—

Methods of Estimating S-Shaped Growth Functions:
Algorithms and Computer Programs

M. Posch, A. Gribler and N. Nakicenovic

I. INTRODUCTION

It has been demonstrated that a large number of growth processes in biology as well
as in the technology area and in the field of socio-economic activities follow regular S-
shaped growth patterns. A number of alternative mathematical functions have been pro-
posed and resulting algorithms applied as forecasting tools. The common deficiency of the
proposed growth curve algorithms however lie in two areas. First, only certain growth
curves or classes of growth curves are considered in a particular study and while there
exist good arguments to prefer growth curves with an underlying theoretical justification
(e.g. Bass, 1969 and 1980 innovator/imitator model as underlying theoretical framework
for the Blackmann (logistic) technology diffusion model) over models without such a
theoretical basis (as for instance the case for the Gompertz curve, Meade, 1984) no study
of S-shaped growth patterns should a priori exclude any particular function to stand the
test with the empirical data base. A second, more technical critique of existing algorithms
concerns that as a rule linear transforms of the original data are used to estimate the
model parameters, simply out of convenience of linear regression techniques. Equally with
respect to the estimated parameters only standard statistical test (standard errors, t-
statistics, D.W. tests etc.) are applied and an ezplicit uncertainty analysis of the
estimated model parameters is not carried out.

The basic objective of this paper is therefore to overcome some of the deficiencies of
traditional algorithms in terms that: ‘
1) an (although not exhaustive) extended variety of S-shaped growth curves can be con-
sidered,
2) not only linear transforms of the data in a ordinary linear least squares algorithm but
equally the original data in a new generalized least squares algorithm can be used to esti-
mate the parameters of a particular growth function from empirical data,
3) uncertainty analysis of the estimations of the model parameters is explicitly con-
sidered, based on a Monte-Carlo simulation technique, without the generally assumed res-
tricted assumption with respect to normal distribution and non-correlation of the observa-
tions,
4) a user-friendly operating environment and a high portability of the software is ensured.

Thus, the developed package is aimed to improve the analysis of empirical observed
S-shaped growth patterns and to test whether the particular data analyzed can speak for
themselves in determining the parameters of the underlying dynamic growth model. In
the following chapters we discuss first the underlying mathematics for fitting non-linear
growth curves to given (time series of) data. The different growth models, different
parameter estimation algorithms (linear and non-linear least squares fit), parameter
uncertainty analysis and graphics packages to plot the data are integrated into an interac-
tive program package. The program not only computes the parameters of the desired
curve (the postulated model of the growth process), but also (optionally) plots the com-
puted curve and/or a linear transformation thereof together with the given data points.
The program does not require any mathematical subroutines from a program library, and
for the plotting subroutines only the graphics primitives (drawing a straight line, moving
the cursor, etc.) have to be provided by the user. These features guarantee a high porta-
bility of this software package.



All curves considered are of the form
y = f(t) = f(ea,t) ) (1.1)

where ¢ is the independent variable (usually time), & =(a;,a, - -,a,,) is the vector of the
m parameters to be determined, fis the function (the model) chosen by the user, and y is
the dependent variable (growth, market share, technological performance, etc.). The gen-
eral approach adopted for determining the parameters @ is one of non-linear least square
regression, i.e. a,, @4, ... are chosen to minimize

N
Y wi(ye - fla,ty))? (1.2)

k=1

where N is the number of observations (t;,y;), and w; are positive weights (w; =1 in the
simplest case).

In the next chapter we describe the type of functions considered (S-shaped curves),
in chapter III we outline the method for minimization and in chapter IV we shortly dis-
cuss the uncertainties connected with this kind of parameter fitting. In the Appendices
additional material concerning the non-linear minimization algorithm, the required input
file for the graphics subroutines as well as two tutorial sessions, describing the use of the
program package, is presented.

II. TYPES OF GROWTH FUNCTIONS

Although the minimization method, described in the next chapter, works for any
differentiable function, we restrict ourselves to so-called (S-shaped) growth curves, which
are widely used in biology (growth and competition of species, see, e.g., Pearl, 1925;
d’Ancona, 1939; Gatto, 1985), market dynamics (market penetration and substitution,
see, e.g., Marchetti and Nakicenovic, 1979; Meade, 1984) and technology assessment (evo-
lution of technological performance characteristics, see, e.g., Floyd, 1968; Martino, 1983).

All the curves discussed in this paper contain (at least) three parameters, which
have the following interpretation:

(i) As t tends to infinity, y approaches an upper bound, which represents the level at
which the growth process saturates, i.e.

lim f(t) = K (2.1)
t—oo
where K is positive and finite. Furthermore we consider only curves with ‘ lim f(t)=0.

——00

(ii) There exists a time ty, at which the curve has a point of inflection, i.e.

1) = £L(09) = 0 (22)
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where the growth rate has its maximum. A growth curve is called symmetric, if it is sym-
metric around &, i.e. f(t;—t)=f(to+t). A necessary condition for symmetry is

vo = flto) = 5 (2:3)

(iii) A third parameter, denoted by At, gives the length of the time interval needed to
grow from 10% of K to 90% of K. More precisely, let t, be defined by

ft,) = —lgb—x , 0<p<100 (2.4)

then At is given by
At = tgy — tyo (2.5)

In the following we describe those types of curves which are implemented in the program
and can be interactively chosen by the user.

(1) Three parameter logistic:
This curve is given by

K

v = f(t) = P ) (2-6)

It is equally denoted as Verhulst (1838) or Pearl (1925) curve and in its application to the
study of market dynamics referred to as Blackman’s model (Blackman, 1972) and for
K =1 as the Fisher-Pry model (Fisher and Pry, 1971). The curve is symmetric around {,
and a simple calculation shows that the parameter At is related to the growth rate & by

log81 = %4.39444915... (2.7)

L

Atzb

For later reference we also note a commonly used form of re-writing the logistic function
with a linear right-hand side:

log

K{y = b(t—ty) (2-8)

As an additional option the user can select a three parameter logistic with data
dependent weights w; given by

Wy = — (29&)



with

of = - f(t)l1 - (ty) (2.9b)

This choice of weights stems from an statistical interpretation of the data (see Debecker
and Modis, 1986): Considering the y; as an observation of the random variable Y(¢;), the
expectation of Y(t) is given by f(t) and its variance by Eq.2.9b (see also chapter IV).

(2) Gompert:z function:

This non-symmetric growth function (see, e.g., Stone, 1980) is given by
y = f(t) = Kexp(—e (")) (2.10)
The value at the point of inflection is given by

¥o = fltg) = - where - = 0.36787944... (2.11)

(e ... denotes the basis of the natural logarithm), and the parameter b is related to At via

1 log10 1
= — —2—— = —3.0 77... 12
At = log o rlo oy = 5 3.084399 (2.12)

However, the application of the non-linear least square fit to the Gompertz function
poses a serious problem: Because of the twofold exponentiation, the algorithm diverges
even for data points, which are originally derived from a Gompertz function (also in dou-
ble precision arithmetic). In order to be able to estimate this type of curve, the Gompertz
function was re-written in the form

z = F(K,y) = —loglog% = b(t —tg) (2.13)

and now a linear regression could be used to estimate t;, and b. This, however, requires
the a priori knowledge of K. In some cases the user might know K from theoretic.. con-
siderations (e.g., y.is a fraction, so K is equal to unity), and in this case the solution is
obtained by a linear regression. If K should be determined by the program, an approach
has been chosen which is outlined in chapter IIT*.

Besides the logistic function (Eq.2.8) and the Gompertz function (Eq.2.10), the fol-
lowing additional growth curves can be estimated:

* Note, that this method can only determine values of K which are larger than the maximum value
of the observations. On the other hand it offers the possibility to estimate the parameters of
growth curves which are only implicitly defined (like the Floyd curve).



(3) Sharif-Kabir function:

This four parameter function can be only written down implicitly

— — y y _
z = F(K,7,y) = log K—y+1K—y =bt+c, 0<9<1 (2.14)

This model (Sharif-Kabir, 1976) contains two special cases: For y=0 is reduces to
Blackman’s model (logistic function), while for y=1 it corresponds to the Floyd curve
(Floyd, 1968). For v #0 it is a non-symmetric function; the value at the inflection point,
90, 18 given by

e = 2K
vo = flto) = 3775755 » 055! (2.19)

showing that y, drops from K/2 to K/3 when < increases from 0 to 1. Introducing the
parameter ¢, the right-hand side of Eq.2.14 has to be rewritten in the following way

2 al
= b(t—tg) +1 2.16
2(Komy) = bt =to) + log 4 A + T iy 18]

And the parameter At now depends on 4 and is given by

= lllog&l+%1

At 5

= %(4.39444915...+'18.88888888...) (2.17)

Some typical Sharif-Kabir curves are depicted in Figure 1. Note that in order to obtain a
y-value one has to solve Eq.2.14 iteratively (e.g. with Newton’s method).

Figure 1: Sharif-Kabir functions with =0 (logistic curve) 4¥=0.10, 4=0.25,
4=0.50, and y=1 (Floyd curve)



(4) Modified exponential:

This function, which is not a genuine S-shaped curve, is defined by
y = ft) = K(1-e (7% (2.18)

For this function the parameter t; does not indicate the point of inflection, but f(t) <0 for
t <ty. The parameter b is related to At by

At = L1090 = 12.197224577... (2.19)

and the "linear form” of the function is given by

K
z = F(K,y) = log K-y = b(t —tp) (2.20)
II. SOLUTION METHOD
We consider the following minimization problem
V(e) —— min , where & = (a;,a,," - -,a,,)T (3.1)

With g(e) we denote the gradient of V

T
_[av av av
’(‘) - |aa!:aa23 ’Bam (32)
and with H(a) the matrix of the second derivatives (Hessian matrix)
mey = | BV, iietm (3.3)
da;0a; |’ 7 TV

Almost all minimization algorithms generate — starting from a vector e; — a
sequence of vectors @, k> 1, which should approach the minimum &. In every step, for
which g, := g(e;) #0, one determines a ’search direction’ s; and the next point

&1 = &+ Ay (3.4)
via a ’linear minimization’, i.e. the step-width A} is determined in such a way that

V(8p41) = min{V(s;—2s;)| 2 >0} (3.5)
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The algorithms available mostly differ by the method for determining s;. The Newton-
method, e.g., selects s, = H(a;) 'g; as a search direction and Ay =1 as step-width. This
method has the advantage of fast (quadratic) convergence, but the disadvantage that one
has to know and evaluate the Hessian matrix in every iteration step. In addition, the
'‘domain of attraction’, i.e. the set of starting vectors &, for which convergence is
achieved, is small — and unknown! — in many practical applications. Therefore one tries
to replace the matrices H(sy)™! by matrices H; which are easier to compute. The
method is called quasi-Newtonian if

Hyyy(9641 — 98) = @41 — &, k20 (3.6)

In addition it is desirable that the matrices H) are positive definite.

This requirements (quasi-Newtonian, positive definiteness) can be fulfilled by the fol-
lowing two-parameter recursion (Oren and Luenberger, see Stoer, 1983, and the original
literature quoted therein):

With the abbreviations

Pri= Gy — 8, @ = Siy1— G (3.7)
and the parameters
W >0, 6,20 (3.8)
it takes the form
Hyyr = Y(100HpPe i) (3.9)
where
V(vy,0,H,p,9) = 7H + (l+-19"r—,1{1~'~)#
Pe P9
= Ji'}r;ﬂ? Heq"H - :Ti(MTH+ Hep™) (3.10)

This class of algorithms contains different special cases for different choices of v, and 0,.
We mention only two of them:

(a) 7x=1, 8,=0: Method of Davidon, Fletcher and Powell (DFP-algorithm)

(b) 7x=1, 8, =1: Rank-2-method of Broyden, Fletcher. Goldfarb and Shanno (BFGS-
algorithm)

Altogether a minimization algorithm of the Oren-Luenberger class has the following form

(0) Select e, and a positive definite mxm matrix Hy, e.g. Ho:=1I, and set go= o(ep).
For k=0,1,... compute &, H;,, from e; and H, as follows:

(1) ¥ g, =0 stop; @, is stationary point of V. Else

(2) Compute s;:= H,9;
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(3) Determine @, , =8, — A8, by (approximate) linear minimization according to (3.5)
and set g; 1= 9(8k41); Phi= 841~ O O11=Ok41~ -

(4) Select suitable constants +,>0, 0,>0 and compute H;,, via (3.10),
Hyyy=¥(7,08 91 95)-
In the current implementation we have selected 4, =1 and 8, =1 (BFGS-algorithm).

For the starting matrix the choice Hy=0.017 (/ ... unit-matrix) turned out to be advan-

tageous. The approximate linear minimization in step (3) above is done in the following
way

V(ep41) = min{V(a,-2778;)|5 >0} (3.11)
The following is a short description of the solution method, when the function is
given in the “linear form”, i.e.

= F(Ky) = at+8 (3.12)

If the parameter K is fixed, the parameters a and B are obtained by simple linear regres-
sion

NS,,— 5,8
== (3.13a)
NSz — 5
and
5,5, - 8,8
J=ot ' L2 (3.13b)
S?—NSF
where
N N N 9 N
Sl — Etk , Sz = Ezt 3 Szg = Etk 5 sz = Ettzk (313(:)
k=1 k=1 =1 k=1

and t; are the observations and z;:= F(K,y;). For a fixed value of K let us denote
N
Vo(K) = min ¥ (2 —aty - B)? (3.14)
avﬂ k=1

Obviously, a and S depend on K; a=a(K),f=p(K). For the determination of an
optimal K — which has to be larger than y ., := mfx y; — a simple search algorithm looks

for

Ko = min{ Vy(K)| K = yax+36,=1,...,7} (3.15)

where & is an increment (0.01*y,,.) and J=400 (corresponding to five times y,.,). This
Ky — if one can be found — is then used as a starting value for the non-linear
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minimization of the one-parameter function
N
V(K) = X (a(K) - a(K)t - A(K))* (3.16)

The minimization is carried out with the algorithm described above.

IV. PARAMETER UNCERTAINTIES

In addition to the estimated parameters of a chosen growth curve the correlation
coefficient, R?, is provided as a measure for the goodness of the fit. R? is calculated
according to the following formula

g;l(yk— 7A() - f)r

R = — 5 - (4.1)
Y (ve—9)* X (f(t) - 7)?
k=1 k=1
where
.1 N
y:= 7"_&:1” , = Wkglf(‘k) (42)

and f is the growth function found in the minimization process. Note, that in the case
where the “linear form” of the growth function is minimized (see chapter III), R? is calcu-
lated with this linear form.

In principle, the minimization algorithm would provide the matrix of the second
derivatives, and therefore allow the determination of the standard deviations on the
values of the parameters and the corresponding confidence levels. However, this method
of determination the confidence levels is not suitable, since it assumes that the parameters
are normally distributed and, in addition, that they are uncorrelated. There is no compel-
ling reason that such a restrictive assumption is warranted. Therefore only a numerical
approach, i.e. a study based on several thousands of S-curve fits on simulated data cover-
ing the different conditions for the parameters, can circumvent this problem.

Such a study, using a Monte Carlo simulation type of approach, was carried out by
Debecker and Modis (1986) for the three-pa..meter logistic function with data dependent
weights w; (see Eqs.1.2, 2.6 and 2.9a,b). This study provides look-up tables for determin-
ing the uncertainties associated with the three parameters K, t; and 5. The uncertainties
and the associated confidence levels are given as a function of the uncertainty on the
observations and the length of the historical period. Nine ranges have been considered in
the simulation: the observations are between 1% and 20% of K, ..., the observations are
between 1% and 99% of K. For each range the expected error on each of the parameters
K, ty and b as a function of the confidence level (seven values: 70%, 75%, 80%, 85%, 90%,
95%, and 99%) and the statistical error of the observations (six values: 1%, 5%, 10%,
15%, 20%, and 25% error) is given in a separate table. For intermediate values a trilinear
interpolation scheme is used to determine the uncertainties of the parameters. In the gen-
eral case where K and b are different from 1, the errors tabulated correspond to
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percentages. The units of the parameter i, are defined as (total historical range)/20. The
uncertainty interval of At was calculated from the respective one of b via Eq.2.7.

Debecker and Modis (1986) conclude in their study that as a rule-of-thumb the
uncertainty of the parameter K (saturation level) will be less than 20 percent within a 95
percent confidence level, provided at least half of the data are available with their preci-
sion better than 10 percent.

Since for the other growth curves no similar information was available, uncertainty
bands could be included in the program only for the logistic function. It is suggested that
the user starts first with a logistic fit to determine the order of magnitude of the uncer-
tainty range, before considering a fit by alternative growth models.

CONCLUSIONS

The objective of the work documented in this paper was to formulate and implement
a number of algorithms for estimation of S-shaped curves in an extremely user-friendly
way by also assuring a high portability of the program. These objectives have been
achieved. Through the interactive way of using the package, it does not require any @
priori knowledge from the side of the user. The solely use of FORTRAN 77 as a program-
ming language, the deliberate choice not to use any mathematical libraries as well as the
limitation to the most elementary graphic primitives (drawing a line, moving the pen,
etc.) ensures highest portability of the package.

The current version of the source code consists of about 3000 lines of code. For a
maximum number of 500 observation the size of the executable is about 100 kbyte
(including the graphics subroutines). Execution time on a VAX 11/780 requires less than
5 seconds of CPU-time and is thus negligible. Reasonable convergence of the non-linear
least square fit (option 1) was achieved with samples generated with 100% normally dis-
tributed data errors. For the non-linear least square fit with data dependent weights,
used for the uncertainty analysis (option 2), relative errors up to 50% still gave reason-
able convergence. The algorithm used for the fit of the logarithmically transformed func-
tions (options 3 to 6) shows convergence for data with errors in the 30% range.
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APPENDIX A

In this Appendix we give the expressions for the gradients of the sum of squares
for the functions considered in the non-linear minimization algorithm.

Let

N
V(e) = 3 wi(ys— f(a,ty))? (A1)

k=1

be the function to be minimized. In the following we list the expressions for the
first derivatives of the different functions considered:

(a) Three parameter logistic with unit weights:

N
V(“atOvb) = kE(n— aq)2 (A2)
=1
where
1
g = qfted) = —— 77— (A3)
kX 11e bttt
First derivatives:
v N
——ga = -2Y (vi—a9)g (Ada)
f=1
1% N :
SV = 208 (ne-ea)a(1-9) (A4b)
0 k=1
av N
a5 = —Zﬂp(trto)(yraq)qf(l—q) (Adc)
=1

(b) Three parumeter logistic with data dependent weights:

N
V(ated) = g-“,—(yk— ag)? (A5)

where
P = pilto,d) = g(1-49) (As)
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First derivatives:

N
t —IITE,%(”Z_"Z"Q) (ATa)
ﬂzif}l( —ag)(y+ag—2gy;) (A7Db)
atg o 27 Yr— o) yrT8q—<qy;

N
%1_{ - _%51% (tx—to)(ye—ag)(yetag—2qy;) (AT¢c)
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APPENDIX B
-~ (fedgan)
Example for a ﬁle/cont.aining all relevant parameters needed for plotting:

# This ftile contains the parameters for plotting:
#
# Comments must have a ’'#’ in the tirst column

The follcwing parameters can be specitfied:
The parameters entries have to start in the 10th column, or later.

otile ..... name of the graphics output file/device (max. 14 chars)

size ...... size of squared display area in cm

xXOrig ..... x-value of the lower lett corner of the plot relative
to the lower left corner ot the device (cm)

yorig ..... y~value ot the lower lett cormer ot the plot relative

to the lower left corner ot the device (em)i
xotsize and yotsize should not exceed the

x—- and y—dimension of the device: resp.

For the existing devices at 11ASA the following
maximum values apply:

BEBC—Plotter: IB.Bemx 28 em (13.3”7 x 117)
AED—Color—Graphic-Terminal : 34 em x 34 cm (13.447 x 13.447)
VAX—L inepr inter 25.4 em x 33 em (10”7 x 137)
0 T, R minimum for x-axis
XMAX . vvn s maximum for x-axis
YRAX ... ... maximum for y—axis (ymin=0)
intx ...... number ot intervals on the x—axis
inty ...... number of intervals on the y—axis
fmty ...... tormat for labeling the y-axis (max. 30 chars)
ytext ..... text for labeling y—axis (max. 30 chars) =
lires ..... horizontal lines in logarithmic plot:
0 ... no horizontal |ines are drawn
1 ... bor. lines corresponding to t(1-f) are drawn
2 ... hor. lines corresponding to f are drawn
curve ..... curve plotting option:
0 ... curve NOT piotted (only data and parameters)
1 ... curve plotted
title & ouia title of the plot (max. 30 chars)
author .... author (or whatever inta) (max. 30 chars)

EEE R E R EEEEEEEEEEEEEEEESEEEREEEEEEE SN

#2345467089012345678701 2345478501 2345676850

atile graphtile

size 1Z.

xorig 1.

yorig 1.

xmin 1850

Xmax 1970

ymax 100.

intx 10

inty 7

tmty t4.2

ytext |legend for y-axis
lines D

curve 1

title title ot asraphic

author 11ASA, May 1987
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APPENDIX C

In this Appendix two tutorial sessions of using the interactive growth curve
fitting program are provided. User inputs are underlined. In order to illustrate the
quality of the fitting routine, synthesized time series data were generated and used
as input for the program. These synthesized data are derived from values of a Gom-
pertz and of a logistic function, (saturation level K =100, inflection point t;=1900
and dt=100 years) respectively, onto which a normally distributed random error
term (with variance equaling 20% of the mean value) was added.

Input files in the examples described consist of the data files gompertz.data and
logistic.data as well as the graphics parameter file fitpar (see printout below). The
program generates two output files: one data file containing the function parameters
as well as estimated and observed values (denoted by the postscript .res) for further
processing. The second file generated (graphfile, or any other name specified in
fitpar) is the device independent graphics output file, which then can be sent to a
suitable plotting device.

In the first example data of a Gompertz function are read and the appropriate
parameters estimated with a specified accuracy of 10~5%. Then a plot of the observa-
tions and the estimated curve is generated. In the second example data of a logistic
function are used to estimate the parameters through the non-linear least square fit
with data dependent weights starting from initial parameter estimates provided by
the user (specified accuracy 1076). Then uncertainty ranges for the estimated
parameters are interpolated from look-up tables for the specified data error and
confidence level (20% and 90% in our example, respectively). Finally a plot in loga-
rithmic transform log f/(1-f), where f=K/y, is produced.
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Script of the interactive session for estimating a Gompertz function (user input is underlined):

Do yoo want to

1 ... compute {and ev. plot) parameters
2 ... plot the observations only

Your choice: 1

Name pf data—tile: gompertz.data
e

You can estimate a

... logistic tunction

.. weighted logistic tunction

.. lpgarithm ot the lpgistic tunction

. double losarithm ot the Gompertz tunction
logar ithm of the exponential tunction
logar ithm ot @ Shar ifKabhir tunction

[ S I VI B

Your choice: L

Do you want to tix the saturation level? [y/nl: i
accuracy < IDM—‘?_

rZ = 0.98061

K = 141712

0 = 1905.7%9

dt = 123.588

Do you want 1o have a sraphic diselay? Cy/nd: ¥
Name of parameter—tile (RETURN 14 none): titpar

Do you want to make ...

1 ... a normal plot
2 . a losarithmic plot

Your choice: 1
——

Minimum of x—values of input data: 1840
Maximum ot x—values ot input data: 1980
Maximum ot y-values oi input data: 111.71

The #0ilowing parameters for plotting are specitied:

b atile graphtile
2 size 12.

3 xOr 19 1.

b yorig 1

5 xXmin

& %ma x

7] ymax - 100.

] Atx 10

% inty 10

10 tmty i3

11 yrext

12 | ines jaiz 8]

13 curve 1

16 title

15 auvthor 11A5A; May 1987

Input numbers ot parameters you want to change
(RETURN 1 none): 58 14
—

Mimimum value tor x-axis: 1840
—

Mox imum value for x-—axis: 2000

—

Maximum vaiuve tor y-axis: 100.

Number ©f intervals on x-axis: B
-—

Title (max. 30 chars): test for gompertz curve

. plptting ...
Do you want to have another display? [y/nl: n

Results written to tile gompertz.data.res
%
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Graphic output (graphfile) of interactive session for estimating a Gompertz function:

TEST FOR GOMPERTZ CURVE

K = 111.71
1@ = 1985. 76
DT = 123.59
R2 = . 1
e
100 T 902
a0 +
% T 20%
70 +
B0 +
. S0%
S0 +
40 T +
+ 30%
30 +
20 + T
10 + + 10%

1840 1880 1880 1900 1920 1940 1960 1980 2000

OPTION 4 11ASA. MAY 1987
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Script of the interactive session for estimating a logistic function (user input is underlined):

N rlT
[ ——

Do you want to ...

1 ... compute (and ev. plot) parameters
2 ... plot the observations only

Your choice: 1
Name of data-file: logistic.data
——

You can estimate a

1 logistic function

2 . weighted lpgistic function

3 ... logarithm ot the losistic tunction

4 . double logarithm ot the Gompertz tunction

5 iogar ithm ot the exponential function

6 ... logarithm of a Sharif-Kabir function
Your choice: 2
Do you want to tix the saturation level? [y/nl: n
Input estimate ot K, t0 and dt (10-90%): 100 1900 100
accuracy < 104
r2 = 0.99247
Do vou want to estimate uncertainties? [y/nl: y

input estimated data error (1N<=.. . (=25%): 20

input contidence level (7DN<=,. . ¢(=99%): 95

K = 103.3%0 ( F1.188 ... 115.592)
t0 = 1902.175 ( 1899.836 ... 1904.515)
dt = 105.291 ( F7.436 ... 114.524)

Do you want to have a graphic display? [y/nl: y
Name ot parameter—+tile (RETURN it nane): fitear
Do you want to make

1 ... a normal plot
Z ... a logarithmic plot

Your choice: 2

Minimum ot x-values ot ineut data: 1850
Maximum ot x-values ot input data: 1960
Maximum cf y-values oi 1nput data: 103.39

The tollowing parameters tor plottine are specitied:

1 gtile graohtile
2 size 1Z.

3 xOrig b S

4 worig 1.

o=} xmin

& xma x .

P ymax 100.

B intx 10

9 inty 10

10 tmty i3

11 ytext

12 lines ja]

13 curve 1

14 title

1% author 11A5A; May 1987

lnput numbers ot parameters you want to change
(RETURN it none): 5 & 8 14

Minimum value tor x-axis: 1840

Meximum value tor x—axis: 1980

Number ot intervals on x-axis: 7

Title (max. 30 chars): test tor logistic curve

. plotting .....
Do you want to have another display? [y/n]: n
—

Results written to file lpgistic.data.res
%



-19-

Graphic output (graphfile) of interactive session for estimating a logistic function:

TEST FOR LOGISTIC CURVE
K = 183.38
18 = 1982.18
0T = 185,29
R2 = @.99247
F/7U1-F) FRACTION F = Y/K
102 k3 - 0.99
100 £ 0.90
1 L 0.70
100 % + 0.50
i § + 0.30
+ 1
1071 + 3 0.10
¥ T
¥ =
102 + } . . L 4 0.01
1860 1880 1900 1920 1940 1360
OPTION: 2 11ASA, MAT 1987




