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Abstract 

• Size-structured population models (SSPMs) are widely used in ecology to account for 

intraspecific variation in body size. Three characteristic features of size-structured popula-

tions are the dependence of life histories on the entire size distribution, intrinsic popula-

tion renewal through the birth of new individuals, and the potential accumulation of indi-

viduals with similar body sizes due to determinate or stunted growth. Because of these 

three features, numerical methods that work well for structurally similar transport equa-

tions may fail for SSPMs and other transport-dominated models with high ecological real-

ism, and thus their computational performance needs to be critically evaluated.  

• Here, we compare the performance of four numerical solution schemes, the fixed-mesh 

upwind (FMU) method, the moving-mesh upwind (MMU) method, the characteristic 

method (CM), and the Escalator Boxcar Train (EBT) method, in numerically solving three 

reference problems that are representative of ecological systems in the animal and plant 

kingdoms. The MMU method is here applied for the first time to SSPMs, whereas the 

three other methods have been employed by other authors.  

• Our results show that the EBT method performs best, except for one of the three reference 

problems, in which size-asymmetric competition affects individual growth rates. For that 

reference problem, the FMU method performs best, closely followed by the MMU method. 

Surprisingly, the CM method does not perform well for any of the three reference prob-

lems.  

• We conclude that life-history features should be considered when choosing numerical 

method.  

Keywords: Size-structured population, Escalator Boxcar Train, life history, asymmetric com-

petition, upwind scheme, moving mesh, characteristic curve 
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1. Introduction 

Intraspecific variation in individual physiological states such as body size is a ubiquitous fea-

ture of ecological communities. This variation typically arises from individual ontogenetic 

growth, although it can also arise from other processes such as genetic variation, phenotypic 

plasticity, or morphological sex differences. As body size changes during individual life cy-

cles, many size-dependent life-history processes such as consumption, growth, reproduction, 

and mortality, vary accordingly. These in turn affect the environment that the species experi-

ence, for example, by depressing resource abundances or aggravating size-dependent mortali-

ty. This interplay between individual variation and the experienced environment is often im-

portant for the population dynamics and can give rise to emergent phenomena such as alterna-

tive stable states and population cycles (de Roos et al., 2003; Persson and de Roos, 2013).   

 

Size-structured population models (SSPMs) account for intraspecific variation by assigning 

body sizes to individuals and tracking how the number of individuals with a given body size 

change over time as a consequence of growth, mortality, and reproduction. While it can some-

times suffice to classify individuals into two or more body-size classes (de Roos et al., 2008; 

Bodin et al., 2012; Meng et al., 2013), these models generally account for continuous changes 

in individual size and associated vital rates. Although the lack of widely available standard-

ized tools complicates numerical investigations of SSPMs, three principal types of numerical 

methods are used for this purpose: the upwind finite-difference method, the characteristic 

method, and the Escalator Boxcar Train (EBT) method. These are either adapted from, or 

closely related to, numerical methods for partial differential equations, but they differ in in-

corporating feedback from the population to individual vital rates and to the inflow of new-

born individuals. 
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First, the upwind finite difference method (e.g., Sulsky, 1994; Ackleh and Ito, 1997; Ackleh 

et al., 2002; Fischer et al., 2006; Krzyzanowski et al., 2006) works by discretizing the distri-

bution of individuals in the state variable, body size, and in time. For each of the resulting 

mesh points (i.e., the discretized state variables), the finite difference method approximates 

the density of individuals with the corresponding body size at that particular time. The change 

in the density from the mesh point at a given time to the mesh point at the next time is deter-

mined by approximating the rates of change as finite-difference quotients. These quotients 

include more mesh points in the direction of individual growth, referred to as the “upwind” 

direction. We use the name fixed-mesh upwind (FMU) for the most common case of a fixed, 

unchanging mesh. The FMU method is often very fast, but it can fail at correctly resolving the 

population dynamics of populations for which the population density vary rapidly with body 

size. One way to deal with this problem, which has proven successful in computational fluid 

dynamics, is to redistribute the mesh dynamically according to the gradient of the solution 

(Huang et al., 1994; Li and Petzold, 1997; Stockie et al., 2001). We adapt this technique for 

SSPMs and evaluate the performance of the resulting moving-mesh upwind (MMU) method. 

 

Second, the characteristic method, by contrast, tracks the population density along growth 

trajectories of individuals. Along these trajectories, known in the literature as characteristic 

curves, the change in the population density can be determined directly from individual 

growth and mortality rates. A SSPM can thus be approximated by a system of coupled ordi-

nary differential equations, in which the coupling reflects the feedback from the environment 

(Ito et al., 1991; Sulsky, 1994; Angulo and Lopzez-Marcos, 2002; Kostova, 2003; Angulo and 

López-Marcos, 2004; Angulo et al., 2005a; Angulo and López-Marcos, 2005b, Angulo et al., 

2014, 2016, Falster et al., 2016). A key advantage of these methods is that they avoid numeri-

cal diffusion, i.e., the artificial difference in the behavior between the simulated system and 
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the intended system (an illustration of this effect is given in Supplementary Fig. S1, Appendix 

S1).  

 

Third, the Escalator Boxcar Train (EBT) (de Roos, 1988; de Roos et al., 1992; Brännström et 

al., 2013), which among the investigated numerical methods is probably the one most com-

monly used among theoretical biologists, is analogous to particle methods in computational 

physics (Brännström et al., 2013; Carrillo et al., 2014). The EBT method partitions the popu-

lation into a number of cohorts (individuals of similar age and size) and tracks the total abun-

dance as well as the mean body size of the individuals contained in each cohort. It thus differs 

from the characteristic method which tracks the population density of individuals with a given 

size. The fact that the EBT method allows a natural biological interpretation as the number of 

individuals in cohorts, along with the desirable property that it avoids numerical diffusion, has 

most likely contributed to its adoption by theoretical biologists. 

 

In this paper, we evaluate the performance of representative numerical methods of the three 

aforementioned types as measured by their numerical accuracy and computational efficiency. 

Specifically, we compare the FMU method, the MMU method, the characteristic method, and 

the EBT method in order to distinguish their strengths and weaknesses in solving SSPMs. To 

maximize the chances that our conclusions reflect the needs of practitioners, we use three rep-

resentative SSPMs as our reference problems and compare the accuracy of the four numerical 

methods using two geometric measures and four ecological statistics. Although we specifical-

ly consider SSPMs, most of the insights from our study should be relevant also for theoretical 

ecologists who work with transport-dominated ecological models.  
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Our paper is structured as follows. In Sect. 2, we specify the four numerical methods and in-

troduce the three reference problems that we use for benchmarking. In Sect. 3, we compare 

the performance of the four numerical methods. Finally, in Sect. 4, we summarize our conclu-

sions and discuss the strengths and weaknesses of the investigated numerical methods. 

2. Methods 

We start by describing how size-structured population models (SSPMs) are represented in the 

framework of partial differential equations. We continue with a brief overview of the four 

numerical methods. A detailed description can be found in Appendix S2-S5. The three refer-

ence problems and their associated measures of performance are presented next, with the life-

history functions of the three reference problems given in Appendix S6-S8. 

2.1 Representation of size-structured population models 

Size-structured population models are often formulated with the McKendrick-von Foerster 

equation (McKendrick, 1926; von Foerster, 1959), 

𝜕𝜕
𝜕𝜕𝜕𝜕
𝑢𝑢(𝑥𝑥, 𝑡𝑡)   + 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑔𝑔(𝑥𝑥,𝐸𝐸𝜕𝜕)𝑢𝑢(𝑥𝑥, 𝑡𝑡)� = −𝜇𝜇(𝑥𝑥,𝐸𝐸𝜕𝜕)𝑢𝑢(𝑥𝑥, 𝑡𝑡),                  (1a) 

𝑢𝑢(𝑥𝑥b, 𝑡𝑡) = 1
𝑔𝑔(𝜕𝜕b,𝐸𝐸𝑡𝑡)∫ 𝛽𝛽𝜕𝜕m

𝜕𝜕b
(𝑥𝑥,𝐸𝐸𝜕𝜕)𝑢𝑢(𝑥𝑥, 𝑡𝑡)d𝑥𝑥,                             (1b) 

 𝑢𝑢(x, 0) = 𝑢𝑢0(𝑥𝑥),                             (1c) 

in which the size of an individual, 𝑥𝑥, increases from its size at birth, 𝑥𝑥b, to a maximum value, 

𝑥𝑥m. The individual size x can, for example, represent the body mass or length of animals (e.g., 

de Roos, 1988; Hartvig et al., 2011), or the height or leaf mass of plants (Falster et al., 2010). 

The size distribution of individual abundance is denoted by 𝑢𝑢(𝑥𝑥, 𝑡𝑡); it changes over time de-

pending on the rates of individual growth, 𝑔𝑔(𝑥𝑥,𝐸𝐸𝜕𝜕) , mortality, 𝜇𝜇(𝑥𝑥,𝐸𝐸𝜕𝜕) , and fecundity, 

𝛽𝛽 (𝑥𝑥,𝐸𝐸𝜕𝜕). These size-dependent vital rates determine an individual’s life history. 𝑢𝑢0(𝑥𝑥) is the 

initial size distribution. Finally, 𝐸𝐸𝜕𝜕 represents the dependence on relevant aspects of the envi-
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ronment, such as resource abundance, or light availability and might be represented by a sin-

gle number, a vector, or a function of size, depending on the environmental dimensionality. 

Based on these ingredients, Eq. (1) deterministically describes the population dynamics. 

 

In this equation, individuals interact through the environment 𝐸𝐸𝜕𝜕. The environment affects the 

vital rates of individuals which, in turn, often depend directly or indirectly on the size distri-

bution 𝑢𝑢(𝑥𝑥, 𝑡𝑡). In our reference problems, the environment either follows an ordinary differ-

ential equation (ODE) (the Daphnia model) or a weighted integral (the fish and vegetation 

model), and changes dynamically (therefore denoted 𝐸𝐸𝜕𝜕).  

2.2 Numerical methods 

Figure 1 gives a schematic overview of the four numerical methods which we use to numeri-

cally approximate the solution to Eq. (1). We have implemented the methods in Matlab 

R2014b and use the Matlab function ODE45 (Runge-Kutta method at 4th and 5th order; Dor-

mand and Prince, 1980) with default error tolerance for the integration of ODEs. We now 

briefly describe each of the four implemented methods in turn and refer the reader to Appen-

dix S2-S5 for details. 

 

The fixed-mesh upwind (FMU) method and the moving-mesh upwind (MMU) methods both 

partition the size range (i.e., the interval from 𝑥𝑥b to  𝑥𝑥m) into a number of non-overlapping 

size classes. A finite difference scheme is used to update the density of individuals in a size 

class at the next time step. This finite difference in the state variable is biased in the direction 

of growth so that only information about abundances in the focal and smaller size class is 

used. This ensures that a small disturbance to the solution can only propagate in the direction 

of growth. The term “upwind” stands for the direction from which individuals are growing 
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into the focal size class. Higher-order versions of the differencing scheme exist which pre-

dominantly, but not exclusively, use size classes in the upwind direction. For this paper, we 

study the most common first-order scheme. The FMU and MMU methods differ in that the 

former employs a static mesh which we take to be equally spaced (arrows in Fig. 1A) while 

the latter employs a dynamic mesh which continuously resizes to maintain relatively high 

resolution in the size distribution with steep changes (arrows in Fig. 1B). In general, any 

measure of mesh “badness” can be used in the moving-mesh method which then aims to place 

the mesh points so that each size class has the “same amount” of badness (see Huang and 

Russel, 2011, and Appendix S3).  

 

We have adapted the characteristic method (CM) from Angulo and López-Marcos (2004). As 

their constraints on the smoothness of the life-history functions are generally not satisfied by 

our reference problems, the convergence of the method is not guaranteed. The characteristic 

method solves Eq. (1a) along characteristic curves (arrows in Fig. 1C) on which the underly-

ing partial differential equation reduces to an ordinary differential equation (ODE). Each 

characteristic curve, which corresponds to a growth trajectory of an individual, has two asso-

ciated ODEs that track the characteristic curve (red curves with arrowheads in Fig.1C) and the 

population density (solid circles in Fig.1C). The ODEs are coupled through the environmental 

variable (𝐸𝐸𝜕𝜕  ) and the system is integrated for a time interval Δ𝑡𝑡, at the end of which a new 

characteristic curve (orange circle in Fig.1C) is introduced to accommodate newborn individ-

uals of size at birth. The initial population density of the new characteristic curve is deter-

mined by the boundary condition (1b). As new characteristic curves are introduced at fixed 

time intervals, the number of characteristic curves increases linearly over time. We maintain a 

constant number of characteristic curves by removing the interior characteristic curve with the 

least distance to the closest to its two neighbors (Appendix S4). 
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The Escalator Boxcar Train (EBT) method was designed by de Roos (1988) for solving phys-

iologically structured population models and it is widely used in theoretical biology, possibly 

since the numerical scheme admits a simple biological interpretation. In contrast to the CM 

method, the EBT method divides the population into a number of cohorts and tracks the aver-

age size of individuals in the cohorts (red curves with arrowheads in Fig. 1D) and their abun-

dance (boxes in Fig. 1D) through a system of ODEs. Since the EBT method tracks the number 

of individuals in a cohort rather than the density of individuals with a certain size, it can work 

well when individual growth ceases at a certain size, which usually causes sharp peaks in the 

size distribution when a large fraction of all individuals in the population have very similar 

size.  A boundary cohort (orange boxes in Fig. 1D) with slightly different dynamics accounts 

for offspring of mature individuals (Appendix S5). The boundary cohort is internalized at 

regular time intervals and, if the internal cohorts exceed the maximal number allowed, the 

cohort with the lowest abundance is deleted.  

 

Since the EBT method does not approximate the density distribution per se, we track the 

boundaries of each cohort through an additional system of ODEs so that the size distribution 

can be obtained and compared to other methods, but we exclude the computational time for 

calculating the cohort boundaries when we compare the EBT method to other methods in 

terms of the measures given in Subsection 2.4, Eq. (2).  

 

The environment 𝐸𝐸𝜕𝜕 in Eq. (1) has to be approximated in order to evaluate individual vital 

rates of growth, mortality, and reproduction. For two of our reference problems (fish and veg-

etation models), this requires integrating the size distribution weighted with a size-dependent 

factor that scales the influence of individuals with this size. These integrals appear in the life-

history functions as specified in Table S4 and S5 in Appendix S7 and S8, and are calculated 
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from the computed size distribution (green curves in Fig. 1) in the FMU, MMU, and CM 

method. In the EBT method, they are instead calculated as a sum over cohorts (de Roos et al., 

1992).  

2.3 Reference problems  

We investigate how well the four numerical methods approximate the solution to three repre-

sentative SSPMs covering both the animal and plant kingdoms: 

• A Daphnia model of a size-structured consumer feeding on unstructured dynamic re-

source algae (de Roos, 1990). Individuals cease to grow at a certain size due to compe-

tition for food, resulting in a singularity in the size distribution of individual abun-

dance. The life-history functions are given in Appendix S6. 

• A fish-population model in which all life-history functions are density-dependent. This 

model is adapted from the size-structured food-web framework of Hartvig et al. (2011). 

Predation is size dependent, with larger individuals preying upon smaller. We consider 

a single size-structured fish population feeding on a dynamic resource. Individuals 

slow down their growth as they mature, resulting in an accumulation of individuals 

near the size at maturation. The life-history functions are given in Appendix S7. 

• A simplified single-patch version of the Falster et al. (2010) vegetation model. As a 

consequence of strong asymmetric competition for light among trees of different 

heights, the growth trajectories of trees (hence also the characteristic curves) can di-

verge substantially over time even if they start growing at almost the same time. The 

equilibrium size distribution has two peaks, corresponding to understory and canopy 

vegetation.  The life-history functions are given in Appendix S8. 
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For the Daphnia model, the analytical equilibrium solution to Eq. (1) can be determined (Ap-

pendix S9). As reference equilibrium solutions for the other two reference problems we use a 

finely resolved numerical approximation with 4000 size classes obtained with the FMU meth-

od. It is worth pointing out that setting the time derivative to zero in equation (1) to solve 

equilibrium solution generally fails for SSPMs (e.g., the fish and vegetation models) as the 

vital rates often depend on the entire size distribution.   

2.4 Performance measures 

We compare the performance of the four numerical methods in terms of their computational 

efficiency, as measured both by computational load (CPU time in seconds), and in terms of 

their numerical accuracy as quantified by the error of the computed numerical solution rela-

tive to the reference solution. We quantify this error once the solution reaches dynamical 

equilibrium using two geometric measures of the error in the size distribution and four eco-

logical measures that reflect difference in salient population statistics1.  

 

We define the two geometric measures as follows, 

𝑅𝑅∞ =
max

𝑥𝑥b≤𝑥𝑥≤𝑥𝑥m
|𝑢𝑢c(𝜕𝜕)−𝑢𝑢e(𝜕𝜕)|

max
𝑥𝑥b≤𝑥𝑥≤𝑥𝑥m

𝑢𝑢e(𝜕𝜕)    and    𝑅𝑅1 =
∫ |𝑢𝑢c(𝜕𝜕)−𝑢𝑢e(𝜕𝜕)|𝑥𝑥m
𝑥𝑥b

d𝜕𝜕

∫ 𝑢𝑢e(𝜕𝜕)𝑥𝑥m
𝑥𝑥b

d𝜕𝜕
.                         (2a) 

These two quantities measure the relative difference between the computed equilibrium solu-

tion 𝑢𝑢c and the reference equilibrium solution 𝑢𝑢e. The first measure, 𝑅𝑅∞, is the maximal rela-

tive difference between the computed and reference size distribution at any one value of indi-

vidual size, whereas 𝑅𝑅1 is the sum of the relative difference across the size distribution. The 

                                                 

1As the density at the maximum realized size is infinite in the reference solution of the Daphnia model (Appen-
dix S9), the two geometric measures will be inappropriate. To enable a meaningful comparison, we only com-
pare the part of the solution between the offspring size and 95% of the maximum size at equilibrium. 
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four ecological measures are the relative errors in total abundance, 𝑅𝑅n, total biomass, 𝑅𝑅b, av-

erage body size, 𝑅𝑅s, and total fertility, 𝑅𝑅f. Specifically, we let 

𝑅𝑅n = ∣ 𝑁𝑁c − 𝑁𝑁e ∣/𝑁𝑁e,  𝑅𝑅b = ∣ 𝐵𝐵c − 𝐵𝐵e ∣/Be,  𝑅𝑅s = ∣ 𝑥𝑥c − 𝑥𝑥e|/𝑥𝑥e,  𝑅𝑅f = |𝐹𝐹c − 𝐹𝐹e|/𝐹𝐹e.  (2b) 

Here, 𝑁𝑁 = ∫ 𝑢𝑢(𝑥𝑥)d𝑥𝑥𝜕𝜕m
𝜕𝜕b

 is the population abundance, 𝐵𝐵 = ∫ 𝑥𝑥𝑢𝑢(𝑥𝑥)d𝑥𝑥𝜕𝜕m
𝜕𝜕b

 is the population bi-

omass, �̅�𝑥 = 𝐵𝐵/𝑁𝑁 is the average individual body size, and 𝐹𝐹 = ∫ 𝛽𝛽(𝑥𝑥)𝑢𝑢(𝑥𝑥)d𝑥𝑥𝜕𝜕m
𝜕𝜕b

 is the popula-

tion’s fecundity rate. As before, the subscript indicates whether the quantity is calculated from 

the computed numerical solution or from the reference equilibrium solution.  

 

When we determine numerical solutions for comparative purposes, using either of the four 

numerical methods we investigate, the integration times for the respective reference problems 

are 150 for the Daphnia model, 10 for the fish model, and 400 for the vegetation model, by 

which the considered models have reached equilibrium size distribution. The frequency (i.e., 

1/Δ𝑡𝑡) of introducing a new characteristic curve or cohort is also different for each reference 

problem. Specifically, we double the frequency while doubling the number of characteristic 

curves and cohorts. The time interval Δ𝑡𝑡 for 50 mesh points (characteristic curves and cohorts) 

is 0.2 for the Daphnia model, 0.01 for the fish model and 0.1 for the vegetation model.  

3.  Results 

To start with, we find that the characteristic method (CM) does not perform well for any of 

the three reference problems. Specifically, the CM method fails for the Daphnia model as the 

density of individuals at size of maturation in the equilibrium size distribution is infinite (Ap-

pendix S6). This sharp peak causes large numerical errors when approximating growth rates. 

The CM method can work for the fish model but only with poor resolution (Appendix S10). 

The poor resolution results from the steep changes in the size distribution (solid lines in Fig. 2) 

that leads to poor approximation of the growth rate. The CM method also fails for the vegeta-
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tion model due to the sharp changes in the size distribution (solid lines in Fig. 2) and the sig-

nificant divergence of the individual growth trajectories as a consequence of size-asymmetric 

competition for light. This divergence detrimentally leads to uneven resolution of the size 

distribution, and numerical aggregation of individuals at both small and large body size. For 

SSPMs with neither sharp changes in the size distribution nor diverging characteristic curves, 

such as the model presented by Angulo and López-Marcos (2004), we show in Appendix S11 

that the CM method performs satisfactory. The problem of diverging characteristic curves can 

be overcome with an adaptive time schedule for the introduction of characteristic curves (Fal-

ster et al., 2016), but this recently developed improvement to the CM method is out of the 

scope of the present work. To focus on the performance of the other three numerical methods, 

we will not consider the CM method further in this section.  

 

Figure 2 shows the numerically computed size distributions obtained using the fixed-mesh 

upwind method (FMU), the moving-mesh upwind method (MMU), and the Escalator Boxcar 

Train (EBT) method. The FMU method is accurate for solutions with small to intermediate 

gradients but is otherwise inaccurate (Fig. 2A-C). This is expected since the FMU method 

employs (logarithmically) equally spaced mesh points, which do not account for the solution 

structure. Consequently, excessive mesh points may be used to resolve regions of the solution 

that only require a few mesh points for high accuracy, while too few mesh points are in the 

regions that require a finer mesh for high accuracy. In contrast, the MMU method redistrib-

utes mesh points dynamically to ensure more mesh points in places with sharp changes, thus 

overcoming the shortcomings of the FMU method (Fig. 2D-F) at the expense of higher com-

putational demands.  
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The EBT method approximates solutions fairly accurately and captures the steep gradients in 

the Daphnia and fish models (Fig. 2G, H). While the EBT method successfully resolves steep 

gradients, it uses relatively few cohorts for small individuals as a consequence of infrequent 

internalization of the boundary cohort (i.e., large Δ𝑡𝑡 in Eq. S8 in Appendix S5). Increasing the 

frequency of internalizations decreases the cohort width, but since we keep the number of 

cohorts fixed for comparative purposes, more frequent internalization (smaller Δ𝑡𝑡) causes 

larger numerical errors since cohorts that still exert significant effects on the population dy-

namics will then be removed or merged. The accuracy of the EBT method is unsatisfactory 

for the vegetation model (Fig. 2I), for the same reason that the CM method fails to accurately 

resolve the size distribution. Size-asymmetric competition causes divergence in growth trajec-

tories and hence cohorts, which increases the maximum width between approximating cohorts 

and undermines the numerical approximation.  

 

Figure 3 shows how the performance of the numerical methods compare in terms of numeri-

cal accuracy and computational efficiency, as measured by the geometric measure (𝑅𝑅1), the 

ecological measure of population biomass (𝑅𝑅b), and the computational time required. Results 

for other measures are similar and presented in Appendix S12. The EBT method is the most 

accurate method for the Daphnia and fish models, but not for the vegetation model. The 

MMU method is with few exceptions more accurate than the FMU method for the same num-

ber of mesh points (computational time is not considered here), in particular in determining 

the population biomass in the Daphnia model and vegetation model. The EBT and FMU 

method are computationally more efficient than the MMU method, except in the vegetation 

model for which the FMU method is computationally more efficient than both the EBT and 

MMU method  
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In summary, Fig. 3 shows that the EBT method has the best performance for the Daphnia and 

the fish model. For the vegetation model, either the MMU or the FMU method performs best 

depending on whether one values numerical accuracy or computational efficiency highest. 

Moreover, our results are robust also when considering transient dynamics (Appendix S13). 

4. Discussion 

In this paper we have evaluated the performance of four numerical methods for size-

structured population models (SSPMs) in solving three ecologically relevant reference prob-

lems. Our conclusions can be stated as follows.   

  

(i) The fixed-mesh upwind (FMU) method is computationally the most efficient (has the fast-

est execution time for the same number of mesh points) for all three reference problems. The 

static mesh used in the FMU method makes it possible to repeatedly use size-dependent inter-

action kernels such as the predation kernel in the fish model (Appendix S7) or the shading 

kernel and the assimilation kernel in the vegetation model (Appendix S8), while the other 

three numerical methods require evaluating size-dependent interaction kernels at each itera-

tion. This numerical method therefore has good performance across the board when the size 

distribution does not have very steep gradients, but when very steep gradients are present, 

such as the sharp peak in the Daphnia model, the method may fail to accurately resolve the 

size distribution. Since the FMU method is easy to implement and generally performs well, 

we recommend it as the first choice for numerically solving SSPMs, especially when there is 

no a priori reason to expect very steep gradients in the size distribution.  

 

(ii) The moving-mesh upwind (MMU) method is suited for SSPMs in which asymmetric 

competition significantly affects growth rates, in particular when the number of mesh points is 
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low. By dynamically adjusting the mesh according to the gradient of the size distribution, this 

method efficiently captures rapid changes in the size distribution and hence enhances the nu-

merical accuracy. The moving-mesh technique has been widely used in computational fluid 

dynamics (Huang and Russell, 2011) and numerical experiments have shown that, for certain 

partial differential equations, the moving-mesh technique with the equidistribution principle 

(equal arc-length between mesh points; de Boor, 1973) decisively improves computational 

performance (e.g., Huang et al., 1994; Stockie et al., 2001; Beckett et al., 2001; Huang and 

Russell, 2011). In contrast to this finding in computational fluid dynamics, our numerical in-

vestigations indicate that the moving-mesh technique is not of fundamental importance for 

enhancing computational performance in investigations of ecological SSPMs. The primary 

reason for our contrasting conclusion is the need to repeatedly evaluate the nonlinear size-

dependent life-history functions. This repetitive calculation of the size-dependent interaction 

kernels reduces the computational efficiency and overall performance of the method. In fact, 

the time required to evaluate the interaction kernels is roughly half of the total computational 

time (around 40% in the fish model and 60% in the vegetation model), whereas the calcula-

tion of mesh equation (Eq. S3 in Appendix S3) consumes only around 10% of the total com-

putational time. Thus, we conclude that the drawback of having to repeatedly evaluate the 

vital rates either offsets (vegetation model) or exceeds (fish model) the advantage of enhanced 

numerical accuracy. One more disadvantage of the MMU method is that some trial-and-error 

is needed to choose a good monitor function, and inappropriate choice can undermine the per-

formance.  

 

(iii) The characteristic method (CM) appears generally unsuited for SSPMs in which steep 

gradients are present in the size distribution. Since the environment 𝐸𝐸𝜕𝜕 will generally depend 

directly or indirectly on the entire individual size distribution, the appearance of steep gradi-
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ents in the size distribution (e.g., Fig. 2) results in large approximation errors for the vital 

rates for individual life histories. These approximation errors can be reduced by allowing for 

more characteristic curves, but this further increases computational time. For SSPMs in which 

size-asymmetric competition significantly impedes growth rates (e.g., the vegetation model), 

growth of small individuals can be stunted and the characteristic method can effectively fail. 

A similar conclusion applies to the Escalator Boxcar Train (EBT) method, and we will discuss 

the reason below.  

 

(iv) The EBT method has high overall performance except for SSPMs in which asymmetric 

competition significantly impedes growth rate (Fig. 2I, Table S10 in Appendix S12). As no 

mesh is required, the EBT method is free of numerical diffusion. Moreover, the representation 

of the solution as a set of cohorts means that integrals over the size distribution, such as those 

which typically appear in the environmental variable, can be conveniently evaluated as a 

summation of the contribution from the different cohorts. The convergence of the EBT meth-

od has recently been proved in a modern framework of measure-valued solutions (Brännström 

et al., 2013). A recent study by Carrillo et al. (2013) which introduced a new numerical meth-

od for SSPMs based on operator splitting has further shown that the convergence of the EBT 

method is of first order in a specific but natural metric for measure-valued solutions. Im-

portantly, this study also found that insufficiently frequent internalizations may cause a failure 

in the ordinary differential equations describing the boundary cohort (also see Gwiazda et al., 

2014).  

The numerical accuracy of the EBT method and the CM method is impeded if the distances 

between two successive cohorts (or characteristic curves) become large. This problem is par-

ticularly severe when individual growth rates are affected by asymmetric competition such as 

in the vegetation model. Plants in the understory can grow at ever lower speed, or even stop 
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growing entirely due to heavy shading by taller plants, while canopy plants keep growing fast 

(Fig. 4). Consequently, cohorts diverge and the maximum difference between two successive 

cohorts increases, leading to the loss of accuracy. It is worth mentioning that the loss of accu-

racy is because of the divergence of growth trajectories rather than the way we keep the num-

ber of cohorts constant (see Falster et al., 2017). However, a recent numerical implementation 

of a closely related vegetation model (Falster et al., 2016) shows that an adaptive time sched-

ule for the introduction of characteristic curves can resolve the problem of divergence in the 

CM method. A similar implementation of the EBT method can also overcome the problem of 

cohort divergence (Falster et al. 2017). Considering that the EBT method had the best perfor-

mance for all reference problems but the vegetation model, we believe that an EBT imple-

mentation with adaptive spacing of cohort introduction times, similar to Falster et al. (2017), 

offers the best overall performance for SSPMs.  

 

We have discussed the strengths and weaknesses of the four numerical methods in solving 

physiologically structured population models with one structuring variable. In real ecological 

systems, populations may need to be described by additional state variables, which could take 

the form of individual age in the Daphnia and fish model, or root size in the vegetation model. 

The FMU method can theoretically be extended to higher-dimensional structured population 

models, but it may in practice perform poorly as the population will in many cases covers 

only a part of the entire state space, typically a one-dimensional curve. This means that most 

of the mesh points will be in areas where there are few to no individuals, resulting in low ac-

curacy. This problem may be alleviated through the MMU method, but we believe that large 

problems with numerical diffusion would still remain. In stark contrast, the EBT method 

would by construction ensure that the cohorts are located in the part of the state space where 

the population resides while also not having the problem of numerical diffusion. Thus, we 
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believe that the advantage of the EBT method will be even greater for PSPMs with two or 

more individual states.  

 

In summary, the dependence of life-history functions on the entire size distribution and the 

potential for individuals to aggregate at certain body sizes makes numerical investigation of 

SSPMs challenging. The EBT method is generally most accurate, but it can fail for SSPMs in 

which individual growth rates are significantly affected by asymmetric competition. The 

FMU method has generally good performance for SSPMs, except when very steep gradients 

are present in the size distribution. The CM and MMU method did not perform well or did not 

offer sufficient added value over the other two methods. These conclusions should apply also 

to other transport-dominated ecological models with non-linear environmental feedback from 

population to population dynamics. Taken together, our findings demonstrate important dif-

ferences between numerical solution of SSPMs and PDEs and show that the nonlinear envi-

ronmental dependence is of key importance when selecting suitable numerical methods to 

solve SSPMs.  
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Fig. 1: Schematic overview of the investigated methods. A) The fixed-mesh upwind (FMU) 

method uses a static mesh and finite differences of size classes in the direction of growth to 

approximate the solution. B) The moving-mesh upwind (MMU) method, by contrast, uses a 

dynamic mesh, which resizes to maintain approximately equal arc lengths of the size distribu-

tion. C) The characteristic method tracks the size distribution along growth trajectories. D) 

The Escalator Boxcar Train (EBT) method tracks average individual size and numbers of in-

dividuals in discrete “cohorts”. Further explanations are given in Section 2.2 and full details 

are provided in Appendix S2-S5. 
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Fig. 2: Computed size distributions at equilibrium (shown as points) for the three reference 

problems using the fixed-mesh upwind method (FMU; top panels), the moving-mesh upwind 

method (MMU; middle panels), and the Escalator Boxcar Train method (EBT; bottom panels) 

with the corresponding reference solutions (continuous curves). While both the MMU and the 

EBT methods resolve sharp changes well, the EBT method is inaccurate for the vegetation 

model. The numerical solutions were computed using 50 mesh points (FMU and MMU meth-

od) or 50 cohorts (EBT method).  
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Fig. 3: Performance for the three reference problems as measured by numerical accuracy and 

computational requirements. Total relative error in the size distribution (𝑅𝑅1; top panels) and 

relative error in the population biomass (𝑅𝑅b; bottom panels) are plotted against the used CPU 

time for the fixed-mesh upwind method (FMU), the moving-mesh upwind method (MMU), 

and the Escalator Boxcar Train (EBT) method. The EBT method is the most efficient method 

for the Daphnia and fish models, but it is numerically inaccurate when growth rates are im-

paired by size-asymmetric competition. The MMU method is, with few exceptions, more ac-

curate than the FMU method for the same number of mesh points, but requires more CPU 

time. The CPU time required for tracking the cohort boundaries in the EBT method is exclud-

ed from the shown CPU times. Markers indicate the number of mesh points/cohorts: 13 

(cross), 25 (square), 50 (diamond), 100 (triangle), 200 (circle), 400 (star), and 800 (penta-

gram). 
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Fig. 4: Individual growth rates at three different times for the vegetation model. Understory 

individuals with small size can stop growing due to heavy shading from canopy individuals 

with large size. Thus, aggregation occurs in both the understory and the canopy.  
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