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Abstract A vast number of methods for solving multi-criteria decision problems
have been suggested for assessing criteria weights requiring more exact input data
than users normally are able to provide. In particular, the selection of adequate criteria
weights is difficult and in order to be realistic, other methods must be introduced. One
class of such methods is to introduce so called surrogate weights, where numerical
weights are assigned to each criterion based on a cardinal or ordinal rank ordering,
assumed to represent the information extracted from the user. One essential problem
is the robustness of such methods. In this article, we compare state-of-the-art methods
based on surrogate weights from the literature and, utilising a simulation approach,
discuss underlying assumptions and robustness properties. This results in a quantita-
tive measurement of these weighting methods and a methodology applicable also to
forthcoming methods.
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1 Introduction

In multi-criteria decision analysis (MCDM), the most common underlying measure-
ment mechanism is Multi-Attribute (Value or) Utility Theory (MAVT / MAUT).
Within MAUT, a common form of evaluation function is the additive model V (a) =
z;nzl w;v; (a), where V (a) is the overall value of alternative a, v; (a) is the value
of the alternative under criterion i, and w; is the weight of this criterion. One of the
problems with the additive model as well as other models is that in real-life decision
making, numerically precise information is seldom available, and when it comes to
providing reasonable weights for the criteria, most decision-makers experience diffi-
culties due to most humans seemingly do not have the required granulation capacity
and also suffer from other cognitive deficiencies pertinent to the specification of a deci-
sion problem. To somewhat facilitate eliciting weights from decision-makers, some
of the approaches in the literature utilise ordinal or imprecise importance information
to determine criteria weights and sometimes values of alternatives. Other approaches
instead make use of surrogate weights which represent the most likely interpretation
of the preferences expressed by a decision-maker or a group of decision-makers. This
paper deals with the latter approach to eliciting preferences or importance informa-
tion.

However, it is not obvious how to determine the decision quality of a multi-criteria
surrogate weighting method. Methods were mostly assessed in case studies until Bar-
ron and Barrett (1996a) introduced a process utilising systematic simulations. The
basic idea is to generate surrogate weights as well as “true” reference weights from
some underlying distribution and investigate how well the result of using surrogate
numbers match the result of using the “true” results. The idea in itself is good, but the
methodology is vulnerable since the validation result is heavily dependent on the dis-
tribution used for generating the weight vectors. Barron and Barrett themselves 1996a
argue that the elicitation of exact weights demands an exactness which does not exist
in the mind of the decision-maker, and already von Winterfeldt and Edwards (1986)
claim that “the precision of numbers is illusory”. And, for example, ratio weight pro-
cedures can be difficult to accurately employ due to response errors (Jia et al. 1998).
The common lack of reasonably complete information increases this problem sig-
nificantly. Several attempts have been made to resolve this issue. Methods allowing
for less demanding ways of ordering the criteria, such as ordinal rankings or inter-
val approaches for determining criteria weights and values of alternatives, have been
suggested. The idea is, as far as possible, not to force decision-makers to express
unrealistic, misleading, or meaningless statements, but at the same time being able
to utilise the information the decision-maker is able to supply. An approach of this
type is to use surrogate weights, which are derived from ordinal importance informa-
tion (Barron and Barrett 19964, b; Katsikopoulos and Fasolo 2006). In such methods,
the decision-maker provides information on the rank order of the criteria, i.e. sup-
plies ordinal information on importance. Thereafter, this information is converted into
numerical weights consistent with the extracted ordinal information. Several propos-
als on how to convert the rankings into numerical weights exist in the literature, e.g.,
rank sum (RS) weights and rank reciprocal (RR) weights (Stillwell et al. 1981), and
centroid (ROC) weights (Barron 1992). However, the use of only ordinal information
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is often perceived as being too vague or imprecise, resulting in a lack of confidence in
the alternatives’ final rankings.

Furthermore, it is not obvious how “correct” a surrogate weight method is, since
the “real” weights are unknown or even inexistent (in some objective sense). The
decision quality of a method was at first mostly assessed in case studies until (Barron
and Barrett 1996a) introduced a process utilising systematic simulations. The basic
idea is to generate surrogate weights as well as “true” reference weights from some
underlying distribution and investigate how well the result of using surrogate numbers
match the result of using the “true” numbers. The idea is good, but is nevertheless
vulnerable since the validation result is heavily dependent on the distribution used for
generating the weight vectors.

In this article, we discuss a spectrum of methods for increasing the expressive
power of user statements, with a particular aim at how the weight function(s) still can
be reasonably elicited while preserving the comparative simplicity and correctness of
ranking approaches. Below we discuss and compare some important aspects of robust-
ness of a set of ranking methods for weights as well as their relevance and correctness.
After having briefly recapitulated some ordinal ranking methods in the Sect. 2, we con-
tinue with state-of-the-art ranking methods taking strength into account and discuss
a spectrum of interesting candidates as well as cognitive models of decision-makers.
Thereafter, using simulations, we investigate robustness properties of the methods and
conclude with pointing out, according to the results, a particularly attractive method
for weight elicitation.

2 Ordinal Ranking Methods

In multi-criteria decision making (MCDM), different elicitation formalisms have been
proposed by which a decision-maker can express preferences. Such formalisms are
sometimes based on scoring points, as in point allocation (PA) or direct rating (DR)
methods.! In PA, the decision-maker is given a point sum, e.g. 100, to distribute among
the criteria. Sometimes, it is pictured as putty with the total mass of 100 being divided
and put on the criteria. The more mass, the larger weight on a criterion, and the more
important it is. When the first N — 1 criteria have received their weights, the last
criterion’s weight is automatically determined as the remaining mass. Thus, in PA,
there is N — 1 degrees of freedom (DoF) for N criteria. DR, on the other hand, puts
no limit to the total number of points to be allocated. The decision-maker allocates as
many points as desired to each criterion. The points are subsequently normalized by
dividing by the sum of points allocated. When the first N — 1 criteria have received
their weights, the last criterion’s weight still has to be assigned by the decision-maker.
Thus, in DR, there are N degrees of freedom for N criteria. Regardless of elicitation
method, the assumption is that all elicitation is made relative to a weight distribution
held by the decision-maker.”

1 PA and DR are akin to elements of the SAW approach (Danielson and Ekenberg 2007).

2 For various cognitive and methodological aspects of imprecision in decision making, see, e.g., Danielson
and Ekenberg (2007), Danielson et al. (2013) and other papers by the same authors.
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One very early idea in MCDM was to just skip the criteria elicitation and assign
equal weights to every criterion, but the information loss is then very large. It is
therefore worthwhile to at least rank the criteria when applicable, since rankings are
normally easier to provide than precise numbers. From the ranking, so called surrogate
weights can then be derived. This technique is utilised in Barron and Barrett (1996a,b),
Katsikopoulos and Fasolo (2006), and many others. Needless to say, for practical
decision making, surrogate weights can sometimes be perceived as a peculiar way
of motivating a method. Nevertheless, validation in this field is very difficult, due to
difficulties regarding elicitation, and the surrogate methods are quite widely used and
can be considered as attempts of trying to motivate the various generation methods.
The crucial issue is then rather how to assign surrogate weights while losing as little
information as possible and preserving the “correctness” when assigning the weights.
Stillwell et al. (1981) discuss the weight approximation techniques rank sum (RS)
and rank reciprocal (RR) weights. They are suggested in the context of maximum
discrimination power, and are both alternatives to ratio based weight schemes. The
rank sum is based on the idea that the rank order should be reflected directly in the
weights. For a set of N criteria weights (i = 1, ..., N) assume a simplex S, generated
by w; > wy > ...> wy, Xw; = 1 and 0 < w;. Assign an ordinal number to each
item ranked, starting with the highest ranked item as number 1. Denote the ranking
number i among N items to rank. Then the RS weight (Eq. 1) foralli = 1,...,N
becomes Noal—i
wle _ ~ + 1 : (1)

2 (N+1=))

Another idea, also discussed in Stillwell et al. (1981) is rank reciprocal weights. They
have a similar origin as RS weights, but are based on the reciprocals (inverted numbers)
of the rank order for each item ranked. These are obtained by assigning an ordinal
number to each item ranked, starting with the highest ranked item as number 1. Denote
the ranking number i among N items to rank. Then the rank reciprocal (RR, Eq. 2)
weight becomes

wRR = i )

! N 1
=17

A decade later, Barron Barron (1992) suggested a weight method based on vertices of
the simplex of the feasible weight space. The ROC (rank order centroid) weights are
the centroid vector components of the simplex S,,. That is, ROC is a function based on
the average of the corners in the polytope defined by the simplex S, = w; > wy >

. > wy, 2w; = l,and 0 < w;. The weights then become the centroid (mass
point) of S;,. The ROC weights for the ranking number i among N items to rank are
given by Eq. 3.

N
1
wfoC =1/N > ; ©)
j=i

Examining the weights, ROC resembles RR more than RS but is, particularly for lower
dimensions, more extreme than both in the sense of weight distribution, especially for
the largest and smallest weights.
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As discussed in Danielson and Ekenberg (2014), RS, RR, and ROC perform well
only for specific assumptions on decision-maker behaviour. If we assume that the
decision-maker in his/her mind stores his/her criteria preferences in a way similar to
a given point sum, for example pictured as putty with the fixed total mass, there are
consequently N — 1 degrees of freedom (DoF) for N criteria. On the other hand, if we
assume that the decision-maker stores his/her criteria preferences in a way that puts
no limit to the total number of points (or mass) allocated, then there are N degrees
of freedom for N criteria. Those two models of decision-maker behaviour yield very
different results in assessing surrogate weights. The RS weight model is tailored to
the assumption of N degrees of freedom and the RR and ROC models are tailored to
the N — 1 DoF assumption. Since the models RS and RR are, in this sense, opposites,
and in reality the preferences are reasonably stored in either one of the above ways or
somewhere in between, a weight function combining the properties of RS and RR was
proposed in Danielson and Ekenberg (2014). The SR weight method is an additive
combination of Sum and Reciprocal weight functions as shown in Eq. 4.

1/i + N+1-i
wik = £ N 4

! N . N+1—j
Zj:l (I/J + %)

In our previous work Danielson and Ekenberg (2014), we carried out a set of simu-
lations of the above ordinal methods and confirmed some previous results as well as
discussed some new results regarding a mixed model of decision-maker behaviour that
takes into account the different possible degrees of freedom available. Of the above
methods in this section, SR was found to be the most robust and will, together with
ROC, be used as references in the following comparative study.

3 Preference Strength Ranking Methods

Providing ordinal rankings of criteria seems to avoid some of the difficulties associated
with the elicitation of exact numbers. It puts fewer demands on decision-makers and is
thus, in a sense, effort-saving. Furthermore, there are techniques such as those above
for handling ordinal rankings with some success. However, decision-makers might in
many cases have more knowledge of the decision situation, even if the information is
not precise. For instance, importance relation information containing strengths may
implicitly exist.> However, these cannot be taken into account in the transformation
of an ordinal rank order into weights. This entails that the surrogate weights may
not really reflect what the decision-maker actually means by his/her ranking. Some
form of strengths often exist and this information should reasonably be used when
transforming orderings into weights to utilise all the information the decision-maker
is able to supply. Below, we will therefore investigate whether the above (ordinal)
methods can be successfully extended to accommodate some information regarding

3 For example, for three criteria A, B and C: “A is slightly more important than B while B is vastly more
important than C” must, in an ordinal ranking, be expressed as “A is more important than B which is more
important than C”.
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relational strengths as well, i.e. to handle ordinal information together with strength
relations information, while still preserving the property of being less demanding and
more practically useful than other types of methods. The idea is that instead of using
a predetermined conversion method (as in, e.g., ROC weights) to obtain surrogate
weights from an ordinal criteria ranking, the decision-maker will be able to express
and utilise known differences in importance between the criteria.

3.1 Preference Strength

Assume that there exists an ordinal ranking of N criteria. In order to make this order
into a stronger ranking, information should be given about how much more or less
important the criteria are compared to each other. Such rankings also take care of
the problem with ordinal methods of handling criteria that are found to be equally
important, i.e. resisting pure ordinal ranking. In this paper, we will use the following
notations for the strength of the rankings between criteria as well as some suggestions
for a verbal interpretation of these:

>0 equally important

>1 slightly more important

>, more important (clearly more important)

>3 much more important

While being more cognitively demanding than ordinal weights, they are still less
demanding than, for example, AHP weight ratios (usually employing nine ratios, i.e.
1/9, 1/7, 1/5, 1/3, 1, 3, 5, 7, and 9) or point scores like SMART (usually employing
several integers). In an analogous manner as for ordinal rankings, the decision-maker
statements can be converted into weights.

3.2 Weights of Preference Strength

In analogy with the ordinal weight functions above, counterparts using the concept of
preference strength can straightforwardly be derived.

1. Assign an ordinal number to each importance scale position, starting with the most
important position as number 1.

2. Let the total number of importance scale positions be Q. Each criterion i has
the position p(i) € {1, ..., Q} on this importance scale, such that for every two
adjacent criteria ¢; and ¢; 1, whenever ¢; >y, ¢iy1,5 = |p(i +1) — p(i) |. The
position p(i) then denotes the importance as stated by the decision-maker. Thus,
Qisequalto ¥s; + 1, wherei = 1,..., N — 1 for N criteria.

Then the cardinal counterparts to the ordinal ranking methods above can be found
as follows. To begin with, we consider the counterpart to RS weights (Stillwell et al.
1981). The concept of cardinal rank sum (CRS) weights is based on the idea that the
rank order strength should be reflected directly in the weights. Then the CRS weights
are obtained by Eq. 5

wCRsz O+1—-p(3)
l SY L @+1-pG)

)
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based on the importance positions p(i)as stated by the decision-maker. The counter-
part to ordinal rank reciprocal weights (Stillwell et al. 1981) is analogously defined.
According to step 2, let the total number of importance scale positions be Q. Each
criterion i has the position p(i) on the importance scale such that p (i) p (j)if i < j.
Then the corresponding rank reciprocal (CRR) weights are obtained by Eq. 6

1

WwCRR — P )

i N1
2j=1 5

with the usual property that a higher weight is assigned to lower ranking numbers. ROC
weights (Barron 1992) are generalised in the same way. The ordinal ROC weights,
given by Eq. 3 in Sect. 2

N
1
wioC=1/N>" - @)
j=i

could be interpreted as candidate weights for positions on the importance scale. Then
the corresponding preference strength rank order centroid weights (CRC, Eq. 7) are
obtained as

Q 1
CRC __ zj:P(i) j-

LT N 0 1
D=1 (Zj:p(k) J’)

w

®)

Finally, generalising the SR weights (Danielson and Ekenberg 2014) is done in the
same way. The ordinal SR weights were given by the Eq. 4

1/i 4 Nl
wSR — N

L N SR
=1 ]
which will now be interpreted as candidate weights for positions on the importance

scale. Using steps 1-3 above, the corresponding preference strength SR weights (CSR,
Eq. 8) are obtained as

©)

1/p @) + 5"

> (17 G+ 22520

which is a similar generalisation as the other weights. Thus, using the idea of
importance steps, ordinal weight methods are easily generalised to their respective
counterparts. Having obtained weights for preference strength relationships, we now
proceed by assessing them together with ordinal weights.

Another class of MCDM methods is the ELECTRE family of methods. In that
context, Simos proposed a simple procedure, using a set of cards, trying to indirectly
determine numerical values for criteria weights (Simos 1990a,b). The Simos method
is, however, a bit different from the methods discussed above. It is a relatively simple
method for easily expressing criteria hierarchies while introducing some cardinality if
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needed. It has been widely applied and has been well-received by real decision-makers.
When applying this method, a group of decision-makers are provided with a set of
coloured cards with the criteria names written on them. Furthermore, the decision-
makers are provided with a set of white (blank) cards. Thereafter, the non-blank cards
are ranked from the least important to the most important, where criteria of equal
importance are grouped together. Furthermore, the decision-makers are asked to place
the white cards in between the coloured cards to express preference strengths. Then
the surrogate numbers can be computed. A constant value difference, u, between two
consecutive cards is here assumed. A white card between two consecutive coloured
ones means a difference of 2 -« and two white cards means a difference of 3-u, etc. The
normalised surrogate weights are then determined from this ordering. This method is
referred to as S1 in the assessment in Sect. 4. One problem with the Simos method
is that it is not robust when the preferences are changed (Scharlig 1996) and that it
has some other contra-intuitive features, such as that it only picks one of the weight
vectors satisfying the model, while there can of course be an infinite number of them.
Furthermore, because of the weights being determined differently depending on the
number of cards in the subsets of equally ranked cards, the differences between the
weights also change in an uncontrolled way when the cards are reordered. This is why
Figueira and Roy (2002) suggested a revised version, where a more robust proportion-
ality when using these white cards is provided. This is accomplished by requesting
the decision-makers to state how many times more important the most important cri-
terion or criteria group is compared to the least important. This addition seemingly
solves some problems, but introduces the complication to require the decision-maker
to reliably and correctly estimate a proportional factor z between the largest and the
smallest criteria weights. The revised method is referred to as S2 in the assessment
below.

4 Generalised Assessment of Models for Weights

Given that we have a set of methods as in the previous section, how can they be vali-
dated? For ordinal weights, simulation studies similar to Barron and Barrett (1996a),
Arbel and Vargas (1993), Stewart (1993), Ahn and Park (2008), and others have become
a kind of de facto standard for comparing multi-criteria surrogate weight methods.
The underlying assumption of most studies is that there exist a set of ‘true’ weights
in the decision-maker’s mind which are inaccessible in its pure form by any elicita-
tion method. We will utilise the same technique for determining the efficacy, in this
sense, of the ranking approaches suggested above. The modelling assumptions regard-
ing decision-makers’ mind-sets we discussed above are mirrored in the genera-tion
of decision problem vectors by a random generator. Thus, following an N — 1 DoF
model, a vector is generated in which the components sum to 100 %, i.e., a process with
N — 1 degrees of freedom. Following an N DoF model, a vector is generated keeping
components within [0, 100 %] and subsequently normalising, i.e., a process with N
degrees of freedom. Other distributions modelling actual decision-makers would of
course be possible, and could maybe be elicited in one way or another. However, this
is not the main point herein. The important observation is that these validation meth-
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ods are highly dependent of the model of decision-makers and this yields significant
effects on the reliability of the validations. The degree of freedom is only one type
of dichotomy, but one actually expressing a meaningful semantics for discriminating
cognitive models in this respect.

When following an N — 1 DoF model, a vector is generated in which the compo-
nents sum to 100 %. This simulation is based on a homogenous N-variate Dirichlet
distribution generator. Details on this kind of simulation can be found, e.g., in Rao and
Sobel (1980). On the other hand, following an N DoF model, a vector is generated
without an initial joint restriction, only keeping components within [0, 100 %] yield-
ing a process with N degrees of freedom. Subsequently, they are normalised so that
their sum is 100 %. Details on this kind of simulation can be found, e.g., in Roberts
and Goodwin (2002). We will call the N — 1 DoF model type of generator an N — 1-
generator and the N DoF model type an N-generator. Depending of the simulation
model used (and consequently the background assumption of how decision-makers
assess weights), the results become very different. For instance, ROC weights in N
dimensions coincide with the mass point for the vectors of the N — 1-generator over the
polytope Sy,. In our earlier work Danielson and Ekenberg (2014), the close relation-
ships between ROC weights and the N — 1-generator as well as between RS weights
and the N-generator were discussed, and we concluded that the choice of degrees of
freedom for the random number generator significantly affects the results.

In reality, though, we cannot know whether a specific decision-maker (or even
decision-makers in general) adhere more to N — 1 or N DoF representations of their
preferences. Both as individuals and as a group, they might use either or be anywhere
in between. A robust rank ordering mechanism (in a reasonable sense) must therefore
employ a surrogate weight function that handles both styles of representation and
anything in between. Thus, the evaluation of surrogate weights in this paper will use
both types of generators and combinations thereof to find the most efficient and robust
weights.

Barron and Barrett (1996a) compared RS, RR, and ROC, where the idea was to
measure the validity of the method by simulating a large set of scenarios utilising
surrogate weights and see how well different methods provided results similar to
scenarios utilising “true” weights. Again, note that the notion of a “true” weight is
dependent on the decision-maker model. The Barron and Barrett study obviously
assumes an N — 1 DoF model and presents a computer simulation consisting of four
steps, assuming the problem is modelled as the simplex S,,.

Generation Procedure

1. For an N-dimensional problem, generate a random weight vector ¢ with N com-
ponents. This is called the true weight vector. Determine the order between the
weights in the vector ¢. For each method X', use the order to generate a weight
vector wX'.

2. Given M alternatives, generate M x N random values with value v;; belonging to
alternative j under criterion i.

3. Let wiX be the weight from weighting method X for criterion i (where X is either

X’ or #). For each method X, calculate V/.X = Zi w,.X v;;j. Each method produces
a preferred alternative Ax, i.e. the one with the highest VjX .
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4. For each method X', assess whether X’ yielded the same decision (i.e. the same
preferred alternative Ax) as ¢. If so, record a hit.

This is repeated a large number of times (simulation rounds). The hit rate (or frequency)
is defined as the number of times a weighting method made the same decision as TRUE.
The study also used two other measures of efficacy, average value loss and average
proportion of maximum value range achieved. The two latter measures are strongly
correlated to the hit ratio and do not add much insight into method performance. The
results of the original study in Barron and Barrett (1996a) were that ROC outperformed
the other two weighting methods. Of the two other, RR was slightly superior to RS.
Since the three methods require equally much input from the decision-maker, the
conclusion was made that ROC was to be preferred among the surrogate weights. Using
an N — I-generator simulation model over the simplex S, the results of the Barron and
Barrett study can easily be verified. However, note again that this distribution favours
the ROC method since the centroid of the generated “true” weights is the same as the
vector of the corresponding ROC weights.

It should also be noted that most simulation studies to date arrive at the same
conclusions regarding ROC, RS, and RR. A study by Roberts and Goodwin (2002),
though, came up with a different result where RS performed better than ROC with RR
in third place. The random weight distribution is in most other simulations (in step 1 of
the generation procedure above) generated by an N — 1 procedure, thus generating a
vector with N — 1 DoF. Instead, Roberts and Goodwin employ a different distribution
generating function where a fixed number, say 100, is given to the most important
criterion and the others are uniformly generated as U[0, 100], i.e. an N-generator. As
explained above, this N-generator is not the same as N — 1-generators based on a
Dirichlet distribution and thus, their simulation study instead yields the result that RS
outperforms ROC with RR in third place. This is also confirmed in Danielson and
Ekenberg (2014), i.e. given an N-generator RS outperforms ROC and RR while ROC
is marginally better than RR. While yielding a different “best” weighting method, this
result is consistent with the other study results considering it is merely a consequence
of choice of DoF in the simulator generator. The Simos family of weighting methods
have not been previously assessed in this way. In the assessment below, S1 is the
original method suggested by Simos (1990a,b). S2 is the revised method from Figueira
and Roy (2002) with the additional parameter z estimated in two ways. It is a severe
complication for the decision-maker to have to make this estimate and two different
approaches are employed in this study. Both approaches are in actual use. In S2A, z
is assumed to be a suitable fixed number, in this case 20. In S2B, z is assumed to be
proportional to Q, the number of steps (‘>’-symbols), in this case Q + 1. There is no
other way for the decision-maker to obtain z but to estimate it.

4.1 Comparing Weight Methods

Our comparative simulations were carried out with a varying number of criteria and
alternatives. There were four numbers of criteria N = {3, 6, 9, 12} and five numbers
of alternatives M = {3, 6, 9, 12, 15} creating a total of 20 simulation scenarios. Each
scenario was run 10 times, each time with 10,000 trials, yielding a total of 2,000,000
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Table 1 The winner frequency for the methods using an N — 1 generator

N—1DoF ROC SR CRC CRS CRR CSR S1 S2A S2B
33 90.2 89.3 92.6 93.2 92.7 93.8 93.3 91.9 93.0
3|15 79.1 76.9 82.4 84.5 82.4 85.3 83.8 80.3 83.9
6|6 84.8 83.1 88.0 85.8 83.6 88.5 85.0 87.0 85.5
6/12 81.3 78.9 85.4 82.7 79.4 85.5 81.7 83.9 82.2
919 83.5 81.2 86.0 80.7 78.3 85.2 79.9 82.4 80.2
1216 86.4 84.1 86.1 81.1 78.7 85.5 80.6 81.7 81.0
12]12 83.4 80.2 83.7 71.5 74.5 82.5 759 78.1 71.0

Table 2 The winner frequency for the methods using an N generator

N DoF ROC SR CRC CRS CRR CSR S1 S2A S2B
33 87.3 89.1 89.4 92.6 90.8 92.5 92.5 89.2 93.3
3|15 71.9 80.6 78.9 85.7 82.5 85.6 85.8 76.9 86.9
6/6 80.1 85.1 84.7 90.2 81.4 89.1 90.5 88.8 90.9
6/12 76.4 82.0 81.5 88.0 71.7 86.8 88.3 86.9 88.2
919 76.3 83.0 81.6 88.0 74.5 85.9 89.1 88.3 88.2
1216 71.5 84.6 83.0 89.0 75.0 86.4 90.8 89.4 88.9
12]12 73.4 81.7 79.9 86.5 70.7 83.9 88.9 86.8 85.4

decision situations generated. An N -variate joint Dirichlet distribution was employed
to generate the random weight vectors for the N — 1 DoF simulations and a standard
round-robin normalised random weight generator for the N DoF simulations. Similar
to Barron and Barrett (1996a), unscaled value vectors were generated uniformly, and
no significant differences were observed with other value distributions.*

In Table 1,> using an N — 1-generator, it can be seen that all four preference strength
methods generally outperform the ordinal ones as expected and CSR is the best one,
except for the last three rows, where CRC and ROC, respectively perform the best.
This is because the cardinality loses some meaning when the decision situation is
denser, and ROC benefits from the type of generator.

The frequencies have changed in Table 2, according to expectations, since we
employ a model with N degrees of freedom. Still the preference strength methods
perform better than the ordinal ones. S1 and S2 improve and, e.g., CRC generally
fares a bit worse. In general, strength methods perform clearly better than ordinal
ones.

4 Success measures we used were (a) “winner”, having the same preferred alternative, (b) matching of the
three highest ranked alternatives (“podium”), and (c) matching of all ranked alternatives (“overall”), the
number of times all evaluated alternatives using a particular method coincide with the true ranking of the
alternatives. The two latter sets correlated strongly with the first and are not shown in this paper.

5 In this and the following tables, the leftmost column contains the notation N|M, denoting a decision
situation having N criteria and M alternatives.
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Table 3 The winner frequency for the methods using a combined generator

Combined ROC SR CRC CRS CRR CSR S1 S2A S2B
33 88.8 89.2 91.0 92.9 91.8 93.2 92.9 90.6 93.2
3|15 78.5 78.8 80.7 85.1 82.5 85.5 84.8 78.6 85.4
6/6 82.5 84.1 86.4 88.0 82.5 88.8 87.8 87.9 88.2
6/12 78.9 80.5 83.5 85.4 78.6 86.2 85.0 85.4 85.2
919 79.9 82.1 83.8 84.4 76.4 85.6 84.5 85.4 84.2
1216 82.0 84.4 84.6 85.1 76.9 86.0 85.7 85.6 85.0
12]12 78.4 81.0 81.8 82.0 72.6 83.2 82.4 82.5 81.2

Table 4 Mean over all simulations

Total correct ROC SR CRC CRS CRR CSR S1 S2A S2B
Mean 81.3 82.8 84.5 86.1 80.2 86.9 86.2 85.1 86.0
Rank 8 7 6 3 9 1 2 5 4

Table 5 Spread over different DoF

Spread ROC SR CRC CRS CRR CSR S1 S2A S2B
33 0.2 32 0.6 1.9 1.3 0.8 2.7 0.3

3|15 1.2 *3.7 3.5 1.2 0.1 0.3 2.0 3.4 3.0
6|6 4.7 2.0 33 4.4 2.2 0.6 5.5 1.8 5.4
6/12 4.9 3.1 3.9 53 1.7 1.3 6.6 3.0 6.0
919 72 1.8 4.4 73 3.8 0.7 9.2 59 8.0
1216 8.9 0.5 3.1 7.9 3.7 0.9 10.2 7.7 79
12]12 10.0 L5 3.8 9.0 3.8 1.4 13.0 8.7 8.4

In Table 3, the N and N — 1 DoF models are combined with equal emphasis on both.
Cardinal methods consequently perform better than the ordinal ones and we can see
that in total CSR performs the best. S2B still performs reasonable, at least for lesser
number of criteria. As expected, it is also clear that the CRC, CRR, and CSR methods
outperform the best ordinal methods under varying assumptions of decision-maker
weight generation, indicating that the added information is put to good use.

Table 4 shows the average of the respective columns of Table 3. As we saw, CSR
performs the best followed by the original SIMOS, CRS and S2B as basically equal.

It is very important that a surrogate method not only has good precision, it also
needs to be robust in the sense that it performs well regardless of if the decision-maker
in his mind uses a cognitive model where the representation has N or N — 1 DoF or
any combination thereof. Table 5 shows the differences in results between the N and
N — 1 DoF simulations and Table 6 shows the standard deviation of these differences.
The most robust method in this sense is obviously CSR. The other methods perform
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Table 6 Standard deviation of spread

Total spread ROC SR CRC CRS CRR CSR S1 S2A S2B
SD 6.4 22 3.6 59 2.8 1.0 7.9 5.4 6.2
Rank 8 2 4 6 3 1 9 5

Table 7 Final score

Final score ROC SR CRC CRS CRR CSR S1 S2A S2B
Score 74.9 80.7 80.9 80.2 77.4 85.9 78.3 79.8 79.8
Rank 9 3 2 4 8 1 7 6 5

worse, even worse than the ordinal SR method, and notably the SIMOS varieties are
in this respect not performing very well.

The final score for the surrogate weight methods are computed as Final
score =Mean result — Spread, taking both precision and robustness into account.
Table 7 shows the final scores of the comparisons. CSR is significantly better than
the others, with CRC and SR far behind. The original SIMOS and the refined are quite
equal and all of them are worse than SR.

Since the CSR method performed the best both in precision and robustness, it is top
of the form in the final score table and consequently it is the method that this study
recommends for use as a surrogate weight method.

5 Concluding Remarks

Elicitation methods available today are often too cognitively demanding for normal
real-life decision-makers and there is a clear need for weighting methods that do
not require formal decision analysis knowledge. We have investigated a spectrum of
methods, including state-of-the-art approaches for asserting surrogate weights with the
possibility to supply information regarding preference strength as well as have found
some interesting results of mixed models of decision-maker behaviour considering
which degree of freedom that is adequate. We have compared these models and propose
the so called CSR method, which extends the rank order weighting procedure SR from
Danielson and Ekenberg (2014) by also taking strength preference into account in a
more straightforward way than previously suggested in Danielson et al. (2014). CSR
has several desired robustness properties and is comparatively stable under reasonable
assumptions and is also usable for multi-stakeholder decision making. Figure 1 shows
of a multi-criteria multi-stakeholder tool developed on CSR targeting infrastructure
policy making in Swedish municipalities.

We conclude that to be robust, a rank ordering method should fare well under
both of these assumptions and others. In the assessment, we also include the well-
known and popular Simos methods, see e.g., Morais et al. (2014). We have found that
the other methods analysed here are clearly behind the CSR weights in performance
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Fig. 1 The Group Decision tool Decision Wizard

considering both precision and robustness of the results and, despite their relative
popularity, neither of the original nor refined Simos methods improve much on CRS
(Eq. 5), which they resemble the most.

There exist also a number of MCDA methods suggested and all of these have not
been compared systematically against each other. Next step in this work is to compare
with some other approaches suggested over the years, in particular the dominance
rules suggested in Sarabando and Dias (2009, 2010), Aguayo et al. (2014), Mateosetal.
(2014). Furthermore, the idea with this approach is that it should combine realistic
decision making with a reasonable degree of simplicity so that it can be used by real
life decision makers. The above mentioned Decision Wizard tool is supposed to, at
least partly, accomplish this, but it remains to test whether this is accepted at a broad
basis by the stakeholders it is intended for, i.e., public servants and politicians in
the Swedish municipalities. Another development is to put this in a context of a more
formalised and acceptable decision process as discussed in, e.g., Riabacke et al. (2012)
for multi-stakeholder decision making.
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