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1. Description of the Problém and Summary

The problem concerns the selection of a technology among
8 set of available technologies I = {i} each of which is
characterized by a capital investment cost ki and an operating

cost per unit time c;. These costs are assumed independent

of time.

The planning horizon is not known. (A typical case might
be the arrival of some more efficient technology at some

unknown date in the future [Manne]). Hence discounted costs

cannot be compared. The procedure adcpted here i1s to determine
the subset of efficient technologies; that is, to delete those
vhich could not be chosen whatever the time horizon is. Suppose.
then clearly technology

for instance that k. > k2 and ¢, > ¢

1 1 2
1l can he deleted. It may be seen that, while sufficient, this
condition is not necessary. However a simple enough condition

for the determination of efficient technologies is derived.

If the planning horizon may bhe described by a random variable
then-it is shown that it may be replaced by a point estimate.
This point estimate, interpreted as a certainty equivalent, may
then be used to select the optimal technology among all efficient

ones.

Finally, the expected value of perfect information on the
Planning horizon is derived for the case of a constant rate of
substitution between capital and operating costs. Some numer-

ical results illustrate the model.
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2. The Subset of Efficient Technologies

It will be convenient to represent a technology 1 e I
as a point in a two-dimension diagram, capital investment
and operating coqts respectively (see Figure 1). The set I
will be assumed closed and bounded. Let t be the planning
horizon, then the discounted cost associated with technology

i may be written

_ t -pv _ . Pt
Vi(t) -.ki + ey foe dv = k., + ci(l e y/0

A technology 1 € I is said to be inefficient with respect

to I if and only if the following holds:

(2-1) vtelo,=], 3j e1-{i}: vjt(t) < V(%)

A technology which is not efficient is called efficient.
If 211 technologies in I are efficient with respect to I then

the set I itself will be called efficient.

operating Q
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per unit time

technology i
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I
|
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Figure 1 cost in $.

Graphical representation of the set of techmologies I



OQur objective is to determine the maximal efficient subset,

if it exists, which is included in a given set I.

Let 6 =1 —e_pt, then condition (2-1) may be rewritten

(2-2) ¥ 6 ¢ [0,1], 3 Jgel -{i}: v, (8) < V.(8) >
Jg i

in which vi(e) is a linear function as depicted in Figure 2.

k. + ci/p

.
i

Figure 2

Three simple lemma follow directly.
Lemma 1

Let I = {1,2} then technology 1 is inefficient with

respect to I if and only if

(o
{2-3) ky > k, and k; + cl/p >k, + c2/p .



Lemma 2

Let T = {1,2,3}. Assume that the subset {1,3} is

. . < <
efficient and that kl < k2 < k3

Then technology 2 is inefficient with respect to I if and only

if:
(2-1) c, > K37 e, + ky~k ey
k3—k k3-k
Proof: Let
U= (k3' k2)/(k3‘ kl)
c, = Me, + (1~ u)c3
and vu(e) = k2 + cue/p
Then
(i) %06 ¢ [0,1] : v,(8) > Min v, (e), V()]
(i1) 3 8,4¢ [0,1] : v, (8 3) = vi(e 5) = vi(e ) .
Condition (2-4) is equivalent to
vee [o,1] : vy(8) > v, (8).

Thus (i) and (ii) correspond to the sufficient and necessary
parts of the lemma respectively. (see Figure 3 for a graphical

representation). ||
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mma 3

—
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Technology i1 € I is inefficient with respect to I if and

only if it is inefficient with respect to J im which Je& I and

consists of three points at most (including i).

Proof: The "if" part is obvious. Let us prove the "only if"

part.
Let

v (6) = Min {Vv.(8)} .
Jjel
For technology i to be inefficient with respect to I it is

necessary that
¥ 6 ¢ [0,1] : vy(8) > v(e) .

Since the {vj(e)} are linear functions this implies that

jel

there exists at most two technologies in I, and j2, and a

J1
convex combination (ul,uz) such that
8) " =
#0 ¢ [0,1] : v.(0) > “1le(e) uzvjz(e) .

Using lemma 2 this shows that the subset j = {i }

19 ji’ :j2
is the required subset. ‘||
These three lemmas characterise the subset of efficient
technologies. Lemma 1 and 2 give necessary and sufficient
conditions whenever the set I contains two or three

technologies respectively.

Lemma 3 ensures that only comparisons between two or
three technologies need be considered. Graphical represen-—

tations of lemma 1 and 2 are depicted in figures L4 and 5.



All together the graphical characterization of the maximal

efficient subset for a given set I is shown in figure 6.
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Graphical Characterization of the
Maximal Subset of Efficient Technologies
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H. Selecction of an Optimal Technology under a Probabilistic

Planning Horizon

In this section we shall assume that the set of available
technologies ig efficlent. It will also be assumed to be
finite. Technologies will be labelled 1,2,...N corresponding

< ..
to kl k2,

intensive the technology and presumably the more appropriate

. < kn so that the higher the label the more capital

would such a technology be the longer the planning herizon.

Indeed this will bLe easily shown.
Lemma b
Assume 1 < J then

if t < .. V. (t)

A
<
.
~—
t+
N

V
<
/.'\
t+
~—

-

it t > t.. vi(t)
in which

ol

65 Log [1 - (k; - ;) p/(e; = ;)]

Proof: Recall that in terms of the 8 variable (8 = l—e_pt),

vi(e) is linear. Let eij = p(kj - ki)/(ci - cj). Since the

technolopgies are efficient, using lemma 1, 0.. € [O, l] and

1]
if v < 8y v.(e) < Vj(e) s
if 6 2 84 v, (8) > vj(e) . |
Lemma 5

Assume i < j < e then tij < t. .
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Proof: OSince the transformation t into 6 is monotonically

increasing tij < tje is equivalent to eij < eje which in

turn corresponds to

k. - k k -k
J 1 < e J
c1 - cj cj - Cg
or c. <k - k. c. + k. - k. ¢
J _e 4 1 J 1 e
e-l e—l

The three technologies i, j, e are efficient then using

lemma 2 it is cleur that this inequality is satistied. b

The combination of lemma 4 and lemma 5 would allow for a
veéry simple decision rule under a known planning horizon. This

is summarized by the following diagram.

t % planning horizon

lecision rule S 12 23 ij -
o - i i N ' g
' . ' : ' !
cptimal ) ' ' : ! '
technology 1 i 2 1 3 . S
' ' : X ' |
: : : ' ' |

Under an unknown planning horizon this decision rule is the
best that can formally be done and then it would be up to the
decision maker to integrate his subjective feelings and select

a technology.

However ,if these subjective feelings may be expressed as

a probability distribution then the probabilistic planning
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horizon may be replaced by a certainty equivalent according

to the following lemna.
Lemna 6

Assume that the plauning horigzon is a random variable
with probability distribution F(t). Then it may bLe replaced
by a certainty equivalent Ed, such that

=d .
t- = - (Log g(p)) /o
in which the function g(p) is the Laplace transform of F(t).
Proof: By definition of the Laplace transform,
o ~-pt
glo) = [ ¢ Phar(t).
The expected discounted cost associated with technology 1

may be written as

V.

: IZ v.(t) ar(t)

[1 - 52 e Ptar(s)] /0

]
e
+
(]

=k, +c; [1-g(p)]/e

. . . -4 .
Substituting g(p) in terms of t gives the lemma. |

. . -4 ©
It is easily seen that for p = 0, t = fo t 4F(t) and

that as a first order appromimation in p

td v mean - var.p .
2
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Hence variance and discount rate operates in the same direction,
both tend to shorten an uncertain planning horizon as compared

with 1ts mean value. td may then be interpreted as a "discounted

mean value" thus the notation.
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Y, Expected Value of Information on the Planning Horizon

Loosely speaking the expected value of information is
the difference between the minimal expected costs with and
fithout informatioﬁ. As such it provides an interesting in-
sight to determine whether further inquiry may result in a

substantial reduction of cost [Baiffa].

The analysis will be formally pursued under the following

two assumptions:

(i) substitution between capital investment cost and
operating cost per unit time may be expressed as a
Cubb-Douglas production funétion; hence after proper
rescaling we have

o 1-0

(ii) uncertainties about the planning horizon may be
expressed in terms of an exponential probability
distribution such that

F(t) = 1 —e At

Then, using elementary calculus, we obtain the minimum expected
cost under a probabilistic planning'horizon,
V(O) = a-a(l - a)a-l [9]1-0.

p
and the certainty equivalent Ed,

4 - - % Log (A/X+p)
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so that

8¢ = 1 - & PY - p/(p + X))

veY) = ™% (1 - )t (A + )*7T .

How if we were to know the planning horizon t, which is

distributed according to d4F(t) = e At (or equivalently ©
dt A
which is distributed according to dG(0) = (1-0)p 1), we

A
a0 o]
would select the bLest technology given t. A priori, we may

expect a minimum cost

<
I

[vie) aeto) -

%1 - a)a—l a-2 I'(2 - a) T(Ax/p)/T(1 - a + A/p)

i
[*]

in whiech T'(n) is the gamma function (T'(n+l) = nl'(n))
Some numerical values are given in the following tables,

assuming an elasticity coefficient for a=.25.

) |
A\\\\, ; .05 .10 .15
.05 © 13.8 | 11.0 i 9.2
.10 8.1 6.9 6.1
.15 ﬁL 5.7 5.1 4.6

Table 1

The certainty equivalent planning horizon 1t




\\?\2\\ .05 .10 .15
.05 9.86 7T.28 5.86
.10 7.28 5.86 4,96
.15 5.86 4.96 }.33

Table 2

The minimum expected cost V(éd).

p
\}\\ .05 .10 .15
i
.05 .0bL .03 .02
.10 .05 .0k .03
.15 .06 .05 .0k

Table 3
The (relative) expected value of information (V(éd)-V)/V(éd).

quit It may be seen that the expected valué of information is
qujte low. However, this does not mean that uncertainty plays
no role in the selection of the optimal technology. Indeed if
uncertainty were to be ignored and the mean value of the
planning horizon used as a point estimate then the cost would
increase from 10 to 20% depending on the discount rate. This
emphasises the significance of the certainty equivalent as

defined in section 3.
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