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Abstract
Scenarios from integrated assessmentmodels can provide insights into how carbon budgets relate to
other policy-relevant indicators by including information on how fast and by howmuch emissions
can be reduced. Such indicators include the peak year of global emissions, the decarbonisation rate
and the deployment of low-carbon technology. Here, we show typical values for these indicators for
different carbon budgets, using the recently compiled IPCC scenario database, and discuss how these
vary as a function of non-CO2 forcing, energy use and policy delay. For carbon budgets of 2000GtCO2

and less over the 2010–2100 period, supply of low carbon technologies needs to be scaled upmassively
from today’s levels, unless energy use is relatively low. For the subgroup of scenarios with a budget
below 1000GtCO2 (consistent with>66% chance of limiting global warming to below 2 °C relative to
preindustrial levels), the 2050 contribution of low-carbon technologies is generally around 50%–75%,
compared to less than 20% today (range refers to the 10–90th interval of available data).

1. Introduction

Several publications have recently highlighted the
relationship between cumulative CO2 emissions and
long-term temperature change (Allen et al 2009, Mat-
thews et al 2009, Meinshausen et al 2009, Zickfeld
et al 2009, IPCC 2013, Friedlingstein et al 2014). This
relationship emerges as a result of the dominant
contribution of CO2 to total anthropogenic warming
and the long atmospheric lifetime of CO2. The policy
implication of this relationship is that it is possible to
derive so-called ‘carbon budgets’ that are associated
with achieving certain climate targets with a certain
probability (Knutti and Rogelj 2015). The strength of
such budgets is that they clearly convey the messages
that (1) long-term temperature change does not
depend on CO2 emissions at a specific moment in

time, but on the accumulated CO2 emissions over a
long time period, (2) that therefore, near-term CO2

emissions are important as they, too, exhaust the
available budget, and (3) finally, that for any stabilisa-
tion target, CO2 emissions will need to be phased out
eventually (Anderson et al 2008, Matthews and
Caldeira, 2008, IPCC 2013, Knutti and Rogelj 2015).
There is, however, still flexibility in the timing of CO2

emissions contributing to the budget, particularly
when including the option of negative emissions
(Obersteiner et al 2001, van Vuuren et al 2007, Azar
et al 2010, Tavoni and Socolow 2013).

In defining emission pathways consistent with
specific carbon budgets it is important to realise that
these would require major changes in current energy
and land-use systems (Clarke et al 2014, Kriegler
et al 2014, Tavoni et al 2015). Such transitions will be
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constrained by socio-economic and technological
inertia, manifested, among other things, in capital
turnover rates, substitution dynamics, and limitations
in implementation potential. This means that there
are constraints on the possible pathways that are con-
sistent with specific carbon budgets. Scenarios from
integrated assessment models (IAMs) can provide
insight into such transition pathways, capturing some
of the relevant dynamics (Luderer et al 2013, van Vuu-
ren and Stehfest 2013, Rogelj et al 2013b, Riahi
et al 2015, Tavoni et al 2015). For the recent IPCC Fifth
Assessment Report (AR5), a large set of IAM-based
scenarios has been compiled, based on different mod-
els and derived for different types of targets, including
forcing targets, carbon budget constraints, emission
targets and prescribed carbon taxes (Clarke et al 2014).
The characteristics of these scenarios have been asses-
sed in the IPCCAR5 report.

Given the recent focus on carbon budgets, there is
a need for insights into the implications of various car-
bon budgets, something that can be provided by the
IAM-based scenarios. Going significantly beyond ear-
lier assessments, in this paper we use the scenario data-
base to directly explore how different carbon budgets
relate to emissions pathways and, subsequently,
energy system requirements. We do so by plotting
information against a continuous CO2 budget axis, in
contrast to themore aggregated representation for sce-
nario categories often used earlier (e.g. Clarke
et al 2014). The figures shown here provide more
insights into the underlying information (e.g. var-
iance) than the aggregated statistics. We specifically
look into the implications of different budgets for (1)
emission reductions over time, (2) the contribution of
CO2 and non-CO2 greenhouse gases, and (3) the scale
of the key energy-system transformations underlying
these reductions. This provides the possibility to relate
CO2 budgets to policy actions by looking into the con-
tinuous relationship between those two aspects. As
explained in the section onmethods, for each scenario
climate information is available in the database based
on runs of a probabilistic version of the climate model
MAGICC (Meinshausen et al 2009, 2011).

2.Methods

The analysis represented here relies on the IPCC AR5
scenario database that contains IAM-based scenarios
published in the scientific literature period 2007–2013
(Clarke et al 2014). The database was used in chapter 6
of the WG3 contribution to IPCC’s Fifth Assessment
Report and is available at https://secure.iiasa.ac.at/
web-apps/ene/AR5DB/. It was compiled bymeans of
an open call tomodelling teams to submit scenarios to
the AR5 database. The database includes information
on the emissions, energy, land-use, technology and
costs characteristics of these scenarios (Krey
et al 2014). About 1200 scenarios were submitted,

including baseline (no new climate policy), optimal
policy and other mitigation scenarios. The baseline
scenarios, although arguably not very realistic, repre-
sent a useful (counterfactual) point of reference for
analysis in many studies. The optimal policy scenarios
provide insight into least-costs strategies assuming
that policies can be introduced in all sectors and
regions from a base year onwards. Other mitigation
scenarios include various constraints such as the policy
delays associated with currently proposed climate
policies, as pledged for 2020 and 2030 (Krey
et al 2014). In the analysis here, we used those scenarios
in the database that included information on 21st-
century CO2 emissions (we used the same method as
used in AR5 to add a default pathway for land-use
related CO2 emissions in case only energy-related
emissions were reported). Because the database was
compiled to support AR5 analysis, it contains scenar-
ios published from 2007 onwards, thus including
scenarios that assume stringent policies could still be
introduced from around 2010 onwards. Other authors
have pointed out before that this may lead to possible
bias in the results (allowing for a too optimistic view of
the feasibility of ambitious climate targets) (Anderson
2015). In particular, this involved the question
whethermanymodels already have a peak in emissions
in 2010, as in reality global CO2 emissions increased by
around 8.5% in the 2010–2015 period (Le Quéré
et al 2015). However, the farmajority of scenarios have
been reported in 10 year steps, meaning that 2020
emissions could still be below the 2010 level without
ruling out a 2015 peak. Therefore, we added two
additional constraints to only remove those scenarios
from the analysis that are clearly inconsistent with
historically observed trends. First, all scenarios with
2010 emissions outside the 37.4 ± 3.8 GtCO2

estimated by IPCC AR5 were excluded (Edenhofer
et al 2014). Second, all scenarios with 2020 emissions
more than 25% below 2010 level were excluded. This
level is based on a maximum reduction rate of 7%
starting from the 2015 emission level (the 7% rate is
based on the maximum reduction rates after 2020 and
the mean of scenarios showing the most rapid reduc-
tion in the 2030–2050 period in Riahi et al 2015).
Finally, in order to identify whether scenarios that
assume an emission peak already in 2015 behave
differently, an additional scenario category was added
within the optimal scenario group. This additional
category shows 2020 emissions below the observed
2015 level (i.e. 8.5% above 2010). In total, 106
scenarios were removed on the basis of these addi-
tional constraints.

For those scenarios in the database that contained
sufficient information, the carbon-cycle and climate
modelMAGICC (Meinshausen et al 2011)was used by
the authors of the IPCC report to add a consistent set
of forcing and climate data (and include it in the data-
base). MAGICC is calibrated against more complex
atmosphere–ocean general circulation models and it
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has been shown to be consistent with the latest com-
plex climate models in terms of mean climate out-
comes (including the carbon budget) and, to some
degree, also the uncertainty ranges (Rogelj et al 2014,
Schaeffer et al 2015). This implies that the database can
provide a link between carbon budgets and a range of
important scenario attributes, including energy sys-
tem parameters and emissions and climate system
parameters.

While IAM scenarios provide an important source
of information, it is clear that models do not capture
all aspects of mitigation strategies. Moreover, the ana-
lysis of such models is bounded by assumptions for
key uncertainties such as technology change, energy
prices and social acceptance of new technologies
(Clarke et al 2014, Grubb et al 2014, Kriegler
et al 2015a). In general, IAMs focus on identifying low-
costs scenarios under clearly specified limitations (e.g.
the participation of regions in international climate
policy), assuming (fully) functioning markets. The
model results are generally meant to be indicative of
possible developments given current insights on tech-
nology development. It is not easy to assess the impli-
cations of the simplifications included in the models.
While the assumption of well-functioning carbon
markets may imply that models are likely to under-
estimate costs, the recent rapid development in costs
of renewables could also mean that in the long-term,
costs could be lower than suggested by the models.
Overall, several studies have shown general trends of

model output in terms of use of specific technologies
(mostly the focus of this article) to be roughly con-
sistent with historical trends (Wilson et al 2013) (van
Sluisveld et al 2015). An other important point is that
models mostly focus on technological and economic
factors, which means that results say little about poli-
tical or social feasibility (e.g. regarding the acceptance
of carbon-capture-and-storage, CCS). Real-world
strategies that deliberately depend on more expensive
mitigation options (e.g. the rapid expansion of PV in
Germany a few years ago), for instance for political
reasons, tend to be underrepresented. In the discus-
sion section, more attention is paid to some key char-
acteristics of IAMs and the implications for our
findings.

Two assumptions that play a key role in the overall
characteristics of mitigation strategies of IAMs include
the timing of climate policy in different regions and
sectors and the inclusion of negative emission technol-
ogies, which will be shown in this paper. Regarding
timing of policies, the AR5 database includes ‘optimal
scenarios’ (which have no further constraints on miti-
gation technology, timing, or participation) and sce-
narios that have assumed technology restrictions or
delays in policy implementation. If relevant, the sce-
narios that assume delay have been shown separately
in this paper. Similarly, scenarios that show net nega-
tive emissions in the second half of the century have
been distinguished from scenarios that do not have net
negative emissions.

Figure 1.Relationship between cumulative CO2 emissions and forcing (panel (a)), and cumulative emissions and globalmean
temperature increase (panel (b)) in scenarios from the IPCCAR5 ScenarioDatabase. Dashed lines indicate 10th and 90th percentile
quantile regression (2nd-degree polynomial) of scenario uncertainty using themedian climate response. Solid lines show the 50th
percentile quantile regression. Dotted lines in panel (b) indicate the 5th and 95th percentiles of theMAGICC temperature results
across all scenarios. Quantile regressions are characterised by a goodness offit parameter (Koenker andMachado 1999) of around 0.7
for the lower (10th) quantile, and 0.8 and higher for the other quantile (see supplementary table S2 for an overview). The coloured
vertical areas correspond (from left to right) to staying likely below 1.5 °C, 2 °C, 2.5 °C, 3 °C, 3.5 °Cand>3.5 °Con the basis of
cumulative CO2 emissions assuming an average non-CO2 forcing (seemethods).
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3. Results

3.1. IAM information on carbon budgets
Figure 1 shows—consistent with the carbon budget
literature—that, for the scenarios included in the
database, there is a very strong relationship between
cumulative CO2 emissions and temperature and
forcing outcomes. The almost linear relationship
between cumulative CO2 and temperature is uncertain
in twoways: first, there is an uncertainty in the slope of
the relationship, caused by the uncertainty in the
climate system response, and second, there is a
scenario uncertainty, shown as a variation around the
central relationship, caused by differences in the
timing of emission reductions and the reduction in
non-CO2 climate forcers (see also Rogelj et al 2015b).
The impact of scenario uncertainty is shown by the
spread of the individual dots (figure 1(b)), while the
two outer lines additionally include the impact of
climate system uncertainty. As a result, a range of
different climate outcomes is associated with a specific
carbon budget. For instance, a carbon budget of
around 2500 GtCO2 over the period 2010–2100 may
lead to a temperature increase that ranges from 2.4 °C
to 2.8 °C compared to pre-industrial level as a result of
scenario uncertainty (10th–90th percentile), and
1.7 °C–3.8 °C compared to pre-industrial level if
climate response uncertainty is also included. In the
IPCC report, the scenarios were categorized on the
basis of projected (median) 2100 forcing levels.
Throughout this paper, we instead relate policy
relevant indicators to a continuous range of cumula-
tive CO2 emissions. Similar relationships as shown in
figure 1 can be drawn for different indicators such as
peak temperature. While 2100 temperature correlates
well with 21st-century budgets, for stringent scenarios,
peak temperature correlates better with the cumula-
tive CO2 emissions until the peak (see SI). Depending
on the type of impacts, it might be more relevant to
look at peak temperature or at (long-term) transient
temperature.

The vertical bars illustratively couple the results to
cumulative CO2 emissions associated with keeping
temperature likely (i.e.>66% chance) below different
temperature levels. These vertical bars are also used in
subsequent graphs in this article to relate policy-rele-
vant indicators to the climate outcomes. The esti-
mated carbon budgets are based on the 67th percentile
temperature outcome which have been approximated
by taking the average of the temperature projections
for the 50th and 84th percentile for each scenario that
was assessed by MAGICC as part of the AR5 Scenario
database. For each IPCC AR5 WGIII scenario cate-
gory, the median 67th percentile temperature out-
comewas computed over all scenarios, and a piecewise
linear line was used to interpolate between these med-
ian points. Finally, the width of the illustrative shad-
ings in figures 1–6 (see also supplementary table S1)
was computed by determining the intersection of the

piecewise linear line with specific temperature levels,
like 1.5 °C, 2 °C, 2.5 °C, or 3 °C relative to pre-
industrial values.

3.2. Timing of emission reductions
Figure 2 shows the available scenarios as a function of
time. For the baseline scenarios, emissions typically
increase rapidly until 2050, followed by a slower
increase after 2050 (purple lines). For carbon budgets
of less than 2500 GtCO2, global carbon emission
profiles peak during the 21st century, followed by a
distinct decline. For emission budgets of less than 1500
GtCO2, an early emission peak needs to be followed by
rapid reductions, mostly resulting in net negative
emissions by the end of the century. As discussed by
Kriegler et al (2015b), the year emissions peak in
scenarios strongly depends on scenario assumptions
(see figures 2(c) and (d)). While part of the scenario
literature looks into cost-optimal trajectories towards
long-term climate goals (i.e. based on minimised
discounted costs over the century), other scenarios
deliberately account for policy delay (i.e. less mitiga-
tion action is undertaken in the near term, in line with
existing policies, while still aiming for the same long-
term global climate objective). The two categories are
shown separately in figures 2(c) and (d). The reduction
before 2050 strongly depends on the use of negative
emissions technologies in the second half of the
century. This is shown in figure 3. For CO2 budgets
around 1000 GtCO2 over the 2010–2100 period
(which are consistent with a >66% probability of
limiting warming to below 2 °C by 2100), most cost-
optimal scenarios have negative emissions post-2050.
At the same time, they still peak almost immediately
(and thus at current emission levels), in order to avoid
very expensive rapid reduction rates later on. For
higher cumulative CO2 emission levels, emissions can
peak at a later point in time. For instance, under
scenarios with a CO2 budget of 1025–1775 GtCO2

(around 50%–66% probability of limiting global
warming to below 2 °C) emissions peak before 2030.
In terms of peak year and level, the differences between
cumulative CO2 budgets up to around 2000GtCO2 are
relatively small; emissions peak before 2040—with a
median emission level (across all budgets below 2000
GtCO2) that is under 20% above year-2010 emissions.
Several multi-model studies have looked into the
question how long-term targets could still be reached
starting from currently formulated climate policies
(pledges) in combination with corresponding policy
projections for 2030 (Riahi et al 2015, Tavoni
et al 2015, Kriegler et al 2015b). These so-called delay
scenarios show a later and higher peak at the global
level, compensating the additional emissions by
quicker emissions reductions after 2030 and more
negative emissions after 2050 (figure 2). Also Peters
et al (2015) showed that currently formulated policies
are inconsistent with an early action emission profile.
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The annual emission reduction rate between 2010
and 2050 increases with decreasing cumulative CO2

emissions (figure 3). Earlier work already showed that
average annual emission reduction rates over the full
2010–2050 period do not differ greatly between cost-
optimal and delay scenarios, as delay scenarios (devel-
oped using models that allow for negative emissions)
already catch up with the optimal ones in terms of
emission level by 2050 (Riahi et al 2015), and compen-
sate for the higher cumulative emissions after 2050.
Emission reductions increase steeply for low carbon
budgets, but, this critically depends on post-2050
reduction rates and non-CO2 emission reductions, as
will be discussed further. For CO2 budgets of below
1025 GtCO2, annual emission reductions over the
2010–2050 period are around 2%–6% (computed as
compound annual growth rates; range refers to
10–90th percentile). In terms of the decarbonisation

rate, i.e. the improvement of the CO2/GDP ratio over
time, the range is between 4.3% and 8.5% per year
(figure 3(c)). For comparison, historically, global dec-
arbonisation rates have been mostly around 1%–2%
per year (van Vuuren et al 2015). Figures 3(a)–(c) also
illustrates the influence of the possible negative emis-
sions in the second half of the century, by using a dif-
ferent colour for the scenarios that achieve net
negative cumulative emissions over the 2080–2100
period. For low carbon budgets the scenarios with
negative emissions (blue) are clearly more frequent
than those without (red). There is also some difference
in the emission reduction rates (negative emission sce-
narios show typically lower reduction rates over the
full period up to 2050 for a specific carbon budget than
those without). At the same time, however, there is a
much stronger impact on 2030 emission reduction
rates (not shown). The finding that short-term

Figure 2.Profiles for CO2 (panel (a)) andCO2eq emissions (based on SARGWP100 as included in the AR5database, panel (b)) for all
scenarios in each of the categories defined infigure 1 (10th–90th percentile), as well as the emission profiles of the RCPs (vanVuuren
et al 2011). Panel (c) shows the year of the peak inCO2 emissions, distinguishing optimal and delay scenarios, while panel (d) shows
the peak height compared to 2010 emissions. Coloured bands show ranges of cumulative CO2 emissions consistent with various levels
of global-mean temperature increase in 2100, seefigure 1 andmethods.
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emission reductions consistent with long-term cli-
mate targets are dependent on assumptions on long-
term mitigation potential (van Vuuren and
Riahi 2011, Rogelj et al 2013a), is of key importance for
international climate negotiations that discuss near-
term emission targets.

Finally, scenarios with smaller carbon budgets on
average have somewhat higher energy intensity
improvements (figure 3(d)), which increase from 1%
to 2.5% for high cumulative emissions (budgets
above 3500 GtCO2) consistent with the baseline
scenario, to between 1.5% and 3% for cumulative
emissions below 1775 GtCO2 (comparable to rates
achieved in OECD countries during the 1980s). The
increase in improvements for energy intensity is
clearly less pronounced than for the decarbonisation
rate and shows considerable overlap between low and
high carbon budgets indicating the importance of fuel

substitution (to low carbon fuels) and CCS in low
emissions scenarios.

3.3. Non-CO2 emissions and forcing
A key factor responsible for the spread in 21st-century
CO2 budgets and temperature levels is the forcing of
non-CO2 gases (figure 4(b)). Figure 4(a) indicates that
there is a weak correlation between non-CO2 and CO2

forcing (r2 of 0.39 for a linear regression over thewhole
range), but no correlation at low forcing levels (r2 of
virtually zero for forcing of <4Wm−2). The weak
correlation arises as a result of common sources of
CO2 and other (non-CO2) Kyoto gases (e.g. coal and
natural gas use) and the multigas policy approach
assumed in IAMs calculations (consistent with current
policies). The relationship, however, is weak as (1)
CO2 emission reductions are also associated with
reductions in SO2 emissions (which offset part of the

Figure 3.Annual average compound emission reductions rates over the 2010–2050 period, 2050 emission reduction (compared
2050), decarbonisation rate (improvement of CO2/GDP ratio) and energy intensity improvement rate (energy/GDP ratio) over the
2010–2050 period as a function of the carbon budget. For coloured bands seefigure 1 andmethods. Fits in panels (a)–(c) showhigh
goodness offit (0.6 and higher), while thefits in panel (d) are characterised by a reduced one (around 0.25) (see supplementary table
S2).

6

Environ. Res. Lett. 11 (2016) 075002 DP vanVuuren et al



CO2 warming), and (2) in nearly all models, the
mitigation potential for CH4 and N2O emission
reductions is limited and implemented already at
moderate carbon prices (up to USD 100/tCO2eq).
Remaining non-CO2 emissions include, for instance,
methane emissions from free roaming cows and
emissions associatedwith the use of nitrogen fertilizers
(Smith et al 2014, Gernaat et al 2015). As a result,
similar minimum forcing levels for non-CO2 gases are
reached both under average and stringent mitigation
scenarios. This leads to the increasing share of non-
CO2 forcing at more stringent targets (limitations in
non-CO2 reductions in combination with negative
emissions slowly reduce the relative contribution of
CO2 forcing towards the end of the century).

3.4. Energy-system transitions
Staying within low-carbon budgets requires an enor-
mous scale up of the contribution of low-carbon
emission technologies (figure 5). Low-carbon emis-
sions technologies are here defined as fossil fuels with
CCS, renewable energy, bio-energy (including bio-
energy with CCS), and nuclear power, consistent with
how they are dealt with in most underlying models.
For some of these technologies, there is a strong debate
on the effective reduction level for CO2 emissions.
First of all, capture rates in CCS are not likely to be
100% effective and leakage may occur from storage
sites. Second, several bio-energy application chains
lead to greenhouse gas emissions, with current litera-
ture providing a wide range of possible values (Smith
et al 2014). It should be noted that the scenarios use
mostly second-generation biofuels and bio-energy as
feedstock in electricity production. Most models do
account for some emissions for these technologies, but
lower than for conventional use of fossil fuels. In

presenting the results we distinguish between baseline
scenarios, cost-optimal scenarios, and delay scenarios.
In 2010, the contribution of bio-energy, renewable
energy and nuclear power was around 14% of world
energy use, if we include traditional bio-energy (fire-
wood, charcoal, manure and crop residues). Most
scenarios expect the use of traditional bio-energy to be
reduced over time. This notwithstanding, under
scenarios with low carbon budgets the total contrib-
ution of low-carbon emission technologies increases
rapidly. In the results for 2030, there is a significant
difference between scenarios that assume a delay and
those that assume immediate (cost-optimal) emission
reductions. This difference, however, has disappeared
by 2050. The contribution of low-carbon energy
technologies in cost-optimal scenarios with cumula-
tive CO2 emissions from 2010 to 2100 smaller than
1775 GtCO2 increases to around 100–300 EJ yr−1 by
2030 (20%–50% of primary energy use) and to
200–550 EJ yr−1 by 2050 (40%–80%of primary energy
use). This implies a scale up by a factor of two to four,
between 2010 and 2030, and a further doubling
between 2030 and 2050. We have made a distinction
between optimal scenarios with and without an
emission peak in 2015. While some differences are
visible between the categories for 2030 for decarboni-
sation rates and technology deployment levels, no
differences can be found for 2050 (figure 6). In the
delay scenarios, the scale up in 2030 is less than in the
optimal scenarios, but as a result, an even more rapid
deployment is needed between 2030 and 2050 to reach
similar deployment levels by 2050 to those in the cost-
optimal cases (Riahi et al 2015). For higher carbon
budgets, the share of low-carbon emission energy
remains typically at 2010 level (see figure).

Figure 4.The role of non-CO2 forcing. Panels show the CO2 and non-CO2 forcing in 2100 (lines indicate 33%, 20%and 9%of total
forcing coming fromnon-CO2 forcing agents) (panel (a)) and the influence of non-CO2 forcing on the relationship between
cumulative CO2 emissions and temperature (panel (b)). For coloured bands see figure 1 andmethods.
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The required scale up depends critically on the
volume of energy consumption as shown in
figures 5(e) and (f). This is most noticeable for 2050,
where the deployment level of low carbon technolo-
gies shows a clear gradient under different energy con-
sumption levels; low energy demand levels (e.g. below
400–500 EJ yr−1) lead to considerably less low carbon
technology deployment than high energy demand
levels. In other words, energy conservation can sig-
nificantly reduce the demand for low carbon technol-
ogies (Riahi et al 2012).

In figure 6, we further differentiate the informa-
tion in terms of different energy technologies, i.e.

biomass, non-biomass renewables and fossil fuels with
CCS. Again, a distinction is made between delay and
cost-optimal scenarios. The share of both bio-energy
and non-biomass renewables strongly increases for
low cumulative CO2 emissions, especially in 2050, but
also under cost-optimal scenarios in 2030. Total bio-
energy use in the cost-optimal response for low CO2

budgets (<1775 GtCO2) in the scenarios increases to
40–120 EJ by 2030 (or 5%–23% of primary energy,
10th–90th percentile, median of 75 EJ yr−1) and to
75–200 EJ by 2050 (10%–35% of primary energy,
median of 140 EJ yr−1). For less stringent budgets, the
bio-energy use contribution can be less both in 2030

Figure 5. Low-carbon emissions energy use in 2030 and 2050 (primary energy). Panels show (a) and (b) absolute values and (c) and
(d)%of total primary energy use for different scenarios categories. Lines indicate the bestfit correlation (3rd degree polynomial) for
respectively optimal (blue) and delay scenarios (red) , while the dashed lines indicate the 10th–90th percentile for all categories. Panels
(e) and (f) show absolute deployment level as function of different levels of energy demand. For coloured bands see figure 1 and
methods. Goodness of fit for all regressions is provided in supplementary table S2.
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and 2050. Clearly, there has been considerable debate
on the land-use impacts of bio-energy production in
relation to food production, and biodiversity protec-
tion and even the consequences for indirect emissions
(see earlier remarks). In some of the IAMmodels these
factors are accounted for, but this should be seen in the
context of considerable scientific uncertainties
(Searchinger et al 2008, Popp et al 2014). The recent
IPCC report estimated that most likely 100 EJ yr−1

could be produced sustainably in 2050, while a high
estimate could go up to around 300 EJ. The contrib-
ution of all other renewables by 2030 is considerably
less than bio-energy. For low carbon budgets, how-
ever, their deployment catches up by 2050—indicat-
ing a massive scale up over the whole period. The
range of deployment for each low carbon technology is
very large, as a result of the possibility of substitution.

The same trends are observed for fossil fuels with
CCS. Here, the spread is even larger, ranging from no
CCS application to deployment levels similar to those
of bio-energy or other renewables by 2050. Scenarios
with no CCS deployment are the result of specific stu-
dies in which CCS deployment is not allowed. Another

distinction is that CCS deployment is only observed
for the lowest categories—while CCS is hardly used for
high carbon budgets (in contrast to the other
technologies).

4.Discussion and conclusions

Our analysis depends on IAM scenarios published in
the literature over the 2007–2013 period and sub-
mitted to the AR5 scenario database. Several limita-
tions are therefore related to potential sampling bias in
the scenario set of this database. First of all, our results
clearly depend on the subjective assumptions made by
researchers publishing IAM model results about
future factors that are inherently uncertain. In that
context, while models provide (based on these
assumptions) information on technological and eco-
nomic factors that characterize decarbonisation sce-
narios and the possibility to implement them, they
provide little information on socio-political factors
that are essential for feasibility in the real world (e.g.
the acceptance of large scale CCS use). Another key
assumption is development of fossil fuel prices. IAM

Figure 6. Share of biomass, non-biomass renewable energy andCCS in total primary energy (distinguishing cost-optimal, delay and
baseline scenarios). For coloured bands seefigure 1 andmethods. Goodness offit characteristics of all regressions are provided in
supplementary table S2.
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models mostly focus on long-term trends andmany of
the models contained in the analysis published in the
2007–2013 period did not use the high fossil fuel prices
observed at that time. Similarly, the question whether
current low oil prices would influence the results
would require an assessment of whether oil prices are
expected to remain low over a long period of time. For
many models, fossil fuel prices are endogenously
calculated and the fossil fuel prices are in fact relatively
low in most mitigation scenarios anyway. Results
presented here can therefore be expected to be reason-
ably robust in the light of the recent oil price
development. Second, research projects recently have
put more emphasis on stringent climate targets than
on weak climate targets. As a result—a relatively large
share of scenarios is found with cumulative CO2

emissions of the order of 800–2000 GtCO2. Third,
while several research projects have looked into delay
scenarios for stringent targets, very few studies looked
into delay scenarios for less stringent targets (an
exception is (O’Neill et al 2010)). Fourth, some
research projects and models have contributed more
to the database than others, possibly influencing the
results with respect to the primary energymix. For this
reason, we looked into the position of those models
that have submitted most scenarios to the database in
figure 5 (see appendix) and found that indeed some
models have a preference for specific technologies.
This emphasises the importance of a multi-model
approach, including amuch wider range for outcomes
of individual technologies than provided by single
models. Interestingly, no specific model bias can be
found for the sum of all low-carbon technologies.
Finally, virtually none of the scenarios submitted to
the database return warming to below 1.5 °C by 2100
with a likelihood of more than 50%, although a study
published more recently provides an overview of such
scenarios (Rogelj et al 2015a). Overall, however, we
consider the conclusions in terms of aggregated
characteristics such as decarbonisation rates, the
contribution of different gases and the up-scaling of
non-CO2 emitting technologies to be relatively robust
against possible biases in method (given the focus on
the role of policy-delay and negative emissions). This
is, among others, due to the large number of different
models represented in the database. Outcomes for
specific technologies, however, may depend on com-
mon assumptions across the IAM community (e.g.
most models assume that CCS technology can be
developed at large scale). An important limitation is
that the database approach cannot easily handle
information on scenarios that were not feasible in
a specific model (e.g. due to limited mitigation
potential). This problem was noted before in a critical
review of the AR4 analysis (Tavoni and Tol 2010).
Individual model studies can correct for this by
carefully reporting the non-feasible results (Rogelj
et al 2013a). The more aggregated approach presented
here has the advantage of a much higher number of

scenarios (and exploration of uncertainty) but makes
it more difficult to account for such bias. For this
reason, we have not included parameters that may be
more sensitive to this issue such as costs, while
presented indicators are generally hardly affected.
Finally, the results can be prone to collective biases in
the IAM models, such as their focus on supply-side
technologies. This risk is partly mitigated by the fact
that the database includes results from a very large
range of models and model types, but it should still be
realized that the majority focus on cost-optimal
solutions.

The analysis thus clearly shows that for stringent
carbon budgets (e.g. those consistent with the goals
currently discussed in international policy making) a
distinct emission corridor can be identified from sce-
narios published in the literature. A carbon budget of
1000 GtCO2, for instance, is consistent with an emis-
sion peak before 2020 and decarbonisation rates of
4.5%–8% per year. At the same time, the analysis also
shows that there is still some flexibility in such indica-
tors, which increases for higher budgets. For low bud-
gets, the difference between cost-optimal and delay
scenarios plays an important role for 2030. For 2050,
however, this distinction is not so important. Interest-
ingly, the relationship between cumulative emissions
and the emission reduction rate seems to be relatively
strong, while for the emissions peak, nearly all mitiga-
tion scenarios show a very early emission peak. The
results show that non-CO2 forcing is the most impor-
tant factor determining deviations from the default
relationship between cumulative emissions and
temperature.

Above all, we show that carbon budgets that are
consistent with the 2 °C target, generally, require a
massive scale up of low carbon technologies. While
this general relationship is obvious, the paper provides
key insight into the quantitative characteristics of these
relationships, given the current scenario literature. For
the 1000GtCO2 budget, the contribution of such tech-
nologies is around 50%–75% in 2050 in the assessed
scenarios. For renewable energy, bio-energy and CCS
technologies, similar rapid expansions are found, with
each of these technologies reaching shares in primary
energy use of between 15% and 30% by 2050 (typical
median values). The level of deployment, however,
clearly depends on energy demand. In low energy
demand scenarios, scale up requirements can be
halved. The deployment in 2030 depends strongly on
the timing of policies. However, delays in mitigation
need to be compensated for by more rapid deploy-
ment rates over the 2030–2050 period. Previous stu-
dies (see references earlier) have shown that this rapid
deployment comes at significantly increased transition
challenges and a larger amount of stranded fossil fuel
assets, leading to overall higher costs. It will therefore
be important in the international climate negotiations
to identify credible pathways for scaling up demand-
and supply-side technologies, even in the short-term,
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if countries aim to implement the stringent targets
nowbeing discussed against relatively low costs.
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