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Combining Spatiotemporal Corridor Design for Reindeer Migration 

with Harvest Scheduling in Northern Sweden 

Reindeer husbandry and commercial forestry seek to co-exist in the forests of Northern 

Sweden. As interwoven as the two industries are, conflicts have arisen. Forest practices 

have reduced the distribution of lichen, the main winter diet for reindeer. Forest practices 

have also increased forest density, compromising the animals’ ability to pass through 

forested areas on their migration routes. In an attempt to reduce impacts on reindeer 

husbandry, we present a spatially explicit harvest scheduling model that includes reindeer 

corridors with user-defined spatial characteristics. We illustrate the model in a case study 

and explore the relationship between timber revenues and the selection and maintenance 

of reindeer corridors.  The corridors are not only to include sufficient lichen habitat, but 

they are also supposed to ensure access for reindeer by connecting lichen areas with 

linkages that allow unobstructed travel.  Since harvest scheduling occurs over a planning 

horizon, the spatial configuration of corridors can change from one time period to the 

next in order to accommodate harvesting activities.  Our results suggest that maintaining 

reindeer corridors in harvest scheduling can be done at minimal cost.  Also, we conclude 

that including corridor constraints in the harvest scheduling model is critical to guarantee 

connectivity of reindeer pastures. 

Keywords: mixed-integer programming; forest management; wildlife 

conservation; reindeer husbandry; spatial optimization 

 

1. Introduction 
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In Northern Sweden, two distinct industries use the same forestland as a 

common resource: commercial forestry and the reindeer husbandry. 

 Reindeer husbandry is central to the livelihood and cultural identity of the 

Sami, the indigenous people of Sweden.  The Sami have practiced reindeer 

husbandry for over 400 years (Lundmark 2007).  As stated by Sandström et al. 

(2003), “The importance of reindeer husbandry for the Sami cannot be 

overemphasized”.  Today 20% of Sami in Sweden are actively involved in reindeer 

husbandry through 51 herding communities (Rural Development Programme for 

Sweden 2008).  Approximately half of the productive forest lands in Sweden lay 

within the reindeer husbandry area (Sandström et al. 2016).  Although it is the 

landowner that has the rights to harvest trees commercially the Sami have legal 

permission to graze their herds on any land regardless of ownership (SFS1993:36)  

Reindeer (Rangifer tarandus) are highly migratory, and require vast tracts 

of land for habitat. During the summer months, reindeer use the mountainous 

western region of Sweden. However, as temperatures decrease and snow falls, lichen 

and other vegetation tied to reindeer habitat become inaccessible.  As a result, the Sami 

herders move their herds east towards the coast, where the climate is milder and snow 

conditions are usually more suitable.  After winter, the herders move the reindeer back 

towards the mountains to their calving grounds in the foothills.  This annual migration 

can cross up to 500 km each way mostly through forestland (Sandström et al. 2003). 

During winter and early spring, almost 80% of the reindeer’s diet consists of lichen 

(Heggeberget et al. 2002).  Ground lichen (mostly Cladina spp.) is the primary food 

source for reindeer in winter, but if snow layers on the ground harden, they rely heavily 

on arboreal lichen (mainly Bryoria spp.) for food (Bostedt et al. 2003, Kumpula 2001). 
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Forestry practices have drastically reduced the amount and accessibility of 

lichen in northern forests, and many studies have concluded that current forest practices 

have been detrimental to reindeer husbandry (Berg et al. 2008, Kivinen et al. 2010, 

Roturier & Bergsten 2006, Roturier & Roué 2009, Sandström et al. 2016, Widmark 

2006). Forests abundant in ground lichen have decreased with 71% since the 

introduction of modern forest practices around 1955 (Sandström et al. 2016). 

Specifically, short rotations, soil scarification and dense stands negatively impact lichen 

presence and accessibility in the forest.  Additionally, shortened rotations have reduced 

the amount of old growth forest in which arboreal lichen grows (Esseen et al. 1996).  

Soil scarification destroys the ground lichen layer, which can take up to 50 years to 

grow back (Sundén 2003).  Dense forests are less suitable to ground lichen growth and 

difficult for reindeer to move through (Jonsson Cabrajic et al. 2010, Kivinen et al. 

2012).   The North American species Contorta (Pinus contorta), also known as 

lodgepole pine, has also become commercially popular due to its short rotations, but 

usually grows too dense for reindeer to travel through (SSR 2008).  In some areas, this 

has forced herders to move reindeer via trucks, which is expensive and stressful for the 

animals.  In order for reindeer husbandry to continue, more active forest management 

for accessible winter habitat is required. 

 The 1979 Swedish Forestry Act and the Swedish FSC standards dictate that 

forest owners must account for reindeer husbandry in their timber harvesting proposals.  

However, it is often unclear as to how much effort foresters are supposed to make.  This 

has been subject to debates for many years.  Forest management plans that can satisfy 

the needs of the herders and prove profitable for forest companies are critical for the 

welfare of both industries, but are difficult to create. Unfortunately there has been little 

research into multi-use planning despite this need.  Bostedt et al. (2003) considered a 
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scenario in which a herder and forester co-manage a forest in order to maximize 

revenue for both parties.  The authors find that joint management greatly improves the 

revenue for the herders with minimal negative effects on the forester.  Korosuo et al. 

(2014) use long term forest simulations to explore the trade-offs and possible synergies 

in harvest revenue versus lichen habitat for two forests. They find that current practices 

are not only suboptimal for harvest revenue, but that they are also devastating for lichen 

availability. One forestry scenario yielded 2% higher net present value (NPV) than the 

“business-as-usual” scenario and more than doubled the amount of lichen for reindeer. 

The scenario that explicitly considered reindeer husbandry needs decreased NPV by 

only 5%.  The results from both of these studies suggest that collaborative management 

can result in high gains for reindeer herders at a low cost to foresters.  

 However, to date, no approach for collaborative planning has incorporated 

accessibility of lichen resources.  Not only does lichen need to be present on the 

landscape, but it must have easy access for reindeer.  In landscape management, wildlife 

corridors are used to connect habitat for wildlife populations.  Wildlife corridors are 

spatially contiguous linkages across the landscape that facilitate movement and provide 

access to resources for species in need of protection.  Reindeer corridors through 

managed forests should provide sufficient resources, lichen in particular, for reindeer 

migrating between summer and winter pastures as well as between grazing areas within 

a seasonal range.  Thus, the challenge is to create a harvest schedule that is 

economically attractive for foresters while providing high quality corridors for reindeer. 

One powerful tool for creating harvest schedules as well as selecting wildlife 

corridors is mathematical programming.  Spatially explicit harvesting schedules can be 

created with mixed-integer programs (MIPs).  MIPs assign each management unit a set 

of management actions (a.k.a. treatment schedule) across a temporal horizon.  Given a 
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forest landbase, MIPs find optimal management plans with regards to management 

goals and restrictions.  In a typical harvest scheduling MIP, the model finds the plan that 

maximizes NPV subject to various restrictions, such as maximum clear-cut size 

(Murray 1999, McDill et al. 2002, Goycoolea et al. 2005, Constantino et al. 2008) and 

road construction costs (Richards & Gunn 2000).   

Mixed-integer programming could also be useful for creating spatially 

contiguous areas for wildlife.  Given a landscape divided into management units, 

reserve selection MIPs determine the set of contiguous land parcels that maximize 

utility for wildlife populations without exceeding a given budget. Graph theory and 

network optimization techniques are commonly used in contiguous reserve selection 

models (Williams 1998, Önal & Briers 2006, Conrad et al. 2012, Jafari & Hearne 2013).  

Carvajal et al. (2013) propose a model that incorporates wildlife corridors with harvest 

scheduling.    Their cutting plane approach to connectivity proves computationally 

tractable for forests up to 1,363 units when planning for 3 time periods.  

However, none of these models account for or control corridor geometry.  When 

selecting a corridor from a landscape that is partitioned into irregularly shaped 

polygons, these models may select a corridor that is too narrow or too long for it to be 

useful.  St John et al. (in review) embeds techniques from artificial intelligence into an 

MIP approach to control geometric characteristics such as corridor width and length on 

real landscapes.   

In this paper, we demonstrate how St John et al.’s (in review) hybrid artificial 

intelligence/MIP model can be used to create a harvest schedule for commercial forests 

that maintains high quality corridors for reindeer herds.  For demonstration purposes, 

we use a commercial forest (Figure 1) [Figure 1 near here] covering approximately 

14,000 hectares located in the county of Västernorrland, Sweden, an area actively used 
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by reindeer.  We investigate whether it is possible to maintain reindeer corridors, and if 

it is, at what cost to the forest owner in terms of forgone timber revenues. 

2. Material and methods 

2.1 Corridor Habitat 

In Kivinen et al. (2010), the authors state “Ideal winter grazing areas have a high 

abundance of both ground growing and arboreal lichens that are easily accessible to 

reindeer”.  This is also true of the routes the reindeer travel in between their winter and 

summer grazing areas.  To be successful, the reindeer corridors need to contain 

sufficient amounts of both ground and arboreal lichen habitat, and must allow 

unobstructed travel.  Arboreal lichen is typically present in old growth stands (Esseen et 

al. 1996), so we consider arboreal lichen present in all stands that are older than 120 

years old. 

Ground lichen grows in managed pine stands with basal area less than 20 m2/ha 

(Dettki and Esseen 1998, Sandström et al 2016).  Reindeer avoid grazing in early 

successional stage forests (Horskotte et al. 2014), thus we assume ground lichen isn’t 

available for 10 years after a clearcut.  If soil scarification occurred, ground lichen has 

been destroyed and re-establishment can take up to 50 years (Sundén 2003).   

Reindeer corridors must have a certain width to facilitate the travel of animals.  

If the corridor becomes too narrow, it can be difficult to move reindeer herds along.  

There is no information available on reindeer corridor width requirements, so based off 

of expert opinion, we set the minimum corridor width at 50 meters in our model.  

Corridors also must allow for movement.  Some units such as Contorta stands (SSR 

2008) are impenetrable for reindeer, thus are excluded from the corridor.  Similarly, 

stands with trees taller than 3 meters with more than 1500 stems/ha and any stand with 
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more than 2000 stems/ha are also considered too dense for reindeer movement (SSR 

2008) 

 

2.2 Model 

We use the approach described in St John et al. (in review) to create harvest schedules 

with reindeer corridors.  The approach, called the Optimal Corridor Construction 

Approach (OCCA), allows us to account for and control the width and length of the 

corridors in a MIP.   

Following the OCCA, we define the polygons of our landscape as 1) individual 

units (forested and otherwise), and 2) contiguous sets of units whose combined area 

does not exceed 2 ha.  This allows for corridors that can be multiple units wide.   For 

example, in Figure 2, [Figure 2 near here] if the combined area of ݌௝ and ݌௞ is less than 

2 ha, then a corridor may begin at ݌௛, go through ݌௝ ∪  .ℓ݌ ௞ and end at݌
To calculate the width and length contribution of a polygon to a corridor, we 

must determine 1) where the corridor’s route is entering/exiting the polygon and 2) how 

the route moves through the polygon.  For example, in Figure 2, the route from ݌௜ 
through ݌௞ to ݌௝ will have a different width than the route from ݌௛ through ݌௞ to ݌ℓ.  
We represented the pairs of entrance/exit points with gate pairs, denoted by (݉, ݊) 
where ݉ and ݊ are gates that serve as transition points between the current polygon and 

adjacent polygons.  For each gate pair, there may be many possible routes through its 

associate polygon.  In Figure 2, there are two routes associated with the route from 

gate ࢓૙ through ݌௛ to gate ࢔૙.  To determine the width and length of the route from 

gate ݉ through ݌ to gate ݊ of maximal width, we solve a preprocessing MIP, identical 

to that in St John et al. (in review).  The preprocessing MIP is network flow problem, 

in which we find the route from gate ࢓ to gate ࢔ of maximal width.  If the width of 
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the optimal route meets the corridor width requirement, then the gate pair is 

eligible to be in the corridor.  Let ࡳ be the set of all such gate pairs. 

Finally, we formulate and solve the harvest scheduling MIP.  Let ݔ௜௝ be the 

binary decision variable that takes the value 1 when unit ݅	 follows treatment schedule ݆. 
Let ߚ௜௝  be the NPV associated with unit ݅ following treatment schedule ݆.  Then, the 

objective is as follows:  

 

 max෍ߚ௜௝ݔ௜௝௜,௝  (1)

The first set of constraints address harvest scheduling logistics.  Let ܷ be the set of all 

units and ܬ௜ be the set of all possible treatment schedules for unit ݅.  Let ℎ௜௝௧  be the 

volume harvested from unit ݅ at time ݐ when following treatment schedule ݆, and let ݂ 

be the allowable fluctuation in harvest volume from one time period to the next. Then,  

 

 ෍ݔ௜௝ = 1	 																								 ∀ ݅௝ ∈ ܷ (2)

 ෍ℎ௜௝௧ ௜௝௜,௝ݔ ≤ (1 + ݂)	෍ℎ௜௝௧ିଵݔ௜௝௜,௝ ݐ∀ ∈ ሼ1, 2, … , ܶሽ (3)

 ෍ℎ௜௝௧ ௜௝௜,௝ݔ ≥ (1 − ݂)	෍ℎ௜௝௧ିଵݔ௜௝௜,௝ ݐ∀ ∈ ሼ1, 2, … , ܶሽ (4)

௜௝ݔ  ∈ ሼ0,1ሽ	 																							 ∀ ݅ ∈ ܷ, ݆ ∈ ௜ (5)ܬ

 

Constraint (2) requires that only one prescription can be applied to each unit.  

Constraints (3) and (4) ensure that the fluctuation of volume harvested in adjacent time 

periods is less than a predefined bound, ݂.  Constraint (5) defines ݔ௜௝ as binary. 
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 The next set of constraints enforces corridor connectivity.  To select our 

corridor, we modify the transshipment-based model from Jafari and Hearne (2013).  

This model is introduced as an unrooted fully connected network selection model.  

Given a landscape of units, Jafari and Hearne’s model selects a set of management units 

for a connected reserve that maximizes the utility of the reserve, subject to budget 

constraints.  Their model uses flow to ensure connectivity.  Each unit selected in the 

reserve has flow entering it, either from another unit in the reserve or by being the initial 

unit, and “consumes” an amount of flow equal to the cost of including it in the reserve.  

The total amount of flow allowed is less than or equal to the budget for reserve 

selection. 

We use this model with the St John et al. (in review) graph-theoretical landscape 

representation.  We modify it by creating pseudo-polygons that represent the areas 

adjacent to the landscape that we wish to connect.  In Figure 1, the pseudo-polygons are 

the shaded polygons. We force these pseudo-polygons to be the first and last units 

selected for the reserve.  Also, we use utility aspects (such as lichen availability) as 

constraints rather than the objective, and do not restrict the amount of flow. 

Let ݖ௠௡௧  denote the binary variable that takes the value 1 if gate pair (݉, ݊) is in 

the corridor at time ݐ and 0 otherwise.   

 

௠௡௧ݖ  ∈ ሼ0,1ሽ 																							 ∀(݉, ݊) ∈ ,ܩ ݐ ∈ ሼ0,1, 2, … , ܶሽ (6)

  

 Let ܵ(ܩ) and (ܩ)ܧ be the sets of gate pairs adjacent to the starting and ending 

pseudo-polygons.  We ensure that the corridors begin and end at the pseudo-polygons 

by requiring one gate pair from ܵ(ܩ) and one gate pair from (ܩ)ܧ to be in the corridor. 
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 ෍ ௠௡௧ݖ = 1(௠,௡)∈ௌ(ீ) 														 ݐ∀ ∈ ሼ0,1, 2, … , ܶሽ (7)

 ෍ ௠௡௧ݖ = 1(௠,௡)∈ா(ீ) 													 ݐ∀ ∈ ሼ0,1, 2, … , ܶሽ (8)

 

Let ݕ௠௡௧  be the variable that represents the amount of flow crossing gate pair (݉, ݊) at 

time ݐ.   We inject flow into the network in Constraint (9).  Constraint (10) requires that 

if a gate pair is selected to be in a corridor, there must be flow entering the gate pair, 

and it consumes 1 unit of flow.  

 ෍ (ீ)௠௡௧(௠,௡)∈ௌݕ ≤ 																						|ܩ| ݐ∀ ∈ ሼ0,1, 2, … , ܶሽ (9)

෍ ீ∋(௠,௡)	௠௡௧௡:ݕ − ෍ ீ∋(ℓ,௠)	ℓ௠௧ℓ:ݕ
= ෍ ீ∋௠௡௧௡:(௠,௡)ݖ ∀݉, ݐ ∈ ሼ1, 2, … , ܶሽ (10)

 

Next, for every gate ݊, we require that it is selected to be an exit gate of a gate pair (݉, ݊) at most once. 

 ෍ ௠௡௧ݖ ≤ 1௠:(௠,௡)∈ீ 																								 ∀݊, ݐ ∈ ሼ0, 1, 2, … , ܶሽ (11)

 

To ensure that ݕ௠௡௧ = 0 if ݖ௠௡௧ = 0, and  0 ≤ ௠௡௧ݕ ≤ ௠௡௧ݕ for all |ܩ| , we include 

Constraints (12) and (13). 

௠௡௧ݕ  ≥ ௠௡௧ݖ 												 																							 ∀(݉, ݊) ∈ ,ܩ ݐ ∈ ሼ0,1, 2, … , ܶሽ (12)ݕ௠௡௧ ≤ ௠௡௧ݖ	|ܩ| 					 																								 ∀(݉, ݊) ∈ ,ܩ ݐ ∈ ሼ0, 1, 2, … , ܶሽ (13)
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 Since we are using multiunit polygons, we must include a constraint that ensures 

the gate pair polygons do not overlap.  In Figure 2, a corridor cannot include ݌௝ and the 

polygon ݌௝ ∪  ௞.  We can combine this with the constraint that does not allow݌

impenetrable units in the corridor.  Let ݉݅݀(݉, ݊) be the polygon associated with gate 

pair (݉, ݊) and let Q be the set of all polygons on the landscape.  Also, let ߛ௜௝௧  be a 

binary coefficient that equals one if unit ݅ is impenetrable at time ݐ when following 

treatment schedule ݆. Then, Constraint (14) ensures that at most one gate pair associated 

with polygon ݌ is selected at time ݐ, or part of ݌ is impenetrable. 

 

 ෍ ∅௠௡௧௠௜ௗ(௠,௡)∪௣ஷݖ + ෍ ௜௝௧ߛ ௜௝௜∈௣,௝ݔ ≤ 1 ݌∀ ∈ ܲ, ݐ ∈ ሼ0,1,2, … , ܶሽ (14)

 

Next in the model, tree and arboreal lichen within the corridor is accounted for 

and controlled.  We define variables ݃௣௧  and ܽ௣௧  that are equal to the amount of ground 

and arboreal lichen present in polygon ݌  in hectares if ݌ is in the corridor at time ݐ.  
Otherwise, they are equal to zero.  Let ߠ௜௝௧   and ߶௜௝௧  be binary coefficients indicating if 

ground lichen and arboreal lichen are present in unit ݅ in time ݐ if treatment schedule ݆ is 

followed and ࢏ࣅ be the area of unit ࢏. 
 ݃௣௧ ≤ ෍ ௜௝௧ߠ௜ߣ ௜௝௜∈௣,௝∈௃೔ݔ 										 ݌∀ ∈ ܲ, ݐ ∈ ሼ0, 1, 2, … , ܶሽ (15)

 ܽ௣௧ ≤ ෍ ௜߶௜௝௧ߣ ௜௝௜∈௣,௝∈௃೔ݔ 									 ݌∀ ∈ ܲ, ݐ
∈ ሼ0, 1, 2, … , ܶሽ 

(16)
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Constraints (15) and (16) define the upper bound on the amount of ground and arboreal 

lichen available in a polygon in a time period.  The RHS calculates the amount of lichen 

available in ݌ based on the treatment schedules selected for each unit in the polygon.  In 

Constraints (17), (18) and (19), we ensure that ݃௣௧  and ܽ௣௧  are nonzero only if ݌ is 

selected to be in the corridor in time ݐ: 
 

 ݃௣௧ ≤ ቌ෍ߣ௜௜∈௣ ቍ ෍ ௠௡௧௠௜ௗ(௠,௡)ୀ௣ݖ ݌∀ ∈ ܲ, ݐ ∈ ሼ0, 1, 2, … , ܶሽ (17)

 ܽ௣௧ ≤ ቌ෍ߣ௜௜∈௣ ቍ ෍ ௠௡௧௠௜ௗ(௠,௡)ୀ௣ݖ ݌∀ ∈ ܲ, ݐ ∈ ሼ0, 1, 2, … , ܶሽ (18)

 ݃௣௧ , ܽ௣௧ ≥ 0		 																							 ݌∀ ∈ ܲ, ݐ ∈ ሼ0, 1, 2, … , ܶሽ (19)

 

Lastly, we require that for each time period, the corridor must contain at least ܩ௠௜௡ 

hectares of ground lichen and ܣ௠௜௡ hectares of arboreal lichen. 

 

 ෍݃௣௧ ≥ ௠௜௡௣∈௉ܩ 																					 ∀ ݐ ∈ ሼ0, 1, 2, … , ܶሽ (20)

 ෍ܽ௣௧ ≥ ௠௜௡௣∈௉ܣ 																					 ∀ ݐ ∈ ሼ0, 1, 2, … , ܶሽ (21)

 

2.3 Study area 

Our case study is a 1,996 unit forest owned and managed by Holmen, a Swedish 

forestry company and used by Vilhelmina Norra reindeer herding community during the 

prewinter and winter grazing season.  The forest is located in an area that is used by 
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reindeer herders every winter as they move their herds between their summer and winter 

pastures as well as for winter grazing.  We consider the northern and southern 

boundaries of the forest (shaded regions in Figure 1) as the regions that we wish to 

connect with corridors.  Along with timberland, areas without productive forest are 

contained within the forest boundary.  We partition these non-forested areas (mostly 

comprised of lakes, mires, streams, etc.) using ESRI ArcGIS’s fishnet tool with a 500 x 

500 m grid.  The resulting non-forested units are considered as possible parts of the 

corridor system (light grey units in Figure 1).  The overall planning horizon was set to 

50 years and divided into 10 periods of 5 years (i.e. T was set to 10). Based on 

Holmen’s 2007 forest inventory data, we generated a set of treatment schedules with 

future forest conditions (e.g. basal area, number of stems and harvest volumes) for each 

stand using the Heureka system.  

The Heureka system is a comprehensive planning system for multiple-use 

forestry (Wikström et al 2011). It is based on projections of the tree cover development. 

Heureka projects future forest states by using data on current conditions, applied 

management actions, and different functions for e.g. growth and mortality. Forecasts 

can be made for a large number of variables, including common forest variables such as 

timber volume, age, species distribution and the output of various products e.g. sawlogs, 

pulpwood, and biomass.  

We generated treatment schedules in the Heureka system in two phases. First, 

based on its initial conditions, we allocated each stand to one or more management 

categories (see Table 1). [Table 1 near here]  Each management category is associated 

with different forest activities, such as stand establishment activities, precommercial 

thinning, thinning, and final felling.  Then, for each stand, we generated a set of 

possible treatment schedules for the 50 year planning horizon based on its associated 
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management category. This resulted in an average of 28 treatment schedule alternatives 

per stand. 

Economic data used (timber, regeneration, and harvesting costs) for calculating 

the NPV for each schedule is based on a timber price list from the current pricelist for 

the forest owner’s organization in northern Sweden.  NPVs used a 2.5% discount rate. 

In the model, we require that harvested volume in each time period is within 15% of the 

volume of the previous time period to ensure that harvesting is relatively consistent 

across the planning horizon. 

2.4 Computational Experiment 

We used IBM ILOG’s CPLEX 12.6 to solve all MIPs, i.e. to select a treatment schedule 

for each stand.  We first solved the model without reindeer corridors for a benchmark to 

compare the solution to. Next we included the corridors in the model.  The 3,823-unit 

landscape (1,996 forested stands and 1,827 non-forested units) resulted in 4,461 

polygons and 120,572 gate pairs.  All gate pair MIPs solved to optimality (0% gap) 

within 124 minutes total.   

To solve the full corridor model, we used a Windows Server 2012 R2 Standard 

with Intel® Xeon® CPU E5-2680 v2 @ 2.80 GHz (2 processors) with 128 GB RAM 

and a 64 bit OS.  The full model for harvest scheduling with reindeer corridors proved 

too large to solve in a reasonable amount of time, so we created an initial feasible (but 

suboptimal) solution to use as a warm start for a reasonable solve time.  Our initial 

solution was found by first finding a harvest schedule that had minimal impenetrable 

units.  We then fixed the schedule, and found a single corridor for all time periods that 

was not required to meet the ground lichen requirements.  Then, we created and solved 

a MIP for each corridor that maximized ground lichen subject to the fixed harvest 

schedule, and ran until a corridor that met the ground lichen requirements was found.  
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Next, we fixed all of the corridors and found a harvest schedule that maximized NPV 

while maintaining the feasible corridors found.  This resulted in the final feasible 

solution that was used as a warm start for the full problem, which we ran for 30 hours. 

3. Results 

When no corridors were included in harvest scheduling, the optimal schedule had a 

NPV of approximately 7,839,000.00 SEK (<0.01% gap).  Figures 3 and 4 illustrate the 

amount of arboreal lichen, ground lichen and impenetrable stands at the initial forest 

state and for time periods 3, 7 and 10 if the optimal harvest schedule was followed. 

[Figures 3 and 4 near here] Over time, the amount of impenetrable forest increases, until 

it would be impossible for reindeer to move from the northern border to the southern, 

regardless of corridor width or lichen requirements. 

 When solving the harvest schedule with corridors problem, the initial feasible 

solution we set had a starting optimality gap of 3.82%.  After running CPLEX for 30 

hours, the solution found yielded a harvesting schedule with NPV of approximately 

7,579,000.00 SEK, with an optimality gap of 3.42%.  Thus, to include corridors, the 

amount of NPV forgone is approximately 260,000.00 SEK, or 3.32%.  Table 2 shows 

the volumes harvested in each time period for the harvest schedules with and without 

corridors. [Table 2 near here] Although harvest volumes at each time period differ 

between the two harvest schedules, there is little difference in the overall harvested 

volumes. 

The corridor conditions for each time period are described in Table 3. [Table 3 

near here]  Maps showing the corridors, lichen and penetrability of the forest for the 

initial landscape and in time periods 3, 7 and 10 are shown in Figures 5 and 6.  [Figures 

5 and 6 near here] The solution found different corridors for each time period, but all 

corridors satisfy the requirements related to corridor quality. With the exception of time 
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period 3, the amount of ground lichen within the corridor decreased over time.  

Arboreal lichen increased over time, starting at 53 ha and ending with over 320 ha 

within the corridor.  Corridor length was not restricted, so in some cases corridors were 

long and winding in order to meet lichen requirements (see Figure 5 Time Period 3 for 

example).  For example, the corridor for time period 9 is nearly double the length of the 

corridor in time period 1.  Also, the corridor for time period 10 touches the northern 

forest boundary at the beginning of the corridor and in the middle (see Figure 6).  The 

amount of impenetrable forest across the landscape increases over time (see Figures 5 

and 6), but the corridors guarantee reindeer can cross the forest from the northern 

boundary to the southern throughout the 50 year planning horizon. 

4. Discussion and Conclusions 

In this paper, we have shown that it is possible to incorporate high quality reindeer 

corridors into a harvest schedule with a small effect on the commercial production of 

the forest. Since the corridors only directly affect a small portion of the forest, the cost 

of their inclusion is also relatively low.  For instance, in Korosuo et al. (2014), the NPV 

forgone in order to maximize lichen retention on the landscape was 5%, compared to 

the 3.42% foregone to include corridors. Meanwhile, we ensure connectivity of the 

landscape for the reindeer over the planning horizon. These findings offer a possibility 

for a more comprehensive way to ensure viable conditions for reindeer husbandry when 

planning forest management. 

 In both harvest schedule scenarios, there is a dramatic increase in the amount of 

impenetrable forest by the end of the planning horizon (see Figures 3 through 6).  By 

time period 10, both forests are almost completely impenetrable.  However, in the 

harvest schedule with corridors, there exists at least one path through the forest that 

meets the needs of the reindeer.  In the harvest schedule that did not consider corridors, 
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it is impossible to traverse the forest from the northern boundary to the southern.  Thus, 

we conclude that including corridor constraints in the harvest scheduling model is 

critical to guarantee reindeer passage. 

  When finding a harvest schedule with corridors, computational tractability 

proved to be difficult to achieve.  Only by incrementally building up a feasible solution, 

and using a powerful server, we were able to solve the full problem to within a 

reasonable optimality gap.  Even so, after running the full problem for 30 hours, the gap 

only improved by 0.40%.  Running CPLEX with a “good” initial feasible solution 

seems critical to finding a near optimal solution. Further research into the underlying 

causes and ways to improve computational performance is necessary in understanding 

why incorporating corridors makes the problem nearly intractable.  

In this paper, we demonstrated our approach to incorporate reindeer corridors in 

a harvest scheduling model using a specific case study.  This method also can be 

applied to any scenario involving maintenance of high quality corridors across time.  

With this approach we can control geometric characteristics (e.g. length, width, 

orientation, turn angle) as well as ecological characteristics (e.g. food, shelter, 

accessibility) of corridors.  For our case study we found corridors that satisfy a list of 

requirements, but it would be straightforward to find corridors that maximize or 

minimize some characteristic, and also to find corridors that improve over time.  For 

example, we can maximize the amount of ground lichen in the corridor, or require that 

the width of the corridor increases over time.   This approach can also be extended to 

other scenarios in which “paths” are selected on a landscape, such as including fuel 

breaks in harvest scheduling, or selecting units to create hiking trails. 

  We have shown with a real case study that it is possible to create spatially 

explicit forest management plans in which the needs of the reindeer are satisfied, but 
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commercial operations are still maximized.  Historically, finding solutions that both 

herders and foresters are satisfied with has been extremely challenging.  However, with 

state-of-the-art mathematical programming tools, solutions can be found that satisfy 

both parties with minimal compromise.  In situations such as that of the conflict 

between the Sami reindeer herders and the commercial forest owners, it is possible to 

find real and practical solutions in which both parties are satisfied. 
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Table 1. The allocation of possible management category for the stands depending on 

initial condition 

Management 
category 

Spruce with a 
site index > 18 

Stands with 
vegetation type 
lichen or lichen 

rich All other stands 
Even aged 
management – 
Traditional1 x x x 
Even aged 
management  - 
Delayed final 
fellings2 x x x 

Even aged 
management – 
Fertilization3 x x x 

Even aged 
management - No 
soil preparation4  x  
Even aged 
management - 
Contorta 
regeneration5    

Continuous cover 
forestry6 x   

Unmanaged7 x x x 
1 The stands are managed according to the default settings in the Heureka system. 
After final felling all stands are regenerated with planting. The regeneration 
species is the same as the site index species. Planting density is connected to the 
site index with an increased planting density for higher site index. In addition, a 
number of "secondary species" are created. In a conifer stand, the secondary 
species are birch, and spruce or pine, depending on the regeneration species. 
2 The application of the final felling may be delayed by at least 20 years compared 
with default settings. 
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3 The stands are fertilized 10 years before final felling in addition to the default 
settings 
4 No soil preparation is allowed after final felling 
5 The stands are generated with contorta after final felling 
6 The stands are subject to selective cuttings with at least 20 years between cuttings 
7 The stands are left unmanaged during the planning horizon 

 

 

 
 
Table 2. Harvest volumes in thousand m3 across planning horizon for each harvesting 
schedule for 5 year long time periods. 

   

Time period Schedule with no corridors Schedule with corridors 
1              66.019           58.789  
2              56.117           49.996  
3              47.700           42.504  
4              40.548           36.164  
5              34.471           30.760  
6              29.305           26.150  
7              24.917           22.228  
8              21.178           23.959  
9              18.005           27.076  
10              15.307           31.102  

Total            353.571        348.728  
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Table 3.  Information on corridors selected by model. 

Time Period 
Ground 

Lichen (ha) 
Arboreal 

Lichen (ha) 
Minimum 
Width (m) Length (km) 

0 248.81 53.45 51.93 30.91 
1 147.30 69.04 50.41 26.10 
2 167.53 75.00 50.92 35.04 
3 251.83 50.66 50.92 43.34 
4 148.18 124.35 50.64 35.00 
5 144.52 238.99 51.42 38.49 
6 111.11 289.05 51.42 41.76 
7 118.23 361.03 50.58 40.94 
8 105.53 346.55 50.00 43.38 
9 103.09 415.29 50.90 51.49 

10 102.43 324.77 51.34 46.56 
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