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ABSTRACT 

Many seemingly different questions that interest,demographers 
can be phrased as the same technical question: how, within a 
given demographic model, would variable y change if the age- or 
time-specific function f were to change arbitrarily in shape and 
intensity? At present demography lacks the machinery to answer 
this question in analytical and general form. 

This paper suggests a method, based on modern functional 
calculus, for deriving closed-form expressions for the sensitivity 
of demographic variables to changes in input functions or sched- 
ules. It uses this "causal linkage method" on three bodies of 
theory: stable population analysis, non-stable or transient 
population analysis, and demographic incomplete-data estimation 
techniques. 

In 9.table theory closed-form expressions are obtained for 
the response of the intrinsic growth rate, birth rate and age 
composition to arbitrary marginal changes in the fertility and 
mortality age patterns. 

In non-stable theory, expressions are obtained for the tran- 
sient response of the age composition to time-varying changes in 
the birth sequence, and to changing age-specific fertility and 
mortality patterns. The problem of bias in period vital rates 
is also looked at. 

In incomplete data analysis a general format for robustness 
or error analysis is suggested; this is applied to a standard 
Brass estimation technique. 
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Many of the questions that appear and reappear in the demo- 

graphic literature of this century, while seemingly quite dif- 

ferent, are but specific instances of a single and fundamental 

question. How do the aggregate measures--numbers, rates, a n d  

distribution--of a population change, when its underlying be- 

havior a t  the individual level changes? 

That this question should arise with regularity under d'if- 

ferent guises is hardly surprising. Wuch of demography theory 

aims to translate the events and consequences of individual 

lives--the timing and number of children, the choice of area of 

residence, entry to the work-force, time of retirement, age and 

cause of death--into the grand measures of society itself, its 

number and growth rate, its scatter over land and town, its vital 

rates, its proportions by age, sex, work or other category. And 

since human behavior over the life-cycle, reflecting social habit 

and environment, is forced to change as society evolves and de- 

velops, the demographer in turn is forced to seek analytical ways 

to translate these shifts in individual behavior into the changes 

in aggregate population measures he seeks. 

Mathematical demography bridges the gap between individual 

behavior and aggregate measures by observing that human behavior 



and the main events in human life are closely tied to age. It 

captures and frames these events by means of demographic sched- 

ules or functions--statistical summaries of individual behavior 

along the age and time dimensions. It then uses these as inputs 

to mathematical models, sometimes simple, sometimes elaborate, 

the output or end-result being variables that represent the 

aggregate measures of growth, distribution, number, and rate. 

We may therefore pose the question of causal linkage between 

individual behavior and aggregate measures in a more analytical 

and precise way. How, w i t h i n  a  g i v e n  demographic model ,  would 

a r b i t r a r y  changes i n  i t s  age-  a n d t i m e - s p e c i f i c  s c h e d u l e s  a l t e r  

c e r t a i n  o u t p u t  v a r i a b l e s  t h a t  i n t e r e s t  u s ?  

Within the present body of demographic theory there is no 

way to answer this question. The obstacle is a technical one. 

To answer, with generality and precision, how a change in age 

or time function f would affect variable y, the demographer needs 

a form of sensitivity analysis. Were f a simple variable, or 

even a vector, analysis would be straightforward. Elementary 

calculus could be brought to bear, the derivative ay/af con- 

structed, and the differential change in y written down as a 

function of the change in f. But standard calculus allows us 

no way of taking derivatives with respect to functions, and thus 

we reach an impasse. Questions of key interest to demographers-- 

how the age composition responds to an arbitrary change in the 

mortality pattern, or how period vital rates are affected by 

changes in the birth sequence--therefore remain without analyt- 

ical solution. What is needed, for questions of causal linkage 

in demographic theory, is machinery more powerful than standard 

calculus. 

In the absence of such machinery, demographers have devel- 

oped several ways to investigate the effects of changes in age 

schedules. None of these is entirely satisfactory. The simplest 

possibility, blunt but effective, is to calculate numerically 

the variable y before and after the behavioral change in schedule. 

But this gives no general expression for an arbitrary change: 

each case must be calculated anew. A second possibility is to 

parametrize the age-schedule in question, and try to capture 



changes in its shape by changes in the parameters. This reduces 

the problem to the standard-calculus procedure of varying param- 

eters. But parametrization can be tedious, and again no general 

expression results. A third possibility is to look only at 

special cases, restricting the change in age-pattern to a certain 

simple shape--a simple increase in intensity for example. But 

here again no general insights are guaranteed. 

This paper proposes a method of deriving the effect on demo- 

graphic variables of arbitrary changes in age- and time-functions 

directly as closed form expressions, without resort to numerical 

techniques or to parametrization. It draws on concepts from 

modern functional analysis to construct a "causal linkage method" 

suited to demographic problems. If it is true that many open 
I 

questions in demography call for such a method, then we would 

expect it to yield new results. This turns out to be the case. 

Some of the results we obtain are quite general; others are for 

special cases. One or two have been obtained in the literature 

before; most are new. 

The paper is laid out as follows. Section 1 proposes a 

general linkage method, illustrating it with simple examples. 

Sections 2 and 3 apply the method to stable theory, in particular 

to how arbitrary changes in the age patterns of fertility and 

mortality affect the intrinsic growth rate, birth rate and age 

composition. These results show, among other things, why fertil- 

ity has more effect on the age composition than mortality. 

Section 4 takes up a special case as illustration: age delays in 

fertility behavior. Section 5 turns to non-stable theory, in- 

vestigating how the age composition responds to changes in 

the birth seauence and in fertility and mortality patterns. 

Section 6 looks at the problem of "bias" in vital rates, due to 

changes in the age composition and birth sequence, and how this 

may be partially corrected. Section 7 takes up the problem of 

incomplete data estimation, and proposes a method for assessing 

errors in the estimates, given underlying assumptions that are 

not perfectly fulfilled. It illustrates this with a specific 

Brass example. The main sections are largely independent, but 

the reader is urged to understand the method before he turns to 

any applications. 



1. THE CAUSAL LINKAGE METHOD 

In this section I shall develop both the vocabulary we need 

and a general method for linkage analysis in demographic theory. 

I will avoid abstractions, and will assume (at some cost to full 

mathematical rigor) that the functions dealt with inhabit appro- 

priate, if unmentioned, spaces and that they are smooth enough 

to allow the operations we want. I start by reviewing briefly 

the familiar, standard theory of differential changes, then spend 

some time extending it to differentials with respect to functions, 

finally proposing a general method for sensitivity or linkage 

analysis in demographic theory. 

The Standard Theory 

Begin with y as a simple function of the variable x: 

Given that x is increased on amount h, the familiar, standard 

calculus tells us that a good approximation to the change in y, 

when h is small, is given by the d i f f e r e n t i a l  By, defined by 

where f' is the derivative or gradient taken at x--itself a 

function of x. (Since dy, the differential is a function of the 

change h, evaluated at x, we write it By[x;h]; or when x is under- 

stood, By[hI; or when h is also understood, simply as By.) 

If we merely want the change in y, going from x to x+h, why 

bother with the differential, an approximation? Why not calculate 

y (x+h) - y(x) directly? This of course is possible. But the 

differential has two advantages. It applies to all x in the 

domain of the function and to all changes h--it is general. More 

important, useful qualitative information is usually contained 

in the expression for fl(x); the connection between y and x can 

therefore be usefully interpreted and studied. 



One way to define the differential directly, without resort 

to the gradient, is via the limit 

(1.3) y[x;h] = lim f (x+ah) - f (x) 
CC-tO 

CC 

Thus the change caused by a small step in the direction of h, 

divided by the step length, can be shown in the limit to yield 

the same linear approximation as the differential in (1.2). 

This fact will be useful below. 

Finally, recall that if y is a function of several variables 

and if changes hi occur in the variables xi (with indices i in 

the set I), the others being held constant, the differential in 

y becomes the summation 

This is the familiar "chain rule" of differential calculus. 

Functional Differentials 

So much for the standard theory. We now proceed to the 

case of interest in this paper. This time we begin with a 

function z, whose domain in demographic theory is usually age 

or time. 

At the outset a notational difficulty must be cleared up. 

Elementary textbooks often write the function z as z(a), where 

they mean the entire function over the range of a. Since this 

might be confused with the v a l u e  of z at point a, I shall follow 

modern notation and reserve the label z for the function itself, 

using z(a) for its value at point a. 

Typically, in demographic theory, models are built out of 

functions (and variables), the simplest possible being 



Here y is a function of the entire curve z--a rule which assigns 

a real number y to any given curve z. F is called a functional. 

As examples 

F(z) = Max {z(t)) . 
oct51 - - 

are functionals. The first attaches a real value to the curve z, 

the second, a functional of two functions, assigns a real value, 

given the curves p and m. Demographers will recognize the second 

example as the net reproduction rate, given the age-schedules of 

mortality and fertility respectively. 

Now suppose that the function z changes shape (as in Figure 1.1) 

that it becomes z+h 

F i g u r e  1.1 

where the perturbation h, itself a function, is small. How much 

will the value y change? By analogy with (1.3), we can simply 

define the differential (now called a functional differential) 

to be 



(1.5) Gy[z;h] = lim 
F (z+ah) - F (z) 

a I 

a-to 

providing of course this limit exists. Just as the simple differ- 

ential approximates the change in y when x changes an amount h, 

the functional differential approximates the change in y if the 

function z is perturbed or changed by a function h. 

As yet this gives no simple way to derive 6yI without taking 

limits. However, it is easy to show that since F(x+ah) is a 

simple function of the parameter a, (1.5) can be rewritten as 

an ordinary derivative in a, evaluated at a = 0: 1 

Usually this gives a convenient way to derive the differential. 

Example 1.1 A functional form that often occurs in demo- 

graphy is 

an integral of a function g of function z at age a. We may write 

the last step following from standard calculus operations. 

'TO see this, write the derivative (1.6) as 

lim F(z+(a+c)h) -F(z+ah) This equals lim F(z+ch) -F(z) 

c-to c I a=O c-to C 

which is the same as (1 .5) . 



Example 1.2 We may try this formulation on the net repro- 

duction rate example mentioned above. 

Suppose the fertility schedule m is perturbed by a function 6m, 

the mortality schedule remaining fixed; what is the differential 

in the variable Ro? Applying the rule from the previous example 

whence 

(1.10) 6R0 [m; Am] = (a) 6m(a) da . 

Knowing the variation in the fertility schedule, we can easily 

calculate 6R0 

Functional differentials obey the usual rules for differen- 

tials: 

(summation) 

(product) 

( 3 )  y = g(F(z)) (composition) 

(z1,z2 are functions, 

x a variable) 

by = 6F[6zl] + 6F[6z21 + 6F[6x] (chain rule) 

F ( 2 )  

y=G(z) 
(quotient) 



Exn3ple 1.3 The survival schedule p is connected to the 

force of mortality schedule p by 

The value p(a), in other words, is a f unc t ionaZ  of p. Given a 

change 6p in the function p, caused say by a change in the in- 

cidence of a certain disease, how will the survival schedule p 

change? 

Let 

so that 
a 

6F[6p] = 6p(t)dt . 

so that from the composition rule above 

This gives a rule for the differential change 6p in the entire 

function, caused by an alteration 6p of the function p. 

Each of the examples so far proceeds tediously, step by step. 

With practice however, as in elementary calculus, it is possible 

to write down expressions for the differential by inspection. 

A final piece of vocabulary will be useful. In the familiar 

standard calculus we can write the differential as a product 



calling the coefficient of the change in x the derivative. In 

our examples above we can write the differential in the product 

form 

By analogy we may call the function F' (z), the "coefficient" of 

the change in z, the functional derivative (or Frgchet derivative) 

of F at function z ,  understanding that the product here is an 

inner product. For example, the derivative of the survival sched- 

ule at age x, with respect to the force-of-mortality function u, 
from the above example is -p(x). 

In the functional case it is not always possible to write 

the differential in this product form, hence a derivative does 

not always exist. But where it does we need only retain the 

information F': by taking the inner product of the function F' 

and the change in z we can summon the differential when needed. 

The General Method 

We have now assembled enough machinery to construct a fairly 

simple procedure for analyzing causal linkages in demographic 

theory. 

Assume we have a model that expresses variable y explicitly 

in terms of functions z and variables (or parameters) x : i j 

If we decide which functions zi may change independently, 

say those for i in some set I, and which variables may change 

independently, say those for j in some set J, we can write the 

differential change in y as 

We can derive the differentials 6F[6zil each separately according 

to the rules above, and we can derive the differentials 6F[6x,] 
J 

quite simply as - aF 6x . We now have the sought-for expression. axi j 



Often, in demographic models, the variable of interest y 

is contained implicitly in the model. In this case we have the 

implicit functional model 

As before we allow certain z!s 1 and x!s to change. The variable y 
3 

will respond by the change 6y. To maintain the identity at zero 

all changes must sum to zero. Hence 

that is, 

More generally, there may be several implicit equations H for 

several variables y. In this case, we can interpret 6y to be 

a vector of changes, a~/ay to be the (non-singular) ~acobian 

matrix (of partial derivatives of each H with respect to each y), 

and the differentials 6H to be assembled in vector form. The 

same expression then holds. 

Example 1.4 To illustrate, let us assess the change in the 

intrinsic rate r when both the fertility and mortality schedules 

m and p change. The characteristic equation connects r to func- 

tions m and p: 

We calculate 

recognizing this expression as the average age of childbearing 

in the population, written A,. And for perturbations 6p and 6m 

we obtain 



Using (1.17) we may write 

We thus have a general analytical expression for the response of 

the intrinsic growth rate to arbitrary changes in the fertility 

and mortality patterns. 

We now turn to specific problems in demographic theory. 



2. EFFECT OF THE FERTILITY PATTERN ON STABLE POPULATION PARAMETERS 

We begin the investigation of causal linkages in demography 

with stable population theory. How does the fertility pattern 

determine the growth and age-composition of a stable population? 

There have been several attempts to answer this question. 

Dublin and Lotka (1925) examined the response of the intrinsic 

growth rate to the special case where the fertility function is 

multiplied by a constant factor and shifted slightly over age. 

Some thirty years later, Coale (1956) extended these special-case 

results to include the effects on age composition. More recently, 

Demetrius (1969), Goodman (1971), and Keyfitz (1971) derived 

formulas for the response of various stable parameters to an in- 

crease in fertility at a single, arbitrary age x. And in 1977 

Keyfitz further derived an approximation for the response of the 

intrinsic growth rate x to an arbitrary, small perturbation in m, 

the fertility function, with a result similar to one given below. 

Fer t i l i t y  Change and the Intrinsic Growth Rate 1 

A suitable model that connects x with the fertility function 

m is supplied by the familiar characteristic equation 

1 = i\-rap (a) m (a) da 

where a is age, w an upper bound on length of life, and p the 

sukvival function. 

Suppose the fertility function m changes, to become m', 

where the difference m' - m = bm is itself a function, and as- 

suming the survival schedule p is held fixed, how will r respond? 

Write (2.1) in the implicit form 

l~lthou~h we have already looked at this problem in Example 

1.4; I shall for completeness of this section rederive the result. 



When m is  p e r t u r b e d  a n  amount bm,  r changes  by b r .  To m a i n t a i n  

t h e  i d e n t i t y  a t  z e r o  t h e s e  changes  must o f f s e t  e a c h  o t h e r .  

T h e r e f o r e  

E v a l u a t i n g  t h e  d i f f e r e n t i a l  ( a s  i n  t h e  p r e v i o u s  s e c t i o n )  and t h e  

p a r t i a l  y i e l d s  

AWe-rap ( a )  6m ( a ) d a  

And s i n c e  t h e  i n t e g r a l  on t h e  r i g h t  i s  Am, t h e  a v e r a g e  o f  c h i l d -  

b e a r i n g ,  w e  o b t a i n  o u r  f i r s t  r e s u l t :  

W e  t h u s  have a  g e n e r a l ,  c losed- fo rm e x p r e s s i o n  f o r  t h e  r e s p o n s e  

o f  t h e  i n t r i n s i c  growth r a t e  t o  a n  a r b i t r a r y  s m a l l  change i n  t h e  

f e r t i l i t y  p a t t e r n . '  T h i s  r e s u l t  was a r r i v e d  a t  i n d e p e n d e n t l y  by 

K e y f i t z  i n  1977, by a n  a p p r o x i m a t i o n  argument .  

We c a n  immedia te ly  e x t r a c t  a  s i m p l e  theorem from t h i s  r e s u l t .  

In a growing population, any given p a t t ~ r n  of marginal reduction 

in fertility has more effect if it is concentrated at younger 

ages. To show t h i s ,  . suppose  w e  c o n s i d e r  a  c e r t a i n  " b i t e "  o f  

shape  bm,  t a k e n  from t h e  f e r t i l i t y  f u n c t i o n .  R e c a l l  t h a t  c ( a ) ,  

t h e  age  d i s t r i b u t i o n  d e n s i t y  a t  a ,  i s  g i v e n  i n  s t a b l e  t h e o r y  by 

where b  i s  t h e  i n t r i n s i c  b i r t h  r a t e .  S u b s t i t u t i n g  t h i s  i n t o  

( 2 . 4 )  y i e l d s  

 his e x e r c i s e  i s  one o f  compara t ive  s t a t i c s .  W e  must  i n -  

t e r p r e t  t h e  change i n  r d e r i v e d  h e r e  a s  t h e  d i f f e r e n t i a l  between 

two s t a b l e  p o p u l a t i o n s  t h a t  d i f f e r  o n l y  i n  f e r t i l i t y  f u n c t i o n ;  

o r  a l t e r n a t i v e l y  a s  t h e  long- run  d i f f e r e n c e  i n  growth t r e n d s  i n  

a  p o p u l a t i o n  w i t h  a l t e r e d  f e r t i l i t y .  



j E  ( a )  6m ( a )  d a  
(2 .6)  c~r = - 
a second and new form of  t h e  above r e s u l t .  S i n c e  c ( a )  must  de-  

c l i n e  w i t h  a g e  i n  a  growing p o p u l a t i o n ,  and  b  and Am are  p o s i t i v e ,  

any  g i v e n  p a t t e r n  o f  r e d u c t i o n  Bm w i l l  l o w e r  r more i f  it o c c u r s  

a t  e a r l i e r  a g e s .  O t h e r  t h i n g s  e q u a l ,  a  c o n t r a c e p t i v e  method i s  

more e f f e c t i v e  i n  r e d u c i n g  growth  i f  it a p p l i e s  t o  younger  women. 

A t h i r d ,  and y e t  more u s e f u l  form o f  t h e  above r e s u l t  is  
- 

p o s s i b l e .  The mean l e v e l  o f  f e r t i l i t y  i n  t h e  p o p u l a t i o n ,  m can  

be  w r i t t e n  as 

s i n c e  c ( a )  d e s c r i b e s  t h e  d i s t r i b u t i o n  o f  t h e  p o p u l a t i o n  by age .  

R e c a l l i n g  t h a t  8m = m '  - m ,  we may w r i t e  ( 2 . 6 )  a s  

(where b o t h  means are  t a k e n  w i t h  r e s p e c t  t o  t h e  o r i g i n a l  a g e  

d e n s i t y  c . )  The change  o f  t h e  i n t r i n s i c  growth  r a t e ,  i n  o t h e r  

words,  e q u a l s  t h e  change  i n  t h e  mean l e v e l  o f  f e r t i l i t y  i n  t h e  

p o p u l a t i o n ,  no rmal i zed  a p p r o p r i a t e l y .  W e  c o u l d  u s e  t h i s ,  f o r  

example,  t o  e s t i m a t e  how much f e r t i l i t y  would have t o  change  t o  

a c h i e v e  some p r e s c r i b e d  r e d u c t i o n  i n  t h e  growth  r a t e .  

Fertility and Other Stable Population Parameters 

One way t o  e x t e n d  t h e s e  r e s u l t s  t o  t h e  e f f e c t  on t h e  b i r t h  

ra te  and t h e  a g e  d i s t r i b u t i o n  i s  t o  r e c a l l  t h a t  b  i s  a  f u n c t i o n  

o f  r ,  and c ( a )  o f  b  and r t h r o u g h  

1 
b  = p-rap ( a )  d a  

Thus knowing t h e  change  i n  r ,  t h e  change  i n  b  and c ( a )  c a n  be  

e a s i l y  d e r i v e d  by o r d i n a r y  c a l c u l u s .  



A more instructive way to proceed, however, is to use the 

implicit function method, as described in the previous section. 

Set up the system 

a H let y = so that the Jacobian matrix - is obtained 
ay 

from (2.10) as 

where An is the average age of the population. Given the driving 

change 6m, we then have 

W 
-ra We know that 6H0 [6m] = e p (a) dm (a) da, and that the other 

aH differentials 6H1 [Bml , 6H2 [ 6ml are zero. Inverting - yields 
aY 

So that, multiplying out, we obtain the results 



6r = ~ l ~ - ~ ~  e p (a) Gm (a) da 
Am 

(2.15) 6b = An [e-rap (a) 4m (a) da 
Am 

4c(x) = (An-x) p-ap (a) 4m (a) da 1 
Co Am 

We now have closed-form expressions for the proportional change 

in the birth rate, and the age distribution, for arbitrary changes 

in the fertility function. Expressions (2.15) and (2.16) are 

believed to be new. 

Of great interest is the effect of changes in fertility 

behavior on the age composition. We see from (2.16) that what- 

ever the change in shape of the fertility function, it always 

has the same type of effect on the age distribution. It pivots 

it around the average age of the population An, a net increase 

in fertility increasing proportions younger than the average age, 

decreasing proportions older than it. This tendency of fertility 

change to pivot the age distribution has been described before, 

by Lotka (1939) and particularly by Coale (1956 and 1972). 

'~hese results have a straightforward connection with those 

of Keyfitz in his classic 1971 article on the effects of a change 

in fertility at the single age a. To obtain Keyfitz's results 

from ours let 4m(a) be a unit increase in m, sustained over one 

age unit at age a. In this case (2.16), for example, would yield 
(An-x) .-ra 
Am 

p(a), as in Keyfitz. In this paper, however, we con- 

sider the case where fertility is changed right across the age 

dimension. To obtain our results from those of Keyfitz we would 

need to multiply by the change at age a, 4m(a), and integrate 

over age. Stated another way, above we obtain the functional dif- 

ferential; Keyfitz, by other methods, calculates the functional 

derivative. Since we can construct the more general differential 

easily from the derivative, we could use Keyfitz's list of ex- 

pressions to calculate the response for other stable-theory 

parameters, not treated here. 



3. EFFECT OF THE MORTALITY PATTERN ON STABLE POPULATION 
PARAMETERS 

We now turn to the effect of changes in the age-pattern of 

mortality on stable population parameters. As with fertility 

there have been several analyses of this problem, most of them 

of special cases. Coale (1956, 1972) investigated the effect on 

stable parameters when the force-of-mortality function underwent 

certain stylized changes close to those observed in real popu- 

lations. He further provided some empirical results. Keyfitz 

(1.971) looked at the special case of a change in the force-of- 

mortality function at an arbitrary single, specific age. And in 

the most general analysis to date, Preston (1974) derived ex- 

pressions for the proportional change in r, b and c(a) caused by 

arbitrary changes in the mortality function. 1 

Mortality Change and Stable Parameters 

Mortality change can be viewed in two different ways, de- 

pending on whether we take the change in the force-of-mortality 

function p or in the survival schedule p as the driving change. 

The two are connected (see example 1.3) in the following one-to- 

one relation so we use them interchangeably: 

We now proceed as before, obtaining 6r, bb and bc(x) corresponding 

to 6p (or 6p), by the implicit function method. This time, keeping 

m fixed, we have 

and since we know - 2 ~ - '  from the previous section it remains only a Y - 
to evaluate RH [ 6p] . 

1 

  resto on's expressions appear to be quite general, but they 
hinge partly on a parameter A that must be separately determined; 

they are therefore somewhat difficult to interpret. 



From (2.10), 

6H1 [&PI = bl:-ra6p (a) da 

Substituting these into (3.2) : 

Finally, multiplying out, 

W 
fib - -- b - 24 e-ram (a) 6p (a) da - 

6c (x) = ~ ~ e - ~ ~ m ( a )  6p (a) da - 6p (x) 
( 3 - 7 )  F C T  p(x) 

We now have general closed-form expressions for the change 

in the growth rate, the birth rate, and the age-distribution, 

given an arbitrary small change in the life table. These results 

are believed to be new; some comments on them are in order. 

1. The effect of mortality on the growth rate is similar to the 

effect of fertility. What matters is the numerator in (3.5) or 

(2.4) and this is the effect of either fertility or mortality on 

the reproductive value at birth. Note that mortality improvements 

late in life, a cure to cardiovascular diseases say, would have 



little influence on reproductive value, the change in survival 

would come largely after reproductive years were past, so that 

r would show nealigible change. 

2. A special case of mortality change, "neutral" change, is 

known (see Preston 1974) to have a particularly simple effect on 

the growth rate. We can verify this easily. Suppose 

- 
U(X) -+u(x) - k (E, a constant) 

so that 

Then 

Reducing the mortality function by a constant amount, in other 

words, increases the growth rate the same amount. 

3. The effect of mortality change on the age distribution is 

straightforward to analyze, given the above general closed-form 

expression. The first term once again "pivots" the age-distribu- 

tion about An. For any given mortality improvement it is linear 

over age, and negatively sloped. The second term is constant 

and negative. And the third term directly reflects the change 

in the survival function. For the usual pattern of mortality 

change over time, where survival chances improve significantly 

at ages under five and over forty, the change in the age dis- 

tribution has the shape shown below in Figure 3.1. Again, this 

confirms Coale's (1972) analysis of the effects of observed 

changes in the age-distribution. "Usual" patterns of mortality 

change tend to pivot the age-distribution clockwise, toward 

greater proportions in younger age-groups, thus lowering average 

age. 



Figure 3.1 

4. Survival improvements in the post-reproductive years only, 

however, pivot the age distribution the other way. The growth 

effect term disappears and the second term now lowers the age 

distribution uniformly across the age dimension. The third term 

again directly reflects the improvement in survival at older ages. 

The age distribution now pivots anticlockwise, raising average 

age. 

5. Expressions (2.16) and (3.7) , taken together explain the 
empirical observation that fertility affects the age distribution 

more than mortality does. Taking fertility and mortality changes 

that have equal effect on growth (term on right of (2.16) equal 

to first term of (3.7)) we see that in contrast to fertility 

which acts only through the growth rate, mortality affects the 

age composition through two other terms. These, in general, tend 

to offset the first, so that the pivoting of the age distribution 

is not so pronounced in the mortality case. 

6. Finally, the differentials that describe the effects of mortal- 

ity change and fertility change in any of the stable parameters 

are additive. We could therefore combine results to find the net 

effect of both'fertility and mortality change, or, working in the 

opposite direction, decompose a given change in a stable parameter 

into separate fertility and mortality effects. 



Example 3.1 A simple numerical test of the above results 

is easy to perform. Suppose we start with a stable female popu- 

lation with mortality corresponding to the Coale and Demeny (1966) 

Model West Level 18 schedule and with growth rate zero. Can we 

use the above formulae to "predict" the new growth rate, birth 

rate, and age composition, if mortality were given instead by 

Level 2 0 ?  

The differential function 6p is obtained numerically from 

the tables; it is the difference between survival schedules 20  

and 18. The Level 18 initial growth rate and birth rate, the 

new Level 20  values as calculated by (3.5) and (3.6), and the 

(correct) Level 20  values obtained from the tables compare as 

follows : 

r (calc.) 
2 0 

r20 (tables) 
b1 8 

b (calc.) 
2 0 

b20 (tables) 

The calculated value for r, via the differential, is about 2.5% 

off in estimating the change, due to the curvature of the func- 

tional for r over its argument function p. 

The age distributions, old and new, and calculated from (3.7) 

versus interpolated from the Coale-Demeny tables, compare as 

follows : 

Age Group 0 - 1 1 - 4  5 - 9  10-14 15-20 20-24 25-29 30-34 

C 
18 

1.53 5.92 7.29 7.24 7.17 7.09 6.98 6.86 

c20 (calc. 1.54 6.00 7.39 7.29 7 -18 7.06 6.92 6.78 

c20 (tables) 1.54 6.02 7.41 7.31 7 -19 7.07 6.93 6.79 

Age Group 35-40 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 

C 
18 

6.72 6.56 6.36 6.11 5.76 5.27 4.61 3.71 2.63 

~ ~ ~ ( c a l c . )  6.63 6.46 6.25 6.00 5.67 5.21 4.61 3.76 2.74 

c (tables) 
2 0 

6.63 6.46 6.25 5.99 5.66 5.21 4.60 3.76 2.72 



There i s  of c o u r s e  a  d i s c r epancy  s i n c e  t h e  d i f f e r e n t i a l  i s  a  

f i r s t - o r d e r  approximat ion t o  t h e  t r u e  response .  ( P a r t  of  t h i s  

d i s c r epancy  may be due t o  t h e  f a c t  t h a t  c18,  used a s  t h e  i n p u t  

d a t a  f o r  c ( x )  i n  ( 3 . 7 ) ,  i s  a l r e a d y  rounded t o  two dec imal  p l a c e s  

i n  t h e  t a b l e s . )  W e  can  conc lude  t h a t ,  i n  t h i s  c a s e ,  f o r  most 

purposes  t h e  d i f f e r e n t i a l  b r i n g s  u s  t o l e r a b l y  c l o s e  t o  t h e  t r u e  

change. I f  w e  wanted t h e  exact  r e sponse  of r and c ,  however, 

f o r  purposes  of  h i g h - p r e c i s i o n  t a b u l a t i o n  s a y ,  w e  would u s e  a  

more compl ica ted  form o f  t h e  d i f f e r e n t i a l - - t h e  f u n c t i o n a l  l i n e  

i n t e g r a l - - t o  be  touched on b r i e f l y  i n  S e c t i o n  8 .  



4. AN ILLUSTRATION: THE EFFECT OF AN AGE-SHIFT IN FERTILITY 

Thus far our stable theory results contain "6m" or "6p" in 

the expressions, reflecting the fact that we developed them for 

arbitrary changes in m and p. Often though we would want to use 

these results by specializing 6m and dp to a particular type of 

change in age pattern. I illustrate a case now. 

As a country develops, individual demographic behavior per- 

sists--a person marries, reproduces, and dies as before--but it 

often takes place at different times in the lifecycle. Thus the 

fertility pattern may not change too greatly in shape, but may 

vary in its overall intensity and its location on the age axis. 

In demographic theory the consequences of changes in intensity 

(uniform proportional change over the entire age-schedule) are 

easy to analyze. But there is no easy method to determine the 

consequences of simple translation in age-patterns. Using the 

results of the previous sections however, we can analyze trans- 

lations in a straightforward way. 

Translation of the Net Maternity Schedule 

We begin by looking at the simplest case: a pure age-shift 

in the net maternity schedule, $. See Figure 4.1. This can be 

regarded as a rough indication of what happens when age at mar- 

riage is increased. 

Age 

Figure 4.1 



Confining our attention to the stable case, and working 

from the characteristic equation 

where $ = p em is the net maternity function, we find as before 

that 

Now, a pure translation of $ to the right (later childbearing 

by T years) means that the change in $ is given by 

66 (a) = $ (a-T) - $(a) 
so that 

This result tells us that if r is positive, later childbearing 

(T > O )  necessarily decreases r. If it is negative on the other 

hand, 6r is positive, so that later childbearing actually speeds 

growth. The reason for this paradoxical result is that a delay 

in childbearing means that the next generation arrives later. 

Since it is smaller, the decline in numbers over time is there- 

fore not so rapid. 

The above result offers a useful rule of thumb for age-shifts 

in childbearing. Dividing by r we have 



and expanding the exponential term and dropping terms of second 

order and upward (permissable since r is small) we obtain 

6r - - r ~  - -T (4.4) - - - - - = - Increase in Average Age of Childbearing 
r rAm Am Average Age of Childbearing 

Thus the proportional fall in the growth rate equals the propor- 

tional rise in the mean age of childbearing. Since Am is usually 

about 27 or 28 years, or thereabouts, a year's shift in child- 
I bearing causes a proportionate change in the growth rate of 

or about 3.65. It would therefore take more than a five year 

delay in childbearing to cause a 20% decline in the growth rate, 

or to take 8 points off a CBR of 40. 

The Fertility ScheduZe: Age-Shift and Increase in Intensity 

We now look at a slightly more difficult case, assuming now 

that the fertility function shifts by T years, and increases also 

by a factor l+k in intensity. Since differentials are additive 

we can treat the two changes separately. 

Here I make an approximation. Assume that, over the child- 

bearing years, the survival curve declines linearly with slope p .  

That is, 

From (2.4) , with the differential 6m = m (a-T) - m (a) 

So that, using (4.1 ) 

Neglecting terms of order r2 and upward, we obtain 



Now we analyze the effect of the second change, 6m = km(a). 

Substitution into (4.2) shows that this time 

Adding the two differentials, we obtain 

This tells us how much the intrinsic growth rate changes if 

fertility increases by a factor l+k, and is shifted along the 

age axis by T years, as may happen in the course of development. 

From (2.16) we can easily write the change in the age-distribu- 

dc(x) - (An-x) 

co- - (k - -r(r+p)) . 
Am 

Example 4.1 In a well-known paper, Coale and Tye (1 96 1 ) 

present an example where the 1956-58 fertility patterns of two 

ethnic groups in Singapore, the Malays and the Chinese, resemble 

each other closely in shape. The mean age of childbearing for 

the Chinese is 29.1 years, about 3 years higher than that for 

the Plalays, 26.4. On the other hand the survival schedules, and 

overall fertility levels differ slightly. The Chinese intrinsic 

growth rate is 8.3% lower than the Malaysian one. How much 

difference does the age-shift in childbearing make, compared to 

the other factors? Using (4.7), with p = 0.0013, r = 0.040, and 

the Malaysian figures as a base, we find 

'~esults (4.6) and (4.7) may be contrasted with Dublin and 

Lotka's (1 925) ayproximation: 6r = (A,+T (.tnt(a+'))- rT). 
P (a) 

Where T is small, the results coincide with Dublin and Lotka's 

expression. 



The h i g h e r  a g e  o f  c h i l d b e a r i n g  o f  t h e  Chinese  l o w e r s  t h e i r  growth 

r a t e  by 10.55.  The Chinese  have h i g h e r  f e r t i l i t y  however,  and 

a  s l i g h t l y  d i f f e r e n t  s u r v i v a l  s c h e d u l e  s o  t h a t  t h e  r e a l  d i f f e r -  

ence  i s  n o t  q u i t e  s o  g r e a t - - i t  i s  8 . 3 % .  The a g e  s h i f t  d i f f e r e n c e  

o f  10 .5% ( o r  10.15 i f  w e  i n c l u d e  second-order  t e r m s  i n  t h e  ap- 

p r o x i m a t i o n )  a g r e e s  w e l l  w i t h  Coa le  and Tye, who c a l c u l a t e  10% 

due t o  t h i s  e f f e c t .  !J 



5. CAUSAL LINKAGES IN NON-STABLE THEORY 

In the previous sections we looked at the response of the 

age composition and of intrinsic rates to demographic change 

within a stable-population model. For non-stable populations 

the theory is no more difficult. But the non-stable case, being 

more general, has less mathematical structure than the stable 

case, and for this reason closed-form mathematical results are 

not always possible to obtain. 

This section takes up two problems. It derives the tran- 

sient response of the age composition to underlying changes in 

the birth sequence and to temporal changes in the fertility 

pattern. And it examines the more difficult problem of the tran- 

sient response of the age composition to temporal changes in 

mortality. 

Response of t h e  Age Composition t o  Changes i n  the  Birth Sequence 

The age composition of the population, c(a,t) is given in 

the general, non-stable case by 

(5.1) - N(a,t) = c(a,t) - B (t-a) p (a, t) 
N (t) J%(t-a)p(a,t)da 

0 

where N(a,t) is the population density at age a, time t, N(t) is 

the total population at time t, and p(a,t) is the probability 

that a person (born at't-a) survives to be aged a at time t. 

Suppose there is a given nominal birth sequence, B(t). It 

may be an arbitrary function of time, or it may follow some par- 

ticular form, such as exponential growth. How will the age 

composition respond, over time, to an arbitrary change in this 

function --a baby boom, for example, or a deviation from expo- 

nential growth? 

Let 6B(t) be the given perturbation in the birth sequence 

(see Figure 5.1). 



I 
1 
t t i m e  

F i g u r e  5.1 

The response of c(a,t) to the alteration in the birth sequence 

6B is obtained from (5.1) by the quotient rule: 

Dividing through by c(a,t) this becomes our first, non-stable- 

theory result: 

6c(a,t) - - bB(t-a) - bN(t) 
B(t-a) N(t) c (a, t) 

The proportional change in the age composition at time t equals 

the proportional change in the cohort aged a, less the total 

proportional change in the population. We thus see the transient 

response of the age composition to a sequence of cohorts larger 

than normal as a bulge that passes through the age composition 

progressively over time. 



The response of the age composition to temporal changes in 

fertility behavior is now easy to obtain. The standard Lotka 

equation links the birth sequence with the fertility function m: 

with the initial birth sequence given. For a temporal change in 

the fertility pattern, Gm(a,t), the birth sequence is therefore 

perturbed an amount 

with the initial sequence 6B zero before the change occurs. 

Changes in fertility behavior thus affect the birth sequence 

both directly (second term on the right) and indirectly through 

the "echo effect" of the change itself (first term on the right). 

The perturbation 6B is thus given by a Lotka-type renewal equa- 

tion, with a non-homogeneous or forcing term. 1 

Temporal age-pattern changes in fertility, we can conclude, 

change the age composition in two stages. They alter first the 

birth sequence, according to (5.6); this then alters the age 

composition, as in (5.3) or (5.4). 

Response of the Age Composition to Changes in ~ortaZity Rates 

Temporal age-pattern changes in mortality affect the age 

composition through a more complex mechanism: they alter both 

the birth sequence B and the survival function p in (5.1). Here 

I take the force-of-mortal.ity function p as the starting link of 

the causal chain; improvements in public health, the incidence 

of epidemics, of wars and natural disasters, the partial cure of 

certain diseases and the shift between one cause of death and 

 ere we run up against an inherent limitation of differ- 
ential analysis. The term b B  is a first-order approximation to 

the actual change in birth sequence, and since it also appears 

on the right side any error compounds over time. Hence we may 
think of (5.6) as being "valid" only over the space of two or 

three generations. 



another are most directly seen as acting either temporarily or 

permanently on p, the probabilities of death at given ages in 

a given year. I split the analysis into two questions: first, 

how does a temporal change in the force-of-mortality function p 

affect the survival function p over time? Second, how does the 

resulting transient change in p affect the age composition over 

time? 

The force-of-mortality, or probability of death per unit 

time, for the cohort aged x at time to is written p(x,tO). It 

determines the probability of survival p(a,t) to age a, at time t, 

for the cohort born at t-a, by the relation 

t 
P = exp (a - (t-~) ,T)dr) . 

The survival probability p, in other words, is a function of the 

cohort's force-of-mortality history at previous times T over its 

life span up to age a. 

Let us now suppose the force of mortality is altered over 

the age and time dimensions by dp(x,~), at age x and time T. 

Then, as in Example 1.3, the transient response in the survival 

function p is obtained as 

The survival probability is therefore altered over time to a 

degree proportional to itself times a summation of the force-of- 

mortality changes that apply to the cohort in question in all 

its previous years from birth onward. To gain some insight into 

how this linkage works, suppose a change in p for one year only 

at some past time r0 for the cohort then aged ao. At future 

time t this cohort will be aged a = a. + (t--rO) and from (5.9) 
we obtain the alteration in its survival probability as 

other changes in the survival function being zero. Thus the 

one-year alteration in the force of mortality affects one cohort 



on ly  and it r i p p l e s  a long  t h e  s u r v i v a l  func t ion  wi th  t h i s  cohor t  

a s  it ages .  More g e n e r a l l y ,  t h e  e f f e c t  of  a  temporary o r  a  

s u s t a i n e d  change over  t h e  e n t i r e  age dimension i n  t h e  f o r c e  of  

m o r t a l i t y  on t h e  s u r v i v a l  func t ion  i s  t h e  summation of  such 

cohor t  r i p p l e  e f f e c t s .  

W e  now t a k e  t h e  a l t e r a t i o n  i n  t h e  s u r v i v a l  func t ion  over  

t i m e ,  b p ( a , t ) ,  a s  g iven  o r  determined.  I t  a f f e c t s  t h e  b i r t h  

sequence over  t ime a s  i n  (5 .6)  by 

wi th  6B ze ro  be fo re  t h e  change i n  s u r v i v a l  happens. I t  a l s o  

a l t e r s  t h e  t o t a l  popu la t ion ,  

over  t ime by an amount 

F i n a l l y ,  u s ing  t h e  q u o t i e n t  r u l e ,  we o b t a i n  t h e  change i n  t h e  

age composit ion a s  

Dividing through by c ( a , t )  w e  have t h e  r e s u l t :  

(5 .13)  & c ( a , t )  - - 6 p ( a I t )  + GB(t-a) - 6 N  ( t )  
TGxr p  ( a ,  t )  B ( t - a )  N ( t )  

Thus t h e  p r o p o r t i o n a l  change i n  t h e  age composit ion a t  age a  

and t i m e  t e q u a l s  t h e  p r o p o r t i o n a l  change i n  t h e  s u r v i v a l  func- 

t i o n  a t  t h a t  age and t ime ,  p l u s  t h e  p r o p o r t i o n a l  change, i f  any,  

i n  t h e  numbers a t  b i r t h  of t h e  cohor t  aged a  a t  t i m e  t ,  less an 

adjustment  term f o r  t h e  p r o p o r t i o n a l  change i n  t h e  t o t a l  popu- 

l a t i o n .  To sum up t h e  c a u s a l  sequence,  changes i n  d e a t h  r a t e s ,  

seen a s  changes i n  p, a f f e c t  t h e  s u r v i v a l  f u n c t i o n  through ( 5 . 9 ) .  

Th i s  a f f e c t s  i n  t u r n  both t h e  b i r t h  sequence through (5.111,  and 



the total population size through (5.12). The response of the 

age composition is given in (5.13) as the summation of these 

effects. 

Mortality changes that affect only post-reproductive ages 

allow a closed-form result. In this case the change in the birth 

sequence, 6B, is zero and (5.13) reduces to 

6c(a,t) - - 6p(att) - 6N (t) 
c (a, t) p(a, t) N (t) 

= -l-ip (a- (t-r) , r)dr -fi(a,t) 6pia.t)da 

6c(aft) c (a, t) = -l-:p(a-(t-r),rldr + 

where the square brackets signify the average value of the func- 

tion within them, taken with respect to the age distribution c 

at time t. 

Example 5.1 To illustrate the transient response of the 

age composition to a change in mortality probabilities, suppose 

that cardiovascular diseases had been abruptly eliminated as a 

cause of death in the United States in 1966, and that this im- 

provement in mortality were sustained in all subsequent years: 1 

Age 1 45 5 0 55 60 65 7 0 7 5 80 

 his change in u is obtained from Preston, Keyf itz and 
Schoen (1972, p.768) by eliminating cardio-vascular diseases as 

a cause of death in the U.S. 1964 Male tables and making correc- 

tions for the effect of competing risks. 



Using the Keyfitz and Flieger (1971) U.S. 1966 Male life table 

and population projections, how would the survival function and 

age composition respond over time to this sudden but sustained 

improvement in mortality? 

From (5.9) we can compute the response in the survival 

function as: 

A g e x  45 5 0 5 5 60 6 5 7 0 7 5 80 

The projected age compositions, without the mortality improvement, 

are obtained from Keyfitz and Flieger (p.335) as: 

Age Group 50-55 55-60 60-65 65-70 70-75 75-80 

From (5.14) we can compute the changes in these projections, due 

to the mortality improvement as: 

Age Group 50-55 55-60 60-65 65-70 7 0-7 5 75-80 

Notice that the influence on the age composition grows through 

time, as cohorts are exposed to the mortality improvement over 

progressively longer periods of their life span. The response 

would stabilize about forty years or so after the onset of the 

improvement: all cohorts in this case would be subject to the 

entire new mortality function over their life history. 



6. DEMOGRAPHIC CHANGE AND VITAL RATES 

The easiest demographic measures to obtain for a population 

are its vital rates --the number of occurrences of a vital phe- 

nomenon in year t, divided by the total population. Standard 

measures of this type are the crude death rate, DR, and crude 

birth rate, BR: 

where D(t) is total deaths in year t. Other behavioral rates, 

such as the crime rate in the population may be similarly de- 

fined and measured. 

In general we suppose some age- and time-related phenomenon, 

with an age-specific rate g(a,t) for the cohort aged a at timet. 

Summing over all cohorts we obtain the vital rate for this phe- 

nomenon at the benchmark time, to, as 

Suppose we measure this rate again at some later time, t, we 

obtain 

The rate will have changed on two counts: first the function g 

itself will have changed with time and this is what we hope to 

measure, and second the age composition c will have changed. 

Ideally we would like to measure the overall change in G, with- 

out bias introduced by underlying changes in the age composition. 

Suppose we know the change in the age composition between 

to and t, either directly, or by evaluating it as in the previous 

section from changes in the birth sequence or in fertility or 

mortality behavior. Expanding G(t) about to, to first order, 

by Taylor series we obtain 



The second i n t e g r a l  on t h e  r i g h t  i s  what we seek:  it i s  t h e  

change i n  t h e  phenomenon i t s e l f ,  averaged over  t h e  popula t ion .  

Denoting t h i s  a s  AG, we can w r i t e  it a s  

We have now ob ta ined  t h e  r e s u l t  we need. The " t r u e "  change i n  

t h e  v i t a l  phenomenon i s  g iven  by t h e  measured changes i n  t h e  

r a t e s  less a  c o r r e c t i o n  f a c t o r  f o r  t h e  change i n  age composi t ion.  

This  c o r r e c t i o n  f a c t o r  i n  g e n e r a l  may n o t  be easy  t o  compute; some 

knowledge of t h e  a g e - s p e c i f i c  phenomenon and t h e  change i n  t h e  

age composit ion would be necessary .  One o r  bo th  of t h e s e  may 

have t o  be approximatedon an incomplete  d a t a  b a s i s :  t h i s  however 

i s  a  s t anda rd  t a s k  i n  demographic work. 

Example 6 . 1  We can use  a  s i m i l a r  t y p e  of a n a l y s i s  t o  f i n d  

how per iod  r a t e s  d i f f e r  from t h e  " c o r r e c t "  c o h o r t  r a t e s  g iven  

f l u c t u a t i o n s  i n  t h e  b i r t h  sequence. ' To look a t  t h e  q u e s t i o n  

wi th  p r e c i s i o n ,  suppose (i) a  s t a t i o n a r y  popu la t ion ,  w i th  

N ( t )  = N ,  B ( t )  = B ,  and (ii) m o r t a l i t y  f u n c t i o n s  p  and p t h a t  

a r e  c o n s t a n t  over  t ime.  By v i r t u e  of ( i i) ,  a l l  b i r t h  c o h o r t s  

f a c e  t h e  same l i f e t a b l e ,  t h e  same m o r t a l i t y  expe r i ence ,  regard-  

l e s s  of t h e  b i r t h  sequence. And by v i r t u e  of ( i ) ,  i n  t h e  absence 

of p e r t u r b a t i o n s  i n  B ,  t h e  c rude  d e a t h  r a t e  DR w i l l  equa l  t h e  

c o r r e c t ,  cohor t  r a t e  d ;  it w i l l  show no b i a s .  

Now, 

which responds t o  an a r b i t r a r y  p e r t u r b a t i o n  6 B  i n  t h e  b i r t h  

sequence by 
W 

l i k B ( t - a ) p ( a )  p ( a ) d a  d B ( t - a l p ( a ) d a  
( 6 . 6 )  G D R ( t )  = - d 

N N 

l p r e s t o n  ( 1  9 7 2 )  analyzed a  r e l a t e d ,  s p e c i a l  c a s e :  t h e  r e -  

sponse of t h e  c rude  d e a t h  r a t e  t o  exponen t i a l  growth of t h e  b i r t h  

sequence. 



This  exp res s ion  g i v e s  t h e  d e v i a t i o n  of  DR from t h e  c o h o r t  r a t e d ,  

given a  f l u c t u a t i o n  i n  t h e  b i r t h  sequence. W e  can g a i n  f u r t h e r  

i n s i g h t  by s p e c i a l i z i n g  6B t o  be a  s ing le -yea r  "boom" i n  t h e  

b i r t h  sequence: a  cohor t  boom i n  yea r  to ,  l a r g e r  by 6B t han  t h e  

u s u a l  sequence B. (S ince  we a r e  p e r f e c t l y  f r e e  t o  examine t h e  

response  t o  any p e r t u r b a t i o n  i n  B a s  an a n a l y t i c a l  exper iment ,  

f o r  s i m p l i c i t y  I s h a l l  i gno re  any echo e f f e c t . )  W e  now have 

1 0  o the rwi se  

And f o r  t h i s  p a r t i c u l a r  change, (6 .6 )  on i n t e g r a t i n g  o u t ,  becomes 

6B B L e t t i n g  - be 6, and - be b ,  we f i n d  B N 

W e  have t h u s  found an exp res s ion  f o r  t h e  b i a s  i n  t h e  c rude  d e a t h  

r a t e  caused by a  c o n t r o l l e d  baby-boom--an a d d i t i o n a l  " p u l s e W . o f  

b i r t h s  born a t  to. Notice  t h e  e f f e c t .  The b i a s  i n  CDR shows 

a s  s t r o n g l y  p o s i t i v e ,  a t  t ime t j u s t  a f t e r  to,  then  n e g a t i v e  a s  

t ime p rog res se s  f u r t h e r ,  t hen  p o s i t i v e  a g a i n  a s  t reaches  to +60  

f ad ing  then  g r a d u a l l y  t o  ze ro .  The s h o r t  p u l s e  o f  b i r t h s  i n  

Figure  6.1 



o t h e r  words ,  c a u s e s  t h e  c r u d e  d e a t h  r a t e  t o  be  more p o s i t i v e  t h a n  

t h e  c o h o r t  r a t e  d u e  t o  h i g h e r  m o r t a l i t y  i n  t h e  i n f a n t  y e a r s .  Then, 

a s  it swel ls  p o p u l a t i o n  numbers i n  i t s  m i d d l e  y e a r s  b u t  shows 

few d e a t h s ,  t h e  CDR f a l l s  below t h e  " t r u e "  c o h o r t  r a t e .  F i n a l l y  

it b i a s e s  CDR p o s i t i v e l y  a g a i n  a s  i t  r e a c h e s  t h e  o l d e r ,  h i g h  mor- 

t a l i t y  y e a r s ,  t h e  e f f e c t  f a d i n g  a s  t h e  c o h o r t  p a s s e s  o u t  o f  t h e  

p o p u l a t i o n .  These  c h a n g e s  a r e  summarized i n  F i g u r e  6 . 1 .  



7. TOWARD A THEORY OF ERROR IN DEMOGRAPHIC ESTIMATES 1 

In the last fifteen years or so, since the seminal work of 

Brass and Coale (1968), demographers have become highly skilled 

at estimating vital rates from census data that are fragmentary 

or incomplete. Normally in statistics it is impossible to base 

an estimation technique on data that are largely missing. But 

in demography a fortuitous circumstance makes this possible. 

By and large demographic behavior follows highly regular age- 

patterns. The demographer need only use the available data to 

select an approximate age pattern from a standard and known 

family of such patterns. Knowing the approximate pattern he can 

then fill in the blanks as it were, and calculate the desired 

rates or parameters. 

It is useful to view this procedure abstractly. The demo- 

grapher begins with a standard schedule, of mortality or fertility 

say, which can be varied by one or two parameters to create a 

family of model schedules. His observed data tell him how to 

adjust these parameters to transform the standard schedule into 

one that approximates the "true" but unknown schedule in the pop- 

ulation under study. Thus any particular estimation procedure 

may be viewed as mapping certain observations plus one or more 

standard schedules into the real numbers to produce the desired 

estimate. More precisely then, the estimate can be viewed as a 

functional of the standard schedules and a function of the ob- 

served data: 

where q is the parameter to be estimated, 6 the estimate, 0 the 
observed data, and L' the standard age-schedules. The particular 

functional form of F of course depends on the demographic identi- 

ties on which the estimation procedure is based, and these in turn 

depend on the demographic assumptions that underlie the procedure. 

l~ere I thank Griffith Feeney, who suggested that causal link- 

age analysis might be used to estimate errors in these techniques. 

Collaborative work with Michael Stoto has also helped clarify my 

thinking in this section. A more complete and precise account of 

the notions explored here will appear in a forthcoming paper by 

Arthur and Stoto (1 980) . 



The statistician interested in such estimation procedures 

might well ask two questions. First, how robust is the estima- 

tion procedure, given that not all the necessary assumptions can 

be perfectly fulfilled? Second, how might we "correct" the esti- 

mate, given different and known sources of error in the technique. 

Mathematically, a theory of error or of robustness for demographic 

estimates can be based on analysis of the linkages between the 

estimate 6 and the standard functions it depends on. To illus- 

trate this, I carry out such analysis on a well-known incomplete 

data technique --estimation of mortality from the Brass Child 

Survivorship technique. I choose this technique because it uses 

a minimum of notation. Other Brass techniques are much the same 

in structure --the type of analysis applied here and some of the 

general conclusions would just as well apply to them. 

The Brass Child Survivorship Technique 

Suppose we want to estimate the mortality parameter q(M), 

the probability of death between birth and age M, where M is less 

than 10 years say. In many countries where births and infant 

deaths are poorly recorded it is not possible to evaluate q(M) 

by direct counting. Brass (1975) suggests the following tech- 

nique. 

1. Question mothers, aged x, on the proportion of their children 

who have failed to survive, Dx. This is the single observation 

used; but notice that it is already a rough indicator of mortality 

in the childhood years. 

2. Choose model schedules of mortality q' and fertility m', and 

estimate q(M), the probability of death before age M by the ex- 

pression 

There are several ways to see why this procedure should work. 

One way is to suppose we have chosen the model schedule q' fairly 

well as regards its shape, but are unsure as to what level to set 



it at to read off q(M). Now, Dx, the proportion of children 

dead for mothers aged x is given by 

li (y) q (x-y) dy 
(7.2) Dx = 

where m(y) is the true fertility rate for mothers aged y, and 

q(x-y) is the true probability a child will die during the 

interval x-y, between mother's age y at birth and her age x at 

the time of interview. The estimation procedure (7.1) there- 

fore corrects the guessed or model level ql(M) by a factor 

DiIm' (y)dy - 
- Observed proportions dead 

Model proportions dead 

which, if the model schedules m' and q' have the right shape, 

equals the observed or actual mortality level over the model 

mortality level. The estimation therefore "adjusts" the value 

q' (M) to a level that corresponds with the observed mortality. 

Before proceeding further, it will help to normalize the 

estimation formula. Let m' (y) / lk '  (y) dy be f ' (y) , the (model) 
probability density of childbearing at age y, before age x. 

Similarly define f(y), the true density of childbearing at agey, 

before age x. We may then write the estimate as 

where, if the observation Dx has been measured correctly, we have 

Finally, following Brass (1975) we can express (7.4) in a useful 

approximate form as 



where A is the average age of childbearing for mothers aged x, 

that is, the average age under the density function f.' Thus Dx 

approximately measures the probability of death at the average 

age, x-A, of the childhood deaths being reported. 

Error Theory 

Where the model schedules q' and f' coincide with the true 

functions q and f, and where Dx has been measured correctly so 

that it conforms with (7.4) , 6 (M) estimates q (M) exactly: 

Errors can arise from three and only three sources. First, and 

most likely, the observation Dx will be in error, due say to 

sampling bias, age misreporting, and underreporting of deaths. 

Errors here have a directly proportional effect on the estimate 

and we have no need to consider them here. We will assume that 

Dx has been correctly measured. Second, the model schedule f', 

which must be guessed, will be in error. It will deviate from 

the true f function by the function 6f = f' -f. And third, the 

model schedule q', which must also be guessed, will be in error. 

It will deviate from the true q function by the function 6q =q'-q. 

We may take these last two sources of error separately, for they 

are additive in differential form. 

I .  E r r o r  i n  f. Assume for the moment that the mortality func- 

tion has been chosen correctly, that is, that 4 '  = q. If f' 

deviates from the true fertility function f by 6f, then the 

deviation in the estimate, 6 (M) - q (M) , is approximated by the 
differential 66(~1) [6fl, evaluated at the function f. Using the 

quotient rule on ( 7 . 3 ) ,  we can write the differential, at f, as 

'TO see this, expand q (x-y) by Taylor series around q (x-A) : 
f' 

q (x-y) = q (x-A) + (y-A) q' (x-A) + 0 ' .  whence] f (y) q (x-y) dy = 

q (x-A) J f (y) dy + q' (x-A) (y-A) f (y) dy + 0' s q (x-A) , since the 
second term is zero. Where q is relatively linear, this approx- 

imation is good. 



Calling 6G/q, the relative error, Err G(M), we have the result: 

(7.8) Err G(M) = - 

Knowing the form of 6f, as we would in a given application, we 

could use (7.8) to calculate error bounds on the estimate. 

We can gain further insight by using the approximation 

formula (7.5). Let A' be average age under the guessed sched- 

ule f'. Then we have 

X 

0 (f ' (Y) -f (y) ) q (x-y) dy q (x-A) - q (x-A' ) 
(7.9) Err G(M) = - 2: 

q (x-A) 

We can conclude that poor choice of the normalized fertility 

density f' matters if (i) the model density f' has an average 

age that differs from that of the true density fr and (ii) if 

the mortality function q is sloped around the age x-A (or its 

proxy, MI . 

2. Error in q. Now assume that the fertility model schedule 

has been guessed correctly, so that f' = f, but that the model 

mortality schedule q' deviates from the true schedule q by 6q. 

Again using the quotient rule on (7.3) we obtain the differential 

caused in the estimate, 64(~) [6q] as 

Jf (Y) 6q (x-y) dy 
(7.10) = 6q(M) - q(M) 

so that, in this case 

6q(M) - (7.11) Err G(M) = q (M) 



Again, using the average age approximation: 

(7.12) Err G(M) 2 6qo- 

We can conclude that error in choice of the model mortality 

schedule q' matters (i) if the estimation age M differs from 

the average age of the childhood deaths being reported, x-A, 

and (ii) if the model schedule has a shape different from the 

true one, so that the terms in (7.12) do not cancel. 

Error expressions (7.7) and (7.11) carry specific implica- 

tions for the robustness of the Brass technique: the model 

childbearing density f' should be chosen that its average age 

is close to that of the true density f; the model mortality 

schedule q' should if possible have the same shape as the true 

schedule q; MI the estimation age should be chosen equal to the 

average age of childhood deaths being reported, and not too small 

so that q is highly sloped around M. These conclusions are 

general. 

We can go further with this type of analysis. The Brass 

technique rests on several specific assumptions, for example, 

that the mortality experience of the different cohorts entering 

the estimate is the same. Violated assumptions usually cause 

specific and characteristic errors in the choice of model sched- 

ules f' and q'. Their effect on the estimate can be analyzed 

(see Arthur and Stoto (1980)) via the error expressions developed 

in this section. 



8. THREE FORMS OF LINKAGE ANALYSIS: SOME FURTHER REMARKS 

Throughout this paper I have deliberately presented the 

various linkage expressions in the form of functional differen- 

tials. This is not the usual practice in sensitivity analysis 

and I owe the reader some explanation for this. There are three 

forms in which one can write the response to a change in function, 

each with a different purpose: the derivative, the differential, 

and the line integral. 

For the models that interest us in demography, recall from 

(1.13) that the differential can usually be written as an inner 

product of some expression F8(z) with the driving perturbation Bz: 

To be truely parsimonious, we need therefore only present and 

preserve the derivative F', it being a trivial matter to recover 

the differential by taking the inner product. This, in fact, is 

the usual way linkages are presented in physics or economics, 

at least when the driving change occurs in a single or vector 

variable. The differential though gives a clearer view of the 

linkage between the output variable and the function that alters 

it. It emphasizes that the change in y depends not only on the 

properties of F', but in this functional case also on the shape 

and character of the driving perturbation 6 2  in the age or time 

pattern. This is why I have used the differential form. 

The differential has one major disadvantage though. It is 

a first-order approximation, and thus is valid only to the extent 

the functional in question remains linear over the schedule or 

function being perturbed. It is perfectly serviceable for many 

numerical applications and it shows the structure of the linkage 

clearly and correctly; but it would not be always suited for 

high-precision arithmetic. 

There is a closely connected form of result that is exact 

for large perturbations. This is the functional line integral. 

I shall not describe it in detail, but it works roughly as follows. 

Suppose instead of calculating the differential response to a 



full perturbation 62, we first allow only a scaled-down pertur- 

bation, 1/106z say, and calculate the response to this. Now 

we update all parameters and functions, so that the initial 

function z0 becomes z0 + 1/106z, and calculate the response to 
the next 1/106z, updating again and repeating this until we have 

arrived at the tenth and last 1/106z. As output we have ten 

smaller differentials in y, which we can add together to form 

a total differential by. This new differential will be more 

accurate as a measure of the total change, since we have contin- 

ually followed function and parameter changes as the function 

is perturbed. If we made the step size As smaller, 1/100 in- 

stead of 1/10, then 1/1000 instead of 1/100, this sum (under 

certain conditions) of the resulting small differentials will 

tend to a limit, which we can call, by analogy with standard 

calculus, an integral. It measures exactly the change in y. 

For the case y = F(z), with F' (z) known, with initial input 

function z0 and final function zl and the difference zl -zo =h, 

we can, following this procedure, write the exact change in Fas 

where 

z (a, s )  = zn (a) + sh(a) . 

At the cost of a more complicated expression --a double integral 

now --the response to large changes in argument function is exact. 

As illustration, suppose a not necessarily small change in 

the fertility schedule mo, with the new schedule ml and the dif- 

ference ml -mo. Then using (2.4) and (8.l), the difference in 

intrinsic growth rates is 

l x \ - r  (m ('1 1 a p (a) (mt (a) - mo (a) ) da ds 
(8.2) r(ml) - r(mo) = 

Am(m(s) ,r (m(s) 1 )  
where 



This result, not an approximation, could be used to update the 

intrinsic growth rate in a precise numerical calculation, given 

an arbitrary change in the fertility schedule. 

In sum, for efficient storage of information all we need is 

the functional derivative. For insight into the linkage mech- 

anism itself the differential is clearest. And for high-precision 

numerical work or for large changes in the input schedules, we 

would need the more complicated integral. All three forms are 

related and are equivalent. 



9. CONCLUSION 

In this paper I have attempted to show that several classes 

of problems in mathematical demography fall into a common format- 

that of estimating or analyzing the linkage between certain ag- 

gregate variables of interest and changes in the age schedules 

or time sequences that describe individual demographic behavior. 

I have also attempted to provide a method that obtains closed- 

form expressions for such linkages. Several illustrations were 

shown: linkages of stable parameters to general changes in fer- 

tility and mortality schedules and to an age-shift in fertility; 

the transient response of the age composition and of vital rates 

to short-run changes in demographic behavior; and the analysis 

of errors in demographic estimation techniques. While much is 

known qualitatively about these linkages, in some instances with 

considerable analysis of special cases, the results in these 

notes apply more generally than before, and they are believed 

to be new. 

There are several uses for linkage analysis. Not only do 

closed-form expressions for demographic linkages allow the analyst 

to compute changes--the difference that a new contraceptive would 

make for example--but they also afford him considerable quali- 

tative insight into the mechanisms at work. They give him a 

story to tell, one whose structure may be impossible to discern 

without them. In some cases they are useful numerically; they 

offer a direct computational method for updating parameters 

without the repeated numerical solution of implicit equations. 

In other cases they lead to general statements, or theorems, on 

the response to change. 

Throughout I have presented the various linkage mechanisms 

in the form of functional differentials. These, while they show 

the linkage clearly and are perfectly serviceable for many numer- 

ical purposes, are still, of course, first-order approximations 

to the true response. They hold best for marginal changes. Should 

we require the exact response to large changes in age or time 

schedules though, the line-integral fora is available, albeit at 

extra computational and notational expense. 



For the most part, in this exploratory paper I have chosen 

problems for analysis about which much is already known. This 

allowed us to compare our results with experience already gained 

on these problems. Several other problems could have been as 

easily looked at. For example, given an appropriate economic- 

demographic model it is possible to analyze the economic conse- 

quences of arbitrary changes in mortality risks (see Arthur (1979)). 

It would be possible also to look at the spatial consequences of 

changing migration patterns, or the economic consequences of 

changing labor-participation patterns. And given appropriate 

biological theory, it might be possible to investigate why the 

mortality and reproductive age-patterns of a given species should 

provide for evolutionary success. 
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