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FOREWORD

Declining rates of national population growth, continuing
differential levels of regional economic activity, and shifts
in the migration patterns of people and jobs are characteristic
empirical aspects of many developed countries. In some regions
they have combined to bring about relative (and in some cases
absolute) population decline of highly urbanized areas; in
others they have brought about rapid metropolitan growth.

The objective of the Urban Change Task in IIASA's Human
Settlements and Services Area is to bring together and synthesize
available empirical and theoretical information on the principal
determinants and consequences of such urban growth and decline.

The study of patterns of urban change is hampered, in
many countries, by the inadequate availability of data on internal
migration. These data often come in the form of five-year time
intervals and have to be combined with other demographic and
economic indicators that are reported annually. Thus there
frequently exists a problem of reconciling one-year with five-
year data. This is particularly difficult in the case of migra-
tion flow data. The authors of this paper consider this problem
and outline an elegant mathematical procedure for dealing with it.

A list of publications in the Urban Change Series appears
at the end of this paper.

Andrei Rogers
Chairman

Human Settlements
and Services Area
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ABSTRACT

A general problem in the analysis of mobility is caused
by the comparison of data stemming from different time-period
durations. Various methods for easing this problem have been
suggested. In this paper, an extension of the mover-stayer
model is discussed. A method for its solution is suggested
by making use of matrix transformation and eigenvalue theory.
The discussion is carried out in terms of migration tables and
multiregional life tables, and data for three regions of Great
Britain have been used for an illustration.
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THE ONE-YEAR - FIVE-YEAR MIGRATION PROBLEM

I. THE PROBLEM

The analysis of mobility often is restricted by the
unavailability of data. Frequently models are used to approxi-
mate longitudinal patterns with théir cross-sectional data.
Problems also arise because the cross-sectional data may refer

to different periods of time.

In the case of migration, registration statistics in
many countries can be used to produce origin-destination tables
of migration flows over a period of one year. Censuses usually
also provide such flow data, but over a five- or ten-year
period. Statisticians are thus faced with two sets of data,
which give different information that may be difficult to
reconcile. Should priority be given to one of them, or do

they reveal different patterns of migration?

In this paper, the discussion is carried out in the frame-

work of multiregional demography. The above problem of mobility
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can be incorporated in the first steps in the construction of
the simplest multiregional model: the multiregional life table.

Consider a multiregional population disaggregated by age
and for which the necessary data on regional populations, births,
deaths, and place-to-place migration are readily available. As-
sume that the width of the age group is five years and that the
time periods of observation are, alternatively, of one-year and
five-year durations, respectively. Then the multiregional life-
table probabilities of migrating can be computed according to the
formula (Rogers and Ledent 1976; Willekens and Rogers 1978).

1 5

Po(x) = (I+32M,(x) " (I-3M(x) (1)

-~

where ?S(X) is the matrix of probabilities pij(x) that a person
at exact age x in region i will be in region j five years later;
@1(x) is the matrix:

— n ]
Mo (%) + ) M., (x) M (X)) eeeeann -M_. (x)
18 RS 21 nl
gl(x) S
n
MK e -M,_(x) M_s(x) + _Z M
J=1
B #n |

where Mij(x) are the one-year observed gross migration rates,
and Mid(x) is the death rate in region i for individuals aged

X to x+4. The matrices M (x) and P.(x) are of dimension nxn,
where n = number of regions.
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A factor of five in equation (1) is introduced to reconcile
the one-year observed data with the five-year probability. This
factor appears along with the assumption that the migrations
are uniformly distributed over the five-year time period
(Ledent 1978).

When the observed data refer to a five-year period, the
above assumption is not necessary. In such a case, the following

formula can be used:
P.(x) = (I + l M. (x)) 1 M. (x)) (2)
- by 2 25 b 2 <5

where @ (x) is a matrix constructed analogously to @1(x) from
five-year observed gross migration and death rates.

If the assumption for the uniform distribution of the
migrants were correct, the two equations (1) and (2) would
give approximately equal results, and in such a case equation
(1) would be a good approximation to equation (2). Computed
results for three regions of Great Britain (East Anglia, South
East, and the Rest of Britain) and for the period 1966-1971
and 1970 are presented in Table 1 for exact age 15. For other

ages, the estimations are given in Appendix 3.

Table 1. Probabilities of dying and migrating at exact age 15
for the three regions of Great Britain.

la: Time-period of observation 1970 [estimated with
equation (1)].

region of destination

region of origin 1 2 3 death
1. East Anglia 0.838896 0.084048 0.073464 0.003591
2. South East 0.0610098 0.917494 0.069230 0.003178

3. Rest of Britain 0.005401 0.047277 0.944153 0.003169
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1b: Time-period of observation 1966-1971 [estimated with
equation (2)].

region of destination

region of origin 1 2 3 death

1. East Anglia 0.898068 0.053417 0.044920 0.003595
2. South East 0.007041 0.948826 0.040965 0.003168
3. Rest of Britain 0.003073 0.030466 0.963210 0.003251

Obviously the probability of leaving the region of origin
in Table 1a is substantially higher than the corresponding
value in Table 1b. Therefore, equation (1) overestimates the
probabilities of migrating and underestimates the probabilities
of remaining in the region of origin five years later. The
latter probabilities are represented by the main diagonal of
each table. The same inferences hold for other ages too, as

is shown by the estimates in Appendix 3.

That the two sets of probabilities are significantly differ-
ent can best be evaluated by comparing the corresponding expecta-

tions of life given in Table 2 (see also Appendix 4).

Table 2. Expectations of life at age 15 for three regions of
Great Britain, 1966-1971 and 1970 periods of obser-
vation.

(1) estimated with equation (1) and based on the 1970
period of observation.

(2) estimated with equation (2) and based on the 1966-
1971 period of observation

region of destination

region of origin 1 2 3 total
1. East Anglia (1) 18.46 17.76 23.16 59.38
(2y 28.78 13.86 17.01 59.65
2. South East (1) 2.82 34.46 22.14 52.32
(2) 2.48 40.97 16.01 59.46
3. Rest of Britain (1) 1.62 11.48 45.70 58.80
(2) 1.29 8.22 49.25 58.76




~5-

The differences in the distribution of the expectation of
life for an individual born in the first region (East Anglia) are
too large to be neglected. Although not so large, the differences
concerning the other two regions are also significant. The same

holds true for other ages (Appendix 4).

Now compare the probabilities for dying, exhibited in Tables
1la and 1b. They are obviously so close that the probabilities
for dying from Table 1b are a good approximation to those from
Table 1a. Their estimation, however, is based on the same assump-
tion as for the migrants; namely, that the observed deaths

are uniformly distributed over the five-year time period.

One and the same assumption gives different results: in the
case of deaths it is wvalid, but in the case of migrations it is
erroneous. The reason for this difference is that migration is
a repetitive event, unlike death. Migrants are usually registered
as such by comparing their places of residence at the beginning
and at the end of the time-period of interest. Therefore, multi-

ple moves within the same time-period are not identified.

An example is presented in Figure 1. Let the individual re-
side in region 1 at time 0. He will be a resident of the same
region at the end of the first year, but at the end of the second
he will be a resident of the second region. At the end of the
third and fourth year he will be residing in region 3. By the
end of the fifth year, he will be in region 3 according to the

graph in Figure la, and back in region 1 according to Figure 1b.

In a one-year data collection system this individual would
be registered as a migrant either three times (Figure 1a) or four
times (Figure 1b). But if data are collected over a five-year
period, the same individual would register one move in the case

of Figure 1a and no move in the case of Figure 1b.

In the above example, the addition of a fourth move in the
system of one-year observations produced one less move in the case
of five-year observations. Hence, there exist some kinds of moves
that are responsible for the erroneous results produced by the use
of a multiplicative factor of five. A detailed description of

the ideas outlined above may be found in Rees (1977).
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Figure 1. Moves of an individual among the three regions over

a period of five years.

The above reflections suggest the representation of the in-
dividual's behavior as a stochastic process. If every move is
independent from the others, and if the probability of a move
does not depend on time, the process can be described as a homo-

geneous Markovian process.

The Markovian assumption gives rise to a new kind of an

estimating procedure, represented by equation (3)

P.(x) = [(I+ M (x) " (I-2m e’ (3)

which is based on the following equality, typical for Markovian

processes:

P

Po(x) = [Py (x)]° (3a)
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where P (x) being the

=1 j
probability of an individual at exact age x in region i surviving

(x) is a matrix with a typical element p,

in region j one year later. Thus defined, this probability has
little demographic meaning, because of the inconsistency between
the age-group width (5 years) and time-period of interest (1 year)
but its formal definition is correct. If the Markovian assumption
proves to bs correct, then [131(_x)]5 is already demographically

meaningful.

For the three regions of Great Britain, equation (3) yields
the results exhibited in Table 3. The probabilities in Table 3
are much the same as in Table 1b. Hence the Markovian assumption
has not introduced any significant improvement. The same infer-

ence holds for the other ages too (Appendix 2).

Where interregional moves are concerned, the Markovian as-
sumption has been suggested by Rogers (1965) and Rees (1977).
Rees has applied the approach to two sets of data for Great
Britain: for simple data referring to heads of households, and
for census data for interregional migrations. In the former
case, the results obtained are reported to be satisfactory but
in the latter case, where 10 regions of Great Britain are in-
volved, the model rates differ significantly from the observed
ones. After a detailed examination of the problem the author

concludes that "... a more complex [than the Markovian] process

is involved when an interregional framework is employed". (p. 262)

Table 3. Probabilities of dying and migrating at exact age 15
for the regions of Great Britain (Markovian assumption).

region of destination

rest of origin 1 2 3 death
1. East Anglia 0.839297 0.083767 0.673345 0.003591
2. South East 0.010063 0.917623 0.069137 0.003178
3. Rest of Britain 0.005394 0.047212 0.544226 0.003169
*However, if the matrices Pqi(x) for x = 1,2,3,... are available

55(x) should be approximatéd_by the matrix
51(x+4) . 21(x+3) . 51(x+2) . P1(x+1) « P, (x)
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The Markovian assumption is theoretically better than the
assumption for uniform distribution of the migrants, because it
allows a consideration of return migration (see Figure 1b).
Therefore, it can be thought of as distinguishing two different
groups of population. Ideas of this kind have been explored by
Blumen, Kogan, and McCarthy (1955) who gave rise to what is known
today as the "mover-stayer" model. This model was later elabor-
ated by Goodman (1961), Spilerman (1972), Boudon (1975), Barth-

olomew (1973) etc.

The mover-stayer framework is based on the assumption that
a certain part of the population has a zero probability of mi-
gration (stayers), and the remainder are those who make all of

the moves (movers). The formal description of the model is:

Pc(x) = a gs(x) + (1 - a)l (4)

where 0 <a< 1, Es(x) and Es(x) are matrices of probabilities
for migrating (at exact age x), which are similarly defined, but
differ in magnitude, and I is the identity matrix.

The Markovian property now is assigned to the matrix
H(x), instead of g(x). Therefore, if H1(x) were only available,

a possible approximation of (2) would be:
Po(x) = alr(x)1° + (1 = a)I (5)

Note that for a = 1, equation (5) reduces to equation (3a).

Note also that according to this presentation of the mover-stayer

model, a does not depend on the region of origin or destination.
Instead of elaborating on the last equation we shall

proceed further by considering a possible extension.
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IT. THE HIGH- AND LOW-INTENSITY MOVERS MODEL

The mover-stayer model was based on the existence of two
homogeneous groups of individuals—movers and stayers. In the
demographic literature, however, migrants are often considered
to consist of two groups with respect to the "parity" of the
event. One group consists of those migrants who move only once
during the period of observation, and the other consists of
individuals who migrate more often. Sometimes the latter are re-
ferred to as "chronic" migrants. Long and Hansen (1975) report
that the rates of return migration to the South of the USA are
much higher than those for the first moves in the same direction.
At the same time, the "returners" constitute a small part of the
total number of migrants (10-20%).

Spilerman (1972) has considered the extension of the mover-
stayer model by following the suggestions in the pioneering es-
say of Blumen et al. (1955), to allow for the existence for a
continuum of intensities to move, and proposes a solution to the
problem. However, this model is Markovian and cannot be used in
the present case. Boudon (1975) suggests that two homogeneous
populations should be considered, both with probabilities to move
that are higher than zero. He focuses basically on intergenera-
tional occupation tables. The methods for solution of the result-
ing model are based on the maximum likelihood principle, which
brings about substantial computational difficulties when the

dimension of the problem is large.

In the present paper, we shall assume, like Boudon, that
the population consists of two groups with different intensities
to move, but we propose a different method of sclution (matrix
diagonalization). It is believed that in this way the model will
be closer to the demographic understanding of migration propen-
sities, and will bring more theoretical insight into such empirical

notions as returners or chronic migrants.

Let pij(x) be the probability that an individual at exact

age x in region i will be in region j one year later. Let

pij(x) = 1, where n = number of regions. The last
1

e~ p

3
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equation states that the effect of mortality is not accounted
for in the estimation of pij(x). This assumption is made for
convenience, since the matrix of the pij(x) will be stochastic,
hence its properties are easier to describe and understand.
Note that the probabilities pij(x) as described here,

are linked with the estimated probabilities ﬁij(x) from:

1

P(x) = (I+ 2 M () ' (I-%n(x)

where P(x) = "ﬁij(x)", with the following equality:

J

n
Having in mind that } @ij(x) + B, 5(x) = 1, obviously
n =1
X Pjj(x) = 1. The formal description of the extension of the
j=1

mover-stayer model considered here is based on the following

equality:
pl] (X) = Otlj (X) Tle (X) + [1 - aij (X)]Oij (X) (6)

where m,. and p;+ are probabilities with meaning analogous to

that ofl;ij, andjaij(x) is a real parameter, 0 < o < 1. The
equality shows that the probability pij(x) which refers to the
total population of region i at exact age x, is the weighted
sum of two probabilities, which refer to subgroups of this re-~
gional population, with weights aij(x) and [1 - aij(x)] respect-
fully. The model defined by the above probabilities, will be
called the high-and low-intensity model, to contrast it from the

extension of Spilerman (1972).

In order to make use of this model, it is necessary to
know the wvalues of aij(x), nij(x), and pij(x), so that the
estimation of pij(x) would be possible. Unfortunately, these
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data are unavailable. That is why a number of further assump-

tions will be made in order to find a convincing method of solu-

tion for o, 7, and p.

We shall first assume that the parameter aij(x) does not
depend on the regions i and j, i.e., the delineation of the
two groups of individuals with different intensities to migrate
does not depend on the regionalization. The demographic
meaning of this assumption is that some factors other than the
regions (for instance, social status, economic occupation, etc.)
determine the existence and the number of returners and chronic
migrants. The validity of this and the following assumptions

will be discussed later in the paper.

The matrix equivalent of (6) is:

where a(x) is a scalar depending on the age x. Note that o (x)
and the elements of the two matrices W1(x) and 01(x) are all

non-negative.

We shall further assume that the stochastic processes
defined by the stochastic matrices 31(x) and 91(x) are Markovian.
Thus we assume that these matrices fulfill the Kolmogoroff-
Chapman equations (Chiang 1968, Karlin 1969). If so, the

process, defined by g(X) + 1s a sum of two Markovian processes.

Generally, the sum of two Markovian processes is itself
not a Markovian process. Since a(x) = 1 reduces the process, de-
fined by P, (x), the high- and low-intensity model is a non-

Markovian extension of the Markovian model.

Equality (7) was based on a one-year time—perioa of
observation. When the period of observation is T years long,

it can be represented as:
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The Markovian assumption for Te and o gives the following

feedback between different values of T (1T = 1 and ™ = 5, say):
T (x) = [31(x)]5
(9)
(x) = [p,(x)1°
B5tx) = 1R IX

With the expressions (9) in hand, equation (8) can be used .

to form the following system:

Po(x) = ax)m,(x) + [1 - a(x)]p,(x)
(10)

Po(x) = a(x) [1,(x)]1° + [1 = a(x)]lp,(x)]1°

~

If the solution of this system, with respect to the
unknowns ¢ (x) and the elements of E1(x) and 91(x) is known, the
one-year - five-year migration problem can be attacked in the
light of the newly formulated model. Hence we proceed further
to solve (10) with respect to a(x), nij(x), and pij(x) for
each i,j = 1,...,n. The unknowns in the system (10) are
2n2 + 1, where n = number of regions, while the number of the
equations is 2n + 2n (the first 2n comes from the dimension of

the matrices, and the second 2n comes from the restrictions

n
] m.. =1 and = 1).
=1

n

To0..
. i . i
] ) j=1
In order to find the solution of the system in (10) we are
faced with one basic problem: the number of unknowns is larger
than the number of equations. For instance, for n = 3 the un-
knowns are 19, and the equations are 12, hence seven unknowns
have to be exogenously defined. An additional problem is caused
by the large number of equations in a system that is non-linear.

The two problems will be considered further together.
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Consider the system of Kolmogoroff's differential equations
(Chiang 1968):

with the following initial condition:

P(0) =1

~

A typical element of the matrix u, is the intensity of uij of mi-

grating from region i to region j. The elements satisfy the condi-
n
. . _ > : . <
tions: j£1 Hi 4 0, My 5 0 for i # j, and nu;; < 0. Some
important properties of u are given in Chiang (1968). In the

demographic literature the intensity of migrating is often
referred to as the "force" of migrating.
The formal soclution of the system of Kolomogoroff dif-

ferential equations is:

P(t) = e (11)

. T , . .
The definition of e , as a function of matrices, can be

found in Gantmacher (1959, Chapter V).

The matrices v1(x) and p1(x) are those of Markovian

processes, hence they can also be represented as in (11), for
T=1:
E1(x)
mi{x) =e (11a)
and
H., (x)

p1(x) = e (11h)
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Then the system (10), with a(x) set equal to o, transforms to:

M, (%) U
Px) ma el o4 (1= e
12
214 (x) Su, (x) 0
Ps(x) = a e (1 - a)e -2

Note that on the right-hand side, the probabilities of migrating

are now replaced by the corresponding intensities of migrating.

We introduce next the following assumptions:
Ez(X) = k(x)g1(x) 0 < k(x) < 1 (13)
and

k(x) = k for all x

Their demographic meaning is that the difference in the propen-
sity to migrate for individuals from the two groups (weighted by
the parameter o) is independent of the regions i and j. By in-
troducing (13) into the system (12) we get, denoting M, by u:

u(x) ku (x)
P,(x) = a e” + (1 - a)e ~
(14)
5u(x) 5k (x)

~

P. (x) a e + (1 - a)e

By introducing the assumptions in (13), the number of un-

knowns reduces from 2n2 + 1 in (10) ton + 2 in (14), the number
of equations reducing to 2n + n, the restrictions Z T,.. = 1

ij

and Z Py+ = 1 being replaced by Z Mis = 0.

J J
For n = 2, the number of equations will be equal to
the number of unknowns. Hence, the solution can be sought

directly from (14).
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For n = 3, the number of unknowns will be 11, and the number
of equations, 9. For n > 3, the number of unknowns will increasingly
exceed the number of eguations. Therefore, for n 2 3, the solu-

tion must be sought in an indirect manner. Here, the method of

diagonalization will be utilized.

Let the eigenvalues of P * be different and n in number.
(This assumption is usual in social sciences and adequately re-
flects real world situations.) Then the transformation T, which
diagonalized P1, is defined by the n different right eigenvectors.

~

Analogously let P_ be diagonalized by T.. By 2-1 we denote the
inverse of the matrix T. Hence, ?;1 and 231 are constructed by

the left eigenvectors of P and ES’ respectively. For more de-

tails about diagonalization see, for instance, Bellman (1960),

Chiang (1968), or Gantmacher (1959).

Let T;1 P1 T1 = diag (P1) = A1, where A1 is a diagonal ma-

trix of the eignevalues of P.. Correspondingly, let diag (PS)
= AS' Introducing the diagonalization into (14) gives:
-1 " Ky
Ay =Ty leem 00 = a)e )Ty
-1 Sy Sky
QS = TS (ce + (1 - a)e ) TB
where
-1 H -1 k]:[
Ap=oaTy e Ty + (0 -a)Ty e T,
45 = Q ?5 e ?5 + (1 - )T e ?5 (14a)

Further, it will be necessary to use a certain class of
matrices, which are defined as follows:
Definition. The matrices A and B are related if they can

be diagonalized by the same transformation T.**

It is easy to show that if the matrices A and B are related,

then the matrix:

*To simplify the notation, age groups will no longer be denoted.

**The authors would like to thank A. Seifelnasr, who indicated
that the word "similar" which was used here originally was
inappropriate because this term is used in the literature to
define another class of matrices.
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C=a £(A) + B g(B)
where f(.) and g(.) are certain scalér functions and o and B

are real numbers, is also related to A and B (see Gantmacher
1959, Chapter V). 1In particular, if

12

is the diagonalized
matrix diag(u), then,

i
diag (e”) = e

g

Consider now the system (14a). Since the left-hand side of
each equation is a diagonal matrix, the same will be true of the

sum of matrices on the right-hand side. But the matrices p and

~

ku are related, therefore, according to the above definition, the
~ u ku
matrices e” and e ~ are also related. Hence they are diagonal-

ized by one and the same transformation. Let U be such a trans-
formation. Then U diagonalizes a linear combination of e~ and
ku - u ku

e 7, and hence diagonalizes P, as well. Then P, and e7, or e ©

are also undefined. 1If so, the transformation T, diagonalizes

u ky
e” and e ~
Sy
Analogously, T5 diagonalizes the related matrices PS' e 7,
5ku ~ -
and e ~. Then (14a) can be represented as:
v kv
A1 =ae + (1 - a)e ~
~ (15)
5v S5kv
Ag = a e T+ (1 - a)e T

having in mind the similarity between My kB’ Su, and Skg, and

applying successively the property of matrix functions cited

above. b 50 Xy sk
Note that e~ and e ~ (or, e ~ and e 7) are pglgtedr hence

the transformations ?1 and ?5 should diagonalize them both.

This implies that the matrices p and 85 should also be peigted:

and be diagonalized by either T1, or Tg. Transformations
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are however unique, hence T1 and T5 should be equal. This con-

dition is too rigid to be met by the practical implications, but

we can relax it a little, by assuming that and T. are empiri-

T
21 <5
cally close enough to meet the theoretical requirements: 1i.e.,

that when applied to the diagonal matrices A1 and A5, they yield

the initial matrices P1 and P5 That is, the following expres-
sions:

P, = T. 4 L

1 5 81 25 1 (16a)
and

~ A 775 = p

Ps =Ty 25Ty 7 5s (16b)

must be true.

If the expressions (16a) and (16b) do not hold, the whole
theory developed up to now will not hold. This would mean that
the Markovian assumptions or some of the assumptions made for
the matrices m and p are not valid. Therefore, the approxima-
tions in (16a) and (16b) provide a measure of the validity of
the model considered here.* The authors consider such a measure
to be only an empirical one, i.e., the numerical expressions for
% and P have to be compared, and this will be done in the next
sectio;, where the numerical application of the model is consid-
ered. For the time being, we shall just mention that the numer-
ical results show that P and P are close enough in order to
accept the validity of the model For convenience to the reader,

the estimated results are given in Appendix 2.

Let A, (P;) be the i-th eigenvalue of P, and A (Pg) of
PS' Let Vi the i-th eigenvalue of 4. Then the system of
matrix equations (15) can be presented as the following non-

linear system of equations:

*Some theoretical aspects of this approximation are considered
in Appendix 1.
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o e’i + (1 - g)e™Vi

>
—_
dJ
—
-
]

¢ 1 =1,...,n (17)

A (Be) = a Vi + (1 - q)e’®Vi

The matrices P, and P_ are stochastic. Therefore, their

largest eigenvalue ls equai to unity and the corresponding eigen-
value of matrix intensity is egual to zero. Hence, two of the
equations in (17) will turn into equalities, and must be excluded
from the system. Then the number of the equations will decrease
to 2n - 2. At the same time, the number of unknowns is n + 1
(since for some i, vy = 0), which is a substantial decrease if

compared with (14).

Now let n = 2. Then there will be 2 equations, and 3 un-
knowns. In (14) for n = 2 the number of equations was equal to
the number of unknowns, however; that is why after (14) only

n 2 3 will be considered.

Let n = 3. The equations are 4, the unknowns also 4. There-

fore, the system is well defined.

Let n > 3. Then the eguations will be more than the unknowns.
Therefore, if the system is consistent, the method of solution
for n = 3 can be applied. We proceed further toward this solu-

tion, assuming n = 3.

In order to simplify the notation, let z;, = evi. Let
also A1(g ) and A1(g ) be equal to unity, hence My = 0. Then

(17) can be rewritten as:

- - k
Ai(g ) = o z; + (1 a)zi
' i=2,3 (18)
_ 5 _ 5k
Ai(g ) = o z7 + (1 a)zi

Let k be held fixed. The last system can be rearranged as:
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k
A (By) =z
- k
z. -z
5k
. A (Bg) '
5 _ ZSk
Zl i
and hence,
. (P,) - z° A (P.) - z2K
i< i i i =23
z, - zk 25 - z?k
i i i i

Note that the above equations are well defined, since the
exclusion of the eigenvalue Vi = 0 assures that all the
denominators be non-zero.

In the last equation above, there are three unknowns:
k, Z5y and z3. An additional restriction is provided by the
assumption that a does not depend on the regions. Therefore,
the solutions for z, and z5 must be such that (19) would yield
the same value for a. The last condition is utilized to construct

the following algorithm for solving (18):

Step 1. Fix an arbitrary value for k, 0 < k < 1.
Step 2. Form the function:
k

£(z;) = (A, (B)) - 2}

) (27 - 22%) = O (B - 22%) (2, - 2!
for the given value of k.

Step 3. Find the roots of f(zi) = 0, by applying the
method of Newton-Raphson:

starting with z, = 0.01, say. Recall that N is bounded in the

0
interval (0,1) because z; = evi, and v < 0.
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Step 4. With the roots for o estimate a from (19).
Let Z; provide an estimated o denoted by oy .

Step 5. If a5 # a3, 9o back to Step 1. If a, = oy (up to
a predefined tolerance level), the solution is found.

in order to
avoid the finding of the trivial root z; = 1, which gives

1=z, =e’i, i.e., v, = 0
i ’ LA A i"-

The small initial wvalue for A is assumed

By finding the solution of (18) and with the found values

for a, k, v2, and v3, we can construct the matrices m and p.

~

Thus the initial system (10) can be numerically constructed.

It is possible to find an approximate solution by
minimizing a function F of four variables:

3 k.2
i=2
5 5k, 2
+ [Ai(g ) - azy - (1—0L)zi ]

This method of solution was found to give the same
results as the one described above, and is to be preferred
where library nonlinear-optimization routines are available.

ITI. NUMERICAL VERIFICATION

Consider the two matrices P and P for the age-group 15-19

of the three regions of Great Britain considered in the first

section. Let the effect of mortality be eliminated, so that the

two matrices are stochastic, that is, with row elements summing

up to unity. Their numerical expressions then are:

0.96614 0.01829 0.01556
P1 = 0.00220 0.98320 0.01460
- 0.00114 0.00997 0.98889
and
0.90131 0.05361 0.04508
P. = 0.00706 0.95184 0.04109
~3 0.00308 0.03056 0.96635
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0.97419

The eigenvalues are: X1(P1) = 1, KZ(?1) 0.96405, A3(P1)

0.92473.

A1(ES) =1, Az(gs) 0.89477, KB(ES)

The eigenvalues of each matrix are different, hence the
eigenvectors are also different, and they define the diagonaliza-

tion transformations.
The system (15) now will be:

0] 0] 0] 0 0 0

0 V2 0] k||l O Vz 0]
1.0 0 0] 0] 0 V3 0] 0] v3
0] 0.96405 0] = Q (1 - a)e
0 0 0.97419

0 0 0 0] 0 0]

511 O V2 0 5k [ O V2 0]
1.0 0] 0 0] 0 V3 0] 0] v3
0 0.89477 0] =0 e + (1 - a)e
0 0] 0.92473

The equivalent of (18), after removing the two trivial

equalities, is:

v2 kv2
0.96405 = a e + (1 - a)e

v3 kv3
0.97419 = a e + (1 - a)e

5v, 5k, (18a)
0.89477 = a e + (1 - a)e

5v3 Sk\)3

0.92473 = o e + (1 - a)e

For the system (18a) we search a solution for o, k, Vo and Vs,

v v
Further, denoting z, = e 2 and zy = e 3, (18a) yields:
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0.96405 - zg 0.97419 - z§
@2 T 3 3T T X
2, T 25 3 7 %3
' (19a)
0.89477 - zgk 0.92473 - zgk
%2 T 5 _ 5K *3 T 75 _ 5%
Z; 2 23 T 23

The algorithm at the end of the previous section was then

applied. A unique value for k was found, such that o, = ag,
and that was k = 0.01. For this k, o = 0.0233, and v, = -1.6848,
V3 = =1.0051 (v, = 1n zi).

The values for a and k allow us to state that a subgroup
which is 2.3% of the total population of Great Britain, aged
15-19, has an intensity to migrate one hundred times as large
as that for the remaining population. Note that this large
difference in the intensities does not imply the same differences
in the probabilities to migrate! Recalling that the matrices

H1(x) and 91(X) from (11a) and (11b) are represented as:

(20a)

I
o

ﬂ1(X)

and
91(x) =e ” (20b)

it is possible to estimate them and find the numerical expres-
sion for (10).

Note at first that if P, (x) is diagonalized with the
transformation ?1(x), H1(x) and 91(X) are diagonalized with
the same transformation (3 and pq, are related). Then (20a)

yields:

: -1 -1 X M
diag(m,) = T, ™ T IT=e
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and similarly from (20b):

2

diag(pq) = Ty py Ty = e

Then,
1 0 0
Y2
diag(ﬂ1) = 0 e’ 0
- v3
0 0 e
and
1 0 0
kvz
diag(p1) = 0 e 0
- kv3
0 0] e

From the last two expressions, T and p, can be found by applying

the reverse transformations.

m, = T, diag(m,) T,

and

pq = Ty diaglpq) T,

The estimated values for m, and p, are:

~1 ~1

0.23138 0.38506 0.38360
0.04575 0.58615 0.36809
0.02863 0.25083 0.72054




20U -

and

0.98373 0.00952 0.00675
0.00116 0.99271 0.00614
0.00048 0.00421 0.99531

91=~

While o, is structured similarly to 81, this is not the case
with Ty The elements on the main diagonal of T reflect the
probabilities for the high-intensity movers to remain in the re-
gion of origin, over a period of one year. They are by far lower
than usual. Note that these kinds of probabilities depend substan-
tially on the size of the regional populations. That is why the
comparatively small region of East Anglia is connected with out-

migration probabilities.

For (TI.I)S and (21)5, the following expressions may be de-
rived:
(1)° = 1y aiaglap®) 73!
and
(97)° = T, diagl(p,)®) 17"
where
1 0 0
5v
diag[(f1)5] = 0 e 2 0
5v
o o0 e 3
and
1 0 0
. 5 skv
d1ag[(91) ] = 0 e 2 0
Skv3
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The final numerical estimation for P5(x) using

Po(x) = alrg () + (1= a)(e;(x)° x = 15

is:

0.90092 0.05367 0.04541
0.00645 0.95098 0.04257
0.00332 0.02909 0.96760

= 0.0233 || 0.04450 0.38908 0.56640
0.04397 0.38425 0.57179

0.04468 0.38844 0.56692 '

+ 0.9767 || 0.00554 0.96443 0.03003
0.00234 0.02058 0.97707

0.92142 0.04566 0.03292 »

and

Pox) =am, (x) + (1 - a)eq (x) X 15

is

0.96614 0.01830 0.01556 0.23138 0.38506 0.38360
0.00220 0.98320 0.01460 = 0.0233 0.04575 0.58615 0.36809
0.00114 0.00997 0.98889 0.02863 0.25083 0.72054
0.98373 0.00952 0.00675

+ 0.9767 0.00116 0.99271 0.00614

0.00048 0.00421 0.99531

Note that the estimated matrix (15) 1s very close to the

Py

observed one, given on page 20, while P1(15) is exactly the same.

What deserves special attention in the last numerical
equality, is the matrix [n1(15)]5. Its columns have approxi-
mately equal numbers. This is a consequence of the fact that

m, refers to the group having approximately a one hundred times

larger intensity for moving than the other group. Since [n E

]
UT kut ~1

= e , and [91]T = e , both processes tend to one and the
same asymptotes, but the first approaches it much quicker (see

Figure 2, whereby [a] 1s denoted an element from the i-th row

~ 17
any j-th column of a matrix a).
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ut kut
Figure 2. Asymptotic behavior of e° and e ~

Therefore, [171]5 is very close to the asymptotic distribu-
tion, say denoted by [31]m. But-[g ]oo defines the stable state
of the high-intensity movers, hence, even if this part of the
population is not stable in the initial period of time, it will
reach spatial stability over a period of 5-10 years. Taking into
account that real demographic processes are sufficiently homo-
geneous over such a small period of time, it is reasonable to
suppose that the spatial distribution of the high-~intensity

movers is approximately stable at the initial point of time.

Because the matrices P1, T

Therefore, we get a proof that the process described by the high-

and 91 are related, ?? = ET = 9?.

and low—intensity movers model retains the important demographic
properties of stabilization and ergodicity, although the model is

not Markovian.

Until now, one age group (15-19) was considered. All the
above estimates were repeated for the other age groups (15 in

all). The solution with respect to o, Kk, Vo and v of the sys-

3!
tem (18) was sought using the same algorithm. The method of
solution failed twice, for the age groups 55-59, and the last one
70-74. Generally, the solutions are not satisfactory for the

ages beyond 50. The results are exhibited in Table 4.

It is believed that the suggested procedure gives bad re-

sults for the aged population primarily because of the solution
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method. During the search for solution for the age groups beyond
50, it could be observed that a« and k tend to zero. Since as

k = 0 the model tends to the mover-stayer one, and a = 0 reduces
it to the Markovian, it is possible that the more sophisticated
estimation procedures of the high- and low-intensity movers model
are more inaccurate than those which would be more suitable for
the easier~to-solve models mentioned above, when the migration
movements are very low. The above reflections explain to some
extent the gaps between the solutions for the age groups 45-49

and 50-54.

Consider now the first ten age groups in Table 4. The fol-
lowing inferences can be made:
Table 4., Values of a, k, v

A for different age groups.

27 U3

age group o k Vo V3

0-4 0.03156 0.01279 -1.35706 -0.62757
5-9 0.02014 0.01280 -1.11350 -0.59498
10-14 0.01519 0.01311 ~0.92648 -0.54148
15-19 0.02338 0.01045 ~1.67540 -1.04744
20-24 0.04147 0.00787 ~2.72179 -1.62251
25-29 0.04166 0.01436 -1.35777 -0.78607
30-34 0.02259 0.01248 ~1.33867 -0.82405
35-39 0.02244 0.01286 ~-0.91052 -0.53732
40-44 0.01020 0.01000 -1.02088 -0.66838
45-49 0.01601 0.01350 ~0.51931 -0.34236
50=-54%* - - = -

55-59 0.00288 0.001830 -2.05199 -3.57241
60-64 0.00336 0.002410 ~1.53867 -3.01742
65-69 0.00972 0.007235 -0.44394 -0.78785
70-74* - - - -

*Solution not found.
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1) The values for k are quite similar, the mean being
0.01202.

2) The values for a generate a curve which is very much
like a migration curve, [Different migration schedules for Great

Britain are exhibited in Rees (1969)].

3) The absolute values for each of the Vs also generate a
curve that resembles a migration curve, although not so closely
as the curve generated by a.

These regularities can be used in the implementation of the
model, which is the topic of discussion in the next section.

IV. IMPLEMENTATION OF THE MODEL

The previous two sections set out the mathematical and nu-
merical descriptions of the high- and low-intensity movers model.
The numerical results verify the assumptions made, thus also
verifying the model itself. They were derived, however, on the
basis of two sets of data--from one-year and five-year observa-

tions--both disaggregated by age.

In order to make use of the model, we must suppose that only
one set of data is available, and then implement it to obtain
approximations for the other set. Since one-year data are usu-
ally available from vital statistics in most countries, they
will be supposed to be given. Before considering the numerical
results once again the theoretical background will be further

developed.

In Section II it is shown that starting with the following

matrix equation:

P (x) = a(x)1~r1(X) + [1 - a(x)]g1(x)

the following system of scalar equations can be constructed:
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(21)
kv3
- a)e

n
[
o
+

where the age subscript x is again omitted. 1In the last

system, the equations are two, while the unknowns are four:

a, k, Vo and V- Therefore, two of them must be specified
exogenously. This is in fact the basic point in the implementa-

tion of the model.

Recalling the inferences from Table 4 at the end of the
previous section, it seems reasonable to search for values of
a and k which might refer even to the aggregated-by-age

population, A and K pop Say- Then two approaches are pos-

sible: keep these values constant for all ages or disaggregate
them, in accordance with the results from Table 4 {i.e., kTOT
may be kept constant, and Ongp MaY be used to generate a

set a(x) for all x, such that a(x) form a curve similar to
that of the observed migration rates, and the arithmetic

mean of a(x) be equal to aTOT].

In either case, values for ApoT and kTOT are sufficient.

How these are derived will be discussed later in this section,
but now suppose they are somehow available. If so, kTOT and
Ao or a(x), can be entered in the system (21) to solve for
vz(x) and v3(x). After that, the following system can be

solved with respect to the unknowns XZ(PS) and A3(P5) (the

age subscript being omitted) :

5v 5k v
e 2 + (1 - a)e 2

A, (P

Pg)

n
[®]

2 (

A3(?5) =0 e + (1 - a)e

Thus the diagonalized matrix A5 = diag(gs) becomes available.

[Recall that A1(§ }y = 1]1. In order to find ES

to have its diagonalizing transformation. But the discussion

it is necessary
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here suggests that P. is a function of Py Py = f(P1), where

the function f£(.) is specified in (10). Therefore, T, must
diagonalize P.. Hence,
P_ = T AT, 23)
~5 ~1-531 (

Note that equation (23) implies T, = TS’

was discussed on page 16, and it was inferred that it should

This equality

be approximately true (Appendix 2). This then implies that
(23) is also an approximation. According to the structure of
the model, this approximation should yield better results than

those discussed in the first section.

What remains unclear is how values for a and k even for
the aggregated-by-age population, could become available.
One way to find them is to look at sociological studies: «
can be inferred from statements on what part of the population
is moving more frequently, and K can be inferred from statements
on how much larger this frequency is, keeping in mind that k in-

dicates intensity and not probability differences.

Here another, much more preferable, way of deriving a and
k will be discussed. In many countries data are available on
interregional migration flows aggregated by age (the migration
flow matrix) stemming from censuses or enquiries which are
usually held each five or ten years. Since the mid-period
multiregional population data are usually available, one can
estimate then an age-aggregated matrix of the origin-destination

migration rates. Let this matrix be denoted M. (TOT). For

~5
Great Britain, it was estimated as follows:

0.92659 0.03618 0.03724
MS(TOT) = 0.00694 0.95628 0.03678 (24a)
¥ 0.00267 0.01750 0.97982

The same matrix, for a one-year time period, is as follows:
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0.97494 0.01290 0.01217
M., (TOT) = 0.00214 0.98606 0.011890 (24b)
b 0.00075 0.00581 0.99344

Note that these matrices have the same structure as those from

page 20. Their eigenvalues are: A1(M5) = 1; AZ(M )y = 0.91973;
A3(¥5) = 0.94296; A1(¥1) = 1; Xz(@1) = 0.97286; A3(¥1) =
0.98159. Repeating further the procedures from Section 3,

one receives the following values for the unknown parameters:

Copp = 0-02198,  Koon = 0.01049, v, (TOT) = —1.1735,(25)

\)3 (TOT) = -0.7092

These values will be used to derive the age-specific
migration-rate matrices, @S(X). This can be done in two
different ways. First, for each x the parameters o and k
from (25) are kept constant. Consider further the case
when x = 15. New values for v, and vy may be estimated from
(21). Then, values for Az [@5(15)] and A3 [¥5(15)] are found
correspondingly equal to 0.89003 and 0.92254, by making use
of the system (22). Thus the diagonalized matrix A (15) =
diag[§5(15)]becomes available, bearing in mind that A1[§ (15)]
= 1. Then the transformation ?1(15), which diagonalizes

M1(15) may be used to obtain:

-1 0.89647 0.05640 0.04714
M5(15) = Tl(ls)gs(ls)gl (15) = | 0.00679 0.94911 0.04411 (26a)
- h 0.00343 0.03015 0.96642

The second way of deriving the matrices gs(x) for all x is
to keep k constant once again, but to use %o and the observed
migration schedules to yield values for a(x) for each x. Suppose
the migration schedule is given by the age-specific rates m1(x)
which can be estimated at the national level. Let n be the num-

ber of age groups. Then, from the expressions for the means:
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}Z{ m, (x) Y oo(x)
—_— = X =
n M @ ¢
a(x) can be derived as a(x) = m1(x)£i .

1

For x = 15, a(15) was estimated to be equal to 0.03404.
This value of a, together with kTOT from (25), were used to
derive the following matrix:

0.91063 0.04545 0.04294
@5(15) = 0.00555 0.95367 0.04078 (26b)
0.00317 0.02783 0.96900

Each one of the matrices (26a) or (26b) can be rearranged
accordingly (see the expression on page 2) and then set into
equation (2), which then yields the desired matrix P (15).
These procedures yielded the following results (Tabie 5).

Table 5. Approximated probabilities of dying and migrating
. at exact age 15 for three regions of Great Britain.

5a: Derived by making use of (26a)

region of destination

region of origin 1 2 3 death
1. East Anglia 0.898531 0.052791 0.045082 0.003595
2. South East 0.006347 0.948149 0.042336 0.003168

3. Rest of Britain 0.003291 0.028926 0.964532 0.003251

5b: Derived by making use of (26Db)

region of destination

region of origin 1 2 3 death

1. East Anglia 0.911296 0.043880 0.041226 0.003598
2. South East 0.005237 0.952348 0.039248 0.003167
3. Rest of Britain 0.003050 0.026778 0.966927 0.003251
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Both tables are very close to theobserved probabilities,
exhibited in Table 1a, and show much better results than Table
1b. It is worth noting that Qg gives better results than
a{x) although their numerical values are substantially different.
This proves the insensitivity of the high- and low-intensity

movers model with respect to its parameters.
For consistency, Table 6 gives the life expectancies

at age 15 estimated by making use of (26a) and (26b) as

described above.

Table 6. Expectations of life at age 15 for three regions of
Great Britain, derived by making use of (26a) and
(26Db):

(1) derived by making use of (26a)
(2) derived by making use of (26b).

region of destination

region of origin 1 2 3 total
1. East Anglia (1) 27.69 14.69 17.25 59.63
(2) 30.40 13.03 16.25 59.68
2. South East (1 2.33 40.65 16.47 59.45
(2) 2.11 41.91 15.45 59.47
3. Rest of Britain (1) 1.17 8.52 49.07 58.76
(2) 1.11 7.86 49.77 58.74

Again, in both cases, the results are very close to those

in Table 2(2), and Ao vyields better results than a(x).

These numerical results refer to the age 15, but the
inferences hold for all other ages. For convenience to the
reader, the complete set of expectations of life are given in
Appendix 4, together with the levels of migration. The latter
are given at the age 0, and represent a measure of the goodness-
of-fit, for the different approximations (see the introductory

remarks in Appendix 4).
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Thus the model suggested here gives a sufficiently good ap-
proximation to the problem considered. Recalling that a number
of assumptions were made in order to find a solution, it turns
out that these assumptions are plausible. They refer to the in-
dependency of certain models' variables, a and k, on the region-
alization, and hence may be used to show that the inhomogeneity
of the population with respect to the interpretations of a and k

does not depend on the regionalization.

The fact that the transformations ?1 and ?5 are approximately
egual, may be interpreted as a preserved ranking in the attrac-
tiveness of the regions with respect to the migrations. That is,
over these periods of time, the magnitude of the migration flows

may change, but only proportionally for each direction.

Finally, the fact that o and k barely depend on the age
groups was unexpected, but it has its demographic or social in-
terpretation: it shows that the differences in the age=-specific
migration curves of the "chronic" migrants and "all" migrants
are insignificant with respect to the one-year - five-year migra-

tion problem.



APPENDIX 1

In the text it was shown that the empirical transition

matrices P, and Pg can be diagonalized by almost the same

matrices T1 and T5, such that

-1 -1

P, = Tg (T424T, )74 (A1)
and

P_ 2 TO(T.P.To)T (A2)

~5 7 21 ~52525 21 -

This empirical fact led to the conclusion that the n(n-1)-
dimensional problem of estimating the five~year transition
matrix from the one-year matrix (or vice versa) can be reduced
to the (n-1)-dimensional problem of estimating the eigenvalues
Ai(gs) [or Ai(g1 ], 1= 2,...,n; A1 = 1. Further we will
consider for simplicity only the case when all the Ai are real
and positive. For simplicity let also n = 3. This case is

presented graphically in Figure A1l.

~35~




-36-

A A

A1 = 1
1 T |
|
l Az(t)
I R —
| —
I ; Aqy (1)
| l
| |
l { i f — —
0 1 2 3 u 5 T
Figure A1. Dependence of eigenvalues of a transition matrix

on time.

If the matrices g1 and ?5 are known, it is necessary to
fit the empirical points [1, A,(1), A,(5)] and [1, A5(1), A5(5)]

as functions of time.

In this paper it was suggested instead to make use of the

following approximating function:

V. k\)iT
(1) = o e + (1 - a)e (A3)

where o and k are known (or can be found from aggregate data,

in which case they will also be approximated).

As usual the decreasing of the dimension [from n(n-1) to
n] 1inevitably presents additional theoretical problems.
In this case, .they are the following ones:

1. Is it always possible to solve the equation (A3) for
T =1 if o and k are given?
v, v,
2. Are 1, e , and e eigenvalues of any stochastic
matrix?
v, Vg
3. Are 1, e ', and e eigenvalues of any continuous-

time Markovian transition matrix?
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v v
Are 1, e 1, and e 2 eigenvalues of any stochastic

matrix which can be diagonalized by a given trans-

formation T1?

answers to these questions follow next.

Equation (A3) has a unique non-negative solution.

It is easy to see that the function

Vo kv
f(v) = a e + (1 - a)e
is amonotonically decreasing one, £(0) = 1, lim f(v) = 0,
. V >0
and, hence, for 0 <X <1, the eguation f(v) =\

has a unigue non-negative solution.
Theorem. (Suleimanova, 1949). The set of n+1 real numbers
{1I A‘]I A2'

is a set of eigenvalues of a positive stochastic

.««sA ), where |X;] < 1 for i =1,2,...,n

matrix provided that the sum of the modulus of the
negative numbers of the set is less than unity.

The problem of representing some stochastic matrix

as a continuous time Markovian transition matrix
(imbedding problem) can be avoided by considering an
integer m and discrete time. The necessary conditions
for such imbedding can be found in the paper of

Singer and Spilerman (1976).

If the transformation T

<1
that A1 is equal to 1, then it is easy to show that

of the matrix P1 is such

the matrix

mo=T e T (Al4)
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n
has the property ) Ty = 1. This is so because
i=1
the eigenvector, corresponding to the eigenvalue equal
to 1,is up to a scalar always equal to (1, 1, 1,...,1).

It is necessary only to check if o> 0.

Empirical results show that in our case 71 is always
positive and hence stochastic. In the general case it is

necessary to prove that the transformation

and this problem is still an unresolved gquestion.



APPENDIX 2

This Appendix presents the estimations which verify the val-

idity of the assumption that the transition matrices P, (x) and

PS(X) can be diagonalized by one and the same transformation
matrix T(x) for each age group. The following matrices are com-
pared:

P5 (five-year observed)

P; = T, §5 ?;1 (five~year estimated)
and

P, (one-year observed)

P, = Tg A, gg1 (one-year estimated)

The comparison with the "Markovian" approximation
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is also given.

and

~4Q-



age group |
eo0000essd400

five—year obs.

0.88975 0.05502
0.00893 0.94485
0.00447 0.01899

one-year obs.

0.96181 0.01835
0.00331 0.98213
0.00102 0.00646

age group 2
chodbedeetoe

five-ycar obs.

0.91464 0.03916
0.00720 0.9547S
0.00259 0.01564

one—year obs.

0.97393 0.01269
0.60200 0.9874S
90.00081 0.00495

(X I

O

.05523
.04623
.97654

.01984
.01456
.99253

€.04620

o]

. 03805

0.98178

[s X Ra)

.Q1338
.01056
.99424

five-year est.

0.88912 0.05138
0.00916 0.94525
0.00314 0.02010

one—year est.

0.96203 0.01975
0.00318 0©0.98200
0.00149 0,00606

five-year est.

0.91401 ©0.04079
0.00639 0.95703
0.00277 0.01710

one—-year est,

0.97413 0.01222
0.00226 0.98676
0.00075 0.00453

(XL

o

.05950
.04559
.97677

.01823
.01481

0.99244

0.04520

s

.03658

0.98013

(SN~

.01365
.01098

0.99472

fifth degree

0.82383 0.08312
0.01490 0.91527
0.00484 0.03087

fifth root
90.97671 0.01091

0.00195 0.98868
0.0006S5 0.00414

fifth degree

9.87660 ©0.05936
0.00932 0.93954
0.00391 0.02394

fifth root
0.9821S 0.00854

0.00134 0.99118
0.00057 ©0.00350

SRy

.89305
.06983

0.96430

0.01238

[

.00937

0.99522

0.06404

[+

.05114

0.97216

o

.80932
.00748

0.99593

..Lh_
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age group S
esdedoterten

five~-year obs.

0.86049 0.07308
0.01060 0.92992
0.00416 0.04145

one~year obs.

0.94359 0.03039
0.00412 0.96806
0.00164 0.01735

age group 6

e 00200200

five-year obs.

0.87004 0.06207
0.01085 0.9275S5
0.00384 0.03156

one—year obs.

0.95297 0.02530
0.00365 0.97442
0.00133 0.01071

[eoXeoRo)

e

o0

OO0®

.06643
.05948
.95445

.02601
.02782
.98101

.06790
.06160
. 96460

.02173
.02193
.98790

five—-year est.

0.86276 0.97901
0.01083 0.92545
0.0034S5S 0.03990

one—year est.

0.94287 0.02865
0.00405 0.96979
0.00188 ©0.91810

five~year est.

0.86996 0.06733
0.00967 0.92711
0.00404 0.03085

one-year est.

0.95298 0.02318
0.00411 0.97457
0.60130 0.01098

o0

.05823
.06366

0.95665

0.02849

(sl

[

.02617
. 98002

.06271
.06322

0.96512

0.02384

]

.02132
.98772

fifth degree

9.74953 0.13111
0.01763 0.85576
0.90768 0.07882

fifth root
0.97080 0.01709

0.00236 0.98432
0.00071 0.00836

fifth degree

0.78704 0.11137
0.01602 0.88154
0.00654 0.05000

fifth root
0.97244 0.01451

0.00209 0.98474
0.00084 0.00643

[WEao)

. 11936
. 12662

0.91350

0.01211

o)

.01332

0.99093

SO

. 10159
. 10244
.94346

0.01306

Y

.01317

0.99273

_Eh-



age group 7
se0visebbves

five-year obs.

0.90142 0.04568
0.00842 0.94319
0.00293 0.02177

one-year obs.

0.96897 0.01478
0.00263 0.98262
0.00091 0.00703

age group 8
oRORWRLEIOOTS

five-year obs.

0.92492 0.03457
0.00659 0.95708
0.00223 0.901636

one~year obs.

0.97654 0.01141
0.00190 0.98801
0.00072 0.00S513

0.05290
0.04839
0.97530

0.01625
0.01476
0.99205

0.04051
0.03634
0.98141

0.01205
0.01009
0.99415

five-year est.

0.90127 0.04661
0.00825 0.94423
0.00295 06.02263

one~year est.

0.96903 0.01449
0.00268 0.98230
0.00090 0.00677

five-year est.

0.92414 0.03547
0.00582 0.95937
0.00246 0.01763

one~year est.

0.97681 0.01118
0.00217 0.98730
0.00063 0.00478

.05212
.04751
.97441

[~EoR ]

0.01648
.01503
0.99233

o

.04039
.03481
.97990

(XSRS

.01200
.01054
. 99459

[ssFeEos]

fifth degree

0.85469 0.06812
0.01204 0.91742
0.00440 0.03357

fifth root
0.97938 0.00984

0.00175 ©0,98846
0.00061 0.00467

fifth degree

0.88834 0.05373
0.00890 0.94221
0.00347 0.0248S

fifth root
0.98432 0.00738

0.00121 0.99167
0.00056 0.00361

0.07719
0.07054
9.96203

0.01079
0.00979
0.99472

9.05793
0.04890
0.97168

0.00830
0.00712
0.99589



age group 9
ss00b0008008

five—year obs.

0.94373 0.02775
0.00541 0.96619
0.00224 0.01291

one—year obs.

0.98451 0.00761
0.00140 0.99122
0.00051 0.00371

age group 10O
ssebsosOON

five~year obs.

0.95535 0.02340
0.00482 0.97118
0.00238 0.01038

one-year obs.

0.98808 0.00642
0.00127 0.99215
0.00034 0.00256

0O

.02853
.02839

0.98485

Q.00788

[a]

.00739

0.99578

o

.02125
.02401

0.98724

0.00550

o)

.006S58

©.99710

five-year est.

0.94308 0.02762
0.00504 0.96742
0.00189 0.01383

one~year est.

0.98469 0.00766
0.00149 0.99089
0.00060 0.00347

five-year est.

0.95530 0.02250
0.00444 0.96985
0.00138 0.01000

one—-year est.

0.98806 0.00666
0.00136 0.99251
0.00060 0.00264

0.02930
0.092753
0.98428

0.00765
0.00762
0.995394

0.02222
0.02572
0.98862

0.00528
0.00613
0.99675

fifth degree

0.92505 0.03651
0.00669 0.95723
0.00249 0.01813

fifth root
0.98833 0.00569

0.00104 0.9933S
0.00038 0.00282

fifth degree

0.94190 0.03100
0.00614 0.96158
0.00166 0.01257

fifth root
0.99083 0.00462

9.00091 0.99387
0.00028 ©.00203

0.03844
0.03608
0.97939

0.00597
0.00560
0.99680

0.02710
0.03228
0.98576

0.00450
0.00522
0.99769

_Sn_



five—year obs.

0.96875 0.01678
0.00441 0.97358
0.00227 0.00737

one-year obs.

0.98629 0.00739
0.00122 0.99256
0.00031 0.00236

age group I2
Cosdsisdtbre

five-year obs.

0.97825 0.01158
0.00516 0.97224
0.00153 0.00628

one-year obs.
0.99314 0.00371

0.00118 0.99321
0.00024 0.00174

oo

[

.01448
.02201
.98376

.00632
.00622

0.99733

(X

.01016
.02260

0.99220

0.00314

(]

.0056 1

0.99803

five-year est.

0.96408 0.01508
0.00242 0.97688
0.00110 ©0.00777

one-year est.

0.98900 0.00864
0.00207 0.99038
0.00060 0.00258

five-year est.

0.97524 0.01531
0.00491 0.97452
0.00066 ©0.00640

one-year est.

0.99386 0.00286
0.00129 0.99268
0.00048 0.00168

OO

OO®

.02084
.02070
.99113

00236
,00755
. 99682

0.00945

S

.02058

0.99234

0.00328

o

. 006084

0.99784

fifth degree

0.93340 0.03557
0.00586 0.96359
0.00153 0.01158

fifth root
0.99271 0.00308

0.00049 0.99532
0.00022 0.00157

fifth degree

0.96624 0.01810
0.00574 0.96667
0.00119 0,00854

fifth root
0.99499 0.00312

0.00100 0.99484
0.00013 0.00130

0.03103
0.83055
0.98689

0.00422
0.60419
0.99821

0.01565
0.02759
0.99027

0.00189
0.00417
0.99857

—917.-



age group 13
SeVOeFVOQOGERNSGTSES

five—-year obs.

0.97819 0.00968
0.00570 0.96726
0.00116 0.00601

one—year obs.

0.99283 0.00398
0.00163 0.99217
0.00027 0.00162

age group 14
tésrdtessens

five—year obs.

0.97596 0.00906
0.00514 0.96885
0.0016@ 0.00599

one-year obs.

0.99299 0.00364
0.00144 0.99132
0.00028 0.00171

0.01213
0.02704
9.99283

8.00313
0.00620
0.99810

0.01498
0.02601
0.99240

0.00338
0.00724
@.99801

five-year est.

90.97438 0.01610
0.00664 0.97065
0.00080 0.00596

one-year est.

0.99379 0.00245
0.00143 0.99135
0.00037 0.00160

five-year est.

0.97453 0.01192
0.00472 0.96985
0.00114 0.00601

one-year est.

0.99343 0.00272
0.00155 0.99100
0.00040 0.00172

0.00952
0.02272
0.99324

0.00376
0.00722
0.99803

0.01355
0.02543
0.99285

0.00385
0.00744
0.99788

fifth degree

0.96503 0.01935
0.00793 0.96163
0.00138 0.00796

fifth root
0.99481 0.00328

0.00136 0.99404
0.00016 0.00121

fifth degree

0.96548 0.01767
0.00702 0.95750
0.00140 0.00839

fifth root
0.99485 0.00243

0.00096 0.99388
2.00023 0.00122

0.01562
0.03044
0.399066

0.00190
0.00461
0.99863

0.81684
0.083549
0.99020

0.00273
0.00516
0.,99855

_Lh_
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APPENDIX 3

In this Appendix, the probabilities of dying and migrating
at exact age x are presented as estimated according to four
different models. Appendix 3.1 concerns individuals born in
region East Anglia; Appendix 3.2 - individuals born in region
South East; and Appendix 3.3 - individuals born in region Rest
of Britian.

The four different models of estimation are represented

as follows:

Table A - estimated with equation (2). These estimates
are the correct ones.
Table B - estimated with the parameters o and k, o being

disaggregated by age such that the schedule

is of the observed migration schedule

for Britain, and the area under the curve is

equal to o

Table C - estimated with the parameters o and k, o aggregated
by age.

Table D

estimated with equation (1).

The results in Tables B and C are approximately equal.
Both give much better approximations to the results in Table
A, than those from Table D.
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age

10
15
20
25
30
35
40
45
S0
5§
60

70

— OO0 OROOOOO®

— 00O OOOOOOO®

death

.022136
.001871
.001633
.003251
.003800
.003777
.004903
.007725
.013437
.023507
.036279
.061317
.097875
. 152e17
. 000000

death

.922138
.001871
.001633
.003251
.003797
.003777
.004903
.007725
.013437
.023511
.036282
.061319
.097874
. 152019
. 000000

®

SOOI

COPOOOOCOOROOOOOS

Appendix

Table A

migration from

COCOOOCOOOOOOO®

.anglia s.east
.004181 0.017998
.002506 0.015177
.002209 0.015518
.003073 0.030466
.003934 0.0339181
.003682 0.029948
.002833 0.020878
.002162 9.015796
.002167 0.012477
.002290 0.009976
.002165 6.007582
.001438 0.005829
.001059 0.005380
.001377 ©.065082
. 900000 6.000000
Table C
migration from
.anglia s.east
.002882 0.018335
.002461 0.015392
.002038 0.013536
.003291 0.028926
.004592 0.050819
.0033927 0.030489
.002671 0.020336
.002237 0.015947
.001795 0.012538
.001305 0.008951
.001136 6.008269
.00103S 9.006063
.001138 0.005441
.001684 0.005267
. 000000 9 .000000

COOOOOOOOOICOOOS

3.3 probabilities of dying and migrating
¢2800000000ee  tion 3 eecceeseccrcs
[ I XXX XY Y]

region

r.brit to age
r.brit
.955684 (%]
.980446 S5
.980641 10
.963210 1S
. 953085 20
.962593 25
.971386 30
.974317 35
.971920 40
.964227 45
.953974 50
.931416 55
.895686 60
.8415824 65
. 0806000 70

r.brit to age
r.brit
.956644 ("]
.980277 S
.982793 10
.964532 1S
.940792 20
.96 1807 25
. 972089 30
.974091 35
.972229 40
.966232 45
.954313 50
.931584 55
.895547 60
.841631 65
. 900000 70

r.brit

200V ¢s000P ¢ OO

—OOOOOOOOOOOOOS

—OOCOOOROOOOCOS

death

.022139
.001871
.001633
.603251
.003801
.003778
.004904
.007725
.013437
.023511
.036282
.061318
.097873
. 152017
. 000000

death

.021738
.001798
.001556
.003169
.003588
. 003647
. 004800
.007492
.013599
.023844
.038534
.061789
.098387
. 153253
. 000000

®

o

COOCOROOOOOOOO®

OOOOOOOOOOOROO®

Table B

migration from

COOPOOODODOOOOS

.anglia s.east
002782 0.017830
.002470 0,015382
.002095 0.013823
.003050 0.026778
.003803 0.037141
.003401 0.025834
.002594 0.019444
.002228 0.015956
.001815 0.012860
.001297 0.009262
.001155 0.008531
.000999 0.006328
.001103 0.005652
.001051 0.005482
. 000000 0 .000000
Table D
migration from
.anglia s.east
. 004690 0.029974
.003871 0.023720
.003043 0.019920
.005401 0.047277
.007540 0.077211
.006435 0.0439150
.904348 0.033083
.003422 0.024503
.002444 0.017808
.001625 6.012251
.001478 0.011135
.001125 0.008033
.001260 0.007228
.001212 0.007210
. 000000 0.000000

COOSOOOIOOOOOC®

r.brit to

r.brit

.957248
. 980277
. 982448
. 966921
.955255
. 966988
.973058
.974091
.971888
.965931
. 954033
.931356
.895372
.841449
. 900000

r.brit to
r.brit

.943598
.970611
.975481
.944153
.911661
.940768
.957769
. 964583
.966 149
. 962281
. 948853
.929053
.893125
.838325
. 000000

_Zg_



APPENDIX 4

In this Appendix, the expectations of life at age x are
represented. The structure of this Appendix is the same as of
Appendix 3. The expectations of life are given here, because
they give a better empirical verification of the discussions
in the text.

Appendix 4.4 is most helpful in this respect. It gives
the regional distribution of the life expectancies at age zero,
as a percentage to the total. This measure of migration is

called the migration level.
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total

.06435
.43669
.55702
.65361
.85471
.05791
.22318
.41728
.67406
.06776
.66482
.45778
.59584
. 12872
. 15285

Appendix 4.1

total e.anglia

.03786
.410629
. 53058
.62715
.82837
.03131
. 19673
.39109
.64829
.04238
.63855
.43355
.57315
. 10771
. 13194

Table A
e.anglia s.east
40.93980 14.47626
36.94765 14.62970
32.71232 14.32012
28.78300 13.86263
25.22608 13.26733
22.07278 12.46714
19.29715 11.48181
16.82754 10.39531
14.58276 9.25866
12.52962 8.11201
10.65217 6.98460

8.91441 5.88743

7.34651 4.87481

5.95201 3.97142

4.76494 3.20632

Table C

s.east
39.87083 15.27450
35.87259 15.440619
31.64669 15.13105
27.69015 14.69195
24.0859S 14.12933
20.95878 [3.31690
18.30097 12.25106
15.95318 11.06757
13.80612 9.84316
11.82975 8.61960
10.01059 7.43094

8.33453 6.27926
6.83635 5.21392
5.50704 4.26024
4.37217 3.44912

expectations of life by place of birth
.....‘.......‘...........“....“‘.‘.‘

initial

r.brit

17.64828
17.85934
17.52458
17.00798
16.36129
15.51799
14.44422
13. 19442
11.83264
10.42613
9.02865
7.65594
6.37453
5.20529
4.18159

r.brit

17.89253
18.09751
17.75284
17.24505
16.61309
15.75563
14.64470
13.37034
11.99900
10.59303
9.19802
7.81976
6.52289
5.34044
4.31064

region of cohort
G 0000000 00CEOSOOOEPPOOOOOPOPOPOLSIOOSS

age

10
15
20

P

3s
490
45

S5
60
65
70

e.anglia

Table B

total e.anglia

.09180
.46439
.58482
.68147
.88312
.Q873S5
.25232

.44584

.70110
.09241

.68634
. 47504
.60916
. 13769
. 15793

42
38

34.
30.
26.
23.
20.
17.

1$
13

LOYO—

.62563
.65459

38632
39919
75449
47217
53234
87718
. 44244
.20630
. 15388
. 26905
.58867
.09829
.82587

s.east

13.58164
13.73097
13.44905
13.02908
12.49320
11.78339
10.90085

9.91503

8
7
6
5.74510
4
3
3

.87327
.81328
. 76988

. 78855
.92913
. 19806

Table D

total e.anglia

.80315
. 16043
.28154
.38100
.57787
.77751
.92973
.11812
.36221
. 77694
.37483
.21351
.37084
.91985
. 98053

NWQLLONNVO

.77078
.73113
.89120
.45856
.47465
.07009
. 18631
.62420
.25938
.04332
. 93988
.94600
.06105
.27413
.60649

s.east

.77510
.93327
.44443
.76056
.90228
.76754
.39406
.92924
.44214
.97619
.56031
.21045
.96118
.85012
.92115

r.brit

16.88453
17.07884
16.74944
16.25321
15.63542
14.83179
13.81913
12.65363
11.38538
10.07283

24,

23

23.
20.
19.
17.

13.

11

10.

HLENNON®

.76258
. 46089
.23193
. 11027
. 13401

r.brit

25727
.49603
.94591
16188
. 20094
93987
34936
55667
.66070
75143
.87464
05706
.34861
. 79560
. 45289
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72.
.25768
64.
S8.
54.
49.
44.
40.
3S.
.8555S
26.
22.
18.
14.
.02812

l’)

72.
69.
64.
.44641
54.
49.
.97081
40.
.43467
.84056
26.
22.
18.
14.
12.

35

Appendix 4.2

Table A

total e.anglia

76063

37093
46222
64418
81932
98650
18504
44996

46224
28231
44316
99926

total

74550
24203
35522

62826
80346

16946

44775
26844
43030
98720
a1601

OO — e e = NN NN

.57926
.61335
.56135
.48366
.38796
.26641
. 11804
.95048
.77230
.59060
.40968
.23027
.05817
.89583
.75029

Table

e.anglisa

OO = == NNNNNN

.4382S
.46342
. 40892
.33465
.24561
. 12610
.97334
.8a167
.62196
.44174
. 26500
.09366
.93320
.78243
.64498

s.east

53.69096
49.91430
45.36145
40.96908
36.80819
32.85591
29.13494
25.63597
22.32324
19.20091
16.27994
13.558335
11.09296
8.93211
7.11128

s.east

53.43427
49.64874
45.097616
40.64504
36.44219
32.50816
28.86644
25.44020
22.17944
19.09189
16. 19757
13.49517
11.05284
8.89777
7.07244

expectations of life by place of birth

G0000UCOPOOOOOPCCRUOECEO0OOOISOIOSOIROOTS

r.brit

16.49041
16.73603
16.44813
16.00947
15.44803
14.69700
13.73352
12.59859
11.35442
10.06404
. 77262
.49869
.292a3
17132
. 16656

HENOQ®

r.brit

16.87598
17.12988
16.87014
16.46672
15.94046
15.16919
14.13102
12.92759
11.63327
10.30692
8.98518
7.67961
6.44426
5.30700
4.29859

initial region of cohort

s.east
G422 00000804 3006008850006 0Essss00

Table B

total e.anglia

.76698
.26402
.37720
.46841
.65029
.82510
.99222
. 19072
.45534
.86038
. 46599
.28550
.44527
. 99966
.02564

total

.79819
. 12948
.23332
.32033
.50202
.68726
.85318
.04630
.29754
. 70520
.31229
. 15569
.32352
. 88562
.94291

OO e = = N NN NN

. 19881
.22518
. 17621
. 10697
.02167
.91699
.79054
.64767
.49471
.33819
. 18213
.02862
.88313
.74464
.61683

s.east

54.69272
50.92850
46 .34756

.91064

37.69820
33.69706
29.92350
26.3521S
22.95306
19.73841
16.72888
13.92323

.39010

9.15718
7.26773

Table D

e.anglia

OO == = RNNNNNNWW

.00049
.02074
.93499
.81985
.68534
.52106
.32707
.11663
.89919
.68388
.47354
.27213
.08362
.90651
.746S55

s.east

.87308
.92278
.53592
.36416
.48161
.96223
. 80667
.90770
. 18192
.62465
.23545
.02200
.01872
.25817
. 79005

r.borit

15.87545
16.11033
15.85343
15.45170
14.93042
14.21166
13.27818
12.19690
11.00757
9.78378
8.55498
7.33364
6.17204
5.09784
4.14108

r.borit

22.92462
23.18596
22.76242
22.13633
21.33507
20.20396
18.71943
17.02197
15.21644
13.39666
11.60331
9.86156
8.22118
6.72084
S.40631
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Appendix 4.3 expectations of life by place of birth
GO0 0000 EC 0000000000000 00000000000000
initial region of cohort r.brit
CHCHGOOCLE LG 000000 0C 000G 0000C0000OC

Table A Table B

total e.anglia s.east r.brit age total e.anglia s.east r.brit
71.96190 1.33051 8.36979 62.26160 (%) 71.94492 1.13994 8.01793 62.7870
68.53434 1.34994 8.51325 58.67115 S 68.51715 1.15864 8.15388 59.20463
63.65786 1.32549 8.40152 53.93085 1o 63.64065 1.14079 8.04166 54.45820
54.75750 1.29045 8.21698 49.25008 15 58.74026 1.11224 7.86004 49.76799
53.94091 1.24672 7.94257 44.75162 20 53.92361 1.07444 7.60031 45.24886
49,13517 1.19011 7.52361 40.42144 25 49.11797 1.02334 7.20830 40.88632
44.31017 1.11931 6.97281 36.2180S 30 44.29305 0.95847 6.6944] 36.64017
39.51413 1.03806 6.34748 32. 12859 35 39.49707 0.88367 6.11145 32.50195
34.79619 0.95081 5.68466 28.16071 40 34.77940 0.80264 5.48742 28.48933
30.2259S 0.86057 5.00967 24.35571 45 30.20950 0.71847 4.84514 24.64590
25.87470 ©0.76876 4.34338 20.76256 5o 25.85888 0.63433 4.20931 21.01524
21.73273 0.67466 3.69290 17.36516 S5 21.71770 0.55159 3.58729 17.57882
17.95303 0.58378 3.09287 14.27637 60 17.93922 0.47417 3.00984 14.45521
14.58047 0.49951 2.55763 11.52333 65 14.56795 0.40186 2.49125 11.67485
11.68486 ©.42570 2.10235 9.15681 70 11.67320 ©0.33647 2.04715 9.28958

Table C- Table D

total e.anglia s.east r.brit age total e.anglia s.east r.brit
71.96233 1.19575 8.6617]1 62.10488 %] 72.04422 1.67049 11.76899 58.60482
68.53492 1.21545 8.81093 58.50854 S 68.58958 1.69563 11.95382 54.94012
63.65845 1.19724 8.69739 53.76382 10 63.70807 1.66608 11.76848 50.27349
58.75809 1.16848 8.51504 49.074S58 IS S8.80295 1.62132 11.48491 45.69672
53.94149 1.13023 8.25159 44.55966 20 53.98223 1.56295 11.079939 41.33929
48.13568 1.07687 7.82424 40.23458 25 49.16759 1.48281 10.44365 37.24113
44.31060 1.00737 7.24297 36.06027 30 44.33633 1.38078 9.60925 33.34629
39.51449 0.92694 6.58950 31.99865 35 39.53420 1.26460 8.69119 29,57841
34.79636 0.84035 S5.89883 28.05717 40 34.80239 1.14097 7.73416 25.92726
30.22581 0.75099 5.19515 24.27967 45 30.23069 1.01562 6.77442 22.44065
25.87410 0.66206 4.50344 20.70860 50 25.87479 0.89212 5.84091 19.14176
21.73193 0.57490 3.83035 17.32668 55 21.76488 ©.77351 4.94922 16.04214
17.95193 0.49349 3.20769 14.25076 60 17.97826 0.66222 4.12198 13. 19406
14.57885 0.41759 2.64964 11.51162 65 14.59352 0.55830 3.38529 10.64993
11.68218 0.34908 2.17223 9.16087 70 11.69842 0.46493 2.76441 8.46908

_gg_



e.anglia
s.east
r.brit

total

e.anglia
s.east
r.brit

total

[+

(el R )

-]

[XeXeo

Appendix 4.4

Table A

.anglia
.56032s
. 198130
.241544

. 000000

s.east
0.035449
0.737912
0.226639

1.000000

Table C

.anglia
.545893

.209131
.244976

. 000000

s.east
0.033476
0.734537
0.231987

1.000000

OOe®

oee

r.brit
.018489
. 116309
.865202

. 000000

r.brit

.016616
. 120364
.863019

.980000

migration levels

e.anglia
s.east
r.brit

total

e.anglisa
s.east
r.brit

total

Table B

e.anglia
0.583179
0.185816
0.231004

1.000000

s.east
0.030217
0.751615
0.218168

1.0080000

Table D

e.anglia
0.408922
0.257889
9.333190

1.000000

s.east
0.041217
0.643877
0.314906

1.000000

r.brit
0.015845
0.111445
0.872710

1.000000

r.brit
0.023187
0. 163357
0.813456

1.000000
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