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PREFACE

At the workshop on "Size and Productive Efficiency--The
Wider Implications" held at IIASA in June 1979 there was a dgreat
deal of discussion on the dynamics of scale, with particular
focus on scale, technology and the learning curve, scale and

innovation and the effect of uncertainty about the future on
scale decisions.

This paper reports the results of research on using formal
models of the decision on process and scale in order to under-
stand the dynamics of change in scale and process mix.
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The Dynamics of Scale, Technological
Substitution and Process Mix

John A. Buzacott
Kiichiro Tsuji

INTRODUCTION

Characteristic of the dynamic behavior of many industries
is the way plant size increases with time. There are many ex-
amples of this. Simmonds investigated the increase in maximum
size of plant in various processes since the time of its origi-
nal development. Figure 1 illustrates his data. Other examples
are the increase in the maximum size of blast furnace (Figure 2),
the increase in maximum size of vessel in the basic oxygen
process (Figure 3) and the increase in the size of nuclear
generating units (Figure 4).

Another characteristic of the dynamic behavior is the way
in which, as new production processes appear, the mix of produc-
tion from the various process changes over time. For exsmple,
Figure 5 shows the amount of steel produced by various processes
in the Ruhr district of Germany. Figure 6 shows the proportion
of steel produced by various processes in Japan. Figure 7 shows
the mix of electricity generation in the U.S. according to type
of fuel used.

This dynamic behaivor of industry is of interest for a
variety of reasons. The policy analyst concerned with the
future development of industry would like to discover whether
the behavior demonstrates regular patterns. If so, the identifi-
cation of the underlying pattern would enable him to make mean-
ingful projections about the future. Next, because of the wider
implications of the behavior it might be considered desirable
to change it or modify it in some way. An understanding of the
factors determining the behavior might provide a means of doing
so. Then there are more specific questions like: what would
happen if maximum plant size is limited to reduce environmental
impact? or what would happen if a new process is invented and
developed?
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Figure 1. Relation Between Largest Plant Size and Production

in Canada and the United States--Ethylene (source:

Simmonds 1972)
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(source: Harders 1971)
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Since the observed behavior is the result of decisions by
individual firms on size of plant and choice of process an
understanding of the dynamics is of interest to those firms
which design or manufacture process plant. To guide research
and development it is desirable to determine the attributes of
the "plant after next" or see what should be the characteristics
of new processes in order to be accepted and adopted. Since
such decisions will involve substantial commitment of resources
the firm would like to have means by which they can evaluate
alternatives and choose the most appropriate one.

The purpose of this paper is to review the available models
for understanding the choice of process and size of plant.
While there is literature on the qualitative aspects of tech-
nological progress the emphasis is on the extent to which formal
models can be used to answer some of the questions posed above.

APPROACHES TO MODELLING

There are basically two general appraoches in developing
models of the dynamics of choice of process and size of plant.

One is based on the aggregate description of past hehavior.
A particular mathematical relationship is suggested, its param-
eters estimated by standard statistical methods and, provided
it is a good enough fit to the past it is assumed that it will
continue to apply in the future. The mathematical relationship
can either be a simple functional form (e.g., plant size in-
creases exponentially with time) or it can be developed by
considering the analogy between change in plant size or process
mix with biological or psychological situations, in particular
learning and growth. The advantage of this approach is that the
mathematical relationships are usually quite simple and easy to
comprehend, however, the disadvantage is that the future is
assumed to he a projection of the past and thus it is not usually
possible to answer gquestions concerning the influence of policy
variables or the occurrence of unique events.

The other approach is based on the analysis of the sequence
of decisions on plant size and mix. It is assumed that each
decision is made by a decision maker who behaves rationally in
the light of his perceptions about the future. Thus the emphasis
in this approach is on developing models of rational behavior
which enable the key parameters to be identified. Such models
should allow for the existence of uncertainty about the future
so it is necessary to consider the way in which the decision
makers' perceptions about the future are related to his past
experience. Generally this approach gives a relatively complex
mathematical model but on the other hand it makes it possible
to identify the effect of changes in the key parameters.

It is sometimes possible to extend these models of indivi-
dual decisions to enable conclusions about the aggregate behavior
to be drawn, that is, develop aggregate models which are derived
from the actual decision making situation. In many ways these
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are the most useful models as, like the learning of grwoth models,
they are sufficiently simple to have a comprehensible structure
but, in contrast to other approaches, they are based on the
actual decision making situation.

This paper consists of five sections. In the first the
models of learning and growth are described. The next three
consider rational decision maker oriented models of plant size,
of technological substitution and of process mix. The last
section considers the effect of uncertainty about the future.

MODELS OF LEARNING AND GROWTH
Learning

The increase in the size of plant over time is possible
because of the ability of plant designers and opeartors to
learn from their experience and incorporate experience gained
from one plant into the next plant. If this is the dominant
factor in determining the increase in plant size then it should
be described by a learning model:

maximum plant size at t = £ (cumulative experience at t)
where cumulative experience could be measured by

—— number of plants built prior to t .
-— time since the first plant was constructed
-- total accumulated production up to time t.

In the psychological literature on learning a variety of
functional forms have been proposed. The simplest is

_ o
yt kxt

where X, is the measure of cumulative experience to t and Y,

is the performance measure at t (e.g., maximum plant size).

This model has been applied by a number of authors to plant
size data. Spinrad (1980) applied it to the growth in size of
nuclear generating units, setting X, equal to the number of

units built up to time t. He found that the fit of the model
was good.

Sahal (1979b) applied it to the growth in size of electrical
denerating units in Canada, setting X, equal to the time since

the first unit was built. He found a reasonably good fit to
data series on both hydro electric and steam electric units.

The limitation in the above functional form of the learning
curve is that it assumes no upper limit. A variety of models
have been proposed, in particular
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the replacement model

-xt/R
Y, = k(1 - e )

the accumulation model
Yy = kxt/(xt + R)

where k is the upper limit on Yy and R determines the initial

rate of increase of Y-

Mazar and Hastie (1979) on the basis of an extensive review
of the data on human performance on repetitive tasks, considered
that the accumulation model fits the data better.

No attempt has been reported in the literature on fitting
either of the above models to plant size data. However, it
would appear that the accumulation model would be a good fit to
Spinrad's data on light water reactors, with an asymptotic size
of 1870 MW and R = 270.

Growth
The change in size of plant or the chandge in production

using the different available processes is assumed to have the
same characteristics as dgrowth in biological systems.

That is, the basic mathematical relationship is
(von Bertalanffy 1968)

dyt
& <Y -

A variety of different models have been proposed for f(yt):

exponential growth: f(y,) = gy,

where g is constant whence

= gt
Yy Yo€
Gompertz growth: f(yt) = 9. Y
dg
_ a-bt . - -
where 9, = be v 1.8y g = b 9 whence
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—-exp (a-bt
Y, = Yo exp ( Y
Note that 1i™ =
ote N Yoo -
logistic growth: f(y,) = ay, - by 2
t t t
whence
y. = akeat
t 4+ pke?t
. lim _
with toew Vg = a/b

Next, consider a system consisting of n components, where
the growth of the components is described by the equations

dy .

_—Jt _ i =
3t I5¢ Yt (3 1, 2, ..., n)
where yjt is the size of component j at time t.

Suppose, however, that the gjt are not known but

Q
.

t _ Bj
nt

(o]

a constant for all t.

The solution to the growth equations is then characterized
by

%

This is known as allometric growth (von Bertalanffy 1968:

64).

This model has been used by Sahal (1979b) to describe the
relationship between the growth of maximum size of plant and
the total size of the system. He found that it fitted the data
in Canadian electric generating units quite well.

He also developed a more complex model of growth. He
proposed that the maximum size of plant grew in accordance with
the Gompertz model

S -exp (a-bt)
Y, T Y (t) e
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and also the value of the asymptotic plant size changed
with time, either according to allometric growth

B
t

Yo lt) = k'Y
where Yt was the total installed capacity, or the simple learning
model

a

Y, (t) = k"x,

where x, was taken as the time since the first unit was installed.
He foung that these models fitted the data very well although
it must be noted that there are now three parameters instead of
the two parameters for the allometric dgrowth or learning models,

B Q.
t t °

Rather than the ratio gjt/gnt being constant an alternative

i.e., Yy = cY or y, = c'x

hypothesis is that the difference is constant, i.e.,

When n = 2 the equations then simplify to

)) = c.

d
ac ln(ft/(1 ft 5in

where ft = Y1t/(Y1t + Y2t) .

This is equivalent to the Fisher—-Pry model of technological
substitution of the old process or product 2 by the new process
or product 1.

Sahal (1979%a) compared this model with the allometric growth
model for a variety of innovations. Both described the data
quite well.

Peterka (1978) developed a solution for this model of
constant difference in growth rate for n components. He fitted
it to a variety of data series on the adoption of innovations
or on the change in relative shares of different energy sources
and also found that it fitted the data quite well.

Peterka also extended the above approaches for eliminating
the unknown gjt by assuming that

It
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where Pt is unknown. Eliminating Pt gives the n - 1 equations
d 1ln Y.t d 1n Ynt
O..—J—+c. = q ——— + C

to which he added the equation

d =
Tc 1n Yt p a constant
n
= Y
where Yt 54 St

The solution to this set of equations also fitted the data
very well but it must be noted that it has 2(n - 1) parameters
as compared to the n - 1 parameters of the allometric growth or
constant growth rate differential models.

Peterka justified the assumption on the form of gjt by

arguing that in the resulting growth equation

d Y't

.—l—= - C.)Y.
57 ac (P 37Y5¢
the left hand side denotes the cost of increasing production in
a period and the right hand side denotes the net revenue from
sales in the period. That is, the equation describes the
operation of a single product firm which invests a constant
multiple of its net earnings.

The limitation of learning and growth models is that they
appear to imply that the processes of increase in maximum size
or technological substitution are totally determined and that
there is no opprotunity for policy intervention to modify them.
On the other hand it is remarkable how well they seem to fit the
data.

DECISION MAKER ORIENTED MODELS OF GROWTH IN MAXIMUM SIZE

In deciding on the appropriate size of plant the decision
maker balances the economies of scale in building larger plants
with the penalties of having surplus capacity.

Srinivasan (1967) showed that, if demand has an exponential
growth, characteristic of the optimum solution is that plants
will be built a constant time interval T¥ apart. The size
of plant built at time t will be

Y, = dt(e

t - 1
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where dt is the demand at time t and T* is that value of T

minimizing
(egT - "
T
1 - e-(r—mg)

where m is the economy of scale parameter and r the discount
rate. The cost of building a plant of size Yy is kym.

Thus, given the parameters g, m and r the model specifies
the size of plant which a ratiqpal decision maker would build.

In order to analyze the aggregate behavior of an industry
it is necessary to consider how the parameters would be estimated.
While r and m are likely to be reasonably constant, the decision
maker would revise his estimate of g in accordance with
experience.

One simple estimation method he might use is to estimate
the growth rate at time t by

~ _ 1n dt - 1n d0
I t

Now, since a new plant would only be built if total capacity
Ct is fully utilized one can set dt = Ct and set

~

g, = 1ln Ct/t

t

It is possible to develop a variety of modeis which could
then describe aggregate behavior.

While T* is dependent on g, for values of m and r which
would be characteristic of electric generating units Peck (1974)
showed that T*¥ is quite insensitive to g.

Thus one can write

= gT* _
1n Yt 1n dt + 1n(e 1)
*
or setting 9T 1 = gT*
= - * -
1n Yt 1n Ct + 1n 1ln Ct Int+ 1In T .

An equation of this form can also be obtained from the
hypothesis of linear growth in demand. Manne's (1967) model
shows that in that case
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Y = T**
t g

where T** is independent of g.

g can be estimated by

~

9 = Ct/t

so 1ln Yo = 1n (Ct/t) + 1n T**

This model seems to fit Sahal's data on Canadian electrical
gdenerating units quite well.

Of course, alternative methods of estimating g, can be

assumed and the resulting aggregate behavioral model derived.
Peck (1974) found that the Srinivasan model explained data on
the size of electric generating units installed by a group of
U.S. utilities.

The Distribution of Plant Size

Hjalmarsson (1974) considered the effect of firms following
the Srinivasan model on the distribution of plant sizes.

He showed that if there are N plants the share of capacity
due to the i largest plants is given by

o (N=1) gT*
*
eNgT

Q

——— *K
F(i) = 1 T~ g - o197 0<i<N

-1

While the proportion of plants of size x or smaller

_ 1 1 - X
G(X) = N'—_l_"—.]_(1 + gT* ln (X—O‘T) )
' ' NgT* | : X
for X < x < x,'e and Xg 1is the size of the smallest

plant (i.e., the first plant built).

If it is assumed that plants have a fixed life L it can be
shown that the share of capacity due to the i largest plants
is given by

1 - e—igT*
F(i) = 3% i S L/T*
1 - e

Another distribution which can be derived is the share of
capacity accounted for by plants larger than some value X.
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Let

t =z 1n ()

1
El 0

Then the share of capacity at time t' accounted for by
plants larger than x is given by

— | - 1 § >
or
- 1
=1 - KT
%0

DECISION MAKER ORIENTED MODELS OF TECHNOLOGICAL SUBSTITUTION

If a new process (process 1) is developed then the rational
decision maker will adopt the process in preference to the old
process (process 2) if

Pw (1) < PWt(Z)

where PWt(j) is the present worth of costs associated with

process Jj at time t, the time when the new process becomes
available.

Assuming exponential growth in demand and that an optimal
policy of capacity expansion will be followed
m. m.gt gT. m.
. 3] J _ J gt, «
kj dg “e (e 1) . doe Yiﬁ
—(r—mjg)Tj r-g

Pwt(J) =
1T - e

where d0 is the demand at time 0, mj is the economy of scale

parameter, T. is the optimum time between plant additions and

Yj' is the variable production cost per unit produced by

process J.
The time dependency of PWt(j) can be emphasized by writing

mjt £
PW, (7)) = A{m.) + )
1:(J) h (,mj) h Y]

where h = eg > 1.
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It follows that the decision maker will choose the new
process if
m,t m2t

t 1 t
h y1 + h A(m1) < h Y2 + h A(mz)

or
Yo = Yq 2 f(m1.m2.t)
where f(m1,m2,t) = h A(m1) - h A(mz) .
Figures 8A, 8B show the form of f(m1,m2,t) depending on
whether (A) my < m, or (B) m, > m,, . From the figures it is

possible to make some general conclusions about the pattern of
adoption of the new process and how this is influenced by the
relative values of Y1, Y2, m, and m, .

(1 v, < Y,» my < m,. In this case the new process will

be adopted once the demand reaches the level such that

—(1—m1)t —(1—m2)t
Yo =Yg = h A(m1) - h A(m2) .

From Figure 8A it can be seen that there will always be some
value of t such that this equation is satisfied.

(2) Y1 > Y2, m, < m, . In this case it can be seen from

Figure 8A that there are several possibilities:

(i) the new process will never be adopted

(ii) the new process will only be adopted while demand
is in a certain range. Once demand increases
sufficiently the decision maker will revert to the
0ld process. Also, at low demand levels the new
process may not be appropriate.

(3) vy < Yy m, > m,. This is the opposite to case (2).

That is, the alternatives are

(i) the process will be adopted irrespective of demand
(ii) the process will be used only at high levels of
demand
(iii) the process will be used only at high levels of
demand or at low levels of demand. There is an
intermediate range of demand in which the old process
iis preferable.
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f(m1,m2,t) 2 1

0
'igure 8. Form of f(m, ,m,t)
)y, > Y,» m; > m,. In this case the new process will,

if it is used at all, only be appropriate at low levels of
demand.

Examples of each situation can be found. For example,
case (1) is characteristic of the choice of the basic oxygen
furnace in steel making and, conversely, case (4) is characteris-
tic of the choice of the electric furnace for steel making.
Case (3) would seem to characterize the use of solar collectors
for energy conversion--present schemes seem to be either small
scale or large scale. Case (2) seems to characterize the present
role of oil fired electric generating units.

The implications for the aggregate behavior of adoption of
the innovation are
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Case (1). The innovation will be adopted once demand
reaches a critical level. The share of production due to the
new process will increase asymptotically to 100%.

Cases (2) and (4). The share of production due to the
new process will initially increase to some maximum value but
then decline.

Case (3). The behavior is more complex. In alternative
(iii) it will increase, then decrease, but eventually increase
again.

In case (1) it is possible to develop more specific models
describing the extent of adoption of the innovation. Case (1)
is characterized by the existence of a critical demand level
above which the innovation should be used, or alternatively,
there is a minimum feasible plant size x for the new process.

Hence, if there is a single firm the share of production
at time t' accounted for by the new process will be given by

e—g(t‘-t)

F_(x,£') =1 - £ >t
where gt = 1n (x/xo').
Figure 9 shows 1ln {Fa/(1—F)} as a function of t' - t.

With a finite plant life the form of F will be

1 - e—g (t(_t)

= L}
Fb —gL th >t

1n Fb/(J - F
set at 1.5.

b) is shown for this case on Figure 9b with gL

Next, suppose there are a number of firms in the industry
and it is desired to model the overall behavior. Then it is
necessary to assume some distribution of firm size. Suppose
the firm sizes have a Pareto distribution. That is, the total
production of the i-th largest firm will be such that (Ijiri
and Simon 1977:196)

_ = (1+p) .
dip = dgd

Now, if the new process can only be used at a minimum
Plant size of x it follows that the time at which the i-th
largest firm will adopt the process is given by

t, =, + L *¥0)Indi
1 1 g




-21-

STOPOW uUOT3IN3T3ISguns SNOTARA 103 (,3 - 3)H Jo uoT3zdung e se

(4 - 1)/4 Ul ‘6 @anbtg

L+

c+

T



-22-

Hence the fraction of production at time t accounted for
by the new process is given by

N -g(t—ti)
.21 f.(1 - e )8 (t,t;)
— l=
Fc(t) = N
L £
i=1
where £, = i-(1+p) and §(t,t.) =1 if t > t.
i i i
= 0 otherwise
whence
? -—g(t-t;) N
£f. §(t,t.) - e S(t,t.)
F _ i=1 1 ‘71 i=1 J
° ]
f.
i=1 *t

Figure 9C shows a plot of 1n {FC/(1 - FC)} against t - t,
for p = 0 and N = 4.

Effect of Initial Size Limit on New Process

Even though the new process may be such that all firms
would adopt it, there could initially be technical constraints
on the maximum size of plant for the new process. As a result
it may only be appropriate to firms in a particular size range.
However, as experience in the use of the process is obtained the
maximum technically feasible plant size will increase and it
will be appropriate for an increasing proportion of firms.

This appears to have been the situation when the basic oxygen
process for steelmaking was introduced (Buzacott 1980).

The way in which the applicability of the new process
changes with time will depend on two factors, (i) the way in
which the technical limit on plant size increases with time,
(ii) the distribution of size of firm and hence size of plant
appropriate to their requirements.

As a tentative model of the combined effect of the two
factors, let ft be the proportion of the total demand increment

which can be met with plants of the new process at time t.

One possible form of ft is that

f = f_ + bt 0 <t<T-=(1- fo)/b

= 1 t > T
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Then the proportion of total capacity which will consist
of plants of the new capacity will be

T
_ _ _—g(t-t") _ _—g(t-t'-u)
Fd(t) = f0(1 e + J0(1 e )dfu
t > T + t°
. -t .
= f (1 _ e—g (t"'t ) ) + f (1 _ e—q (t_t —u) )df
0 0 u

t' <t <t'+ T

If it is assumed that f0 0 it follows that

- — ) »
~ pe It (9T _ 4y /g £t > T+ ¢t

i
—

Fq(t)

Il

b(t-t') ~ be I (F7E) ((ILE-tT) _ ) g
t" <t <t'"+ T

Figure 9d shows 1n {Fd/(J - Fd)} for b/g = 2 and gT = .5.

It can be seen from Figure 9 that the models which give
lIn {F/(1 - F)} closest to a straight line over the range
F=.1toF = .9 are models b and ¢c. A combination of b and c,
i.e., a model which allows for both a finite life of plant and
a distribution of firm size, would give a curve which is even
closer to a straight line and thus be consistent with the
Fisher-Pry model.

DECISION MAKER ORIENTED MODELS OF PROCESS MIX

The purpose of this section is to review models which ex-
plain why a firm will consider using a mixture of different
processes in order to meet the total demand.

One reason is that the firm supplies geographically dis-
tinct markets and the nature of transport costs is such that
the demand in each market can best be met from a local plant.
The differences in size of the geographically distinct markets
may mean that different processes are appropriate to different
locations. There is a considerable literature on the question
of the optimal size and location of plants so this aspect of
process mix will not be considered. Erlenkotter (1967) has
considered the dynamics of the interaction between market
growth, economies of scale in plant construction costs and the
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transportation costs. He has shown that a constant cycle time
between capacity expansions is not optimal.

The explanation for the existence of a mix of processes
based on the spatial distribution of markets and raw materials
combined with transportation costs is well known and, at least
qualitatively, its implications are understood. 8o in this
section we will focus on why a firm would consider using a
mixture of processes in situations where transport costs are
not significant.

Although apparently different, a situation which has been
shown to be formally equivalent to geographically distinct
markets is that in which the total market can be segmented into
different market sectors. For example, one such segmentation
might be based on quality requirements or it could be based on
the physical dimensions of the product. Suppose also that some
of the available processes can only supply some of the sectors,
that is there could be general purpose processes and specialized
processes.

Consider the specific case of a general purpose process,
process 1, and a specialized process, process 2. Then divide
the total market into that portion, market 2,which can be met
using process 2 and that portion, market 1, which can only be
met using process 1. Then Erlenkotter (1974) showed that
this is equivalent to the case of geographically distinct
markets 1 and 2 in which the cost of shipment from a plant in
market 2 to market 1 is zero but no shipment is possible from
a plant in market 1 to market 2. Unfortunately the fact that
optimum cycle time is not optimal means that it is difficult to
derive aggregate models of behavior. Kalotay (1973) derived
some results concerning whether specialized plant should be
used in the case where both specialized and general purpose
plants had the same scale characteristics but the practically
more interesting case is that where the specialized plant has
an economy of scale parameter m, which is greater than m, .

Yet, even when any of the available processes can meet all
the requirements of the market and transport costs are not
significant, it is still possible that a mixture of processes
will be appropriate.

Graphical Determination of Generation Mix

We consider here a well-known graphical procedure for
determining optimal mix of electricity generation types.

In electricity generation the fact that there are no
effective storage device implies that demand must be met instan-
taneously. The time varying characteristic of demand is often
described by the load duration curve in which the amount of time
over which a certain level of demand has occurred is plotted
against the demand level.
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Demand variation over time is not necessarily particular
to electricity generation. In other industries demand fluctuates
but normally it is absorbed either by proper inventory scheme
or delay in delivery of products. Thus for those industries
where inventories are not appropriate or where delivery delay
implies reduced service the situation is similar to electricity
industry. Also there are industries such as steel making where
sporadic demand occur over the normal fluctuation of demand.
Thus the concept of load duration curve may very well be rele-.
vant to some industries other than electricity generation and
the following discussion can be applied.

Now let Ci ($/MW) be the annualized plant construction cost
(fixed cost) and Yy ($/MWH) be the plant operating cost (variable

cost) where i indicates the plant type. For the time being we
assume that there are no economies of scale in the above costs.
Also we assume that the maximum demand 4@ and the load duration
curve ¢(x) are given (see Figure 10) and that there are no
initial set of plants.

Let X, be the capacity of plant type i. For the given set
of Ci’ Yi ¢ (x) and 4 the graphical determination of optimal

mix* is demonstrated in Figure 10 for i = 1, 2, 3. The thick
solid line in the upper graph of Figure 10 represents a minimum
cost polygon. The dotted lines drawn from the two intersections
of the cost polygon and reflected on the demand axis by the load
duration curve determine the optimal capacity for each plant.

This graphical procedure is verified for the illustrated
case as follows:

Objective function to be minimized is the total costs
(Capital and Operating costs), which is expressed by

X X1+x,
C1x1 + C2x2 + C3x3 + Y1JO p(x)dx + YZJX $(x)dx
XqHxy¥x, !
+ Y3J ¢ (x)dx (1)
X, +X
1 2
subject to
Xy =0 , X, =0 , Xq Z 0 XZ)
X, + x, + x5 = d (3)

Note that ¢ (x) is nonlinear and hence the model is nonlinear.

*For a complete treatment see Philips et al. (1969).
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hours

hours

Figure 10. Graphical Determination of Optimal Mix
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Now define

X
d(x) = J p(x')dx"'.
0

<I>(x1 + X, + x3) is constant over all Xqr x2, and x3 and

by eliminating the variable X4 using (3), (1) becomes

= - - o= YL@
T(x1,x2) (C1 C3)x1 + (C2 C3)x2 + (Y14 Y2) (x1)
+ (‘{2 + Y3)‘D(x1 + x2) (4)
8P _ ST _ L a1d diti f imali
3;; =0 , E;; = 0 yie the necessary condition for optimality,

which can be written as

c, - C

_ 72 ]
0(xy) = 3= (5)
c, -C
_ 3 2
0y + xp) = o (6)

On the other hand, the cost curve can be represented by

where t is the duration over which plant i is operated.

Thus the intersection of the curves 1 and 2 is obtained by
setting

C1 + ¥1t1 = C2 + yzt1 .

C, - C
Y, - Y

similarly
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c, - C
3~ %2

e = (8)
2 7Y, T Yy

(5), (6) and (7), (8) are the basis of the graphical procedure.

The graphical determination of an optimal mix is for only
one term (often called one-~year problem). But it can be regarded
as an expression of some steady state in the dynamic context.

Assume that

-- maximum demand increases term by term.

—-- the shape of the load duration curve is invariant.
-- incremental addition of each plant type is allowed.
-— no retirement of plants occur. ‘
-- no changes in Ci's and Yi's over time.

Then there will be no change in the proportion of the mix
over time. This is because under the above assumptions the
difference between the two load duration curves has the same
shape as these two load duration curves and hence the same
proportion for each plant type will result again.

Thus the optimal mix obtained from the graphical procedure
can be interpreted as the steady state development pattern of
an optimal expansion plan. Using this interpretation we consider
some questions presented in the following.

Why Does Mix of Different Generation Types Exist?

It is clear from the graphical procedure why a mix of
generation types results in the cheaper total costs. That is,
the monotone decreasing characteristics of the load duration
curve ¢ (x) together with the cost curve characteristics
(Ci, Yi) determine the necessity of generation mix.

Intuitively it is clear that the condition for a mix to
exist is that the cost curves of two different generation types
intesect. Depending on how these cost curves intersect, all or
a part of generation types will participate in the generation
mix (of course in the sense of minimizing total present worth
costs also see Figure 11).

On the other hand if the shape of a load duration curve
become more like a square (this corresponds to the case where
one has perfect storage which absorbs any fluctuation of demand
over time), then advantages of having a mix of generation types
diminish (see Figure 12).

Obviously there are some other reasons why a mix exists.
In electricity generation the demand could not be covered by a
single method (e.g., hydro) and therefore some other means for
electricity generation had to be introduced. The operating
characteristics of nuclear power plants are such that load
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a) all types participate b) a single type 3 dominates

Figure 1. Effects of Cost Characteristics on the Optimal Mix

3

|

a) all types equally b) optimum mix dominated
participate by type 3

Figure 12. Effects of the Shape of Load Duration Curve
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following ability has not been established and therefore storage
hydro or gas turbine plants are necessary. Other reason might
be that if we depend on a single technologv then it has less
flexibility. 1In this context, it is desirable to have mixture
of different plant types. However, it should be noted that
having a mix of different generation types may result in a lower
total cost as was indicated by the graphical procedure.

How Generation Mix Change Over Time?

Since an optimal generation mix is dependent on the shape
of load duration curve and the costs characteristics (Ci's and

Yi's), it follows that any significant change with respect to

these factors would change the optimal generation mix.

Now assume that the demand is increasing without any
change in ¢ (x}, Ci's, and Yi's. Suppose that the present mix

is different from the optimal mix for the given ¢ (x), Ci’ and
IR Then an optimal expansion plan will bring the mix eventually

to this optimal mix. This kind of arguments can be put forward
more clearly if we formulate the expansion planning problem as
an optimal control problem (Schlaepfer 1978, see Figure 13).

In Figure 13, optimal trajectories are drawn for different
initial conditions. The relatively slow convergence to the
steady state expansion plan is due to the restriction on the
capacity which can be added at any instant of time.

0=(5,20,10) —e=eme-
(15,10,10)
(20,10,5) ===-—-—

I
1 %
i1 %o

Figure 13. Trajectories of Optimal Expansion Plan for Different
Initial Generation Mix (Source: Schlaepfer 1978)
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How a New Technology Comes In?

In principle, a new technclogy will participate in an
optimal generation mix if its cost curve appears in the minimum
cost polygon. Whether the new technology will occupy the base
load range, the middle load range or the peak load range depends
on its cost characteristics.

For example the use of solar energy is characterized by
a relatively high cost for construction ($/MW) and a very low
operating cost ($/MWH). Thus this technology would participate
in the base load range. While combined heat and power station
will come in either the middle or the base load range by the
similar argument. It should be mentioned, however, that the
above arguments disregards the fact that the generated power
itself can vary heavily over time. (An effective storage device
might help solar energy to come in.)

Effect of Economies of Scale

Economy of scale suggdests the cost C is not constant for
each MW capacity to be installed, but rather C is a function of
size, i.e., C(x). Typical relationship between x and C is
shown in Figure 14.

Similar arguments can be made for Y also.

In this case the graphical procedure shown in Figure 10 is
no longer applicable. An expression for the objective function
when Yi's the assumed to be constant can be expressed as

F(.x1,x2). = C](.x])x1 + C2 (;x2)_x2 + C3(_x3)x3 + (ZY1 - Yz)_é(,x1)
+ (v, = Y3)e(xg + x,) (9)

and x.,

Thus (9) is to be minimized with respect to Xqr Xy 3

where X, + X, + X3 = d is the constraint.

L s

C

Figure 14. Economy of Scale
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A ~

. r r
Again by setting é%— = 0 and é%_ =

0 and rearranging we gdet

the following necessary conditions for optimality.

sc, ,
(PRI Cqlxq) - x,%2 © Cqlxy) = =(vy
5c, sc,

Sx.Xp T Cylxy) - Sx3°3 T C3(x3) = =(¥,

- ¥,) 6 (xq) (10)

- Y300 (kg + xy) (11)

The simplest expression for the economy of scale would be

of the following form:

or ax + b

i lex

C(x) = a + C(x)'x =
so the necessary conditions become*
a; —a, = -(y,; —Y,)0(xg)

= =Y, = Y olx, + x,)

(13) and (14) are exactly the same forms as
respectively, in which Ci's are replaced by ai's.

(12)

(13)

(14)

(5) and (6),
Thus if

ai X Ci then the resulting optimum mix will be, in general,

different from when there are no economies

The effect of economy of scale in the
illustrated as in Figure 15.

of scale.

form of (12) can be

Let us assume that the plant type

3 has significant scale economy compared with the other types

of plants.

brings the cost curve 3 in Figure 15 down to 3'.

Then it is reasonable to assume that aj < C3.

This

The new

intercepts with the curve 2 will give the new set of optimal
mix in which the optimum size for plant type 3 becomes larger

than no economy of scale is assumed.

It should be noted that the significance of the effect of

economy of scale depends very much on such

a; and bi' For example, consider the case

types of plants; one is coal and the other
a nuclear plant is characterized by higher
and lower operating costs per MWH than the
for coal, i.e., Ch > C. and Yo < Yoo Thus

cost ploygon becomes as shown in Figure 16a.

parameters as Yi'
where there are two

is nuclear. Usually
capital costs per MW
corresponding costs
the resulting minimum

Now when the

economy of scale is expressed by the straight lines (as in (12))

¥*This condition applies only for xie(O,d),

i=1, 2, and more-

over a solution to (13) or (14) may or may not give a local

minimum.
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slope C

slope a

size

Figure 15a. A Simple Expression of Economy of Scale

®

Q@

Figure 15b. Effect of Economy of Scale
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as shown in Figure 16b such that a, < a.r then by replacing
Ch and Ce by a, and a_ we obtain the new minimum cost polygon

shown in Figure 16c. So in this case the effect of economies
of scale is very significant that the necessity of having
deneration mix diminishes. Whether nuclear or coal plants
dominate will depend on the values of bn and bc. If bn is so

high that the economic advantage indicated by Figure 16c is
offset, then coal plants will dominate. On the other hand if
the characteristics of the two plant types were such that
a, > a, a new mixture of these two plants may exist.

Now consider the case where economy of scale is represented
by "power law." We express

C(x) = me-1 0 <m < 1
or

C(x)+x = Cx" (14)
Ifm = 1, then C(x) = C implying the case where there is no
economy of scale (see Figure 17). The function to be minimized

is readily written by using (9), i.e.,

~ m, m., m 4
F(x1,x2) = C1x1 + C2x2 + C3x3 + (Y1 - Y2)®(x1)

The necessary condition for optimality is

m, -1 my=1
C1m1x1 - C2m2x2 = -(Y1 - Y2)¢(x1) (16)

m2—1 m3—1
S %y - Cym x, = —(yy = v3) ¢lx, + x,) (17)

Note again that if m; = 1 then (16) and (17) are exactly the

same as (5) and (6), respectively.

When 0 < m, < 1, it is not as straightforward as the
previous case where economy of scale was represented by a fixed
part plus a variable part (e.g., (12)).

To see the economy of scale in more concerte way, let us
consider adain the case where we have only two generation types;
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* time

a) Minimum Cost Polygon (no economies of scale)

» size

b) An Expression for Economies of Scale in Relation to Cn and CC

: 4

c) Minimum Cost Polygon with Economies of Scale

Figure 16.
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2C

0.8

Capital 0.6
cost per

unit 0.3
capacity
C

>

1 2 Normalized
unit capacity

Figure 17. Representation of Economy of Scale

one is coal and the other is nuclear. So let us suppose that

X, + x, = d, where ¢ and n corresponds to coal and nuclear,

respectively.

The function to be minimized in this case is, from (15),

m m
_ c - n _
F(xc) = chc + Cn(d xc) + (Yc Yn)@(xc) (18)
Now
m -1 m -1
dar _ c _ _ n
ax_ - e Cnmn(d xc)
+ (YC - Yn)@(xc) (19)
and
2 m -2 m -2
d 2 =Cm (m - 1)x_°© + Cm (m - 1)(d - x )
c c nn-n
dx
v - d¢
* (e T Yl ax X, (20)
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A numerical example is shown in Figure 18 and Figure 19.
Figure 18 illustrates the case where no economies of scale is

taken into account. The numbers for Cc' Yor Cn' and Y, are

arbitrarily chosen by referring to, for example, Huettner (1975).
For the valueso:fmc and mn, various authors suggest different

values. Table 1 shows these numbers from which mc = 0.8 and

mn = 0.5 are arbitrarily chosen for illustrating purpose.

In Figure 19, the cost curve (representing equation (18})
is shown together with the cost curve for the case where no
economies of scale are considered. The effect of taking scale
economy into account is significant; in this case the effect is
to change the convexity of the cost curve (with no economy of
scale) into a concave function and thus a generation mix no
longer exist. The minimum point is given by x_ = 0 (no coal
plants). ¢

Although in Figure 19 no coal (xc = 0) is the optimal, coal

may dominate if the cost for nuclear is much higher. In fact
it can be checked that when Cn = 145, either coal only or nuclear

only is optimal whereas when Cn = 170 coal plants will dominate.
Also if the parameters were such that m, > mg and Cn > Cc' it

is possible that a mixture of plant types is optimal.

The effect of economy of scale is significant within the
scope of the static model presented here. It can be perceived
that as demand increases the advantage due to economy of scale
is also increased and eventually the generation type which has
more significant scale economy will completely dominate the
whole capacity. Also it is conceivable that when a new tech-
nology is to be introduced the scale economy plays the key role.

Table 1. Economy of Scale Factors

Dfossil Mhuclear
Crowley (1978) - 0.45
Comtois* (1977) 0.81 0.86
Spinrad (1980) 0.67 0.5
Lee (1978) 0.73 0.51
Fisher (1979) 0.84 —_—
Lucas (1979) - 0.7
Abdulkarim
& Lucas (1977) 0.8 —_

* escalation included.

Note: This table is not for the purpose of making any comparisons.
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1001 i
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X 103 hours
t = 6667 hours

Figure 18. A Numerical Example



-39-

300
'mc mﬁ'
b:chc +Cnxn +(Yc‘Yn)¢(Xc)
250 -
a:chc+Cnxn+(Yc—Yn)¢(Xc)
L -
— o~ - ——————
Low ) - ~ ------ --—--——-—-—
> 200 -
- ~
L
X ~ -
> \\(Cnxn "v
® 150 ~ -7
-~ ”
8 s e
m /’ m
— n o, (o
B C Xn N chc
S 100 - >
[ d -
[ d -
’/ \‘
L d
I” \\\
50 A - \'\
i - -~
.7 (v ~y_)o(x)
e c 'n c \.\
" -
a—— . 1 . 1 A i e [ L
0.1 a.5 1.0 . 1.5 1.8
normalized capacity X
a: total cost curve with no econcmy of scale

b: total cost curve with economy of scale

Figure 19.

Effect of Economy of Scale



_40_

THE EFFECT OF UNCERTAINTY ABOUT THE FUTURE ON SCALE DECISIONS

The question "Does uncertainty about the future result in
decision makers' choosing a plant size which is different to
that appropriate when the future is assumed known?" seems to be
one which can give a wide varietv of answers. Some people feel
that the plant should be smaller, others feel that the plant
should be larger.

The question and the outcome of the decision are suffi-
ciently well understood that most managers and their advisors
can give an opinion, yet the variety of answers indicates that,
in fact, deciding on plant size when there is uncertainty about
the future requires systematic and careful analysis.

Before developing any model it is necessary to clarify

(i) the sources and nature of uncertainty about the future
(1i) how this particular decision on size relates to future
decisions

(iii) the criterion for choosing plant size when there is
uncertainty about the future.

Sources and Nature of Uncertainty

In deciding on the size of plant there can be uncertainty
about a wide range of factors, for example

(a) the accuracy of the cost estimates and the nature of
the scale economies

(b) the time required to construct the plant and bring it
into operation

(c) the operating cost and other performance indexes
(d) the arrangements and costs of financing plant
construction

(e) the future markets for the product and the price
at which it can be sold.

For each of these factors it is necessary to clarify the
nature of the uncertainty. If quantitative models for deciding
on plant size are to be used it will be necessary to estimate
the probabilities of the uncertain events. If the events are
repetitive past experience can be used to estimate the pro-
babilities but if the event is unique a subjective approach
must be used.

As a specific example consider some alternative approaches
to describing uncertainty in future demand. Suppose it is known
that demand is characterized by arithmetic growth. However,
this could mean

(I) at the time the decision on plant size is made the
rate of increase of demand is not known. There are
several alternatives: consider the case of two

alternatives labelled H (high) and L (low). However,
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it is known that after the plant is built the rate
of increase can be observed and it will remain at the
observed rate in all future time periods.

(II) the demand increase in each future time period is
uncertain. It can either be H or L. The probability
of each value are known and they are independent of
the increase in the previous time period. '

(ITI) again demand increase in each future time period is
uncertain but probabilities in one period are depen-
dent on the actual realized increases in previous
time periods.

One can represent each of these alternatives by an event
tree (Figure 20). It is important for the decision maker to
recognize which of these alternatives describes his view of the
uncertainty of future demand as there is often confusion between
(I) and (II).

Relation Between This Decision and Future Decisions

In some cases a decision is unigque, in other cases it is
part of a time sequence of decisions.

For example, the present decision on plant scale might
imply that the same size of plant will be used for all future
plant additions. This corresponds to the situation where the
decision is actually to standardize on a particular plant
design and only make minor changes in future plants. It is
then not possible to change the size if the demand turns out
to grow at a different rate than expected. We call this an
open loop decision (cf. Bellman & Dreyfus 1965).

Alternatively, every time a plant addition is required
in the future it will be possible to modify the size of plant
in accordance with the demand pattern which has been experienced
and the revised expectations about the future. We call this a
closed loop decision.

The distinction is apparent if we consider alternative (I)
Figure 20. The size resulting from the open loop decision made
at time zero will be repeated irrespective of whether demand
has turned out to be H or L. However, in the closed loop case
the size of plant chosen at subsequent times will depend on
whether demand has turned out to be H or L and, in either case,
it will not be the same size as that selected at time zero.

In alternative (II) in Figure 20 there is a repetitive
structure in which the uncertainty about the future always
looks the same no matter what the past experience has been. So
in this situation there is no difference between the open loop
and the closed loop decision.



_uz_

I

uncertainty about
value of demand
increase

IT

demand increase
in each period
independent

I1T

demand increase
correlated

Figure 20. Event Trees Describing Uncertainty About Future
Demand
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Criterion for Decision Making Under Uncertainty

Elementary decision theory usually recommends that the
decision maker choose the appropriate course of action by find-
ing the action which has minimum expected cost. (This is the
criterion which has been used in almost all the literature on
electricity dgeneration expansion planning under undertainty
(Tsuji 1980).) However, it is well known that with uncertainty
there are a variety of other plausible ¢riteria that can be
used (Sage 1977).

Example

The difference between the different criteria and between
open loop and closed loop decisions can best be illustrated
by a simple example.

Suppose it is known that demand is increasing linearly but
there is uncertainty about the rate of increase at the time
when the decision on plant size is made. All other relevant
parameters are known, e.dg., the discount rate r and the economy
of scale parameter m.

Now if the demand increase were known to be D¥ per period
the optimal plant size would be that value of V minimizing

kv

= *
1 - e rv/D

C(vib*) =
which is known to be
V¥ = X*D*¥
where X* is the solution of
X* = ;(e - 1)

Ifm= .7, r = .1 the optimal size is then V* = a.75D%.

Now consider the case where D is uncertain. Suppose that
the nature of the uncertainty is best described by a situation
analogous to Figure 20 (I), i.e., D can take on one of a finite
number of values but once the particular value is realized it
will remain at that value.

Our aim is to investigate what would be our best choice
under the presence of uncertainty for different criteria.
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1) Mathematical Expectation

In this case we assign subjective probability P that the
demand rate be Di’ iel and take expectation of the cost function

over D. The forms of the expected cost function are given as
follows:

For an open-loop decision structure,

C,(v) = Y C(ViD;)py

ieE

For a closed-loop decision structure,
rv

D.
— _ l .
C, (V) = vt o+ .X e C(v;iD,)py
1el

where Vi is the value of V which minimizes CCV;Di), i.e.,
A\
thus

V. = X*¥D,
i i

_ The optimal size can be obtained by minimizing either
C1(V) or C2(V) with respect to V.

2) Min-Max Criterion (Optimist)

An optimist will assume that the demand goes higher. Thus
he will be minimizing the cost function corresponding to the
higher demand rate.

For the open—-loop decision structure,
min max C(V;Di) = min C(V;D 1
vV i v max

For the closed-loop decision structure,
rv

D.
min max {V® + e IC(V.;D.)} = min C(V;D )
v i i"i v max

NoFe that in both cases he will choose the plant size appro-
Priate to the maximum demand.
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3) Min-Min Criterion (Pessimist)

This case 1s the reverse of 2) above.
For the open-loop decision structure,
min min C(V;D.) = min C(V;D_._}
v i i v min

For the closed-loop decision structure,
rv

D.
min min {(V® + e *C(V.;D.)} = min C(V;D_._ )
v i e v min

Note that in this case he will choose the plant size appropriate
to the minimum demand.

4) Min-Max Regret Criterion

We can define the deviation (loss) i1f the demand rate
turned out to be different from what a decision maker had
assumed to be. This criterion tries to choose the decision
which minimizes maximum loss incurred by taking certain decision.

For the open-loop decision structure,

m;n m?x {C(V;Di) - C(Vi;Di)}

For the closed-loop decision structure,
v
D.
min max {Vm + e lC(V.;D.) - C(V.;D.)}
v i i'71 i'7i

5) Raplace Criterion

This is formally the same as in 1), but here p; are chosen
to be all equal.

6) Expectation plus Variance

In this case not only mathematical expectation but also
some measure which expresses variance of the cost function is
to be minimized.

For the open-loop decision structure,

min {61(V) + B_Z |C(V;Di) - 61(v)|2pi}
v iel
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For the closed-loop decision structure,
rv

' D.
min {C,(V) + B } |vm +e *C(v.;D,) -C (V)|2p.}
2 . ‘ i"7i 2 i
-V iel
where B is a weighting factor.
Table 2 presents a numerical example for which m = 0.7
and r = 0.1, and D ranges from 0.8-1.2. 1In the case of taking

expectation, we assumed that D takes on 0.8, 1.0 or 1.2 with
probability 0.25, 0.5 and 0.25 respectively. Note that D* = 1.0.

It is apparent that the closed-loop decisions always give
lower values, for example,

C.(v) = ) p. C(V;D;)
1°. ier * J._EY
D.
= I p, V' +e *c(;ipn,)}
iel _rv

D.
=y o+ } e lC(Vi;Di)pi
iel

= C,(V) .

2

So in this example the closed-loop decision is always the
better choice.

In this example, the optimal size when there is no
uncertainty is 6.75. Table 2 demonstrates that the optimal
size becomes either larger or smaller depending on the criterion
to be used.

Table 2. Effect of Uncertainty on Optimal Size

Criteria Open-loop decision Closed-loop decision
Expectation 6.73 6.6
Min-max (optimist) 8.1 8.1
Min-min (pessimist) 5.4 5.4
Min-max regret 6.7 6.6
Laplace 6.73 6.5

Expectation plus
weighted variance
(g = 0.2) 7.0 6.8

Deterministic case 6.75
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Comment

It can be seen that the answer to the question of how
uncertainty about the future effects the scale decision is
gquite complex even though the decision is well understood.

A quote (Betts, private communication) will perhaps give
a flavor of the approach used by actual decision makers in
coping with uncertainty.

Other than in the short—-term, forecasting in the
present state of world economic and political turbu-
lence, is largely a speculative art. The response
of preparing alternative scenarios may look impres-—
sive on paper, but the commitment of finance to
large—-scale manufacturing hardware requires a
positive decision. There are, however, the classic
and obvious responses to uncertainty in the bulk
chemicals and other capital intensive industries.
These include delaying and phasing the degree of
investment commitment as long as possible, sharing
the advantages of plant scale by asset sharing, the
vertical and horizontal integration between raw
materials and products, and building as much flexi-
bility as practicable in respect of feedstock
variations and future plant extensions. Plant flexi-
bility costs money, which may or may not in the event
be fully utilized. The ability of the industry to
pay for this ideal is influenced by the price
competitiveness of the market for the particular
product.

I believe that each such decision is a unique
exercise, and is very much conditioned by past
experience (the learning process) and the internal
and external circumstances applying at the time.

CONCLUDING REMARKS

The mathematical models required to guide decision makers
in understanding the significant factors determining size and
process mix are quite well developed. As has been shown in
the last section they can also be extended to allow for uncer-
tainty about the future once the appropriate scenario has been
defined and the criterion for selecting the best course of
action determined.

However, there needs to be more work done on assessing:
the extent to which these models of rational behavior describe
the actual decisions by firms. Furthermore, greater understand-
ing is required of the implications of the use of these models
of rational decision making on the aggregate behavior of the
industry. Our discussion on plant size, technological substitu-
tion and process mix represents a first step in this direction.
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It would be desirable to take a specific situation, such
as the dynamics of scale and process mix in the electricity
generating industry, and see whether the evolution over time
can be explained by the growth rate in demand, the economies of
scale in capital costs of the different technologies the relative
operating costs and the appropriate distribution of firm size.
If such a model can provide an adequate explanation of past
changes in the industry then it has the great advantage over
aggregate models of learning and growth in that it suggests
how policy intervention can modify behavior and how new tech-
nological developments will affect the industry.

In spite of our preference for explaining aggregate be=..
havior by rational decision making at the level of the firm, it
is remarkable how well models of learning and growth describe
aggregate behavior. It may be that this is due to the loga-
rithmic transformations sufficiently smoothing the data that
it can be fitted using simple functions. Obviously more work
needs to be done to develop an understanding of why these
models work so well. It would seem that learning models would
be even more appropriate in describing the way the technological
characteristics of processes change, for example, the growth in
maximum feasible plant size or the reduction in cost of a
particular plant size with increasing experience.

Finally, there is a need for careful case studies of the
way actual plant sizes are determined. It is necessary to
develop a better understanding of how decision makers view the
uncertainty about the future and on what criteria they base
their decisions. This could be a useful study for IIASA, in
particular to compare decision makers in different countries
and in market and planned economies.
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