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PREFACE 

Results on controllability, observability and realization 
of input/output data for linear systems are well-known and 
extensively covered in a variety of books and papers. What 
is not so well-known is that substantial progress has been 
made in recent years on providing similarly detailed results 
for nonlinear processes. This paper represents a survey of 
the most interesting work on nonlinear systems, together with 
a discussion of the major obstacles standing in the way of a 
comprehensive theory of nonlinear systems. 



1. Basic Problems and Results in Linear System Theory 

The theory of linear dynamical processes has by now been 

developed to such an extent that it is only a slight exagger- 

ation to term it a branch of applied mathematics, sharing equal 

rank with more familiar areas such as hydrodynamics, classical 

and quantum mechanics and electromagnetism, to name but a few. 

For those who doubt this assessment of linear system theory, 

a perusal of some of the more advanced recent literature [ I - 5 1  

should prove to be an enlightening activity, showing how deeply 

imbedded system-theoretic concepts are in areas such as algebraic 

geometry, differential topology and Lie algebras. Conversely, 

the "purer" parts of mathematics have proven to be fruitful 

sources of inspiration for system theorists seeking more power- 

ful tools with which to analyze and classify broad classes of 

problems. 

Encouraged by the tremendous success in the study of linear 

processes, system theorists have been increasingly turning their 

attention and methods to the analysis of the same circle of 

questions for nonlinear systems. As one would suspect, 

the jungleland of nonlinearity is not easily tamed and so far 

no comprehensive theory has emerged capable of treating general 

nonlinear processes with the detail available in the linear case. 

Nonetheless, substantial progress has been made on several fronts 

and part of our story will be to survey some of the more inter- 

esting developments. 

An equally important part of the picture we wish to present 

is to outline some of the reasons why a complete theory of non- 

linear systems seems remote, at least at our current level of 



mathematical sophistication. All current indications point 

toward the conclusion that seeking a completely general theory 

of nonlinear systems is somewhat akin to the search for the Holy 

Grail: a relatively harmless activity full of many pleasant sur- 

prises and mild disappointments, but ultimately unrewarding. A 

far more profitable path to follow is to concentrate upon special 

classes of nonlinear problems, usually motivated by applica- 

tions, and to use the structure inherent in these classes as 

a guide to useful (i.e., applicable) results. As we go along 

in this survey, we shall try to emphasize this approach by 

example, as well as by precept. 

Before entering into the mainstream of nonlinear system 

theory and the problems inherent therein, let us briefly review 

the principal questions and results of the linear theory. We 

are concerned with a process described by the system of 

differential equations 

where x, u and y are n, m and p-dimensional vector functions, 

taking values in the vector spaces X, U and Y, respectively. 

For ease of exposition, we assume that the matrices F, G and H 

are constant, although the theory extends easily to the time- 

varying case at the expense of more delicate notation and 

definitions. 

The principal questions of mathematical system theory may 

be conveniently separated into three categories: 



A. ~eachability/Controllability -given an admissible 

set of input functions R, what region a o f  the system state 

space X can be reached from the initial state xo in some pre- 

scribed time T by application of inputs u E R. If xo#O and 

2 =  0, then we have a problem of controllability; otherwise 

it is a question of reachability. In the case of constant 

F and G (the output matrix H plays no role in category A 

problems), with !il = continuous functions on [O,Tl, the two 

notions coincide and the basic result is 

Theorem 1 [6-81. A state x is reachable (and controllable) 

if and only if x is contained in the subspace of X generated by 

the vectors 

The system C is said to be completely reachable if and only if 

s=x,i.e., x IS reachable for every x E X .  An immediate conse- 

quence of Theorem 1 is 

Corollary 1. C is completely reachable if and only if the 

n x nm matrix 

has rank n. 

Many variations on the above theme are possible by changing 

R,9, T and/or admitting time-varying F and G (see [71  for de- 

tails). However, the algebraic result given by Theorem 1 and 

its corollary forms the cornerstone for the study of almost all 

questions relating to reachability and controllability of linear 



systems. As we shall see below, the same type of algebraic 

result can also be obtained for large classes of nonlinear 

systems at the expense of a more elaborate mathematical 

machinery, further emphasizing the underlying algebraic nature 

of dynamical systems. 

B. Observability/Constructibi1ity- switching attention 

from inputs to outputs, we consider the class of questions 

centering upon what information can be deduced about the 

system state from the measured output. As in category A, 

the basic question comes in two forms, depending upon whether 

we wish to determine the initial state x from knowledge of 0 

future inputs and outputs (observability) or if we wish to 

determine the current state x(T) from knowledge of past 

inputs and outputs (constructibility) . The linearity of the 

situation enables us to consider the case of no input (u= 0) 

and, as in the controllability/reachability situation, the 

two basic concepts of observability and constructibility 

coincide if F and H are constant matrices. The main result 

for category B questions is 

Theorem 2 [ 6 -81 .  A state x E X is unobservable (uncon- 

structible) if and only if x is contained in the kernel of 

the matrix 



Note that the basic test implicit in Theorem 2 is given in 

terms of unobservable states. Thus, any initial state xo#O 

may be uniquely determined from the measured output y (t) , 

0 - < t  - <T, T > 0, if and only if xo g! kernel O. The important 

corollary to Theorem 2, characterizing complete observability/ 

constructibility is 

Corollary 2. The system C is completely observable 

(constructible) if and only if the matrix O has rank n. 

The striking similarity in form between Theorems 1 and 2 

suggests a duality between the concepts of reachability and 

observability. This idea can be made mathematically precise 

through the identifications 

showing that any result concerning reachability may be tran- 

scribed into a dual result about observability, and conversely. 

C. Realizations/Identification -the basic questions 

subsumed under categories A and B assume for their statement 

that the system i.s given in the so-called state-variable 

form C .  The most important of all system-theoretic questions 

is that of determining "good" state-variable models given only 

input/output (experimental) data. 

Consider the Laplace transform of the system C and let 

W(s) and %(s) denote the transforms of the input and output 

functions, respectively. It is then easy to see thatwand 

g a r e  linearly related as 



where 

is called the system transfer matrix. If W(s) is a strictly 

proper rational matrix (i.e., the elements of W are ratios of 

relatively prime polynomials with the degree of the numerator 

less than that of the denominator), then we may expand W(*) 

in a Laurent series about 00 obtaining 

The matrix W (s) or, equivalently, the infinite sequence 

{A,,A2,A3,...) will be called the input/output data (or 

external description) of the system C .  We can now state 

the central problem of mathematical system theory: 

The Realization Problem: given the input/output data 

of a linear system C, determine a state-variable model C 

such that 

i) the input/output behavior of the model agrees 

exactly with the given data and 

ii) the model is completely reachable and completely 

observable, i.e., the model is canonical. 

Remark: Condition (ii), that the model be canonical, 

is mathematically equivalent to requiring that the dimension 

of the state space X of the model be minimal. However, for 

purposes of extension to the nonlinear case, where X may not 



even be a vector space, it is preferable to state the require- 

ment as given above. 

Perhaps surprisingly, the Realization Problem for linear 

systems has the following definitive solution. 

Theorem 3 [ 6 - 8 1 .  For each input/output description of a 

system there exists a canonical model 1, which is unique up 

to a choice of coordinate syst&m in the state space X. 

A weak form of the Realization Problem occurs when the 

dimension of E is fixed in advance, perhaps by a priori 

engineering or physical considerations, and only some of the 

components of F, G and H need to be determined from the input/ 

output data. This is the so-called parameter identification 

problem and is tantamount to not only forcing the system upon 

the data (by fixing the dimension of X), but also partially 

fixing the coordinate system in X (by demanding that certain 

elements of F, G and H remain fixed). Nevertheless, much work 

has been done on parameter estimation, especially in the case 

where there are uncertainties in the data, a situation which 

makes the conceptual approach somewhat easier to accept. 

It will be noted that the Realization Problem demands - all 

of the system input/output data before the internal model C 

can be chosen. In principle, this involves an infinite data 

string. Of somewhat more practical concern is the case in 

which only a finite behavior sequence 

is available. The construction of a canonical model C from 
N 



the sequence B constitutes the partial realization problem, N 

which has only recently been definitively resolved. While a 

precise statement of the main result would take us too far 

afield, the basic conclusion is that each behavior sequence 

BN has a canonical realization Z which may be unique (modulo N' 

a coordinate change in X), or which may contain a certain 

number of undetermined parameters. Furthermore, it can be 

shown that as N increases (more data becomes available), the 

sequence of canonical realizations { C  1 is nested, i.e., the N 

matrices F 
N' 

GN, H of the realization C appear as submatrices N N' 

k > 1.  A complete discussion of these in the realization CN+k, - 

matters is given in [9-101 . 

In addition to the problems of categories A, B and C, two 

other broad areas are also usually considered to form part of 

the general field of mathematical system theory: stability 

theory and optimization. Generations of work on optimal control 

theory and stability is by now so well covered in the literature 

that we shall refrain from a discussion of these areas here. 

For the interested reader, the sources [11-131 can be recommended. 

2. Linearization 

Given a nonlinear internal model 

the first temptation in analyzing questions of Type A or B is to 

linearize the process (N) by choosing some nominal input u(t) 



and generating the corresponding reference trajectory x(t). 

Such a procedure yields the linearized dynamics 

where 

- - - 
z(t)=x(t) -x(t), v(t)=u(t) -u(t)r w(t)=y(t) -y(t), 

with 

with F ( .  ) , G ( .  ) and H ( . )  being evaluated at the pair (x (t) , u (t) ) . 
The approach to studying reachability/observability issues is 

to now employ the time-varying analogues of Theorems 1 and 2 

for the analysis of the system ZL. We would clearly like to 

be able to conclude something about the c~ntrollability prop- 
- - 

erties of (N) in a neighborhood of (x,u) by studying the 

corresponding properties of C L' A typical result in this 

direction is 

1 Theorem 4 [ I  4 1  . Let the dynamics f (x,u) be C in a 
- - 

neighborhood U of (x,u) . Then the system (N) is locally 

controllable if the pair (F(t) ,G(t)) is controllable in U. 

Here "local controllability" means that for each x* in some 

neighborhood of 2, there exists a piecewise-continuous control 

u* (t) , in some neighborhood of u(t), 0 - < t - < TI such that x (T) = 0. 

The problem with the above linearized results is that they 

usually provide only sufficient conditions and are inherently 



local in character. As illustration of this point, consider 

the 2nd-order nonlinear problem 

- 
with 1 u (t) I 2 1. Let x(t) = 0, u (t) = 0, so that the linearized 

system is 

with 

The pair ( F I G )  is not controllable since 

Nevertheless, it can be shown [14] that each initial state 

0 (xl ,x:) near (0.0) can be transferred to the origin in finite 

time by a control of the above type. Thus, the system is 

locally controllable although the linearized approximation is 

not controllable. 

Another obvious defect of linearization is the smoothness 

requirement on the dynamics f(x,u) and/or the output function 

h(x). In order for the linearization to make sense, these 

functions must be at least continuously differentiable in each 

argument. While many practical processes obey this restriction, 



systems with switching points in the dynamics or other types 

of discontinuities frequently occur and would be outside the 

realm of straightforward linearization techniques. 

3. Nonlinear Processes 

The inadequacies of linearization as outlined in the 

preceding section are far from the only reasons why we would 

like to develop a system theory for truly nonlinear processes. 

Some of the reasons are associated with intrinsic features of 

nonlinear dynamical processes, while others are more closely 

connected with the methods employed in the study of such pro- 

cesses. Let us consider the first of these aspects as it is 

somewhat more relevant to the issues raised in this survey. 

Among the inherent difficulties associated with nonlinear 

processes, which are not present in linear phenomena we may 

cite nonuniqueness, singularities and critical dependence on 

parameters as features worthy of special attention. 

Nonuniqueness -the simple scalar process 

illustrates the fact that a nonlinear process may have multiple 

equilibria, even in the presence of no control input (u= 0). 

In the event a feedback law 

is employed, the closed-loop dynamics 



may have an infinite (or even uncountable) number of equilibria, 

depending upon the form of 4 .  Clearly, this situation is in 

stark contrast to the linear case where only the equilibrium 

x = O  can generically occur. Furthermore, no linearized version 

of (1) can possibly capture the global structure of the system 

equilibria manifold as a function of a and b. 

Singularities -the solutions of many nonlinear systems 

may develop singularities, even though the systems themselves 

have smooth coefficients. The simple two-point boundary value 

problem 

possesses no solutions without singularities for any T > 0 .  

In a more system-theoretic direction, it can be shown [ 1 5 ]  

that the system 

with lu(t)I - < E < <  1, has a reachable set from xo which is 

homeomorphic to a disk for T small, but encircles the origin 

for T large (see Fig. 1). 



T sma i l  T  l a r g e  

F i g u r e  1 .  The Reachable S e t  f o r  t h e  System ( 2 )  

The s i t u a t i o n  can be  even worse t han  t h i s  a s  some n o n l i n e a r  

systems have a  r e a c h a b l e  set which is  n o t  even simply-connected 

[ 1 5 ] .  I n  t h e  l i n e a r  c a s e ,  o f  cou r se ,  Theorem 1 shows t h a t  t h e  

n  r e a c h a b l e  s e t  i s  a  subspace  o f  R , hence,  n o t  o n l y  simply- 

connected b u t  even convex. Again, no l i n e a r i z e d  v e r s i o n  o f  t h e  

system ( 2 )  can  hope t o  c a p t u r e  t h e  g l o b a l  s t r u c t u r e  o f  t h e  

r e a c h a b l e  se t .  

The s imple  b i l i n e a r  sys tem 

a l s o  shows t h a t  a s t a t e  may n o t  be  r e a c h a b l e  from t h e  o r i g i n  

w i t h  bounded c o n t r o l .  Thus, a more a p p r o p r i a t e  s ta te  space  f o r  

n  t h i s  problem i s  t h e  "punc tured"  r e g i o n  R - ( 0 1 ,  r a t h e r  t h a n  

R" i t s e l f .  I n  g e n e r a l ,  t h e  " n a t u r a l "  s t a t e  s p a c e  f o r  a  non- 

l i n e a r  p roces s  i s  no l o n g e r  t h e  f a m i l i a r  v e c t o r  space  ( o r  

module) o f  t h e  l i n e a r  t h e o r y ,  b u t  a  much more compl ica ted  

mathemat ica l  o b j e c t ,  u s u a l l y  some t y p e  o f  mani fo ld  i n  a  

Euc l idean  space  o f  h igh  dimension.  For i n s t a n c e ,  i f  t h e  



sys tem i s  m u l t i l i n e a r  t h e n  t h e  s t a t e  s p a c e  h a s  t h e  s t r u c t u r e  

o f  an  a b e l i a n  v a r i e t y  (= a l g e b r a i c  m a n i f o l d )  [161. Such f a c t s  

accoun t  f o r  t h e  need t o  employ much more s o p h i s t i c a t e d  ma- 

c h i n e r y  t h a n  s i m p l e  l i n e a r  a l g e b r a  t o  s t u d y  t h e  s t r u c t u r e  o f  

n o n l i n e a r  p r o c e s s e s .  

C r i t i c a l  Dependence on Paramete r s  - f o r  t h e  l i n e a r  dynamical  

sys tem 

t h e r e  a r e  no p a r a m e t r i c  changes  i n  t h e  e l e m e n t s  o f  F  which c a n  

c a u s e  t h e  sys tem t o  have  more t h a n  a  s i n g l e  s o l u t i o n  c u r v e  x ( t ) .  

However, t h i s  i s  f a r  from t h e  c a s e  f o r  n o n l i n e a r  p r o c e s s e s .  For  

example, c o n s i d e r  t h e  sys tem 

For  X > ( a  c e r t a i n  p o s i t i v e  number) ,  t h e  sys tem h a s  no smooth 

s o l u t i o n .  F o r  X = f3 t h e r e  i s  e x a c t l y  o n e  smooth s o l u t i o n ,  

w h i l e  f o r  0  < X < B t h e r e  a r e  two s o l u t i o n s .  Thus, f3 i s  a  b i f u r -  

c a t i o n  p o i n t  i n  t h e  pa ramete r  s p a c e  a t  which t h e  c h a r a c t e r  o f  

t h e  s o l u t i o n  set changes  r a d i c a l l y .  

To i l l u s t r a t e  a n o t h e r  p o i n t ,  c o n s i d e r  t h e  sys tem 

For each  p ,  -1 - < p  2 0 ,  a l l  s o l u t i o n s  t e n d  a s y m p t o t i c a l l y  t o  z e r o  



as t+m. As p crosses 0, the system has a unique periodic 

solution p(p) and the origin becomes a source. For all p ,  

0 < p 2 1 , every nontrivial solution tends to p (p) as t + . 
Thus, p = O  is a bifurcation point at which the equilibrium 

at the origin changes suddenly from a sink to a source and 

a limit cycle p(p) is created. This so-called "Hopf bifur- 

cation" is a consequence of the system nonlinearity and has 

no counterpart in linear problems. 

Finally, consider the equilibria of the nonlinear system 

where a is an m-dimensional vector of parameters. The equi- 

libria x* for which f (x*,a) = 0 depend upon a and we can define 

a map 

X : A - + X  
* 

a H x (a) 

where A c R ~ ,  x c R". Under appropriate hypotheses on the function 

f, properties of the map X can be characterized using Thom's 

theory of catastrophes. In particular, it is of interest to 

categorize those submanifolds of A for which the map X is dis- 

continuous, the so-called "catastrophe" manifold. Again, if 

f is linear the map X is continuous and there is no interesting 

structure to analyze. Thus, no linearized version of the problem 

will suffice to study the geometry of the equilibrium manifold. 

The above examples provide convincing evidence of the need 

to develop a nonlinear system theory capable of handling the 

same broad array of questions so successfully dealt with by the 



linear theory. In succeeding sections, we present some steps 

in this direction. As will become evident, almost everything 

remains to be done to complete such a program despite the 

impressive advances of recent years. 

4.  Reachability and Controllability 

Smooth Systems 

Certainly the area in which most progress has been made in 

understanding the system-theoretic behavior of nonlinear processes 

is in the effective characterization of reachable sets and in the 

determination of algebraic criteria for complete reachability. 

Since the mathematical apparatus involved goes somewhat beyond 

the elementary linear algebra which suffices for the study of 

linear systems, we make the following definitions as originally 

given in [ 1 71 . 

Consider the nonlinear system 

where u E R c R ~ ,  x E M I  a cm-connected manifold of dimension n 

and f and h are cm functions of their arguments. To 

simplify notation, it is assumed that M admits globally 

defined coordinates x = (xl, ..., x,)', allowing us to identify 

the points of M with their coordinate representations and to 

describe the control system (N) in the usual engineering form 

above. We also assume that (N) is complete, i.e., for every 

bounded measurable control u(t) and every x E M ,  there exists 
0 



a solution of ;( = f (x,u) satisfying x(0) = x x(t) E M for all 0 ' 
real t. 

~efinition 1. Given a point X*E MI we say that x* is 

reachable from xo at T if there exists a bounded measurable 

control u(t), satisfying u ( t ) ~  5 2 ,  such that the system trajec- 

tory satisfies x(0) = x x(T) = x*, x(t) E MI 0 < t < T. 
0 ' - - 

The set of states reachable from xo is denoted as 

9(x0) = U {x : x reachable from x at time T) . 
O5T<m 0 

We say (N) is reachable at x if R(xO) = M  and reachable if - -0 
g(x) = M  for all x EM. 

Since it may be necessary to either travel a long distance 

or a great time to reach points near x the property of reach- 
0 ' 

ability from xo is not always of practical use. This fact leads 

to a local version of reachability. 

Definition 2. (N) is locally reachable at x if for every - -0 
neighborhood U of xo, R(x ) is also a neighborhood of x with 0 0 

the trajectory from x toS(x ) lying entirely within U. The 0 0 

system (N) is locally reachable if it is locally reachable for 

every x E M. 

The reachability concept detailed in Definition 1 is not 

symmetric: x* may be reachable from xo but not conversely (in 

contrast to the situation for autonomous linear systems). To 

remedy this situation, we need a weaker notion of reachability. 

This is provided by 



~efinition 3. Two states x* and 2 are weakly reachable 
0 1 

from each other if and only if there exist states x ,x ,..., x k 

i O * = x  and either x is reachable from x i- 1 such that x = x  , x 
i- 1 i 

or x is reachable from x , i =1,2, ..., k. The system ( N )  is 

said to be weakly reachable if it is weakly reachable from every 

x EM. Since weak reachability is a global concept like reach- 

ability, we can define a local version of it in correspondence 

to Definition 2. 

Among the various reachability concepts, we have the 

following chain of implications 

locally reachable reachable 

locally weakly reachable => weakly reachable 

For autonomous linear systems it can be shown that all four of 

the above notions coincide. 

The advantage of local weak reachability over the other 

concepts defined above is that it lends itself to a simple 

algebraic test. For this, however, we need a few additional 

notions. 

Definition 4. Let p (x) , q (x) be two cm vector fields on 

M. Then the Jacobi bracket of p and q, denoted [p,q] is given 

by 

The set of all cm vector fields on M is an infinite-dimensional 

vector space denoted by X(M) and becomes a Lie algebra under the 

the multiplication defined by the Jacobi bracket. 



Each constant control u E Q defines a vector field 

f (x,u) E X(M) . We let 9 denote the subset of all such vector 0 

fields, i.e., 3$ is the set of all vector fields generated 

from f(x,*) through use of constant controls. Tdenotes the 

smallest subalgebra of X(M) containing So. The elements of 

Fare linear combinations of elements of the form 

i i where fi(x) = f (x,u ) for some constant u E Q. We let P(x) be 

the space of tangent vectors spanned by the vector fields of. 

F a t  x. 

Definition 5. (N) is said to satisfy the reachability 

rank condition at xo if the dimension of F(x0) is n.. If this - 

is true for every x EM, then (N) satisfies the reachability 

rank condition. 

The following theorem illustrates the importance of the 

reachability rank condition. 

Theorem 5 [ 1 7 ] .  If (N) satisfies the reachability rank 

condition at xo, then (N) is weakly locally reachable at xo. 

For ca-systems, the converse is not quite true, but we do have 

Theorem 6 [ 1 7 1 .  If (N) is locally weakly reachable then 

the reachability rank condition is satisfied on an open dense 

subset of M (i.e., the rank condition is satisfied generically). 

In the event we strengthen the smoothness requirement on (N) 

from C- to analytic, we can strengthen Theorems 5 and 6 to 



Theorem 7 [I 71 . If (N) is analytic then (N) is weakly 

reachable if and only if it is locally weakly reachable if 

and only if the reachability rank condition is satisfied. 

The simplest illustration of the use of these results is 

to recapture the linear result of Theorem I. In this case 

.F = {Fx + Gu: u E R )  0 

so the Lie algebra is generated by the vector fields 

{Fx,gl,g2, ...,g ,I, where gi denotes the ith column of G 

regarded as a constant vector field. Computing brackets 

yields 

2 
[Fx. [Fxrgjll = gj I [gif [ F ~ , g ~ l l  = 0 I etc. 

The Cayley-Hamilton Theorem implies that ?is spanned by the 

vector fields Fx and the constant vector fields Fig 
jr 

= 0 1  , n - 1 ,  j = I 2  ...m. Thus, in this context the 

reachability rank condition reduces to the condition of 

Theorem I, namely, (N) is locally reachable if and only if 

2 n- 1 rank [G(FG(F G I .  .. (F GI = n . 

However, for linear systems local reachability and reachability 

are equivalent, so the usual results are obtained. 

The practical problem with applying the preceding results 

is that we have no nonlinear version of the Cayley-Hamilton 

Theorem insuring that the test for complete reachability can 

be concluded in a finite number of steps. In principle, we 



c o u l d  compute b r a c k e t  a f t e r  b r a c k e t  i n  t h e  L i e  a l g e b r a  g e n e r -  

a t e d  by t h e  i f i }  w i t h  no a s s u r a n c e  t h a t  t h e  n e x t  b r a c k e t  m i g h t  

n o t  y i e l d  a  v e c t o r  f i e l d  l i n e a r l y  i n d e p e n d e n t  o f  t h o s e  a l r e a d y  

computed. 

I n  o r d e r  t o  r u l e  o u t  t h e  above  t y p e  o f  b e h a v i o r ,  w e  i n t r o -  

duce  t h e  f o l l o w i n g  d e f i n i t i o n .  

r 
D e f i n i t i o n  6 .  A set  o f  v e c t o r  f i e l d s  { f i J i = ,  i s  c a l l e d  

i n v o l u t i v e  i f  t h e r e  e x i s t  c o n s t a n t s  y i j k  s u c h  t h a t  

The p r o p e r t y  o f  b e i n g  i n v o l u t i v e  i s  a  n e c e s s a r y  c o n d i t i o n  i n  

1  o r d e r  t o  b e  a b l e  t o  " i n t e g r a t e "  t h e  v e c t o r  f i e l d s  f  ,..., f  r 

t o  o b t a i n  a s o l u t i o n  m a n i f o l d .  The f o l l o w i n g  theo rem o f  

F r o b e n i u s  shows t h a t  t h i s  p r o p e r t y  i s  ( w i t h  m i l d  r e g u l a r i t y  

a s s u m p t i o n s )  a l s o  s u f f i c i e n t  t o  a s s e r t  t h e  e x i s t e n c e  o f  

maximal s o l u t i o n s .  

r 
Theorem 8 [ 181 . L e t  {f i)i,l b e  a n  i n v o l u t i v e  c o l l e c t i o n  

o f  v e c t o r  f i e l d s  which  are  

a )  a n a l y t i c  on an  a n a l y t i c  m a n i f o l d  M. Then g i v e n  a n y  

p o i n t  x  E M  , t h e r e  e x i s t s  a  maximal s u b m a n i f o l d  N c o n t a i n i n g  
0 

x s u c h  t h a t  i f i }  s p a n s  t h e  t a n g e n t  s p a c e  o f  N a t  e a c h  p o i n t  -0 

b )  ern on  a ern m a n i f o l d  M w i t h  t h e  d i m e n s i o n  o f  t h e  s p a n  

o f  { f i }  c o n s t a n t  on  M .  Then g i v e n  any  p o i n t  x , ~  M I  t h e r e  

i e x i s t s  a maximal s u b m a n i f o l d  N c o n t a i n i n g  x  s u c h  t h a t  { f  1 
0 

s p a n s  t h e  t a n g e n t  s p a c e  o f  N a t  e a c h  p o i n t  o f  N .  



As an illustration of Frobenius' Theorem, consider the 

analytic vector fields in R 
3 

It is easily verified that this collection is involutive and 

if we look at any point x E R~ then we can integrate the distri- 

bution through that point. For instance, if x = +(JT, ) , 

then we obtain the set 

N = {x: Ilxll = 1 1  

as the corresponding integral manifold. In fact, in this 

3 
example, the vectors fl, f 2 ,  f are tangent to the spherical 

shell N at each point. Additional details on this example 

are provided in [ 181 . 

In terms of the Frobenius Theorem, the problem of complete 

reachability for an involutive system of vector fields may be 

re-stated: does the maximal submanifold N=M? In order to 

answer this question, it is necessary to have a more explicit 

characterization of the submanifold N. This is provided by a 

theorem of Chow, which also provides the underpinning for our 

earlier results, Theorems 5-7. But first a bit of additional 

notation. 

Given a vector field f on M, for each t exptf defines a 

map of M + M, which is the mapping produced by the flow on M 

defined by the differential equation ;(= f(x). We denote by 

dif f (M) the group of diffeomorphisms of M and let {exp { f i1 lG 



be the smallest subgroup of diff (M) which contains exptf for 

i all f E {fi). Finally, If lLA denotes the Lie algebra of vector 

i fields generated by {f l under the Jacobi bracket multiplication 

defined above. We are now in a position to state the following 

control-theoretic version of Chow's Theorem. 

Theorem 9 1181.  Let {fi (x)):=l be a collection of vector 

fields such that ifi (x) lLA 2 

a) analytic on an analytic manifold M. Then given any 

xO€ M I  there exists a maximal submanifold N C M  containing x - 0 

such that 

x = N  ; {exp { fill xO = {exp { fi 
G 

b) ern on a ern manifold M with dim span {fi(x) lLA ) constant 
on M. Then given any point x E M ,  there exists a maximal sub- 0 

manifold NcM containing x such that 0 

i x = N  . {exp { fi I} xo = {exp { f lLA} 
G G 

Linear-Analytic Systems 

The conclusions of Chow's Theorem enable us to effectively 

resolve the reachability problem for systems of the form 

However, in applications we are often confronted with systems 

of the form 



In this situation, Chow's Theorem has the serious drawback 

that it does not distinguish between positive and negative 

time. Thus, the submanifold N may include points which can 

only be reached by passing backward along the vector field 

p(x). This means that the reachable set will, in general, 

only be a proper subset of N. 

If we let (exp tp) (x0) denote the solution to (3) at 

time t corresponding to all u.5 0, while 9(t,x0) denotes 
1 

the reachable set at time t, then the problem of local reach- 

abilitx is to find necessary and sufficient conditions that 

(exp tp) (x0) E interior d(t.xo) for all t > 0. Denoting 

k 
(ad x, Y) = [X,Y] , (adk+'x,y) = [X, (ad X,Y) ] , the basic known 

results on this problem are contained in 

Theorem 10 [19]. 

a) A necessary and sufficient condition that 

i interior B(t.xo) # fl for all t > 0 is that dim [tpIg 3LA)[~O)2. 

b) A sufficient condition that (exp tp) (x0) E interior @(t,x0) 

for all t >  0 is that 

j i {(ad p,g ) : j =0,1,2 ,...; i =  1,2,...,rl 

contain n linearly independent elements. 

Remark: The condition (b)of Theorem 10 is also necessary 

in the case n=2. In general, though, more stringent hypotheses 

are required for the "rank condition" to be necessary. 

To illustrate the application of the foregoing results, 

consider the dynamical system 



X2 

sin xl 
X 3 

0 

Computing the Lie brackets, we have 

sin x 
2 - 

X3 

so that p,g and [p,g] span R' unless x1 = 0 or n or x2 = 0. That 

is, the system satisfies the reachability rank condition for all 

non-zero x 0 ' 

Let us return now to the problem of local reachability. If 

we assume that the origin is an equilibrium point for the vector 

field p (x) , i. e., p (0) = 0, and if we measure the system to be in 

some state q at a future time tl, then we can consider the local 

reachability problem to consist in determining the existence of 

a stabilizing control which would drive the trajectory of the 

system x(t) in the "direction" -q. 

To be more explicit, consider the system 

where ( u  (t) I 2 1 . Further, assume that 



k dim span C (ad p,g) : k =  0,1,. . . l(0) = n 

so that a stabilizing control law exists, at least locally (Theo- 

rem 10 (b)). The problem in the construction of such a law is 

that the directions that are "instantaneously" possible are 

p(q) + pg(q) , -1 - < p 11, and -q need not be among these direc- 

tions. Let us write q as 

j Then if we can generate the directions + (ad p,g) (0) via compo- 

sitions of solutions of (4) with controls 1 u ( - < 1, it follows 

that we can generate the direction -q. 

A specific illustration of how to construct the locally 

stabilizing law is the following taken from [19]. Let n = 3 

and define 

where 

and 



These  f l o w s  a r e  chosen  s o  t h a t  i f  p  ( 0 )  = 0 and  I ( x )  ( 5 c lx  1 ,  
+ 

t h e n  g-(s) (x) I = 2 ( a d  j p , g )  ( x )  . s = o  

3 i- 1 
Thus ,  if x = 1 a i ( a d  p .g )  ( 0 )  , t h e n  

i= 1 

Hence, i f  x  i s  n e a r  0  and  s i s  s u f f i c i e n t l y  s m a l l ,  q ( s )  x - x =  

- s x + O ( s )  and  t h e  above  f o r m u l a  shows how t o  c h o o s e  a c o n t r o l  

3 
o v e r  t h e  t i m e  i n t e r v a l  [ O r  1 l a i / s ]  s o  as t o  move t h e  s t a t e  

i= 1 

e s s e n t i a l l y  i n  t h e  d i r e c t i o n  -x ,  i . e . ,  toward  t h e  o r i g i n .  

Sumrnarizing, the s t e p s  i n  t h e  p r o c e s s  are  

i) measure  t h e  s t a t e  x;  

3 
ii) e x p r e s s  x  = 1 a i  ( a d i - l p I g )  ( x )  ; 

i= 1 

iii) u s e  ( 5 )  t o  d e t e r m i n e  a n  "open-loop" c o n t r o l  u ( t , x )  

3 
on  t h e  i n t e r v a l  0  5 t - < 1 I a i  1 s ; 

i= 1 

i v )  r e m e a s u r e  t h e  s t a t e  and r e p e a t  t h e  p r o c e s s .  

(Note:  Even t h o u g h  t h e  measured  s t a t e  x  i s  u s e d  t o  compute t h e  

c o n t r o l ,  t h e  l a w  u i s  s t i l l  open- loop  s i n c e  no s t a t e  o v e r  t h e  



interval 0 5 t 5 1 ai 1 s is measured) . The formulae for the 
i= I 

general case of the above result are given in [I91 along with 

a report on the convergence of the algorithm sketched in steps 

(i) - (iii) above. 

k 
The formulae given above for generating +(ad p,g)(x) are 

but one of many possible schemes. The question (as yet unan- 

swered) arises as to whether a different scheme can be derived 

in which the terms O(s) are actually insignificant when compared 

k to +s(ad p,g) for large k. (In the formulae given above the 

+ 
term O(s) in qkd(s) (x) is of the form (s l+Ak)wf for some vector 

i field w in {(ad p,g) : i=0,1, ... ]LA - Numerically, this is not - 

k insignificant when compared to 2s (ad p,g) for k large) . 

Before moving on to results for important special classes 

of nonlinear systems, it is of value to cite the works [20-221 

for additional reachability results. Of special note is [20] 

in which global results are obtained for systems in which the 

i Lie algebra {p,g lLA is not necessarily finite-dimensional. 

Bilinear Systems 

By far the most detailed and explicit results for the 

reachability of nonlinear systems are those developed for 

bilinear processes. Bilinear systems are characterized by 

the equations 

where F and Ni are n x n  real matrices and G is an n x m  real 

matrix. 



There are a number of theoretical and practical motivations 

for the study of bilinear processes, which are well-detailed in 

[ 2 3 ] .  For now we only note that the type of nonlinearity (multi- 

plicative) makes the system structure in some sense "closest" 

to the linear case. This fact enables us to employ many of the 

techniques and procedures already set up for linear systems. 

For studying the reachability properties of (6),we consider 

the case G =  0 (homogeneous-in-the-state systems) since the 

inhomogeneous case ( G f  0) is in a somewhat less settled state. 

However, it should be noted that by adding extra components to 

the state and/or to the control, and constraining them to be 

equal to 1, an inhomogeneous bilinear system may be formally 

studied as a homogeneous-in-the-state system. 

Given a homogeneous-in-the-state system 

we may write the solution as x (t) = X (t) x where X (t) E GL (n) , the 0 ' 
nonsingular n x n real matrices. Thus, the reachability properties 

of (7) are directly related to those of the system 

Here the system state space is taken to be M=GL(n). To study 

reachability properties of (8), we need the notion of a matrix 

Lie algebra. 



Definition 7. Given two n xn matrices A and B, their - Lie 

product is defined as 

A Lie algebra of n xn matrices is a subspace of n x n  matrices 

closed under the Lie product operation. 

Let 9denote the Lie algebra generated by the matrices 

~FIN1.N2,...,Nm~ and let W(t.1) denote the reachable set for 

(8) at time t. Then the main reachability result for homoge- 

neous-in-the-state bilinear systems is 

Theorem 1 1 [ 2 4 ]  . For the system (8) , if GL (n) (L f )  is compact 

then 

b) there exists a 0 < T < such that 

Here 

In short, Theorem 1 1  says that the reachable set for (8) from 

the identity is GL(n)(LZ) and that all points that can be reached 

will be attained after some finite time T. 

For the inhomogeneous system ( 6 ) ,  a convenient sufficient 

condition for controllability is given by the following result. 



Theorem 12 [ 2 5 ] .  The inhomogeneous system (6) is control- 

lable from the state xo if the sequence of vectors 

1 m 1 1 m 
{So . - S o ,  S1 ,...,Sn-l,...,Sn-l ) contains n linearly 

independent elements, where 

qi = ith column of G. 

An alternate approach to the study of controllability of 

bilinear processes is to study the equilibrium points of (6). 

Let u be a constant control in the unit hypercube H. Then the 

* - equilibrium point x (u) is the solution of the equation 

m 
(Note: Here we adopt the more compact notation 1 Nixui-Nxu.) 

i=l 

Let us assume that whenever F + N ' ~  is singular, G; is not in its 

range. Then the expression 

* - - -1 - 
x (u) = - ( F + N 1 u )  Gu 

is the form of all possible equilibrium points, and as u ranges 
over H, (9) describes the equilibrium set. 

A sufficient condition for the controllability of (6) is 

now given by 



Theorem 13 [14]. The bilinear system (6) is completely 

controllable using piecewise-continuous inputs if 

+ 
a) there exist constant controls u and u- in H such that 

Re[hi(F+~'u+)] > O  and Re[hi(~+N1u-)] < O ,  with xi(u+) and x*(u-) 

contained in a connected subset of the equilibrium set and 

* - 
b) for each x (u) , there exists a v E R~ such that the pair 

{F+N'~, [NX*(~) +G]v) is controllable. 

A more thorough investigation of the above criterion, together 

with many auxiliary results and examples is given in the book [231. 

Important properties of the reachable set for a compact control 

set are that it be convex and closed, regardless of the initial 

state. These properties are important for understanding the time- 

optimal control problem and for generating computational algorithms 

for determining optimal controls. For bilinear systems the reach- 

able set is usually not convex (or even closed unless the control 

set is both compact and convex). 

Since the general case is not yet settled, we consider the 

special case of (7) when the matrices Ni have rank 1, i.e., we 

can write Ni=b.c ' , where bi and ci are n-dimensional vectors. 
1 i 

The first convexity result involves the case of small t. 

Theorem 14 [IS]. Let xo be given and assume that cil_liOf, 

= , 2 ,  m .  Then there exists a T > 0 such that for each t, 

0 - < t < T ,  - the reachable set for (7) is convex for bounded controls 

u. (t). 
-1- 

In order to "globalize" this result to the case T = m ,  additional 

conditions on F, bi and ci are needed. 



Theorem 15 [15]. Suppose each component of ci is non- 

m 
negative and that for all t > 0 the matrix F +  ui(t) bicit 

i= 1 

has non-negative off-diagonal entries. Then the reachable 

set at time t is convex for t > 0 for bounded controls u.(t). 
1- 

Other reachability/controllability results for nonlinear 

systems have been reported, but space precludes their inclusion. 

Specifically, we refer to [ 2 6 1  for global controllability results 

for perturbed linear systems. In a highly algebraic treatment, 

the case of systems governed by discrete-time polynomial dynamics 

is covered in detail in [ 2 7 ]  . 

5. Observabilitv and Constructabilitv 

The general notion of observability can be stated in the 

following terms: given a canonical model (N) of an input/output 

map f, and an input function u E R applied after t = t O ,  determine 

the state xo of (N) at t = t O  from knowledge of the output func- 

tion y(t), to 2 t ~ T .  Another way of looking at the question is 

to ask if every possible pair of initial states x ,xO1 can be 

distinguished by every admissible input u E R. 

There are several delicate issues which arise in the theory 

of nonlinear observability which are masked in the linear case 

discussed earlier. Let us consider two of the technical 

considerations. 

i) choice of inputs-in the linear case, it is easy to 

show that if any input distinguishes points then every input 

does. So, it suffices to consider the case u - 0. However, for 

nonlinear systems this is not the case. There may be certain 



inputs which do not separate points. Thus, we must be criti- 

cally aware of the observability definition employed. 

ii) lenqth of observation- for continuous-time linear 

systems, observing the output y(t) over any interval t O c t < t O  + E, 

E arbitrary, suffices to separate points for a completely observ- 

able system. However, it may be necessary to observe y(t) over 

a long, even infinite, interval in order to determine xo for a 

nonlinear process. Thus, it is desirable to modify the global 

concept of observability by introducing a local version involving 

only the separation of points "near" xo in either a spatial or 

temporal sense. 

In what follows, we shall adopt definitions to deal with 

the foregoing difficulties, motivated by a desire to obtain a 

simple algebraic test for observability analogous to that given 

earlier for controllability. 

We consider the system 

as given in Section 4. 

Definition 8. A pair of points xo, x1 E M are termed indis- 

tinguishable if the systems (N,x') and (N,x') realize the same 

input/output map, i.e., under the same input U E  R ,  the system 

(N) produces the same output y(t) for the initial states xo and 

x . The system (N) is termed observable if for all x r M I  the 

only point indistinguishable from x is x itself. 



Remark. Observability of (N) does not imply that every 

input in R distinguishes all points of M. This is true, how- 

ever, if the output y is a sum of a function of the initial 

state and a function of the input, as in the linear case. 

Since observability is a global concept, we localize the 

concept with the following definitions. 

0 Definition 9. (N) is locally observable at x E M  if for 

0 every open neighborhood U of x , the set of points indistin- 

guishable from xo consists of xo itself. (N) is locally 

observable if it is locally observable for every x E M .  

Practical considerations suggest that it may be sufficient 

0 only to distinguish points which are near to x , leaving open 

the possibility of xo being equivalent to states x' which are 

far removed. This heuristic idea motivates 

Definition 10. (N) is weakly observable at xo if there 

exists an open neighborhood U of xo such that the only point 

in U which is indistinguishable from xo is xo itself. The 

system (N) is weakly observable if it is weakly observable 

at every x EM. 

Again, weak observability may require that we travel far 

from U in order to distinguish the points of U. The following 

definition deals with this problem. 

Definition 1 1 . (N) is locally weakly observable at xo if 

there exists an open neighborhood U of xo such that for every 

open neighborhood V of xo contained in U, we have that the set 

of points indistinguishable from xo in V is xo itself. The 

system (N) is locally weakly observable if it is locally weakly 

observable for all x E M .  



AS for controllability, the following diagram of implica- 

tions exists: 

(N) locally observable ---4 (N) observable 

(N) locally weakly observable (N) weakly observable 

For linear systems, all four concepts coincide. 

As noted in Section 1, reachability and observability are 

dual concepts in the precise meaning of vector space duality. 

In order to generalize this result to the manifold setting, 

additional machinery is required. In essence, we shall employ 

the duality between the space X(M) of vector fields on a manifold 

M and the space x*(M) of one-forms on M. This duality, coupled 

with the role X(M) played in the controllability situation, 

strongly suggests that the space of one-forms X* (M) will be the 

appropriate vehicle for the study of nonlinear observability. 

Definition 12. Let + (x) be a C- function on M with q an 

element of X(M) . Then the Lie derivative of (in the direction 

q) , Lq ( + )  , is defined as 

a +  (Note that the 'gradient d+ = is an n-dimensional row vector. ) 

Now let 9o denote the subset of c=(M) consisting of the 

functions h, (x) , h2 (x) , . . . ,hp(x) , i .e., the components of the 
observation vector function h (x) . Further, we let 9 denote 

the smallest vector space generated by $9 and elements obtained 
0 

from $90 by Lie differentiation in the direction of elements of 

% (recall: % is the set of all vector fields generated from 



f(x,*) using constant controls). A typical element of 9 is a 

finite linear combination of elements of the form 

i i where fi(x) = f (x,u ) for some constant u E fi. It is easily 

verified that 9 i s  closed under Lie differentiation by elements 

of 9 also. 

Define x*(M) as the real vector space of one-forms on M, 

i. e., all finite cm (M) linear combinations of gradients of 

elements of cm (M) . Further, let dgo = {dm : ( E so} , dg= {dm : ( E 9 1 .  

From the well-known identity 

it follows that d 9 i s  the smallest linear space of one-forms 

containing dg0 and which is closed with respect to Lie differ- 

entiation by elements of F. The elements of d9are finite 

linear combinations of elements of the form 

i where fi(x) = f (x,u ) for some constant u i ~  fi. Let dg(x) denote 

the space of vectors obtained by evaluating the elements of dC3 

at x. 

Definition 13.  (N) is said to satisfy the observability 

0 rank condition -- at x" if the dimension of d9(x ) equals n. If 

dim d%(x) = n  for all x E MI then (N) is said to satisfy the 

observability rank condition. 



The observability rank condition provides an algebraic test 

for local weak observability as the next result demonstrates. 

Theorem 16 [ 1 7 ] .  If (N) satisfies the observability rank 

0 
condition at xo then (N) is locally weakly observable at x . 

The observability rank condition is "almost" a necessary condition 

for local weak controllability, as well, as is seen from 

Theorem 17 [ 1 7 ] .  If (N) is locally weakly observable then 

the observability rank condition is satisfied generically. 

We refer to [ 1 7 ]  for the precise meaning of "generic" in 

Theorem 17 .  Intuitively, the set of locally weakly observable 

systems for which the observability rank condition fails is a 

null set in the space of all locally weakly observable systems. 

For analytic systems (N), we have the stronger result 

Theorem 18  [ 1 7 ] .  If (N) is an analytic system then the 

following conditions are equivalent: 

i) (N) satisfies the observability rank condition; 

ii) (N) is weakly observable; 

iii) (N) is locally weakly observable. 

Example. To show that the observability rank condition 

generalizes Theorem 2, consider the linear system 

In this case, the space of vector fields F i s  generated by 

the elements 



If we let h denote the jth row of H, then the relevant Lie 
j 

derivatives are 

Thus, by the Cayley-Hamilton Theorem '??is generated by the set 

and dg(x) is generated by 

Since d$(x) is independent of x, it is of constant dimension 

and the observability rank condition reduces to the requirement 

that the set 0 consists of n linearly independent elements. 

Other important observability results for general systems 

are given in [ 28 -301 .  Now we consider some specific classes of 

nonlinear processes. 

Bilinear Systems 

As in the case of controllability, considerably more de- 

tailed results are available on the observability question when 

we impose a bilinear structure upon the system dynamics f. For 

instance, consider the homogeneous system 



We have the following result for testing whether or not indis- 

tinguishable initial states exist. 

Theorem 19 [31 I . The homogeneous bilinear system (1 0) has 

indistinguishable initial states if and only if there exists a 

state coordinate transformation T such that 

An alternate characterization of the same result is given 

Theorem 20 [32]. The set of all unobservable ,(i.e., indis- 

tinguishable) states of the system (10) is the largest subspace O 

of R" invariant under FIN1,. . . ,Nm, which contains the kernel of H. 
Theorem 20 suggests the following computational algorithm for 

calculating the subspace 0: 

i) Let U1 = range (H'); 

ii) Calculate the subspace Ui+l = Ui+ N'U. + ... +NIU 1 1  m i' 



iii) there exists an integer k* such that U * =Uk*-l. k 

Continue step (ii) until k* is determined and 

set Z = range U * . k 

I iv) 0 = Z  , the orthogonal complement of Z .  

Additional results on observability for bilinear systems may 

be found in the papers already cited in the previous section. 

Factorable Systems 

An interesting class of nonlinear systems is that composed 

of linear systems connected in parallel with outputs multiplied. 

Such "factorable" systems are surprisingly general since a 

broad class of systems with separable Volterra kernels may be 
.. . ~ 

expressed as finite sums of factorable systems. Thus, the fac- 

torable systems might be thought of as comprising the basic 

building blocks for the representation of constant parameter 

nonlinear systems. 

The mathematical form of a factorable system is 

where we adopt the notation 

x(t) = (xl (t) , . . . IXK(t)) I g = (glf*..fgK)l I 



with xi being an ni-dimensional vector, and the elements hi, gi, 

Fi being of corresponding sizes. Thus, the overall state vector 

x(t) is of dimension n = nl +. . .+ n K ' 

Since the nonlinearity occurs only in the system output, 

the usual reachability test from the linear theory shows that 

the factorable system (11) is completely reachable if and only 

if Wi(" and W.(A) have no poles in common for i#j, where 
3 

Wk(A) is the transfer matrix associated with the kth component 

subsystem. Thus, we turn attention to study of the observability 

properties of the system (1 1 ) . 

It turns out to be convenient to investigate observability 

for the system (11) by using the Kronecker product of the com- 

ponent subsystems comprising (11). Letting 

where 8 denotes the usual Kronecker product, it can be seen 

8 that x (t) serves as a state vector for the linear system (with 

u I 0 ) .  We have 

d 8 8 8 -x (t) = F x (t) , dt 

with 



F8 = F1 B I B . .  .B I + In 8 F2 8 In @ . . . a  I 
"2 "K 1 3 n K 

8 Knowledge of the initial state x ( 0 )  enables us to compute (up 

to certain ambiguities in sign) the state x(0). So, we say that 

the system (11) is completely observable if its associated linear 

system (12) is observable in the usual sense. 

A convenient characterization of the observability of (12) 

is possible if we define the vector A of distinct characteristic i 

roots of the matrix F i.e., 
i ' 

<n.. The Kronecker sum of two such vectors where i=1,2, .-.,KI pi- 

is given by 



In terms of the Kronecker sum of the {Ail, we characterize 

observability of (12) by the following result. 

Theorem 21 [33] . The factorable system (1 1) is completely 

observable if and only if the vector Ale A2@ ... @ AK has distinct 

entries and at most one of the subsvstems has multi~le character- 

istic values. 

Polynomial Systems 

Very few results exist on the observability question for 

general continuous-time polynomial systems, i.e., systems of 

the form 

where P(-,-) and h(-) are polynomial functions of their arguments. 

However, in the discrete-time case a considerable body of knowl- 

edge has been reported in [341. For brevity, let us consider a 

representative case, the so-called (polynomial) state-affine 

system 

where F ( - )  and G(-) are polynomial functions of u and H is a 

constant matrix. A particular case is that of internally- 

bilinear systems, when F and G are themselves linear functions 

of u. The observability of the state-affine system (13) is 

settled by the following test, which is a restatement of a 

result taken from [341 . 



Theorem 22 [ 3 4 ] .  The input sequence w=ul,u2, ..., u,-I 
distinguishes all pairs of initial states for the state-affine 

system (13) if and only if the matrix 

0 (w) = 

has rank n. 

Thus, Theorem 21 shows that any input sequence w such that the 

observability matrix O(w) is of full rank suffices to distinguish 

initial states for the system (1 3) . 
For a more complete discussion of various observability 

concepts for discrete-time polynomial systems and their inter- 

relations, the work [ 3 4 ]  should be consulted. 

6. Realization Theory 

The specification of the realization problem for linear 

systems is simplified by the fact that it is easy to parametrize 

the input, output and state spaces via a globally defined coordi- 

nate system. This fact enables us to reduce the problem of 

construction of a canonical model from input/output data to a 

problem of linear algebra involving matrices. In the nonlinear 

case no such global coordinate system exists, in general, and 

it is necessary to take considerable care in defining what we 

mean by the problem "data." We can no longer regard the input/ 



output data as being represented by an object as simple as an 

infinite sequence of matrices or, equivalently, a matrix trans- 

fer function. So, the first step in the construction of an 

effective nonlinear realization procedure is to develop a 

generalization of the transfer matrix suitable for describing 

the input/output behavior of a reasonably broad class of non- 

linear processes. 

If we consider the nonlinear system (N) 

then it is natural to attempt to represent the output of (N) in 

terms of the input as a series expansion 

Formally, the above Volterra series expansion is a generalization 

of the linear variation of constant formula 

y(t) = ~ e ~ ~ x  0 + jot He F(t-s)~u (s) ds . 

Arguing by analogy with the linear case, the realization problem 

for nonlinear systems may be expressed as: given the sequence 

of Volterra kernels W= Iwo,wl,n2, ...I, find a canonical model 

N =  (f,h) whose input/output behavior generates $?K 



Without further hypotheses on the analytic behavior of 

f, h, together with a suitable definition of "canonical model," 

the realization problem as stated is much too ambitious and, 

in general, unsolvable. F r ,  let us initially consider conditions 

under which the Volterra series exists and is unique. Further, 

we restrict attention to the class linear-analytic systems, i.e., 

f(x,u) =f(x) +u(t) g(x), where £ ( a ) ,  g(*) and h(.) are analytic 

vector fields. The basic result for Volterra series expansions 

is 

Theorem 23 [35]. If f, g and h are analytic vector fields 

and if ; = f(x) has a solution on [O,T] with x(0) = x,, then the 

input/output behavior of (N) has a unique Volterra series repre- 

sentation on [O,T] . 

In the case of a bilinear system where f (x) = Fx, g(x) = Gx, 

h(x) =x, u(*) = scalar control, the Volterra kernels can be 

explicitly computed as 

It can be shown [36] that for bilinear systems the Volterra 

series converges globally for all locally bounded u. 

The global convergence of the Volterra series for bilinear 

processes suggests an approach to the construction of a Volterra 

expansion in the general case. First, expand all functions in 

their Taylor series, forming a sequence of bilinear approximations 

of increasing accuracy. We then compute the Volterra series for 

each bilinear approximation. However, the simple system 



shows that, in general, no Volterra expansion exists which is 

valid for all u such that 1 1  u 1 1  is sufficiently small. Further 

details on the above bilinear approximation technique can be 

found in [ I  81 . 

By taking the Laplace transform of the Volterra kernels 

{wilt it is possible to develop a nonlinear analogue of the 

standard matrix transfer function of the linear theory. Such 

an approach as carried out in [37], for example, provides an 

alternate "frequency-domain" approach to the realization prob- 

lem. We shall forego the details of such a procedure here due 

to space considerations, and focus our attention solely upon 

nonlinear systems whose input/output data is given in terms of 

the infinite sequence of Volterra kernels (w.1. 
1 

Now let us turn to the definition of a canonical model for 

a nonlinear process. As noted earlier, in the linear case we 

say a model is canonical if it is both reachable (controllable) 

and observable (constructible). Such a model is also minimal 

in the sense that the state space ha9 smallest possible dimen- 

sion (as a vector space) over all such realizations. In order 

to preserve this minimality property, we make the following 

Definition 14. A system ~-Ts--called locally weakly 

minimal if it is locally weakly controllable and locally weakly 

observable. 

The relevance of Definition 14 to the realization problem 

is seen from the following result. 



Theorem 24 [ 1 7 ] .  Let N,N be two nonlinear systems with 

input sets R = h ,  and state manifolds M and M of dimensions m,m, 

respectively. Suppose (N,x ) and (N,G ) realize the same input/ 0 0 

output map. Then if N is -dcally weakly minimal, m < m .  - 

Thus, we see that two locally weakly minimal realizations of the 

same input/output map must be of the same state dimension which 

is minimal over all possible realizations. 

Remark. Two locally weakly minimal realizations need not 

be diffeomorphic, in contrast to the linear case. This is seen 

from the two systems 

N: x = u  , y, = cos x , y2 = sin x , 

a 

N: O = u  , y, = cos 0 , y2 = sin@ , 

1 2 with n = 8 = ~ ,  M = R ,  M = S  , the unit circle. ~ E R  . xo=O, O = O .  
0 

Here N and N realize the same input/output map. Furthermore, 

both systems are locally weakly controllable and observable. 

The above result leaves open the question if two canonical 

realizations are isomorphic, i.e., given two nonlinear systems 

N and N, with state manifolds M and f i r  



when does there exist a diffeomorphism I$ : M + M  such that x=$(z), 

The answer to this question is provided by the following re- 

statement of a result of Sussman. 

Theorem 25 [ 3 8 ] .  Let there be given a mapping GxOrU 

which to each input u(t) , O z t  - < T, assigns a curve y(t) and 

assume that there exists a finite-dimensional analytic complete 

system 

y = h ( x )  , X E M  , 

which realizes the map Gxo,U . Then Gx can also be realized 
o t U  

by a system which is weakly controllable and observable. Further- 

more, any two such realizations are isomorphic. 

Remark: 

In all the results above, as well as those to follow, the 

conditions of analyticity and completeness of the defining vector 

fields is crucial. The reason is clear: analyticity forces a 

certain type of "rigidity" upon the system, i.e, the global 

behavior of the system is determined by its behavior in an 

arbitrarily small open set. Completeness is also a natural 

condition since without this property the system is not totally 

specified, as it is then necessary to speak about the type of 



behavior exhibited in the neighborhood of the vector field 

singularity. Fortunately, analyticity and completeness are 

properties possessed by any class of systems defined by sets 

of algebraic equations, h - - - ~ n g  a reasonable amount of homo- 

geneity. For instance, linear systems, bilinear systems and 

polynomial systems are all included in this class, together 

with any other type of system which is both finite-dimensional 

and "algebraic. " 

Now let us turn to some realization results for specific 

classes of nonlinear systems. For ease of notation, we consider 

only single-input, single-output systems referring to the refer- 

ences for the more general case. 

Bilinear Systems 

Given a sequence of Volterra kernels ( W ~ ~ I , ~ ,  the first 

question is to determine conditions under which the sequence 

may be realized by a bilinear system. For this we need the 

concept of a factorizable sequence of kernels. 

Definition 15. A sequence of kernels Iw.Ia is said to 
1 i=2 

be factorizable if there exist three matrix functions F(-), 

G(-1, H(tlW) of sizes n x n ,  n x l ,  1 xm, resp. such that 

The set {F,GIH1 is called the factorization of {wi1 and the 

number n is its dimension. A factorization lFOIG .H 1 of min- 
0 0 

imal dimension is called a minimal factorization. 



We can now characterize those Volterra kernels which can 

be realized by a bilinear system. 

Theorem 26 [361. The sequence of Volterra kernels { ~ ~ l i = ~  

is realizable by a bilinear system if and only if w, has a proper 

rational Laplace transform and {w.lm 
1 i=2 is factorizable by func- 

tions F, G , H  with proper rational Laplace transforms. 

Let us assume that a given sequence of kernels {wi} is 

bilinearly realizable. We then face the question of the con- 

struction of a minimal realization and its properties. The main 

result in this regard is 

Theorem 27 [36]. For a sequence of bilinearly realizable 

kernels {will the minimal realizations are such that 

the state space dimension n is given by the dimension 
0 

of the linear system whose impulse response matrix is 

ii) any two minimal realizations 



are related by a linear transformation of their state spaces, 

i.e., there exists an n xn matrix T such that 0-0 

Theorem 27 provides the basic information needed in order to 

actually construct the matrices A, B,C,N of a minimal realiza- 

tion. Since W(s) is the impulse response of a linear system of 

dimension n there must exist three matrices P, Q,R of sizes 0 ' 
no no x ("+I), (n+l) xno such that 

By partitioning Q and R as 

where R1 is 1 x n and Q1 is no x 1, we obtain 0 

Ps 
G (s) = R2e Q1 1 
0 

Ps 
F (s) = R2e Q2 . 0 

We now define the matrices of our minimal realization as 

Thus, the surprising conclusion is that the realization proce- 

dure for bilinear systems can be carried out using essentially 



the same techniques as those employed in the linear case once 

the minimal factorization IF G ,H I has been found. 0' 0 0 

Other approaches to the construction of bilinear realiza- 

tions are discussed in [ 3 9 ] ,  while results for the discrete- 

time case are given in [40]. The case of multilinear systems 

is similar to the bilinear situation and is discussed in detail 

in [ 4 1 1 .  

Linear-Analytic Systems 

The general question of when a given Volterra series 

admits realization by a finite-dimensional linear-analytic system 

{fIgrhI of the form 

has no easily computable answer, although some difficult to test 

conditions are given in [ 4 2 1 .  On the other hand, if the Volterra 

series is finite then the results are quite easy to check and 

reasonably complete. For their statement, we make 

Definition 16. A Volterra kernel w(t,sl, ..., sr) is called 
separable if it can be expressed as a finite sum 

It is called differentiably separable if each yi is differentiable 

and is stationary if 



The main theorem characterizing the realization of finite 

Volterra series by a linear-analytic system is 

Theorem 28 [42]. A finite Volterra series is realizable 

by a (stationary) linear-analytic system if and only if each 

term in the series is individually realizable by a (stationary) 

linear-analytic system. Furthermore, this will be the case if 

and only if the kernels are (stationary and differentiably) 

separable. 

The above result leaves open the question of actual com- 

putation of the vector fields {f,g,h) defining the linear- 

analytic realization of a finite Volterra series. However, 

this problem is formally bypassed by the following result. 

Theorem 29 [42]. A finite Volterra series has a (stationary) 

linear-analytic realization if and only if it has a (stationary) 

bilinear realization. 

From Theorem 29 it is tempting to conclude that there is 

no necessity to study linear-analytic systems when given a finite 

Volterra series, since we can always realize the data with a 

bilinear model. Unfortunately, the situation is not quite so 

simple since the dimension of the canonical bilinear realization 

will usually be somewhat greater than that of the corresponding 

linear-analytic model. To illustrate this point, consider the 

finite Volterra series 



This series is realized by the three-dimensional bilinear model 

= Fx + Gu + Nxu , where 

y(t) = x(t) , 

However, the same set of kernels is also realized by the one- 

dimensional linear-analytic system 

& = sinx + u(t) , 

Polvnomial Svstems 

If the system input/output map is of polynomial type, i.e., 

each term in the Volterra series is a polynomial function of its 

arguments, then an elegant realization theory for such maps has 

been developed by Sontag [ 2 7 ]  in the discrete-time case. Since 

presentation of the details would entail too large an excursion 

into algebraic geometry, we loosely summarize the main results 

referring to the references for a more complete account. 



For simplicity, we restrict our account to bounded poly- 

nomial input/output maps f, which means that there exists an 

integer a such that the degree of each term in the Volterra 

series for f is uniformly 'aunded by a. The main realization 

result for bounded polynomial input/output maps is 

Theorem 30 [ 2 7 ] .  If a bounded input/output map is at all 

realizable by a polynomial system, then it is realizable by an 

observable state-affine system of the form 

where F ( 0  ) and G ( 0  ) are polynomial matrices', H is a linear map 

n and the system state space is R . 
An observable state-affine realization is termed span- 

canonical if the subspace of reachable states is all of R". 

Then it can be shown that a span-canonical realization of a 

given bounded finitely realizable f always exists and any two 

such realizations are related by a state coordinate change. 

Furthermore, a realization is span-canonical if and only if 

its dimension n is minimal among all state-affine realizations 

of the same input/output map. 

Somewhat less complete results are also reported in [ 2 7 ]  

for unbounded polynomial input/output maps. The relationship 

between the foregoing discrete-time results and the continuous- 

time case is still far from clear, due mainly to the nonrevers- 

ibility of difference (as opposed to differential) equations 

and to the different algebraic properties of difference and 



differential operations. To bridge this gap may turn out to 

be a nontrivial task, as is seen by the recent result [ 4 3 ]  

that a "finite" continuous-time map has its canonical state 

space unconstrained, which is far from true in the discrete- 

time setting. 

Some additional work on polynomial systems taking a func- 

tional-analytic, rather than algebraic, approach is reported 

in [ 4 4 ] .  

"Almostw-Linear Systems 

By imposing special types of nonlinearities upon a standard 

linear system, it is possible to employ techniques similar to 

the usual linear methods for realization of input/output maps. 

In this regard we note the "factorable" Volterra systems consid- 

ered earlier, having the internal form 

Here the nonlinearities enter only through the system output. 

Utilizing tensor products, it can be shown [ 3 3 ]  that the input/ 

output behavior of such a process can be described by a so- 

called Volterra transfer function H(s,, ..., sK). Since a 

factorable Volterra system consists of K linear subsystems 

connected in parallel, with the outputs multiplied, the 

realization problem reduces to determining the transfer func- 

tions Hl (s) , . . . ,HK (s) of each subsystem from H (sl , . . . , sK) . 



If the H=(S) are known. then standard linear theory provides the 

overall system realization. Techniques for solving this problem 

are reported in [ 331  . 

In another direction. we could consider cascade combinations 

of linear subsystems and static power nonlinearities as in [ 4 5 ] .  

For inputs of the form 

the output of such a system is 

where m >  0 is an integer defining the degree of the static non- 

linearity, i.e.. the block diagram of the system is 

9 
where ll P = m and H.(s) is a strictly proper rational func- 

j=1 j 3 

tion of degree 2 n. j =0.l, ...,q. In the work [ 4 5 ]  an algorithm 

is given for solution of the minimal realization problem for such 

a system. 



7. Conclusions and Future Research 

The foregoing results leave little doubt that substantial 

progress has been made in nonlinear system theory over the past 

decade. As noted in the introduction, we have focused only 

upon problems of reachability, observability and realization, 

omitting the more well-known areas of stability and optimal 

control. Advances in these areas have also been impressive as 

can be seen from the works [46-471. Thus, the inescapable 

conclusion is that nonlinear system theory is alive and well 

and it is to be expected that progress on outstanding issues 

will be rapid in the years to come. 

By way of closing remarks, let us now engage in a bit of 

crystal ball-gazing and sketch some problem areas which seem 

to be most important for future research in nonlinear systems. 

1) Computational Methods -the effective employment of 

any of the results given here relies upon efficient computational 

algorithms. For those procedures which mimic the linear case 

(e.g., bilinear realization), good methods already exist for 

computing the necessary quantities. However, much remains to 

be done to develop comparable methods for, say, computing the 

reachable set for a nonlinear process or determining the Volterra 

series of a given input/output map from measured data; 

2) Stochastic Effects -a cornerstone of linear system 

theory is the Kalman filter and its associated apparatus for 

determining the "best" estimate of system parameters in the 

presence of noise. This is a special case of the more general 

stochastic realization problem, in which the input/output data 



i t s e l f  i s  c o r r u p t e d  by n o i s e  and " b e s t "  e s t i m a t e s  o f  t h e  sys tem 

model must be  made. Again i n  t h e  l i n e a r  c a s e  r e s u l t s  a r e  a v a i l -  

a b l e  [ 4 8 ] .  However, a l m o s t  n o t h i n g  h a s  been accompl ished a l o n g  

t h e s e  l i n e s  f o r  n o n l i n e a r  ::ocesses. I t  seems l i k e l y ,  though,  

t h a t  w i t h  t h e  i n c r e a s e d  u n d e r s t a n d i n g  now a v a i l a b l e  good p r o g r e s s  

can be  made. W e  s h o u l d  n o t e  t h e  works [49-501 a s  p romis ing  

i n i t i a l  f o r a y s  i n  t h i s  a r e a ;  

3 )   on-~nalytic Systems - a l m o s t  a l l  i n t e r e s t i n g  r e s u l t s  

f o r  n o n l i n e a r  sys tems  are f o r  p r o c e s s e s  whose d e f i n i n g  v e c t o r  

f i e l d s  a r e  a n a l y t i c .  A s  p o i n t e d  o u t  e a r l i e r ,  t h e r e  i s  good 

r e a s o n  f o r  t h i s  s i n c e  t h e  l o c a l  b e h a v i o r  o f  a n a l y t i c  sys tems  

e n t i r e l y  d e t e r m i n e s  t h e  g l o b a l  b e h a v i o r .  However, t h e r e  a r e  

i n t e r e s t i n g  and i m p o r t a n t  p r o c e s s e s  which do  n o t  f a l l  i n t o  

t h i s  c a t e g o r y  ( e . g . ,  sys tems  w i t h  t h r e s h o l d  e f f e c t s ,  p r o c e s s e s  

w i t h  phase  t r a n s i t i o n s ,  and s o  o n ) .  A c o n c e r t e d  a t t e m p t  a t  

r e l a x a t i o n  o f  t h e  a n a l y t i c i t y  a s sumpt ions  can  b e  e x p e c t e d  t o  

y i e l d  s u b s t a n t i a l  d i v i d e n d s  i n  f u r t h e r i n g  o u r  a b i l i t y  t o  t a c k l e  

a  v a r i e t y  of  problems i n  t h e  s o c i a l  and b i o l o g i c a l  s c i e n c e s ;  

4 )  I n f i n i t e - D i m e n s i o n a l  P r o c e s s e s  - i n  g e n e r a l ,  sys tems 

whose u n d e r l y i n g  dynamics a r e  governed by p a r t i a l  d i f f e r e n t i a l  

e q u a t i o n s  o r  p r o c e s s e s  i n v o l v i n g  t ime- lag  e f f e c t s  c a n n o t  b e  

modeled by a  f i n i t e  s e t  o f  o r d i n a r y  d i f f e r e n t i a l  o r  d i f f e r e n c e  

e q u a t i o n s .  Even i n  t h e  l i n e a r  c a s e  such  p r o c e s s e s  l e a d  t o  

t h o r n y  a n a l y t i c a l  q u e s t i o n s  which a r e ,  as y e t ,  f a r  from b e i n g  

w e l l  under  c o n t r o l .  So, it i s  p e r h a p s  w i l d l y  o p t i m i s t i c  t o  

t h i n k  t h a t  s u b s t a n t i a l  advances  c a n  b e  made i n  t h i s  d i r e c t i o n  

f o r  n o n l i n e a r  p r o c e s s e s .  N o n e t h e l e s s ,  w e  have  s e e n  t h a t  many 



of the results and techniques of the linear theory can be 

extended to classes of nonlinear systems with modest additional 

effort. So, it seems reasonable to attempt an investigation 

of those nonlinear problems which are the counterparts of the 

corresponding infinite-dimensional linear processes. 
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