a technology are lower than expected). As shown
above, we apply a quadratic formulation for the risk term and a linear one
for the benefit term as one of many possible formulations.25 Nothe that in
the deterministic formulation parts two and three of the objective function
give above do not appear.

In the model runs defined above, the objective function is substituted by
a discrete time formulation. The resulting stochastic optimization problem
is solved on the basis of simultaneous approximation of the random function
by N sample functions with sufficiently large N (see Messner et al., 1996 ).

Carbon tax

The uncertain emergence of a carbon emission tax is modeled in the following
way. We assume that the eventual establishment of the tax is uncertain with
a given occurrence probability of 0.33 (i.e. there is a chance of one out of

25F. the sensitivity model run 12 below in which we test an alternative formulation
where the benefits part entering the objective function is assumed as a quadratic term
and the risk part as a linear term.
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three that a tax would be established at all). The introduction time (in case
the tax would be established) is also unknown with an expected cumulative
distribution function that goes from 0 in 1990 to 50% in 2050 reaching 99%
by 2100. In the model runs a Weibull distribution around a mean tax value
of 50 $/tC and probability of 99 percent of the tax being lower than 125 $/tC
was assumed. The carbon tax is added to the objective function

ptax



∫ 2200
1990

pτ




E
(
cc(ω)µi

ηi
Xi(τ )

)
+

ρEmax
{
0, [Ecc(ω) − cc(ω)]2 µi

ηi
Xi(τ )

}
−

Emin
{
0, [Ecc(ω)− cc(ω)] µi

ηi
Xi(τ )

}



dτ




,

where ptax is the probability that the tax will be established at all; pt is the
probability that, if established, the tax will be introduced before time t; cc is
the uncertain carbon tax value and µi are the emissions of technology i, in
tons elemental carbon (C) per unit input.

The following summary gives an overview of the assumptions and model
parameter values used for the model simulations and sensitivity analyses.

Technologies i:

i = 1− “existing” technology,

i = 2− “incremental” technology,

i = 3− “revolutionary” technology.

Demand D(t):
Base Case

D(t) = 100 + (t− 1990)1.5.

Linear demand growth

D(t) = 100 + 14.4914(t − 1990).

Unknown demand

D(t) = 100 + (t− 1990)ξ ,
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where ξ is a normally distributed random value with mean 1.4 and
variance
σ2, σ = 0.1.

Life time τi:
τi = 30, i = 1, 2, 3.

Efficiencies ηi:
η1 = 0.3, η2 = 0.4, η3 = 0.9.

Resource cost CR(t):

cR(t) = min
[
1000, 16.97exp

(
16c̄R(t)/106

)]

based on a quantity-cost supply curve for coal resources suggested by
Rogner, 1996. For our model simulations we limit the maximum ex-
traction costs to 1000 $/t.

Learning rates for investment cost bi and βi :

Deterministic case

b1 = 0 , no learning,

b2 = 0.152003 ,

10% cost reduction per doubling of installed capacity,

b3 = 0.514573 ,

30% cost reduction per doubling of installed capacity.

Stochastic case

Eβ1 = 0, Varβ1 = 0 , no learning,

Eβ2 = 0.152003, Varβ2 = (0.1E β2)
2 ,

Eβ3 = 0.514573, Varβ3 = (0.1E β3)
2 .

Initial investment costs Ai:

Ai = 1000$/kW ,

A2 = 2000$/kW ,

A3 = 40000$/kW .
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Operation and maintenance (O+M) costs cOMi :

cOM1 = 30$/kW, cOM2 = COM3 = 50$/kW .

Carbon emission coefficients µi:

µ1 = µ2 = 0.8, µ3 = 0.1 .

Distribution function for carbon tax introduction date under condi-
tion that carbon tax will be established sometime in the future we
assume a lognormal distribution function with mean 2050 and δ = 0.1 .

Distribution function for carbon tax value We assume a Weibull dis-
tribution with mean of 50$/tC and standard deviation of 25. This
means that with probability 99470 $/tC.

Optimization techniques and implementation Due to the rather com-
plicated nature of the problem and the experimental status of suggested
approach, MATLAB was chosen as a main platform for model imple-
mentation and testing. Also a number of additional mathematical tools,
like Mathematica and Maple, were used in order to analyze the prob-
lem and test alternative approaches and part of the optimization code.
For the global optimization search procedure a generic method similar
to the approach suggested by Saltjanis (1989) and Törn and Zilinskas
(1989) was used. A partially re-designed code from Dolezal et al. (1991)

was adapted for the MATLAB environment. Results from the global
search step were then used as starting points for a local optimization
procedure based on a Broyden-Davidon-Fletcher-Powell algorithm (see
Broyden, 1967, and Johnson, 1976). This procedure switches to a
Nelder-Mead type of algorithm (see Himmelblau, 1972) in cases when
the approximation of derivatives become numerically too imprecise as
a result of the stochastic approximation techniques involved.

Sensitivity Analysis The following table summarizes altogether 22 sim-
ulation runs and sensitivity cases performed. Main parameter values
assumed as well as model results are summarized. As a simple common
metric we report model results in measuring the changing diffusion pat-
terns for two technologies: the time when the “incremental” technology
reaches 50 percent market share in annual new installations, and the
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time the “revolutionary” technology reaches 0.5 and 50 percent market
share in new installations respectively. Note that due to the highly
non-linear nature of the model, dates for reaching these market shares
are in some simulations only approximative

path:gruebler/tech/endog.tex
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Year when technology will reach new installations share of
N Case 50% - “Incremental” 0.5 % - “Revolutionary” 50 % - “Revolutionary”

Learning rates
1 No learning (bi=0) 2040 (jumps from

0 to 100%)
Never Never

2 Exogenous for
incremental (linear
declining from the
value 2000 to 1000 by
2050, and constant
after that)

2025 (jumps from
0 to 100%)

Never Never

3 Deterministic learning,
but just for
“Incremental”
technology (b2=10%,
b3=0)

1995 Never Never

4 Stochastic learning but
just for
“Revolutionary”
technology (Eb2=10%,
b3=0)

2020 Never Never

5 Deterministic learning
base case (b2=10%,
b3=30%)

1995 2020 2070 (jumps from
32% to 100%)

6 Deterministic learning
for both technologies,
but with 40% for
“Revolutionary”
(b2=10%, b3=40%)

2015 2045 2070

7 Stochastic learning
base case (Eb2=10%,
Eb3=30%)

2010 2060 2080

8 Stochastic with 5% vs.
10% in base case for σ
of “Revolution”
technology (Eb2=10%,
Eb3=30%)

2010 2050 2070

9 Stochastic with 20% vs.
10% in base case for σ
of “Revolution”
technology (Eb2=10%,
Eb3=30%)

2010 2075 2105

10 Stochastic learning
with gamma
distribution vs. normal
in base case
(Eb2=10%, Eb3=30%)

2005 2055 2070
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Year when technology will reach new installations share of
N Case 50% - “Incremental” 0.5 % - “Revolutionary” 50 % - “Revolutionary”

11 Stochastic learning
with Weibull
distribution vs. normal
in base case
(Eb2=10%, Eb3=30%)

2005 2075 2105

12 Stochastic learning
with ”inverted”
objective function -
quadratic for benefits
and linear for loses

2000 2050 2070

Discount rate
13 Deterministic base case

with 3% discount
1990 2010 2035 (jumps from

42% to 100%)
14 Stochastic base case

with 3% discount
1990 2050 2105

15 Deterministic base case
with 7% discount

2015 (jumps from
34% to 100%)

2065 2085

16 Stochastic base 2020 (jumps from Due to the fact that the objective function
case with 7% 32% to 100%) is very flat near global optimum in this
discount case, the number is very sensitive to

stochastic approximation use and vary
from one run to another

Carbon tax
17 Stochastic base case

with stochastic tax (see
Mathematical
Appendix for details)

between 2000 and
2005

2035 2070

Stochastic demand
18 Stochastic base case,

but with demand as an
random function
D(t)=100+(t-1990)γ .
γ is normally
distributed with
Eγ=1.4 and σ=0.1

2010 2055 2085

19 As in case 17, but with
additional constraint
D(2100)<625

2020 2100 2120 (jumps from
50% to 100%)

20 As in case 17, but with
additional constraint
625<D(2100)<1250

2015 2075 2095

21 As in case 17, but with
additional constraint
1250<D(2100)<2500

2005 2055 2085

22 As in case 17, but with
additional constraint
D(2100)>2500

2000 2045 2080

50


