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SUMMARY

Relations between a simple type of convex nondifferentiable
optimization problem, min max f.(x), and an equivalent differen-
tiable Lagrangian funct?onlggproach are investigated in order to
provide for a better understanding of quasi-Newton methods in-
troduced recently in nondifferentiable optimization techniques.
Conditions for superlinear and quadratic convergence of quasi-
Newton methods applied to nondifferentiable optimization problems
of this simple type are obtained and their possible implications
for problems of more general type are examined. Extensions to
nonconvex nondifferentiable problems via augmented Lagrangian

functions are discussed.
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L. ENTROBDUCT TGN

A rapid development and intensive research of nondifferen-
tiable optimization techniques -- see [1l], [4] -- resulted recent-
ly in algorithms that are closely related or even equivalent in
the differentiable case to known and effective techniques of
differentiable optimization. A very interesting quasi-Newton
technique for nondifferentiable optimization was proposed and
partly investigated in [5]. To understand fully possible weak
and strong points of guasi-Newton methods in nondifferentiable
optimization, a more exhaustive study of various relations be-
tween nondifferentiable and differentiable problems is needed.
Because of a large variety of nondifferentiable problems, this
goal cannot be achieved in a short paper. However, some theo-
retical insight can be obtained by analyzing the most simple

type of nondifferentiable problems:

(1) minimize £ (x) ;s f(x) = max fi(x)
XEX i€l

where X is a convex set with nonempty interior in R (possibly
X = Rn), I is a countable set of indexes (possibly finite). It
is assumed that f is bounded from below on X and that ?g¥ fi(x)
for each x€X is attained at a finite subset A(x) = ACTI;

. are twice differentiable ahd convex functions. It is

fi:Rn-*R
not assumed that the Haar condition is satisfied, that is, if
%EEArg Eé% ?g¥ fi(x), then for any subset ACA(X), the matrix
composed of fix(ﬁ) for i €A has its maximal rank. If this con-
dition is satisfied, then & is uniquely determined by fix(ﬁ),
ieA(X), only, and some efficient algorithms for solving the
problem (1) are known [6]; however, this condition is rarely
satisfied in practical problems. Other second-order conditions
resulting in the uniqueness of X are further assumed to hold,
together with conditions implying the uniqueness of baricentric

coordinates in subdifferential sets.



The assumption of convexity is relaxed at the end of this
paper. The assumptions of countability of I and finiteness of
A could be actually also relaxed, although this generalization
is beyond the scope of this paper. If the functions f, are not
differentiable, it is often possible to reformulate the problem
(1) by enlarging the set I in such a way that modified functions
fi are differentiable. It would seem, therefore, that the con-
sidered class of nondifferentiable problems could be extended
to cover almost all practically encountered problems. However,
still other assumptions are needed for the sake of theoretical
investigation: that the activity set A(x) = A can be determined
explicitly for each x €X and that the subdifferential 9f(x) of

f at x can be fully determined, too:

(2) OE (x) = {gERn:g=i£AJ\i £ ), D pn D L gan
where f:x(x) are the gradients of functions f; at x (written as
column vectors, hence the transposition sign *). This assump-
tion is not always satisfied in practical problems of nondiffer-
entiable optimization and can be even considered as contradic-
tory to the very nature of nondifferentiable optimization tech-
niques, where a major problem is precisely an estimation of the
subdifferential 3f(x) without knowing its full description. On
the other hand, in order to obtain a better theoretical insight,
it is useful to proceed in two stages: first, investigate the
implications that A = A(x) and 3f(x) are known explicitly, then
try to relax this assumption and check for which theoretical

properties is this assumption crucial.

Under the assumption that A = A(x) and 3f(x) are known ex-
plicitly, problem (1) is equivalent to a constrained differenti-
able optimization problem which can be studied by introducing a
normal or an augmented Lagrangian function, depending on con-
vexity assumptions. This way, the relations of nondifferentiable
techniques for solving problem (1) to known techniques of differ-
entiable optimization can be investigated and some strong\(super—

linear or even quadratic) convergence properties of a special



variant of nondifferentiable guasi-Newton techniques can be
concluded. The use of an augmented Lagrangian function in the
nonconvex case and the strong properties of this function as
specified in [10] result also in second-order necessary and
sufficient conditions of optimality for the nondifferentiable
problem (1). Under second-order sufficient conditions of
optimality, the quasi-Newton techniques can be extended to the

nonconvex case.

If A = A(x) and 3f(x) are not known explicitly, and only
some subgradients g€ 39f(x) can be computed without specifying
fix(x) and the baricentric coordinates Ai' it is very difficult
to construct a quasi-Newton method that would converge super-
linearly since the subgradient g cannot be used to obtain a
sufficiently accurate approximation of a Hessian matrix that
would result in strong convergence properties, unless some in-

formation on the baricentric coordinates is available.

2. A BASIC LEMMA

A fundamental problem in nondifferentiable optimization is
as follows. Given the set 3f(xX) or an approximation G thereof,
expressed by convex combinations of a set of vectors gisERn for
i €A and by some accuracy parameters oy 2 0, 1€EA (where A = A(x),
gy = fIx(x), a; = 0 if the set 3f(x) = G is given eXplicitly),
check whether 0€G, or, if not, find the vector §€G of minimal
norm, subject to accuracy corrections if o¢; > 0. When using
quasi-Newton methods of nondifferentiable optimization, the norm
in which § is minimized must be chosen according to some other
properties of the problem. Therefore, denote ||gH§E1 =<<g;H—1q>,

1

where H ' :R" > R" is a given positive definite matrix. The basic

problem can be stated as follows:

minimize (%Hg[|§_1 + ) %;¥3) i
(y,9)€YG iea
(3)

Y= Alg) rg =3 wig. ;) Vo=, ye b0, deA )T .
1= St W T



The following lemma is actually only an extension of the
results given in [5], but, since it is fundamental for the in-
vestigation of relations between nondifferentiable optimization
methods and equivalent Lagrangian function approaches, it is

presented here in detail.

Lemma 1. The problem (3) is equivalent to the following

dual problem

minimize (§0+ %”;Hfl) ;
(X4, X)EX,
1

Xy = 1(%5, %) er™

0 :<gi;X>-XO—0L.<O,l€A}

l_

where H§|“{=-<§}H§I>and in the sense that, if g, y are solutions

to the problem (3) with Lagrange multipliers x for the constraint

g ol Y;9; = 0 and x; for the constraint J y,-1 =0, then
5 dea iea )
X,+r X are solutions of problem (4) with Lagrange multipliers y.

0 g 1
for constraints <g;,x>-X;-0a; <0 and with x = —H_1§, §0 =
-|[§H§_1 -1 a,y;, < 0. The following equivalences hold:

iea
X =0 g=0e= X, =-) a.y, = -mina, e
e At jer *
X0==0 if any of a; = (R
generally, - Eb_z H§]|§ >0 and-—ioz.z ai§i >0. Moreover,
LR iea

the solutions Xgr X, g of the problems (3), (4) are unique,
whereas § is unique if vectors hi = (—1,gi)€ERn+1 are linearly

independent for i €A, and, generally, %es?, where Y is a compact

. ] 3 . 3 3 3 .
convex set. Even if y is not unique, it naturally minimizes

) a;¥. over ye¥ = fy:y.20, § yv. =1, YoyigsT= g1
iea 171 = i€a"?t Gzt



If y is unique, then, for any positive definite H_1, the solu-

tions EO' X, §, ¥ depend Lipschitz-continuously on the data g0y -

Proof. Both problems are convex. Consider first the ques-
tion of the uniqueness of their solution. Problem (3) has

clearly a unique solution ¢ in g and, if hi are linearly inde-

pendent for i €A, a unique solution ¥ in y. Observe that the

linear dependence of the vectors h, = (—1,gi)€ERn+1, that is,
the existence of a; # 0 such that ¥ aihi = 0, 1is equivalent
ier
to the existence of o, # 0 such that } o, = 0,0, = - Ja,,
sl . i 3 e
1S7 i#j
and o terk =-Z a9, which, in turn, is equivalent to the exis-
ify o
tence of A; = -z, ¥ A, =1andg. = J A.9.. If h, are lin-
5 JoiAt % T :

early independent, such a situation cannot occur and an arbitrary
gj, J €I, cannot be a convex combination of other g;7 this im-
plies the uniqueness of baricentric coordinates §i' If h; are
linearly dependent, choose a minimal subset A CA such that § =

Zé Vol Z Voil=it )y o io fande out ¥: = 0 for igA. ITf the
Y e i~ i

1€A 1€A

choice of A is not unique, define such a ¥ for each A; define a
set Y as the convex hull of all such y. Since all y &Y result

in the same g, the set of optimal ¥ is defined by ¥ = Arg min
! yey
z Giyi; Y is a compact and closed set. Problem (4) has a
iea

unique solution (X,,x), since §b1 + %-H§A|[§ = §02 + %¢[§é||§

implies §01 = §02 i §1 = X,; were X, # Eé, so would §0 =

BXgq + (1 - B)Xg,, X = 321 + (1 —3)352 for Be (0;1) yield a smaller

~

= 1n=ne
value of x, + 7||x||.

Consider now problem (3) and define the Lagrangian function:

e £ 1 2 =
(5} Axixge¥e9) = 5llallT_s+ ¥ a;v, + <St,g- § v.9.>+ X, § y.=1)
(s e 2 g1 iea Al ! ScA 1= 0 1EA 1



Since the equality constraints in (3) are affine, each solution

(¢,8) of (3) together with the corresponding Lagrange multipliers

(§,§0) are a saddle-point of the function (5) under the addition-

al constraint Yy = 0. Hence, if i, iO denote sets of possible

Fay

Lagrange multipliers X, x, for (¥,3) €Y x {§}, then:

X x %0 # &% {41 Arg min max Sf(iriory;g) =

y>0,9€R" (x,%,) € gt

= Arg max min L%, iorYrg)
— - n+1 n
(x,xO)ER y>0,9€R

where Arg min max is the set of points resulting in min max, etc.

Compute § minimizing & for a given X, Xy, Y. Clearly, § = §(x) =

A ~

~

-HX; this implies that x = -H_1§ and X = {x}, x is unique. More-

over, after easy computation

> AR R = o vt E S pEN s
(7) &X,%5,7,5(x)) = -5x|lg ~%5- 1 v;(<g;,X¥>-%,-0,) =
1€EA
=f -?(Yrgors{_)
and, at the saddle-point —-1-]|':~AE||2 % = l|[‘A||2 sEATGaE g
/ P AUl ok el e e R
. L 2 el £ 2 . . . i t = 2 % ~
since ||gHH_1 = ||X||g, this implies == J{|[e iéA(liYi. Hence

~

§0 is also unique, io = {EO}. Obviously, x =0+ § = 0 and
[a]F:

§0=o=>§=o,§=

The function & in (7) is the Lagrangian function for prob-

lem (4). Observe that problem (4) satisfies the Slater condition,
since §1 = 0, X34 > 0 are admissible for the problem and
<Qi:§1> = §01 - o £ 0 for all ieA. Moreover, it is well known

that



Arg min maxg(yy-fo,i) = {EO} x {X} x¥
A

A~ ~

where EO’ X are unique solutions of (4) and Y is the set of
corresponding Lagrange multipliers. But relation (7) implies

that:

(8) X xX

X
o
Il

Arg min max SRR X, GIX)) . =
— — n+ 0
y>0 (x,xo)eR

Arg max 3 Ein Q(y,§0,§) = {x} x {EO} N A
y>0 (x,xO)ERn+1

A
~ N ~

Hence Y = y, If Y = {y}, the Lipschitz-continuity of X, ﬁb, v,
g-in 9; and oy results from general properties of solutions of
sets of equations and inequalities -- see [12],[14]. Moreover,

since §0 is the solution of (4), x = 0 = X, > -a;, 1€A and

X, = - ming: 3 if any of a, = 0, then % =-0 = X~ = 0. Converse-
0 : it 1 0
2 lEAZ . . 2
1y, %. = .Y, = -min®.=>g = 0 x = 0.
0 jea 171 jen *

A large part of the above lemma can be found in [5], how-
ever, without the full interpretation of §0’ § as Lagrange mul-
tipliers for (3) and without the uniqueness nor Lipschitz-conti-
nuity arguments. It is also observed in [ 5] that problem (3) is
easier to solve computationally than (4); in fact, the equation
& = Z ﬁigi defines g explicitly, and is treated as a constraint

i€a
in the lemma only in order to provide for an interpretation for

X. There exist very efficient algorithms for solving (3) in ¥
and g, if a; = 0, see [15],[2]; these algorithms can also be

adapted to the case when o; > 0. Once ¥ and g are defined, X

and §0 are easily computed.



Lemma 1 allows also a straight-forward generalization for
problems with infinite and uncountable numbers of variables and

constraints in Hilbert spaces.

3. QUASI-NEWTON METHODS IN NONDIFFERENTIABLE CONVEX OPTIMIZATION
WITH EXPLICIT SUBDIFFERENTIALS

3.1. Fundamentals

If the activity set A(x) and the subdifferential 3f(x) are
given explicitly at each x?EX, then the nondifferentiable problem
(1) is equivalent to the following differentiable one:

b 1 :
(9) minimize x, ; X4 = {(xo,x) ER xX: fi(x) -xoio,leI}
(xq/%) €X,

with the activity set A(x) defined equivalently by

(10) A{g) =ddiel v £, (x) % (x) =0 ;% . (x)=max F. ()} .
i 0 0 . I
FH=1
Problem (9) is convex and clearly satisfies the Slater con-
dition with any x, €X and X901 > ﬁo(x1). Thus, the normal Lagrange
function:

(1) LilyexpaX) =%, Fiv. (B () -%.) =2 001= ) 9.5+ 3 9v.F: ()
0 0 jep 171 0 0 iE1 Sk icI iG]

has a saddle-point (?,ﬁo,ﬁ) at a solution (ﬁo,ﬁ) of problem (9)

with a corresponding Lagrange multiplier ¢, whereas % is a solu-

tion of (1) and ﬁo = f(X) = min max f. (x) is the minimal value
X€X iel
of £. It is assumed further that X is an internal point ‘of X%.

If the number |I| of constraints in (9) is large, then a
purely dual method for solving (9) by assuming arbitrary y =
{yi}iEI' Y; > 0 and then minimizing the Lagrangian function (11)
is clearly not efficient. But a primal-dual method for solving
(9), which consists of determining the activity set A(x) or an
approximation A thereof and eliminating inactive constraints by

setting Y; = 0 for i €I\A, might be quite efficient; it is shown



further that one of such primal-dual methods is probably the

most efficient algorithm of nondifferentiable optimization.

Suppose Vi 0 for ie€A are chosen in such a way that

) y; = 1. Then LXo(y,xo,x) = 0 and

i€EA
(12) LE fy,Xp.X) o= ) oml 8 (%) = g e df (x)
e feA T e A )
Thus, if only A = A(X) and ¥; > 0, i€A(X), ) v: = 1
—_— i A v
. . 1€EA (x)
such that z P fi(x) = g = 0 were known, then solving the
i€A (x)

equivalent problems (1), (9) would be also equivalent to mini-

mizing the function:

(13) F(Qox). = 1 8. f.(x)

However, not only the optimal values ?i are not known, but
also the activity set A(x) changes, often in arbitrary neighbor-

hood of X. Also, the strong activity set
(14) sa(y) = {ier:y; >0}

can be made stable in the neighborhood of (¥,%) only if Yy 2 0
are admissible for some igA(x). These difficulties are not
uniquely related to nondifferentiable problems; they are also

known in constraint differentiable problems. A typical way of

resolving them -- see, e.g., [14] --is to construct approximations
A of A(x) and S of SA(y) such that Yy = O for 1 & A, ¥i >0 for
i1€8S, and

(15a) SCSsa(y) . A(x) . €ER - , SCA

and that, for (y,x) in some neighborhood of (y,X):

(15b) & = SA()) CA(X) = A .



0=

A measure of the distance from (y,x) to (¥,%) is useful when

constructing such approximations. Define

(16a) wo= (L, L) ]
where
) Byay s
(16b) L, = iéA Yifip(x) i LYi g y; (€] (x) -:?co (x)),y; >0

~

Here L : is not precisely the derivative of L in Yy but measures
the v1olat10n of Kuhn-Tucher necessary conditions of optimality
of (¥,%); 4if A(x) CA and Lo = W, iyi = 0 for ieA, w= 0, then
clearly, y =¥ and x = X. Moreover, the following lemma holds:

Lemma &. Suppose X is an optimal solution of problem (9),
X €int X, and let ¥ be the corresponding vector of Lagrange
multipliers, with iéI§i==1. Suppose that the vectors h; =
(—1,fix(§))'€5Rn+1 are linearly independent for i eA(x) (hence,

v is unique) and let the matrix £ = (X) be posi-

¥ ~ ?’ f'
iy XX ieSh (9) icixx
tive definite (hence, X is unique). Then there exists a neigh-

borhood U(¥,%X) and a constant 6§ > 0 such that:

(17) | (y-9,%x-%) || < 6§ +w for all (y,x) €U(¥,X)

where w is defined by (16a,b) with S8 = SA(y), ADA(x).

For the proof of the lemma see, e.g. [14]. Lemmas 1,2.

Observe that the assumption that the vectors h =
(—1,flx(x))€ERn+1, 1 €I are linearly independent is much weaker
than the Haar condition. In terms of fix(ﬁ), the linear inde-
pendence of h, is equivalent to the fact that no fjx(ﬁ) can be
expressed as a convex combination of other fix(ﬁ), see the proof
of Lemma 1. The Haar condition that each collection of fix(ﬁ)
forms a matrix of maximal rank implies that there should be at
least (n+1) of the vectors fix(g)' |A(§)1 2on 401 (it is easy to

show that otherwise either X is not optimal, or the Haar condition



=

is not satisfied), each set of n of the vectors fix(ﬁ) is line-
arly independent, and that at least n+ 1 of the baricentric co-

ordinates § of 0E3f(x) are positive. In terms of the vectors

hi = (—1,f (x)) the Haar condition has an equivalent formulation

that the vectors hi' i€1I, span the entire space Rn 1, that is,
n+1 o

the cone {hl}lEI {heRr :h= ieZI Aihi,}\i >0} has nonempty

interior in RO*] and, if % is optimal, the vector epbs

= (-1,0,...,0) €int cone {h o jer+ Thus, the last form of the Haar
condition has a rather stralghtforward geometric interpretation;
this interpretation is closely related to the necessary condition
of optimality 0€3f(®), which takes the form e, € cone {hl}lEI
in terms of hi' The assumption in Lemma 2 that hi are linearly
independent is satisfied very often for |A(X)| <n+ 1. Generally,
the use of vectors hi’ though not quite common in the theory of
nondifferentiable optimization, gives a nice insight into the

fundamental conditions of optimality.

Consider now an approximation of the subdifferential O3f (x)
by the set G:

n
18 G=liaeR i g= £ . '
(18) {g g ié Yi lx(x).léAy 1,y;>0,i€n}
and assume that 0 = J {;i £.,.(X) €G. Although 3f(x) §G if
i€a

A(x)g;A and fix(x) for i €A\A(xX) are not convex combinations of

X provided

(x), i€A(x), the relation 0€G might imply x

that ) y (x (x)-—f (x)) = 0, since then L. =0, L = 0 and
iea ¥i
w = 0. This leads to a problem analogous to (3):

(19a) mlnlmlze( ”g” + ) . = % = .
i -1 X, Y ) i o X, (x) Eontae) '
(y,9) €YG B iea L i

YG={(y,g):g= y-ff (x); T .>o}
iéA 1 ix iéAYl Y

=aloe il =l ;
where H 1s a positive definite matrix, not chosen yet. But,

due to Lemma 1, (19a) is equivalent to:



e

(19b) minimize (X, + ;—|[§||H) ;
(X,,X)EX
0 0

1

tE SRR =R - RO GE) kE () 20,4 eal

Xg = {(x5,%) e p*
and the choice of H™ ' or H is now clear: (19b) is a well-known
quadratic approximation problem for the Lagrangian function (11),
see, e.g. [12],[14], and the optimal choice of the matrix H is
to approximate the Hessian of the Lagrangian function (1i) as
closely as possible,

(19¢) HAL (yexg %) = L = ) VoF

. 75 B
e icsA(v)

ixx

for example, by variable metric techniques based on the data

y; £i4(x) for (y,x) close to (¥,%) and S close to SA(¥).
ies

Another useful interpretation of problem (19a) results from
its relation to the distance w. Observe that the norm used in
(16a) might be arbitrary and, after a slight redefinition of L

¥y’
the following specific expression for w can be used :

S 2 A e
(194d) W = (ZHiéAyi fix(x)|[H_1 +iéAyi(xo(x)-fi(x))) .

But this coincides precisely with the minimized function in
(19a) and can be interpreted as follows: given a point (y,x) and

the set A, w or (w)2 can be determined from (19d). By solving

(19a) in ¥, new ¥, X, X, and:

(19e) W =215 S R R
iea - G

™|
a5
1
—
4
~1
2
=
o
=
|

- %o~ 2 I1%I3
02 H
2 ~ 2 ’\2 .
are found. Clearly, (w)° > (#)°. But (w)© can be interpreted

also as an upper bound for a new (w)2, obtained after x is changed
to x + X and y is changed to y (here § does not denote the optimal

Lagrange multiplier for the original problem, but only for its



-13-

approx1mat10n (19b) ) —- see Section 3.4. Another interpretation

of x. and (w) is that both approximate the gain f(x) - f(x+ X)

O.f tge objective function f: —§0 is a linear approximation of
this gain and ({:r)2 - a quadratic one. Clearly, the linear ap-
proximation is more optimistic than the gquadratic one, but,
because of convexity, the linear approximation can give also an
estimation of the distance f(x) - f(X) from above, thus being
more useful for stopping tests; moreover, -?0 also gives an
estimation from above for the new (w)z, obtained after changing
X ol x + § and y to ¥. All these properties are discussed in
further sections in more detail, and the above discussion jus-
tifies only the alternate use of w, W and -?0 in the proposed

algorithms.

3.2. Approximations of Activity Sets

Consider now the situation, when {yk,xk) are given elements
of'a sequence {yk,x } Denote by the upper index k all values
of functions evaluated at (yk,x ) with x (xk) = xg, etc. Denote
by Ak the approximation of the set A(X) as evaluated at (y ,xk),
by Sk - the approximation of the set SA(y). 1If (yk,x ) converge
to (¥,%) so that wk converges to zero, then the following for-

mulae for Ak, Sk can be used:

B Lol e Pl
(20a) A - {1€I.fi x0+—6 y{ 2 nf}
(20Db) sElis fen yt b ”5}

where p > 0 is a chosen constant, depending on the scaling of
the problem (see Section 5; clearly, y?€5[0;1] but f(xk) = X,

can have arbitrary scaling), and where n? > (e nk > 0 and n?,nk

¥ ¥
converge to zero but more slowly than wk. For example, formulae

of the following type may be used:

| k=14 . Jerlle s : k-1,
(20c) Mg = el ayidie ny = min (0.01, E (w )

where gf, 5y are chosen constant; again, the best choice of these



SN

constants depends on the scaling of the problem, that is, on
Lipschitz constants for functions f; or on the norms of gradients
fix' But the assumption that n?, ng converge to zero more slowly
than w~ implies the desired result gk = SA(Y) , s A(x) for
sufficiently small wk even if the Lipschitz constants are not

known explicitly. This follows from the following lemma:

Lemma 3. Suppose X is a unique solution of problem (9) and
V¥ the corresponding unique Lagrange multiplier. Let the sets
A(X), SA(§) be defined by (10), (14) and aX, s¥ by (20c,b) with

lim Y. = 1im Y. = 0, where w" is defined by (16a,b). Then
T I
ko nf k-+x n

there exists a number w > 0 such that:

(21) et e

for 11 (yk,xk) EUy,x) =1 (yk,xk) e w}

For the proof of the lemma see [14], p.3.3.

However, the above results are valid independently of the
norm used when defining wk. If the norm (19d4) is used and ~§§_1
approximates wk from above, a more useful expression than (20c)
can be obtained. Suppose the range of f, denoted by Rf, can be
estimated. Tgen, after some heuristic reasoning, assuming that
the initial |xg| = RE, nJ = 1072Rf and ny = 1072

the final accuracy to be related to |§g| of the order 10 °rf,

and expecting

the following expressions:

il 2k=-114 Fhid 2 A Zk-14 |
(204d) Mg = Eel¥y |7 g = QU (RE} e = B i%5 1%
LoD -4 Sepl
Ey = 10 " (Rf) PSR
. ; > k -4 SR -4 .
satisfy the assumptions and result in Ne = 108 “Rf, ny = 10 it
Zk=1 = : :
|x0 =30 6Rf. This means that a function fi such that
£(x) - £;(%) < 107 'Rf might be still counted to the probably

active set Ak and a Lagrange multiplier with § < 10-Ll might be

excluded from the strongly active set Sk. This can be, however,



=B

considered as an acceptable risk -- particularly since it will be
shown later that the exact estimation of activity (21) does not
influence the simple convergence of algorithms and is needed

only when establishing superlinear or gquadratic convergence.

3.3. A Quadratic Approximation Algorithm for Nondifferen-

tiable Optimization with Explicit Subdifferentials

The algorithm minimizes a function f(x) = mg¥ fi(x) for
1€
x €R"”, where a minimal point % is supposed to exist (a modifica-
X

tion for the case x € X where is a compact convex set is possible

but not described here). The functions £, are assumed to be con-

vex and twice differentiable. It is also assumed that the wvalues
ettt Kii oo | PR 4 et

Eivea) =8 G fi(x ] = fi' fix(x ) = fix can be computed for i in

any subset of I. The algorithm is based on quadratic approxima-
tions (19a,b) to the Lagrangian function (11). Subroutines for
a variable metric approximation of the Hessian matrix of this
function (discussed in Section 3.5) and for a directional search
(described, for example, in Appendix 1) are assumed to be avail-
able.

Step 0. Choose parameters xT-initial guess of the solution,
supplied by the user, Rf-estimated range of the function values,
supplied by the user, eff-final accuracy of function values,

supplied by the user or suggested ¢ = 10_6Rffye(0;1)—desired

ratio of convergence of gradient vafies, suggested y = 0.1,
1%16(0;0.5),1%36(0.5%1) - linear search parameters, suggested
I = 0.3, my = 0.7, H -linitial approximation of the Hessian,
suggested Hl=t g Set §8 = Rf, yl = T%T, iel, k = 1.

Step 1. Compute n?, ng from (20d). Compute fk and f? for

k

i€I and determine the sets A" and Sk (20a,b), saving only f? for

iEEAk, Compute f?x and Gy = fk-f? for i(EAk. Set y? = 0 for

; k : .

i A", rescale proportionally remaining y? to obtain z]{yz =1.
i f ieA

Compute wk F1eays " e (wk)2 <|x§ 1] fecps stop. If Kk > 1, up-

date Hk.
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i ~k
Step 2. Solve the problem (19a) to obtain yk, g, compute

x*, X5 from Lemma 1 and &* from (19).
o A 2k 2 I
Step 3. Set (F=1) %5 = &F + . 1f %51 = leg 1|_iy RE
and wk = ka-1 is not satisfied, compute fk = £(%X"). I1f either:
(22a) £5 + m_ E}é > B> 5 mbzg
=y oy - = + ~k
or |x§[ % Y|XE 1|_§YuRf and wh 5 v 1, set x*1 = %=, gl ¥ s

k: =k+1, go to step 1.
Step 4. Perform a linear search for Tk such that:

(22b) £+ m 5% Bt o s ninti

k
L O v s

L 1A

. : 2k 2k
(or any other Tk resulting in f(xk b Tk xo) < f(xk-+1kx0) where

Tk satisfies (22b), see Appendix 1). Set xk+1 = xk + Tki%k.
yk+1 = yk i Tk(§k-yk), k: =k+1, go to step 1.

Comments. Observe that, when computing fk, all f? for iel

must be evaluated. It is best to combine this with the determi-

k

nation of sets Ak, S™, saving f? onlvi for ieEAk. But it is not

known whether Tk = 1 will be accepted when checking condition (22a).

~

Therefore, if |§E| is already small enough and decreases and the

desired convergence ratio y for wk is attained, Tk = 1 is accepted
without checking. Actually, wk is computed only for this pur-
pose =--and for double-checking the stopping test. Other re-

dundant information, as the sets Sk, values §k, W , or even the
rescaled values y?, could also not be computed if the computation
of wk were deemed unnecessary. But this information is wvaluable

for the analysis of the algorithm and possible debugging.

A full analysis of the simple convergence of the algorithm
is omitted here, since the proof of the following theorem can be
easily derived from results given either in [5] or in [12],[14].
It is only necessary to note that (wk)2 < |§g"1|will be eventu-

ally satisfied, if |§g[ converges to zero (see Section 3.4) and
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that w™ = yw* ! implies convergence if ]E%[ is small enough and

decreases. Actually, the double-check in step 3 is also redun-
dant, since the linear convergence of |§%| alone implies con-
vergence of the algorithm in the convex case; but the algorithm

is constructed to be applicable also for only locally convex

cases.
Theorem 4. Suppose X is the unique minimizing point of

Ei(3) = ?g¥ fi(x), where fi are twice differentiable functions,

and let the vectors hi = (—1,fix(§c))EERn+1 be linearly indepen-

dent for i€A(X) = {i€1I: fi(?{) = £(X)} implying that the cor-

responding Lagrange multiplier vector ¥, ?i 2 0 for 1 =A%),

¢. = 0 for i €A(%X) and ) V- 1, is also nnigue. 'Let

: iea(x) 1
£, = ) ?ifixx(ﬁ) be positive definite. Let U(X) be such a

Hr L ieAR) 3
neighborhood of point x that the (not necessarily convex) function
f has no generalized subdifferentials containing zero other than
at point x = X; if f is convex, let U(X) = R". Let the matrices
Hk be uniformly positive definite. Then, for any x1€EU(§), the
sequence (yk,xk) generated by the above algorithm with Eff =0

converges to the point (y,%).

For proof of the theorem combine the results given, for

example, 'in (51, [12].

3.4. Properties of Quadratic Approximations to Lagrange

Functions

For the superlinear or quadratic convergence of the above
algorithm, two basic properties of the quadratic approximation

problems (19a,19b) are of importance.

Lemma 5. Let the assumptions of Theorem 4 and Lemma 3 hold.
Then there exist a neighborhood U(y,X) of (¥,X) and a number

B > 0 such that, for any (yk,xk)EEU(§,§), problems (19a)< (19b)

have solutions with x, §k = yk + ?k satisfying the following

inequality:

) g

(23) ”§ T | Bwk
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where wk is defined as in (16a,b) with any norm, for example,
with the norm (194).

For a general proof of the lemma, see, e.g., [14]; when

using the norm (19d) for wk, the proof becomes quite straight-
forward.

Lemma 6. Let the assumptions of Theorem 4 and Lemma 3
hold. Suppose the solutions of problems (19a)<« (19b) define

xk+1 = xk + ?k, yk+1 = 9k = yk + §k. Then wk+1 defined as in
(16a,b) with any norm and at the point (yk+1,xk+1) satisfies

the following inequality:

k+ o a2k 2k
(24) RN IECAES R R o
where Lk = E kf ( k) a O( ) a t £ Eip = h
XX iEAk}H- g & an z enotes a function suc
that lim O(zz) e
lz]]>o0

For a general proof of the lemma, see, e.g., [12],[14];
again, the proof can be simplified when considering the partic-
ular norm (19d) for wk+1.

Many further conclusions can be drawn from a more detailed
analysis of Lemmas 1,5,6 and the specifical norm (19d) for w.

For example, the general relation (24) can be transformed to
the form:

k+1, 2 =k

(25) (w i =% &
k k. 2k oije=2 D oge e
s (||(H -LXX)X || k—‘I-HH X || k_1)+O (T, i)

(H=) ki)

which indicates that, for (yk,xk) in a neighborhood of (¥,X)

and for the norm of (Hk-Lix)E small enough when compared to
o 2 2

the norm of HkJJ{, the inequality (wk+1) = -xg holds. More

generally, Lemma 6 indicates that the norm of (Hk--Lk )§k is

XX
responsible for the speed of convergence of quadratic approx-

imation algorithms.
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3.5. Properties of Variable Metric Approximations

A variable metric Hk should approximate the Hessian matrix

L =Lx

G (§/R,8) = s T R

X

Since A(x) changes in every neighborhood of X, the sets Ak with
the property Ak = A(X) even if evaluated at (yk,xk) in a neigh-
borhood of (¢,X) were defined. If the following (matrix-valued)

function is defined:

~K ~ ek ~l ok
(26a) G e aE a B TR
XX XX ieAk sl oaleiet
v . v 1 . Ak k ~ AL iy
then this function is continuous in (¥ ,x ) and Lxx(y,x) = Lxx’
moreover, it can be shown that ﬁix can be used in Lemma 6 instead

k

: : Lk
of Lxx' Tt a=s the 'matciy L

iy that can be approximated by a wvar-

iable metric technique.

A typical variable metric approximation of the (n xn)-matrix

-k J ik :
Lxx is based on a set of data {s”,r }j=k—N+1 such that:
(26b) ﬂixsj =rd + 0(sj,§3,...,sk,§k)

where 0(*) is a function converging to zero faster than the norm

of its arguments. The number of data varies; clearly N >n is
: T

required for a sensible approximation. The data sJ, r- related

to the function ﬂxx can be defined by

(26¢) gl =gl IRV ginl e BT,

) AT et (3-1)*
(264d) plomiic Foogdyedt o g )
ieAk il ix 1xX

Observe that rJ # §J - @j_1 . ¥ §j fFj_1)*; if gd - éj_1

ieAk 13

were used instead of rj, the requirements (26b) could not be
satisfied, since the difference between them converges to zero
only as fast as ?J. The matrix Hk approximating Eﬁx is now con-

structed in a way that guarantees that:
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(27a) H's =t

(27b) el = edg 0(sj,§3,...,sk'1,§k'1) . Josik

under various additional assumptions. In the most widely used
rank-two variable metric procedures, an increasingly accurate
directional search resulting in almost conjugate subsequent
directions of search is needed to guarantee (27b). If a rank-
one variable metric is used, relations (27a,b) hold indepen-
dently from step-size coefficients and from the choice of direc-
tions; on the other hand, a rank-one variable metric approxima-
tion Hk can become ill-definite even if iix are positive definite.
However, there are special variants of the rank-one variable

metric that guarantee the positive definiteness of Hk [31.

If N>n and the data {sj}]}:_N+1 span entire R”, then it can
be shown [3] that the relations (26b) and (27a,b) imply together,
that

(28) (f‘ix-Hk)sk*’] = 0(§kr§k) H §k = (Sk+1,sk,...,sk—N+1) ]
kK =k 2k-N+1
VoS (V"o ;L

. A

If sj = §j—1, then the estimate (28) together with (24) from
Lemma 6 results in the superlinear convergence of a quadratic
approximation method, see next section. Note, however, that the

estimate (28) does not imply (although is implied by)

lim Hﬁix-HkH = 0; only rather special types of variable metric

k>0
procedures approximate Zxx in the norm. This is the reason why

the guadratic convergence of a quasi-Newton method can be ob-

tained practically only when Hk = iix is explicitly computed.

3.6. Superlinear and Quadratic Convergence of Quadratic

Approximation Methods

Lemmas 5, 6 together with the properties of variable metric

Hk result in the following theorem:
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Theorem 7. Let the assumptions of Theorem 4 and Lemma 3
hold. Then, for any desired convergence rate Y € (0;1), there
exists a number E E(Y) >0 and a neighborhood Uiy, x) of (¥.%)
such that, if (y % )EtHy x) and || (L. -H )ka <Ew ; then

k+1 k k+1|

< yw and |x < Y|x0| and the algorlthm from Section 3.3

converges with the desired convergence rate. If

~k 2k
|y —E x|
lim % = BR0E
k—+o "
wk+1

then the algorithm converges superlinearly, lim i (0] 5 hesE
& k»o w 2
Lix = Hk and the second-order derivatives f (-), ieaA(x), are
Lipschitz-continuous, then the algorithm converges quadratically,

k+1 B
lim sup wk T
k-+co (w)

The proof of the theorem is quite standard -- see, for example,

the proof of Theorem 1 in [14] -- and is omitted here.

It is worth to note that practical experience with gquadratic
approximation methods shows that they are the most efficient among
a wide class of various algorithms for constrained differentiable
optimization [12]. A similar performance might be expected for
the algorithm from Section 3.3, since it is only an adaptation of
quadratic approximation methods to the special class of nondiffer-
entiable problems. Moreover, the author's attention was recently
drawn to a paper [7] describing an algorithm of a similar nature
-- though different in many details and in the theoretical justi-
fication -- for the same class of problems; the résults of numeric-
al tests given in [7] confirm the expectation of a high practical

efficiency of the algorithm 3.3.

4. POSSIBLE EXTENSIONS AND RELATED RESULTS

4.17. Nonconvex Nondifferentiable Optimization with

Explicitly Given Subdifferentials

If the functions fi in problem (1) are not even locally con-
vex, then the Lagrangian function (11) for the equivalent problem
(9) might have no saddle points, although the problems (1), (9) can
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in column form), then X is a locally unique solution of problems
(1), (9, -and (§,p,§0,§) with 20 = f(X%) is a saddle-point of the

function (29).

Similarly, the following necessary condition can be obtained:

Second-order necessary condition of optimality for non-
differentiable nonconvex problem (1) with explicitly given sub-
differentials. If X€int X is a solution to problem (1) where
the functions fi are twice differentiable, and if the vectors

ﬁi = (—1,fix{§) are linearly independent for i €A(X) =
= {iEEI:fi(§)==f(§)}, then there exist ?i >0, ) % §i —
1€A (X) 5

such that i ?ifix(ﬁ) = 0. Moreover, there exists a p > 0
i€a (%) 8

such that for p > p the following matrix Mgy 1S positive semi-

definite

(31) A2 = o e L R T
XX ich(g) ixx icA () ¥ 1%

The derivation of these conditions from the known properties
of augmented Lagrangian functions [11], see also [14], is rather
technical, and is omitted here. If the functions fi are convex,
then p = 0 can be used in both (30),(31). If p > 0 and S(¥) #
A(R), then the augmented Lagrangian function (29) is not twice
differentiable at (?,p,ﬁo,ﬁ), but the matrices Aix and Aix give
a lower and an upper approximation to the Hessian Axx-"-see [14].
Following the results given in [14], a quadratic approximation
algorithm extending the algorithm from Section 3.3 to the even
locally nonconvex case can be derived. The algorithm uses the
sets Sk (defined redundantly in dlgoxithm 3.3) in order to de-
termine convexifying terms for the quadratic approximation problem
(19b) , which takes now the form:

(32a)  minimize (%5 + 3 (X HT) + 0], A -%5)? - of (£5.3-F)
=k, =k ies
(x5,x7)EX

0

or, equivalently:
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(32b) minimize (§§(1+p_€zska]i‘)+;—p|sk|(x]3) + (X, W+ o PR
% &

(x5, ) exs
0 0
+p (al it xo)fk
1€Sk
where Fk is a matrix composed of f? for ieESk, a? = fk — f?,
|Sk| is the number of elements in S, and:
=k _ -k —k n+1 k =k =k k : k
(32¢) Xs. = [ (2T ER B R =R —an S0 e

It is interesting to note that, if Sk = Ak and all constraints
are active at a solution of (32), then the problem is fully
equivalent to a dual problem as in Lemma 1; otherwise, the dual
problem for (32) is more complicated, but its investigation might
lead to interesting results. A quadratic approximation algorithm
requires a variable metric approximation either ;f ;he matrix

k

Kig k £k . :
H '”lggkiﬁ.flxx or of the entire matrix H" + pF F the latter

is positive definite, if the second-order sufficient condition
of optimality is satisfied. Under this assumption, the super-
linear convergence of the algorithm can be proved also for the

nonconvex case by a modification of results given in [14].

b.2. Nondifferentiable Optimization with Implicitly Given
Subdifferentials

For a more general class of problems of nondifferentiable
optimization, where 3f(x) are not given explicitly and it is
possible to compute only function values f(x) and subgradients
g€ of (x) without any more specific knowledge of their baricentric
coordinates, etc., a large number of algorithms has been proposed.
(See e.g. [8].) This is motivated by the fact that such problems
arise quite often, for example, in large scale algorithms of
optimization, as well as in many other cases. However, in most
cases some additional knowledge related to baricentric coordinates,
etc., is implied by the specific nature of the problem, and the
assumption of the lack of such knowledge is a simplification

resulting in more straightforward, but less effective algorithms.
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The first quasi-Newton algorithm of this type, based in
fact on results closely related to Lemma 1, was given by
Lemarechal in [5], together with convergence proofs. However,
it was not specified in [5] what the matrix Hk should approxi-
mate; it was only required that Hk is uniformly positive defi-
nite, which is sufficient for simple convergence. The results
of previous sections of this paper make it clear, that Hk should
either approximaﬁe (in a sense described in Section 3.5) the

k

Hessian ) x ¥i £ or, in the nonconvex case, the augmented
jéak 71 Tixx

Hessian of type (30).

But the results of previous sections show also that such
an approximation is actually impossible, if no additional know-
ledge on baricentric coordinates is assumed. The use of sub-
sequent gk}Eaf(xk) gives no second-order information, if i

ﬂ?fk and Ak might be arbitrary, not even converging to
i€ (k) s B B ) i
the optimal baricentric coordinates 9i (if they are unique) if
X converges to X. The use of the elements @k, closest to zero
as a convex combination of previous gj, j =0,...,k, gives more
information for, at least if §k converges to zero, then some
corresponding baricentric coordinates should converge to §i;
but subsequent ak give an average information related to many
previous xj, J = 0,..4,k, and it is difficult to extract from
them the current information related to xk, necessary for a

variable metric approximation.

The above remarks do not prove that it is impossible to
construct a superlinearly convergent algorithm for nondifferen-
tiable optimization with only implicitly given subdifferentials;
but they show that some stronger assumptions either related to
a particular choice of subgradients, or to the basic nature of
the problem, are really necessary. For example, if the Haar
condition is satisfied, then even a linear approximation algo-
rithm could be superlinearly convergent. In any case, the prob-
lem of obtaining superlinearly convergent algorithms for non-
differentiable optimization with implicitly given subdifferentials

requires further study.
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4.3. Other Extensions and Research Directions

Some of the results of this paper, as, for example, Lemma 1,
can be generalized for problems with infinitely and uncountably
many constraints. The continuous minmax problem,

minimize max f(x,z)
X e X Zel
can be Aattacked by this approach, and, in the convex case, should
not present extreme difficulties; the nonconvex case is then,
however, essentially more complex, since only a partial generali-
zation of the augmented Lagrangian theory to infinite-dimensional

spaces is now available [13].
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APPENDIX 1

An Efficient Line-Search for Nonsmooth Optimization

It is assumed that, at a given point xk, a search direction

?k and a linear estimation of the difference f(xk + §k - f(xk) ~
§g < 0 are given. Function values 5= £(x° + TiEk) are com-

: : ; i :
puted in order to find f. = min f and t. = arg min f where
£ Ti Ti L Ti Tir
T, are elements of a specially generated sequence. The sequence

{Ti} starts with o 1 (or, optionally, with the value accepted
foir Te in the previous run of the line-search algorithm). The

sequence {1.} ends with a value T gty satisfying two conditions:

k Zk
(a) fTi 2fElx) & maTix0
k ~k
(b) fTi 2of X)) + mbTixO

where 0 < o) S < 1; suggested values for m_ and m, are m_ =
P, m 2 = 0.7. To generate the sequence, an expansion or con-

traction ratio r is also used; suggested value r = 10.

The algorithm is as follows:

0 k !
(0)  set T0(=1), (e =00 ff = f(x), Tf:==0, TER=100
(i) Compute fTi. 1f fTi < ff, set Tt =ty ff::zfti' TE
fT satisfies (a) and (b), stop.
i
(1) e T fTi does not satisfy (a), set o e wl =0
or ml = -1, set wl+1: ==-1. If ml = +1, set wl+1 =2
Lozl ’ ‘ 0 Saele
Vidi) If fTi does not satisfy (b), set Thant B3 IE W =0
or w' = +1, set ml+1:= arlles s AnE ml = -1, set ml+1 = 2.
. i+1 it i
st R S e e
1

Tigq! =(Tmax 'tmin)z' set “Het=d 0 e e gy
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Comment: w1+1 = +1 means that Ti+1 should be r-times in-
creased or decreased. wl+1 = 2 means that both a lower bound

T and an upper bound Tt for T¢ are already found and they

min max

should be tightened by computing Ty41

them. The last value of Tg of Tiv satisfying (a) and (b), gives

as a geometrical mean of

often useful information. If some external bounds limit the

value of Tyr the algorithm must be accordingly modified.



