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INTRODUCTION

Whenrggking projections for a bopulation closed to migra-
tion and exposed to a fixed regime of growth, two phases may be
observed. The first one is the stabilization of the age composi-
tion toward a stable proportional distribution. During the
second phase, the stable population grows with a rate known as

the intrinsic rate of natural increase.

The mathematical techniques used to analyze the stabiliza-
tion process have been thoroughly investigated by Keyfitz (1968,
chapter 3) and others. It has been shown that the two stages
underlined above can be studied with the aid of the two largest
(in absolute values) eigenvalues of the growth matrix: the unique
positive root, defining the stable growth ratio, and the complex
eigenvalue with the largest absolute value (together with its
conjugate) , defining the population wave--a phenomenon which is
caused by the stabilization of the age structure. The unique
positive eigenvector defines the stable (and the stable equivalent)

population.

When a multiregional population open to migration is con-
sidered, one must add an additional feature to the model: space.
A detailed mathematical description of this model can be found
in Rogers (1975). It is an extension of the single-region mcdel
(i.e. for a population of the one region closed to migration), but
also includes spatial distribution. In order to incorporate this
newhconcept’the forms of analysis must be enlarged to produce
the multiregional life table, the multiregional growth matrix and
population projection,“EEE multiregional stable population, the

stable growth rate.

The two phases of the single-region population projection
process also exist in the multiregional case. The first one
consists of the achievement of age and regional stability. During
the second phase the regional populations grow at a constant rate,

retaining unchanged age compositions and regional shares.

Rogers (1975) has shown that the stability of the multi-

regional population can be studied with the aid of the dominant



eigenvalue of the multiregional growth matrix and its correspond-
ing eigenvector. He also has suggested (Rogers, 1976) that the

stabilization process passes through two phases before stability
is reached: first, when the regional age compositions are stabi-

lized , and second, when regional shares are stabilized.

A more detailed discussion of these problems is the subject
of this paper. 1In Section I, the eigenvalues and eigenvectors
of the multiregional growth matrix will be studied with respect
to the single-region cases in order to find a theoretical back-
ground for further discussions.

In Section II the phases of the multiregional projection
process are discussed. Three phases will be considered: 1) the
stabilization of the regional age compositions and the subsequent
waves; 2) the stabilization of the regional shares and the modi-
fied age structures (effects of migration); 3) stable growth.
Problemns still remain for further theoretical investigators.

The discussions throughout the paper are illustrated by a
three-region example: northwestern Bulgaria (referred to as
N. West), northeasterr Bulgaria (N. East), and Sofia. This ex-
ample has been selected from a large number of analyses with two
or three regions because it reveals the most common properties

of the multiregional projection process.

I. CONSISTENCY BETWEEN THE MULTIREGIONAL AND SINGLE-REGIONAL
MODELS

One of the main objectives of the population policy in some
countries is to lower the number of migrants as much as possible.
In order to study the effect of lowering migration rates, a sim-
ulation model can be made that diminishes them to a lower level
in a population projection. If this level becomes so low that
some of the migration flows are neglected, a problem will arise:
does the multiregional model collapse to the single-region one
or not? It will be shown in this paper that this is true of all
of the multiregional demographic measures obtained from the
eigenvalues and the eigenvectors of the multiregional growth
matrix except for the stable equivalent population.



The multiregional growth matrix has the following arrange-

1
ment of its elements, as suggested by Rogers (1966): )
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where n = number of regions and Gij are matrices with the struc-
ture of a Leslie matrix:

0 0 bij(u - 5)....bij(8 - 8) e 0

fij (2}

L
.....
e
------
-
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.....
.....
..

a and B are the beginning and the end of the child-

bearing interval;

bij(x), Il x_émé - 5 is the average number of babies
born during the 5-year projection period to
an individual aged x to x + U4 in region i,

who survive 5 years later in region j;

Sij(x) is the proportion of individuals aged x to
X + 4 in region i, who migrate to region j and
survive there to age x + 5 to x + 9 (survivor-

ship proportions) ;.

Z defines the last age group.

1 :
)An alternative arrangement has been suggested by Feeney (1970).

There is no difference between the two notations from theoret
viewpoint, but it is believed that Feeney's notation is more

suigable for computations, while Rogers' is better for analytical
studies.

1cal



From the definition of Gij we may write

o i A
S “Ea,

ilj = 1,n, l#] r {3)
when the migration movements and the regional differences in
fertility and mortality are reasonable,(i.e. can be those of an

existing population), ‘

Suppose that the population of each region is closed to
migration. Then the growth process of a region's population
can be defined by a Leslie matrix as described in (2). The multi-

regional growth matrix in such a case will be reduced to a block-

diagonal matrix (i.e. gij = 0, when i # j), which will be denoted
by gr:
Gy 0....0
o Tl S A (4)
0 O
i Z Zn
where 91 (i =1,...,n) is the conventional growth matrix of the

population in region 1i. Gi differs from Gii because the lat-

ter includes the impact of outmigrations.

When corresponding elements from the matrices G_ and G are
compared for their magnitude, it can be seen that they are very
close to one another. For the three-regional example N. West -
N. East - Sofia, the largest difference was found between the
elements S11(15) = 0.9216 from 911, and S1(15) =.0:9853 From 91.
Table 1 shows the elements of the matrix 91 (single region N.
West) and of the matrices 911, 912 and §13, which give the spatial
distribution in the projection process of N. West's population.

3 3
Note that G,(x) # ) G..(x) and S_.(x) # ) S,.(x), because
1 =1 17 1 3=1 15

of the regional differences in fertility and mortality levels.



Table 1.

Non-zero elements of the matrices G
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It can be seen that the largest differences are to be found
in some of the survivorship proportions, but they are not greater
than 10%. Thus we can speak of the elements of G as the per-

turbated elements of Gr'

Perturbation theory studies the effects of small changes
in some matrix elements on the eigenvalues and their correspond-
ing eigenvectors. It is presented in detail, for instance,
in Wilkinson (1965). A basic theorem which can be applied in
the case of population growth matrices is the following (Wilkinson,
1964, p.67):

Theorem: If the absolute value of each element of the
two matrices A and B is smaller than 1, and Ai is a simple
eigenvalue of A, there exists a simple eigenvalue Ai(e) of the

matrix A + eB which is given by a convergent power series, when
€ 1s small (g > 0):

- 2

or Ai(e) - Ai’ when £ -+ 0.

If {xi} is the eigenvector corresponding to A;» then

{xi(e)} = {xi} + {21}8 + {22}62 + e

or {xi(s)} - {xi}, when € + 0.

Bellman (1960) has shown that the coefficient kT from (5)
can be estimated as ’

k-] = ({Xl}’ ?'[Xi}) r (6)

where (+,*) denotes the inner (scalar) product of two vectors.

The vector-coefficient {11} from (5') can be presented as



d.{i2:}
{24} = % = +d, {x;} . (6')
JT1 ] 1
An appropriate combination of dj when di = 0 will givg the
vector {21} as normalized, so th%E its 1§ngth equals unity.
Note that when {xi} is a real vector {11} is‘also real,

because the complex eigenvectors appear in conjugate pairs.

Foligﬁing Bellman's techniques of estimation of k
may be estimated as

17k

by = UlE bo BLE D G (7)

and {22} is a linear combination similar to (6').

Note that Bellman's results as stated here are true for
distinct eigenvalues (and distinct eigenvectors) only. This
is not a restriction, however, because in practice the eigen-
values of matrices constructed for existing populations are

always different.

This theorem can be applied in the case of the matrices s
and G. We shall define e as the largest , in absolute value,
difference between corresponding elements of gr and G. It was
pointed out earlier that for the example considered e = S1(15)

811(15) = 0.0757. Surely, this value of ¢ can be treated as
small, because powers of & higher than 2 give values which should
be practically negligible. It ought to be noted that this value
of € is quite large when compared with other multiregional sys-
tems, but even if it is twice as large, powers higher than 2
should also be negligible.

We'can further define the matrix A from the theorem to be
the block-diagonal matrix Gr from (2), and each element of B can
be presented as



Table 2.

Nonzero elements of the three submatrices B11,

and B

~13

of B.
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where bij is an element of ?, gij of‘g, and gij(r) o f gr. Obvi-

ously, Gr + €B = G.

~

Theoretically, the maximum absolute value of the elements
of B is equal to unity. In practice, only one element (this is
b11715) in the example of TQBIE_EYVreaches the maximum because
the migration schedules have a high peak situated somewhere in
the 15-30 year age interval (Rogers, Raquillet, Castro, 1977),
and because there usually exists a dominating outmigration flow
among the regions. In the example considered, the strongest
outmigration rates are exhibited for the N. West region, and the

peak of the migration schedule is in the 15-20 year age interval.

Table 2 gives the elements of B that correspond to G11, G12

and G these are denoted by B and B,y. Two elements only,

. B
=43 ' i i [t
situated next to the one with maximum absolute value, are close
by magnitude to the maximum one, namely b11(10) and b11(20). All

the remaining elements are much smaller.

Following these remarks, an estimation of (5) and (5') will
be made by taking advantage of the demographic properties of the

notions considered.

An upper limit of the absolute value ]({xi},g{xi})], where
{xi} is an eigenvector of gr’ can be found in the following way.
First, we evaluate ?{xi}. Recalling the construction of G,
the coordinates of {xi} can be divided into a number of sub-
sets, equal to the number of regions, so that the j-th subset is
the only one with non-zero elements. Denoting the j-th subset

of the i-th eigenvector by a bar, for instance {ii}, we may write:

B

The elements of {xi} are all nonnegative and not greater than
unity, since the vector is given to be normalized. The element of
highest absolute value of gjj is equal to unity, say, and the
elements from the first row are all very small (Table 2).

Hence,



= 10=

B G ] 2 L m L

taking Euclidean norms of vectors. Because ({xi},{xi}) = 1, we
derive
| (1Bl | = | ({x),BIx. )| = | (fx;3,By &, 1|

I
-
L]

< 13 {x 1) (9)

Assuming the vector-ccefficient {21} from (6') to be nor-

malized, the same result can be obtained for k. from (7) . Then,

2
the series (5) can be represented as follows:

2
[ ted = Aql2 lkqle + ey les

because the powers of ¢ higher than 2 give very small magnitudes.
Introducing for |k,| < 1, and [k, | < 1,

[Asteresl Bl = 8 £ - (10)

The same inequality can be derived for the eigenvectors from
(37%):

|, ()} - foy}] <& 22 (10")

The inequalities (10) and (10') are the basic result which
will be used for further discussions. They show how the eigen-
values and the eigenvectors of the multiregional growth matrix
depend on the magnitude of the migration flow. They show also
that with diminishing the migrations, i.e. when G converges to
gr, the eigenvalues and eigenvectors of G converge to those of
G.. That is why (10) and (10') will be referred to in this

paper as the theorem for the consistency of the multiregional

and the single-regional growth matrices.
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In Section II the consistency of some demographzé notions
will be studied. Before that, some inferences from (10)

and (10') are necessary.

1. The series (10) can be deduced without using the modu-
lus sign. For, when Ai is real, then {xi} is real too,
and the modulus signs introduced in (9) do not convert
complex numbers into real. Therefore, (10) will give an
upper limit for Ai(e):

AR e P
1 oS

This shows that when Ai is real, Ai(e) is necessarily real
too. This result is shown also by the series (5). Studies
of the single-regional growth matrix show that there exists
exactly one positive eigenvalue (see for instance Keyfitz,
1968, Chapter 3.2). Therefore, G has at least n positive
eigenvalues (n = number of regions). The definition of {21}
in equation (6') suggests also that when X, is a vector
with complex ele.ucnts, then fﬁ1} is also complex. Then the
series (5) shows that when Ai is complex, one can expect
ki(e) to also be complex. This inference can be proved
theoretically but the proof is omitted here because a more
sophisticated notation has to be introduced.

Briefly, the number of positive eigenvalues of the multi-

regional growth matrix is equal to the number of regions.

Since they are "residuals" of the single-regional wvalues,
their magnitude will be close to unity. As for the eigen-
vectors of G, it may be inferred that the number of real
eigenvectors is equal to the number of regions, exactly

one being positive. This is a result of the famous
Frobenius theorem (see for instance Gantmacher, 1959, vol.
II). Real eigenvectors appear which correspond to negative
eigenvalues, but they are not considered here.

The same inferences hold for the complex eigenvalues and
their conjugates, which determine the length of the popu-
lation wave in the single-regional case: their number in
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the multiregional case is equal to the number of regions.
Later in this paper they will be referred to as the dominant

complex eigenvalues. The eigenvalues of Gr and G for the

example are presented in Table 3.

It appears to be quite difficult to state which eigen-
values of G correspond to a specific region, because there
is no criterion to be included in the computer programs.
One way to solve such a problem is to simulate increasing
migration flows from zeros (the case of gr) to the observed

ones (the case of G) and to follow the changes of the eigen-

~

values. In practice, this is not necessary.

2. The inequalities (10) and (10') show that the multire-
tional growth matrix is well-conditioned, i.e. small changes

in its elements lead to small changes in its eigensystem.

G

Table 3. Eigenvalues of the single-region matrices* G1, G 3

I
and of the three-regional matrix* G. o

I::B'I==I=:‘:238===ESSSISII'IIBtRI-III.IE’EII'I'IIIBSS

EIGENVALUES OF¢

G1 N WEST 62 N EAST 63  SOFIA
REAL 1MAG, REAL IMAG, REAL IMAG,
1.01084 1,72900 2,98501

B.21446+0,79294 P.03516t0,79771 0,28113t0,73587
«0,43907+0,30493 ", 0394810,29029 «0,39118*@,31577

2,0520810,29571 «7,3979510,29338 »0,0466010,40382
=0,25805+0,14343 =0,30238+0,20954 «0,10965:0,27866
“Pa 14967 “0,17762 w@,37242

EIGENVALUES OF G *¥

2,99014 1,22245% N,9%558

P,2T464+2,72607 P, 20854+@,76239 2,2335710,79177
“0,P4426+00,39975 B,15562+%,29104 2,23997+0,2R974
“@,4246510,29533 «~0,38774+0,31121 =0,39483+p,2903a
=2,24988+04,14482 =2,3006B+M,21014 =0,14822t0,07816
eB,36738 -P,14787 «0,177029

ES83C3C23SESSESrECEESEESSIEIIESSI 3 EgEgyEESEREISRNEISERISR

*The population is considered until the end of the reproduction period,
which is not a restriction because Gij and G turn out to be indecomposable.

**The eigenvalues of G and not distributed among the regions.
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Therefore, slight changes in the demographic variables (for
instance, population in the middle or at the end of the
year) have a minor effect on results obtained through the
eigensystem--the intrinsic growth rate, the stable popula-
tion, the stable regional shares, the reproductive value,
etc.

3. Wilkinson and Bellman have shown that series similar

to (55 and7(5')hold§f6r multiplé eigenvalues of A, too.
Thus the problem of multiple eigenvalues of the maltiregion-
al growth matrix is of secondary importance: by slightly
changing some of its elements, the eigenvalues will be
simple and (5) and (5') will then hold.

4. The inequalities (10) and (10') can be called the
theorem for consistency of the multiregional and the single-
region model, because by diminishing the migrations (e = 0),
the behavior of the regional populations can be studied.

For instance, when ¢ + 0, (10) shows that each eigenvalue
of G converges to an eigenvalue of G- Where the dominant
unique positive eigyenvalue is concerned, it can be seen

that it converges to the dominant eigenvalue of some region.
The same is true of the unique positive eigenvector -~ it
defines the stables populations, i.e. the multiregional
stable populétion converges to the stable population of

the same region. Therefore, this region can be called

dominant in the multiregional system as it determines the

long-run behavior of the whole system.

The multiregional stable population, which is defined with
the positive eigenvector of G, does not converge to the
stable population of each region separately but to the
stable population of one single region only. This is due
to the spatial properties of the multiregional system.

In Section II it will be shown that the multiregional
stable and the stable equivalent populations are defined
by the spatial distribution of the population of the domi-
nant region.



) — 14~

Theoretically, it is difficult to define the dominant
region except when simulations are carried out. The empir-
ical results have shown that the dominant region should be
the one with the greatest stable growth ratio in the system
of single regions. If there are two or more regions with

approximately the same growth ratio, then the migration

movements will help to'aefinértﬁébdomiﬁant one (the regiéh
with the lowest outmigration flow should be favoured). For
instance, consider the biregional system of the urban-rural
population of Bulgaria. For the observed population in
1975, the urban share is 52% of the total, baz_its stable
growth ratio is less than unity and that of the rural is
greater than unity. Under conditions of stability, the share
of the urban population is near 80%, but the dominant region
will be the rural one because it will supply both regions
with its population. This has been proved by simulations,
too. Note that the rural-urban migration flow is much

stronger than the counterflow.

Simulations have shown that the dominant region in the
system N. West - N. East - Sofia is the second one. Its
single-region dominant eigenvalue is 1.02900 (Table 3),
which drops to 1.02245 in the three-regional case. The
difference between the two values is small because the

migration flows to and from this region are small.

In Sectish 11 thé"effectiéf the eigenvalues on the popula-
tion path towards stability will be studied.

II. PHASES OF THE MULTIREGIONAL POPULATION PROJECTION

The consistency theorem shows that the number of positive
eigenvalues of G is equal to the number of regions. It shows
also that therewis this same number of pairs of complex eigen-
values whose real and imaginary parts are of approximately
equal magnitude. One should expect that these should effect
the population waves and the regional distribution. The

analysis of this problem is the topic >f this section.
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II1.1. Linear Decomposition of the Observed Age Distribution

The growth matrix G for the system N. West - N. East - Sofia
has 3 positive, 3 negative and 24 complex and conjugate eigen-
values, presented in Table 3. Since these are different, the
eigenvectors will be linearly independent. Then each 30-
dimensional vector can be presented as a linear combination:

(¥ Vomic fk b e k) oeeain o il ) (1)

where {ki} is the i-th right eigenvector-column, and c; are con-
stants (i = 1,30).

Suppose {ko} is a column-vector of the observed population.
It can be presented as

1
%o
{ky} = { k2 (12)
3
kO
where {ka}, i=1,2,3, is a column-vector of the po?ulation in

the i-th region.

Equation (11) can be represented as

1 1 1

3 E %o
2 - 2 * s 0 2

T et LT o + C301K30 (13)
3 3 3

k e

It is necessary to find the constants c;- It can be easily
proved that, if [Hi] is the i-th row-eigenvector, ([Hi]{kj}) =0,
when i # j. Multiplying (11) on the left by [H,] gives



- i

(T8, ] 0,00 = e, (kD

from where

(b8, 10, 1)
€1 = T I1E; :
i i

/ Note that when {k1} is the unique positive eigenvector
([HT]{kO}) represents the total reproductive value, and [H1] is
the spatial distribution of the reproductive potential of the
observed population (Willekens, 1977).

When the vectors {ki} are normalized, and the left eigen-
vectors are computed as the inverse of the matrix [{ki}]i21 (i.e.
the left eigenvectors are placed one next to the other),

([Hi]{ki}) = 1, £rom which
c; = ([H;1{ky}) (14)
Equation (13) can be rewritten for each region separately. Sub-
stituting for c, from (14) gives for normalized vectors: {ki}
and [Hi]:
el =g el 1
{ko} =‘E ([Hi]{ko}){ki} ’
i=1
T 2
30
- A 3
{kg} —121([Hi]{k0}){ki}

The constants c1 to 09' which will be used for further discus-

sions, are presented in Table 4.
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Table 4. Constants c, to c. estimated from (14).

1 9
c, = 1346452 c = 129104 + 101234.1
1 4,5 -
c, = 1533637 06’7 =. - 11363 + 8711 %
cy = -211645 C8,9 = 42999 + 208.1

Equation (12) will be used to study the projections of the
three populations. Namely, multiplying on the left with the
three-regional growth matrix G, and considering G{ki} - Ai{ki}

gives

Gikt = ki fkyd + won #ogs Kooyl
Multiplying t times with G:
30
& L t
G {ky} —_Z c; ik, }
i=1
The last equation can be presented as in (15):
30
1 _ T sl
ko(€)} = T c;ay ki)
i=1
2 30
kg (t)} = S he?
B I (16)
30 3
3 b i e
{ky(£) } —i£1ciki{ i}

The equations (16) can be used to project multiregional popula+
tions. They will be used further by separating the components

on the right side into three groups: first, the quantities due
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to the three positive eigenvalues; second, those due to the six
dominant complex eigenvalues; and third, those due to the remain-
ing eigenvalues. The computer results are presented in Table 5,

the discussion of which is the topic of the next section.

ITI , 2. Effect of the Eigenvalues and Eigenvectors on the Popu-
lation Projection

Table 5 presents the equations (16) at different time peri-
ods. When t = 0, the decomposition of the observed population
is presented as expressed in (15). The first three columns
represent the quantities ciAE{ki}, where i,j = 1,2,3, and i de-
notes the positive eigenvalues, j denotes the'region. T@e second
three columns represent the quantities ciszki} + Eiiz{ki}, which

are due to the i-the dominant complex eigenvalue and its conjugate.

g 5
The last three columns give the gquantities: E cihz{ki},
T
3 B 30 AL
i ciki{ki}, and ciki{ki}. All the numbers are presented

i=1 i=1
ror aggregated-by-age populations (the age interval is 50 years).
The length of the time period is five years.

Table 5 makes it possible to trace the effect of the eigen-
values on the population projection. When columns 7 and 9 are
compared, it can be seen that the effect of the secondary eigen-
values (i.e. K10 to ABO) is negligible after six-seven periods
of projection.

The first three columns represent the effect of the posi-
tive eigenvalues. The gquantities due to these are the largest

in size of population. The quantities due to ), and A3 (columns

1
1 and 3) are constantly decreasing, as they are less than unity,
while those due to A2 (the dominant eigenvalue, column 2) are

increasing.

The quantities due to Az at time t = 0 represent the size
of the stable equivalent population of each region (Rogers,
19786) .
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When the observations above are compared with similar
observations for a single-region projection (for instance,
Keyfitz, 1968, chapter 3), it can be seen that both in the multi-
regional and in the single-regional population projections, the
secondary eigenvalues cause waves with a short length, and there-
fore their influence disappears within a few time periods. There
are differences, however, when the positive and the complex domi-

nant eigenvalues are concerned as their number is equal to the

number of regions.

IT.2.1. Complex Dominant Eigenvalues

In the single-regional theory, it is the greatest (in abso-
lute value) complex eigenvalue which determines the waves due to
the age distribution of the observed population. Usually loga-
rithms are taken and the formula of De Moivre is then used:

(g + iv)t e e5(x+iy)t £

eSX(COSSty + isinSty) ()
where u+ivis a complex eigenvalue, and 5 denotes the 5-year

time period of projection.

X and y are estimated by:

e = ¥Yu + v ’ 5y = arctg g

When t increases by 271/y, cos 5yt and sin 5yt go back to the
initial point, so 27/y is the length of the wave, caused by u +

St

iv. The damping of the wave is given by e , because in prac-

tise x is always negative.

According to the consistency theorem, in the multiregional
case there exist exactly n pairs (n = number of regions) of
complex conjugate eigenvalues of approximately the same absolute
value. The empirical results suggest that when the real or the
imaginary parts are compared separately, they are approximately
of the same value, too (see Table 3). Each of these eigenvalues
will cause a wave with similé;mlengths and'ﬁagnitudes.
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Table 5 shows that a unique complex eigenvalue, together
with its conjugate, determines the wave for the population of the
N. East region (AS and Ag) or of the Sofia region (Au and AS).
This is not the case for the N. West region, the wave of which is
M'AS and AG,A7 (Table 5).

The empirical results show that, in general, the waves of

determined by two pairs: A

a regional population are represented as the sum of several pe-
riodic motions. The theory of vibrations suggests that the sum
of several periodic motions is a periodic motion too, when the
parameters specifying the vibrations are rational numbers. In
the multiregional model this clearly is the case, because the
eigenvalues are estimated until the 6th decimal place, say.

There are difficulties, however, due to the fact that the new
vibration is periodic in the sense that a finite aperiodic motion
is repeating itself. For the N.West region, the first three

lengths of the wave are 25, 23 and 27.6 years long, respectively.

The behavior of the N. West's population is the most general
in multiregional studies. Therefore, the waves will usually

be aperiodic as we are concerned with the first few periods only.

Unlike the single-region case (Keyfitz, 1968), it cannot be
stated that the length of the wave caused by the dominant com-
plex eigenvalue and its conjugate is equal to the mean length
of generation. Moreover, the simulation approach appears to be
the only practical way to find the waves of a regional popula-

Tran.

However, some rough approximations can be made. The simu-
lations have‘shown that Ay is a "residual" of the dominant com-
plex eigenvalue of region Sofia, and Ag is of N. East. Moreover,
the migration flow from N. West to Sofia is much stronger than
the other flows in the system. It can be stated that if the
migration flow from region i to region j and/or k is strong, the
wave of the population of region i can be determined as the sum
of the waves of the populations in i, j and/or k. The length
of - the summed wave can be taken as equal to the arithmetic mean

of the two (or three, etc.) lengths. If the migration flows
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from region i to all the other regions are small, then its wave

can be defined by one eigenvalue, as in the single-region case.

II.2.2. Positive Eigenvalues and Eigenvectors

The number of positive eigenvalues, as pointed out
earlier in this paper, is equal to the number of regions, and
their magnitude is close to unity. The case when at least one

of them is greater than unity will be discussed here.

Exactly one eigenvector is positive; all the others have
negative elements. Recalling that each eigenvector correspond-
ing to a positive eigenvalue converges toward some single re-
gion's dominant positive eigenvector when the migration flows
are diminished, it can be observed that the elements which cor-
respond to that same region have to be positive, and the negative
elements correspond to some other regions. This is due to the
fact that the perturbations are very small, as shown by (5')
and (10') in Section I.

The three real eigenvectors for the system N. West - N.
East - Sofia are presented in Table 6. According to the above
observations, it can be traced that the first eigenvector
is the perturbed dominant eigenvector of N. West, the second of
N. East, and the third of Sofia.

In the three-regional case the vector-function, which re-
flects the growth of the population of region i due to the posi-

tive eigenvalues and their corresponding eigenvectors, is the
following one:

EE) Y = eqATiket + oA5Thy) + cght it . (18)

When the elements of the vectors in (18) are summed, f(t) will
describe the trajectory of the total regional population. The
trajectories of the three regions from the example are presented
in Figure 1. These reflect some of the most common growth pro-

cesses which can appear in practice.
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Figure 1c. Region Sofia.

The trajectory of the N. West region is typical for a region
exhibiting high outmigration rates. The trajectory of the N. East
region is typical for a region with a high fertility level, and
low in and outmigration rates. That of Sofia is typical for a
region with fertility below the replacement level and high in-
migration rates.

In practice, more than one positive eigenvalue can be
greater than unity. When the number of births in the three-
regional example were increased 1.5 times (which causes a rise
of the crude birth rate from about 19?00 ta 2%?00, i.e. to a
completely reasonable value), the three positive eigenvalues
were all greater than unity.

If more than one positive eigenvalue is greater than unity,
the growth of any regional population will depend on them in a
diverse way, since (18) shows that the signs of the constants
and of the elements of the eigenvectors determine the population
growth, too. When the births in the example were increased,
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A3 > 1 not being the dominant eigenvalue, C3 was negative and
{k;} had negative elements. Therefore, the guantity c3h§{k;}
should increase when t is increasing. {kg} had positive elements
however. Therefore, c3A§{k§} should decrease. Hence, A3 will
cause a constant increase for one part of the population of N.

West, and a constant decrease of the population of Sofia.

It appears quite difficult to state exactly when the posi-
tive nondominant eigenvalue greater than unity will increase or
decrease the population of a specific region. The practical re-
sults show that the eigenvalue will decrease the regional popula-
tion when it is one of the smallest in magnitude, since the
eigenvector will have a large number of negative elements. This

1s proved by the results in Table 6.

When the eigenvalue tends to increase a regional population,
its effect will not die away in the long run. 1In such cases,
the trajectory will be of the kind represented in FPigure 1b., It
can usually be observed when the fertility level is very high and

the outmigration level is low.

The trajectory (18) is evidently characteristic of the mul-
tiregional case only. In the single-regional case, it should
describe the stable growth of the population. It is evidently
due to the migrations which cause perturbations in the eigen-
vectors, so that each region is affected by a number of eigen-
values. Therefore, (18) describes a specific phase of the multi-
regional growth process, which is closely connected with the
spatial properties of the model. It begins right from the start
of the projection and continues until stabilization takes place.
It is obvious that this phase affects the age distribution, too.

The three phases of the multiregional growth process can

then be outlined as follows:

1. Stabilization of the single-region age distribution.
During this phase, discrepancies in the age composition
disappear. It is described by the dominant complex
eigenvalues which cause aperiodic population waves.

This phase is long as in the single-region case.



2. Stabilization of the spatial distribution. During this
phase, the regional shares suggested by the positive
eigenvector are reached. At the same time, the age
composition continues to change smoothly according to
the quantltles ciAy {kj} i.e. according to the magnitude
of c Af {kJ : and to the migration schedule of {kj}
i+ j. Note that in the absence of migrations, {kj}
0 Sh B

The changes of the age structure which appear during
this phase come sometimes to an age structure which is
not typical for the single-region case. Figure 2 gives
the stable age structure of the Sofia region from a
seven-region study of Bulgaria (Philipov, 1978). This
kind of age composition can be observed for regions with
high inmigration rates and low fertility level.

110
100 —
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60 — \\ P
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Figure 2. Observed (1975) and stable equivalent population of
Region Sofia.

Source: Philipov (1978).
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The length of this phase is strongly dependent on the
strength of the migration movements. The weaker the
moves are, the longer the phase is, because more time
will be necessary to extinguish the quantities due to
the nondominant positive eigenvalues. Practically,

the stage is 500-1000 years long.

3. Stable age and spatial distribution. It is outlined
by the positive eigenvector. This phase is easily
studied with the stable equivalent population, which

is the topic of the next section.

II.3. Stable Equivalent Population

This is the population with a constant age and spatial dis-
tribution, the projection of which will in the long run give the
same numbers as the observed initial population. Its growth ratio
is given by the unigque dominant eigenvalue, and the age and spatial
distribution is given by the unique positive eigenvector (Az and
{kz}, say). The number of people is given by c2{k2}, where c, is
from (14).

It hac been pointed out before that in the absence of migra-
tion, the vector {kg} gives the stable population of region N. East,
and {k;} and {kg} would be equal to {0}. When migration move-
ments are introduced, {kz} will be subject to perturbations. The
smaller the migrations are, the smaller the perturbations will be,
and the less {k,} and {k3} will differ from (0}. Table 5 shows
that the observed population of the N. East region in 1975 1is
680,228, while the stable equivalent population is equal to 112,831
or six times smaller. When the migration movements are diminished
by a half by simulation, the stable equivalent will be 64,152, and

diminishing them by ten gives 15,298 - a very unreasonable number.

It can be shown, by making use of (5'), that the outmigra-
tion from the dominant region determines the stable population
of the other regions. Use will be made of Bellman's presenta-

tion of the constants dj from (6'):
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a; = -({x;},Blx;)) .
By Aij and {kij} will be denoted the j-th eigenvalue and
the j-th eigenvector of the i-th matrix of G. from (4). Suppose

the second region to be the dominant one. Then (6') can be re-

written for the first region as:

:
10 (U, },Blky 1) (k],)

A = A 3

e {k;1} Fa
j=1 ij 21

2

where {kl.} is the part of {kij} which corresponds to region 1.
Obviously, {k;1} = {0}. Therefore, the magnitude of {k;}x— the
stable equivalent population of region 1 when region 2 is
dominant - will depend on ¢ and on dj = ({kij},§{k21}), which
reflect the strength of the migration flows. - The magnitude of
the constant dj depends only on the migrations from region 2 to
region 1, i.e. on §21 when the matrix ? is represented as 9 from
(1), because {kfj} - {k?j} = {0}, and {k},} = {k3,} = {0}.
Therefore, the smaller the elements of g, the smaller the ele-
ments of {k;} will be. When B,, = O, {k;} = {0}. This shows
that if there are no migrations from the dominant region to
some other region in the multiregional model, this region's

stable equivalent population will be equal to zero.

This fact may be interpreted as follows. Suppose that re-
gion 2 is the dominant one and that there are no migrations from
region 2 to region 1 in a three-regional system. Consider equa-
tion (16.1). When t is so large that the projection is
in its second phase, then it reduces to:

1 i kel o
kg(t)} = cagiki} + crgik}
because {k;} = {0}. The magnitude of {kg(t)} will depend in the
long run on the signs of the constants and on the magnitudes of

A, and A3. If A, <1 and A3 < 0, the population will disappear;
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1-f, for instance, A1 s> 1 and cq > 0, it will constantly increase,
but when t is big enough it can be neglected when compared with

the populations of the other two regions.

From what has been discussed about the stable multiregional
population, the notion of a dominant region can be clarified.
This is the region whose population in the long run will domi-
nate the whole system. 1Its spatial distribution, which de-
pends on the region's outmigration rates, defines the system's

spatial distribution.

III. CONCLUSION

The discussions in Sections I and II show that when space
is introduced into the study of regional population, the popu-
‘lation projection will differ considerably. First, three phases
of the projection process can be observed, the most important
for practical reasons being the second one, as it affects con-
siderably the total number of the regional population. The
population waves which are due to discrepancies in the age dis-
tribution are practically aperiodic, but every period which
could be observed has a length close to that in the single-region
case. The long-run behavior of the multiregional population is
determined by the dominant region and the outmigration rates of
its population.

The three phases were analyzed on the basis of thé fact
that the multiregional growth matrix has n positive eigenvalues
close in magnitude to unity, where n is equal to the number of
regions. This fact was proved by treating the migrations as
perturbations. It has been discussed that the smaller the per-
turbations, the closer the multiregional model would be to its
single-region analogue in the short and middle-run. As for the
long-run, the notion of a dominant region was used, which makes
no sense in the single-region case. These remarks make it possi-
ble to follow the behavior of a multiregional system when the
migration movements are supposed to diminish or increase. When

the long-run is concerned, the outmigrations from the dominant
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region only are significant, while in the short and middle-run

any migration flow is significant.

When the number of regions is very large, the projection
is very difficult because of the large size of the multiregional
growth matrix. 1In such a case it is necessary to carry out some
aggregations or decompositions. Rogers (1976) has suggested that
first the multiregional population should be aggregated by age
and then projected (i.e. going directly to phases 2 and 3) after-
wards the age distribution of the stable single-region population
should be considered (going back to phase 1). This procedure
unfortunately misses the impact of the migrations on the age com-
position. Therefore, age compositions like the one in Figure 2
will never be reached. The author was unable to find any pattern
that would help in deriving this kind of age distributions with-
out estimating the eigenvectors. Use might be made only of the
empiricial reflection that it is typical for regions with a low
fertility levels if the fertility of the dominant region is above
the replacement level.

Another approach to solving problems of this kind might be
the usage of model multiregional stable populations. These are
described in Rogers (1975). 1Instead of going back to phase 1,
it might be more convenient to select a particular multiregional

stable population according to specific fertility and migration
schedules.
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