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FOREWORD

One of the aims of the Optimization Task of the System
and Decision Sciences Area is to provide computer codes that
help to solve certain numerical problems.

This paper describes the use of such a code which is being
used successfully on a number of IIASA problems, in particular
for the Food and Agriculture Program and Human Settlements and
Services.
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NONSMOOTH OPTIMIZATION:
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Claude Lemarechal
INRIA-Rocquencourt, 78150 Le Chesnay, France

1. GENERALITIES

This code is a technical improvement of the code CONWOL,
and its role is also to minimize a function f(x) without con-

straints, i.e.,

* . .
find x 1in the n-dimensional space R" such that

f(x ) < f(x) for any X in RY .

It is assumed that, given x, one can compute f(x) and the
gradient g(x); however, g(x) is not assumed to vary continuously
when x varies. Thus, the possible applications for DYNEPS could
be:

-- when f is known to be kinky

-- when the differentiability properties of f are not

exactly known

-- when there are some constraints in the problem that

are introduced in the objective function through a
penalty term.

The code 1s only semiexperimental in the sense that dimen-

sionments are static, printouts are schematic, etc. However,
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it should be fairly reliable, and possible difficulties normally
come from incorrect use of the code, rather than deficiencies

of the code itself.

The method is iterative and constructs a sequence of "trial
solutions" Xy k=1,2,..., K, ind returns some Xy which is hope-
fully a good approximation of x . More specifically, the algo-
rithm aims at obtaining approximate optimality conditions of
the type

min £ > f(x € - (2)

i)

It starts with big €, (given by the user), reduces € when an

estimate such as (2) is obtained and stops when (2) is obtained

with e, < ¢ where ¢

— 0 !
the user.

0 is the final tolerance, also given by

Note that an estimate such as (2) supposes that f is convex.
However, even in this case it cannot be obtained and the algorithm

strives to approximate it by:
E(y) > £(xp) - e - vﬁ||y—xk]] , for any y in R", (3)

where n 1is another tolerance given by the user; it plays the

part of the squared norm of the gradient in the smooth case.

K+ 1 from xk is called an iteration and

is done in two successive steps:

The computation of x

-- first, compute a direction dk in Rn; this is done in
the subroutine GAUCHE. It is a rather complicated
process, which involves qreerr Iy the gradients com-
puted in iterations 1,..., k.

-- second, compute a stepsize t,e > 0; this is done in the
subroutine LIGNE.

Then two cases may occur. If LIGNE has found that f(xk+tkdk)

is less than f(xk) by a definite amount, then x, is normally

k

kel = X T tkdk' Otherwise X} 41 is kept as x

and only a new gradient is used to compute dk+

updated to x K’

1°



2. THE SUBROUTINE CALCUL

The first thing the user has to do when using DYNEPS is to
provide a fortran subroutine to compute function and gradient

values. This subroutine must have the following form:
SUBROUTINE CALCUL (X,G,F)
DIMENSION X (1), G(1) .

X is the value of the vector of variables at which f and g
must be computed, G is the value of the gradient at X, f is

the value of the function.

Thus, other information essential for CALCUL (such as N,
the number of variables) must be passed on through some COMMON
block to be shared between the main program which calls DYNEPS
and the (possibly many) subroutines which help characterize the

problem to be solved.
3. THE CALLING SEQUENCE

CALL DYNEPS (X, F, EPS, EPSO, ETA, ZERO, FMIN, IMP,
N, G, NMAX, ITMAX, NAPMAX)

where the parameters are:

X {(Input-Output), a vector of dimension n.
Input: the initial values of the variables given by the
user when calling DYNEPS.
Output: the final variables returned by DYNEPS.

F (I-0), a scalar. Same meaning but concerning function values.

EPS (I-0), an initial guess to get (2). A fraction of f(x1) -
min £ is a reasonable value. The choice of EPS affects
only the first iteration. EPS is modified by DYNEPS.

EPSO (I), the final value wished by the user in the bound (3).

ETA (I), the tolerance in (3). It is homogenous to the square
norim of the gradient, and a peculiarity of DYNEPS is



that very small values for ETA are acceptable. If Af and
Ax are of the same order of magnitude (i.e., gradients close
to unity) it is not unreasonable to ask for ETA in the

range 10—12 on PDP11.

ZERO (I). The machine precision; because the program is written

in single precision, it is approximately 10-6 on PDP11.

FMIN (I). A safeguard to prevent unbounded solutions. The pro-

gram stops 1if some X is found such that F (x) < FMIN.

IMP (I). Controls the printouts. The amount of printouts is an

increasing function of IMP. If IMP <

0 nothing is printed

1 something very short is printed at each iteration

2 some more information is printed at each iteration
(mainly useful for the designer of the algorithm).

3 1information is printed during executions of LIGNE; very
useful to check the computation of the gradient (see
Section 4).

IMP > 3 dumps the execution of GAUCHE and should never

be used.
N (I), number of wvariables.

G (I-0), a vector of dimension n.
Input: the gradient of f at the initial value of x.

QOutput: no meaning.

NMAX (I), controls the core requirement. Because GAUCHE uses

94

by the algorithm is theoretically infinite. Therefore, when

, 1 =1,..., k at iteration k, the amount of core required

the number of gradients is going to exceed NMAX, a cleaning
up is made to keep a number of gradients no larger than
NMAX. NMAX should be reasonably large (say at least 10).

ITMAX (I). Maximum number of iterations, i.e., DYNEPS stops
when k = ITMAX.

NAPMAX (I). Maximum number of calls to the subroutine CALCUL.



4. WARNINGS AND HINTS

Do not forget to call CALCUL before entering DYNEPS, in or-
der to properly initialize F, G, and possibly EPS.

Check that the internal dimensions are sufficient. One

must have:

in DYNEPS Dim. of Q > N*(NMAX - 1)
Dim. of § > N
Dims of EPSN, AL, JC > NMAX
in LIGNE Dim. of x > N
in GAUCHE Dim. of R > (NMAX, NMAX)

Dims. of RR, x, y, wl, w2, A, E, JC, IC > NMAX
In its present form, the program accepts N < 50 and NMAX < 20.

In case of difficulty, if the calling sequence is correct
and if ‘all the DIMENSION statements are large enough, then there
is a 99% probability that the gradient is badly computed in
CALCUL. To check it, run with IMP = 3. Then, at each iteration,
a line is printed at each call of CALCUL. The following no-

tations are used:

FK is f(xk), the initial value, at o-stepsize, for the line-
search.
F is f(xk+tdk), the objective function at the current stepsize

t. The printed F - FK gives the change in f when x 1is
changed from X, to x, + tdk'
D is the direction dk’ and (D,G) 1is the derivative with respect

to t of the one-dimensional function f(x, + tdk).

k
Then, drawing the observed points of the graph of £ and of

its tangents should indicate if the derivative seems to agree
with the function.

The standard cause of failure is when a sequence of step-
sizes is produced going to zero (from the right), with F - Fk
decreasing down to zero, whereas the derivative (D,G) is con-
stantly negative. The user must then judge whether this is due

to round off errors or to gross blunders in CALCUL.



5. AN ILLUSTRATIVE EXAMPLE

For demonstrative purposes, we will show the printout of a
run where the function to be minimized is MAXQUAD, as described
in "A set of nonsmooth optimization test-problems" (in "Non-
smooth optimization”" Lemarechal and Mifflin, eds., IIASA Pro-

ceedings Series Volume 3, Pergamon Press).

The subroutine CALCUL contains a mistake that has been pur-
posely introduced in the computation of the gradient. Instead
of

Z =z + 2. % a(ko,i,j) + x(3j) ,

Z2 = z + a(ko,i,j) + x(3)

The printout with IMP = 1 is given below.

1 1 f= (0.5337068e 04 eps= (J.180e 72
2 2 f= £.1623051le 03 eps= £.1G0e (2
3 5 f= 0.9297476e 02 eps= @.108Ce 12
4 6 f= 0.403272%e 02 eps= £.10Ce 02
5 S f= £.1132498e 02 eps= Z.10(e 02

6 12 f= 0.5169246e (1l eps= @.100e 2
7 16 f= ¢.4694872e 01 eps= (0.134e Cl
e 17 f= §.429979%2e (1 eps= (.94%e AC
9 20 f= £.1433475e 01 eps= J.316e 01
10 23 f= £.1433475e @1 eps= (.31l6e (1

f= €.14330558e 01 ...fin anormale

It gives for each iteration: the number of iteration, the
number of calls to CALCUL made so far, the current value of
the objective function, and of the convergence parameter EPS

(which is supposed to reduce down to EPSO).



Then we show the printout with IMP = 3. At the tenth itera-
tion we see that, when the stepsize is close to the optimal step-
size, the derivative is frankly negative. This is enough to

stop the algorithm.

1 1 f= @2.5337068e 4 eps= €.1€Ce C2
(d,8)= 0.164e 09 extra cout= 0.000e ¢
-(d,q0)= €.,1%4e (9
t initial £.78874365e-04 f-fk=-0.517e 04 (¢,g)= €.1S6e 07
t= 0.78le-04 logic= 3
2 2 f= €.1623051e @3 eps= 2.100e £2
(éd,d)= 0.218e 05 extra cout= f.231le 3
-(d,c)= @.241le G5
t initial 0.42885983e (00 f-fk= #.773e (6 (f,0)= @€.182e 07
t diminue £.42885985e-01 f-fk= 0.672e 05 (¢,a)= @.175e 07
t diminue 0.42885984e-02 f~-fk=-£.693e @2 (d,g)==-0.1C6e (3

t= £.429%9e-C2 logic= 3

3 5 f= 8.8297476e 02 eps= (.10Ce 02
(éd,d)= ©@.92%e €3 extra cout= 0.,000e ¢
~-(cd,gf)= PN.52%e €3
t initial 0.14928854e A f-fk=-0.526e 02 (J,g)= B.595e (3
t= 0.149e €0 logic= 3

4 6 f= §.4032729%9e 02 eps= 0.1€Ce 02
(d,é)= 0.35le 083 extra cout= 0.97%e 71

-(d,q9C)= (.449e £3
t initial €.23454417e 08 f-fk= 0.162e (3 (¢,q)= 0.1l45e A4
t diminue 0.36996784e-01 f-fk=-0.245e (2 (d,q)=-0.258e (3
interpol 0.56746125e-01 f-fk=-£.2%Ce 2 (d,g)= 0.1%7e 02
t= 0.567e-01 logic= 3

5 9 f= 0.1132498e 02 eps= £.100e N2
(d,d3)= 0.835e A2 extra cout= #,794e (1

-(¢,q0)= F.153e 03

t initial ©.35599217e (0 f-fk= 0.172e 03 (d,q)= (.57Se 03
t diminue 0.35599217e-81 f-fk=-0.58%e (1 (d,a)=-0.158e 3
interpol €.67638516e-01 f-fk=-0.616e £l (d,q)= C.4C%e @2

t= 0.67%e-01 lJogic= 3

6 12 f= 0.5169245e 01 eps= #.100e 02
(d,8)= 0.135e N2 extra cout= 0.0C0e 00
-(¢,q€)= 0.135e (2
t initial 0.91076344e 0f f-fk= N.132e 03 (d,g)= G.141le (3
t diminue 0.91076344e-01 f-fk=-0.547e (0 {(d,g)=-0.532e N1
interpol 0.17304507e QC f-fk= £.467e (1 (¢,g)= (.48%e 02
interpol £.99273228e-01 f-fk=-0.475e 00 (¢,g)= 0.10%e 02
t= £.993e-01 logic= 3

7 16 f= 0.4694672e 01 eps= 0.134e 01
(d,d)= €.17%e 02 extra cout= {£.557e @1
-(¢,q0)= .255e M2
t initial 2.37278481le-01 f-fk=-f,395e @0 {(d,g)= 0.25Ce (2
t= 0.373e-C1 logic= 3



e 17 f= 0.4299792e 21 eps= 0.94%¢ ¢
(d,3)= 0.273e €2 extra cout= £.978e (1
-(2,cl)= .350e 02
t initial 0.21601800e-01 f-fk=-0.138e M1 (J&,g)=-0.31%e 02
t grandit 0.43203600e-01 f-fk=-0.22%e 01 (d&,g)=-(.125%e (2
t grandit 0.86407200e-01 f-fk=-0.287e 01 (d&,q9)=-C.423e 01
t= 0.864e-01 logic= 3
9 29 f= 0.1433475e 01 eps= {.31l6e 01
(d,d)= 0.280e 00 extra cout= 0.000e 0O
-(d,qf)= (,28(e OC
t initial 0.20468793e 02 f-fk= A.103e 04 (,g9)= 0.497e P2
t diminue £.20460794e 01 f-fk= 0M.117e 02 (d,9)= 0.518e (1
t diminue 0.20460795e @ f-fk= 0.145e 00 (P,g)= £.11Ce 00O
t= 0.285e 00 logic= 2
10 23 f= 0.1433475e 01 eps= #.316e 01
(é¢,8)= 0.179e 00 extra cout= 0.008e €O
-(Jd,qgl)= 0.17%e AC
t initial 0.25611¢25e 028 f-fk= 0.678e-01 (d,qg)=-0.176e 00
t diminue 0.25611925e-¢1 f-fk=-0.391e-063 (Jd,g)=-C.456e 00
t diminue 0.35686791e-22 f-fk=-0.151e-03 (J,qg)=-0,483e (0
interpol (.84861079e-02 f-fk=-0.306e-03 (Jd,q)=-0.477e 0OC
interpol ©.12222219e-£1 f-fk=-0.385e-03 (J,qg)=-0.472e O
interpol #.15€94112e-01 f-fk=-0.422e-03 (J,q9)=-0.46%¢e AN
interpol €.173210856e-01 f-fk=-0.439e-03 (d,qg)=-0.4Rke O
interpol 0.19058¢86e-01 f-fk=-0.443e-C2 (d,g)=-C0.4R4e 70
interpol 0.20420330e-01 f-fk=-0.44¢e-03 (Jd,qg)=-0.452e 00
interpol 0.21493299%e-21 f-fk=-0.435e-63 (J,q)=-(.4Ale @C
interpol 0.22340419e-01 f-fk=-0.430e-¢23 (&,g9)=-0.460e 00
interpol €.230108¢75e~-€1 f-fk=-0.423e-03 (d,q)=-0.45%e 0C
interpol #.23541436e-01 f-fk=-0.419e-03 (2,g)=-C.45%e B0
interpol 0.23119440e-01 f-fk=-0.422e-03 (Jd,q)=-0.45%e 0O
interpol 0.23206325e-91 f-fk=-0.421e-03 (Jd,q)=-0.459e 00
interpol 0.2327562%e-081 f-fk=-0.421e-03 (d,g)=-7.45%9e 00
interpol 0.23330217e-01 f-fk=-0.420e-03 (d,q)=-0.45%e €O
interpol 0.23373697e-01 f-fk=-0.420e-63 (Jd,g9)=-0.45%¢ 20
interpol €.23407992e-61 f-fk=-0.,420e-03 (d,g)=-0.45% (0
interpol 0.23435395e-01 f-fk=-0.420e-03 (d,g)=-0.45%e O
interpol 0.,.23457082e-01 f-fk=-fR.41%e-03 (J&,g)=-C.45%e ¢
interpol 0.23439452e-61 f-fk=-0.420e-03 (&,9)=-0.45%e 0°F
interpol #.23442416e-C]1 f-fk=-0.420e-03 (c,g)=-F.45%e AC
interpol 0.23445072e-01 f-fk=-0.41%e-03 (d,q9)=-6.45%e (0
t= @.234e-01 logic= 1

f= 0.14330A558e 01 ...fin anormale



Finally we show the printout with IMP 1, when the mis-

take in CALCUL is removed.

1 1 f= (.5337668e 04 eps= M.100e 2
2 2 f= #.1622138e €3 eps= {.100e (02
3 5 f= 0.8726418e 02 eps= £.10Ce 2
4 6 f= £.786069%97e 01 eps= .100e €2
5 9 f= 0,564432%e (C1 eps= 0,644e 01

A 18 f= (.1785346e 01 eps= .434e 11
7 28 f= 0.62186650e 00 eps= {.284e (1
8 21 f= 0.4191631le (0 eps= P.21%e 1
9 22 f= €.2481052e (U eps= #.545e 0
10 24 f= 0.1365424e 00 eps= (.127e €O
11 26 f= -0.5789C71e (0O eps= M, 1{(0e 01

12 36 f= -0.7109213e €0 eps= [.21le Q8

13 35 f= -0.715926%e (0 eps= .¢91le-(2
14 38 f= -0.7197158e {0 eps= (.20le-(1

15 44 f= -00.7979E28e 00 eps= (0.£87e-01

15 46 f= -£.83468%3e 00 eps= (,61lle-{1

17 48 f= -0.83468%93e (0 eps= f.hlle-(1

18 ) f= -£.8360314e 00 eps= {1.365e-C2
19 57 f= -0,8395631le OQ eps= €£.382e-(2
20 61 f= -6.84081815e b eps= (.8056e-C3
21 65 f= -0.840219%1e (0 eps= @.100e-03
22 n8 f= -0.8411544e Q0 eps= $.178e-0C2
23 71 f= -0.8411846e 00 eps= @.1¢fe-03
24 74 f= -0.8412031e 00 eps= (.131le-€3

25 79 f= -0.84125%1e 00 eps= (0.127e-03
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25 95 f= -0.8413643e 00 eps= [.15Ge-03
27 o7 f= -9.8413853e (00 eps= (.100e-03
28 180 f= -0.8413895e (0 eps= (.10@¢e-(C3
29 101 f= -p.84138%5e 00 eps= (.1¢Ce-03
3 162 f= -£.8413895e 00 eps= 0.10¢e-G3
31 183 f= -A#.84138%5e 00 eps= #.1C0e-03

32 194 f= -£.84138%5e (10 eps= @.100e-€3
error from gauche. at entry, the olcd solution is optiral
f=-0.84138%54e 00 ...fin anormale

Now some trouble appears in the computation of the direction.
Because the subprogram that computes this direction is fairly
reliable, the trouble must be due to rounding off. This is
confirmed by the fact that we have used ETA = 10-10, whereas
the squared norm of the gradient in the neighborhood of the

solution is in the range 10“.



