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Abstract

Most standard methods based on maximum likelihood (ML) estimates of power-law exponents

can only be reliably used to identify exponents smaller than minus one. The argument that

power laws are otherwise not normalizable, depends on the underlying sample space the data

is drawn from, and is true only for sample spaces that are unbounded from above. Power-laws

obtained from bounded sample spaces (as is the case for practically all data related problems)

are always free of such limitations and maximum likelihood estimates can be obtained for arbi-

trary powers without restrictions. Here we first derive the appropriate ML estimator for arbitrary

exponents of power-law distributions on bounded discrete sample spaces. We then show that

an almost identical estimator also works perfectly for continuous data. We implemented this

ML estimator and discuss its performance with previous attempts. We present a general recipe

of how to use these estimators and present the associated computer codes.

Introduction

The omnipresence of power-laws in natural, socio-economic, technical, and living systems has

triggered immense research activity to understand their origins. It has become clear in the past

decades that there exist several distinct ways to generate power-laws (or asymptotic power-

laws), for an overview see for example [1, 2]. In short, power-laws of the form

pðxÞ ¼ Cx� l ; ð1Þ

arise in critical phenomena [3, 4], in systems displaying self-organized criticality [5], preferen-

tial attachment type of processes [6–9], multiplicative processes with constraints [10], systems

described by generalized entropies [11, 12], or sample space reducing processes [13], i.e. pro-

cesses that reduce the number of possible outcomes (sample space) as they unfold. Literally

thousands of physical, natural, man-made, social, and cultural processes exhibit power-laws,

the most famous being earthquake magnitudes [14, 15], city sizes [16, 17], foraging and distri-

bution pattern of various animal species [18], evolutionary extinction events [19], or the fre-

quency of word occurrences in languages, known as Zipf’s law [20].
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It is obvious that estimating power-law exponents from data is a task that sometimes should

be done with high precision. For example if one wants to determine the universality class a

given process belongs to, or when one estimates probabilities of extreme events. In such situa-

tions small errors in the estimation of exponents may lead to dramatically wrong predictions

with potentially serious consequences.

Estimating power-law exponents from data is not an entirely trivial task. Many reported

power-laws are simply not exact power-laws, but follow other distribution functions. Such par-

tial or imperfect power-laws come in various flavours: power-laws with an exponential cut-off,

asymptotic power-laws, q-exponential distributions, which approach exact power-laws only in

the tail of the distribution function. Other families of distribution functions may possess one

or more regions where a power-law fit may be reasonable. Strategies for identifying such

regions in imperfect power-law distributions may depend on the scenario. In some scenarios,

e.g. for q-exponential distribution functions, ML algorithms that are specifically tailored to fit

the particular class of distribution functions, may be considered. When no parametric repre-

sentation of an imperfect power-law distribution is available, other strategies may be followed.

For instance, screening the data for ranges where the null-hypothesis, that the data has been

sampled from an exact power-law, can not be rejected for a particular significance level.

Despite the importance of developing adequate methods for distinguishing real power-laws

from alternative hypotheses, we will, except for some remarks, not address this issue in depth

here, since good standard literature on the topic of Bayesian alternative hypotheses testing
exists, see for example [21, 22]. For power-laws some of these matters have been discussed also

in [23]. In particular, the possibility to use the Kolmogorov-Smirnov (KS) goodness of fit test

(GOF) [24, 25] for finding optimal fitting ranges. In which sense the KS GOF-test is adequate

in this context and how so called p-values of the KS GOF-test needs to be interpreted is a non-

trivial question. The p-value of the KS GOF-test does not directly correspond to the rate of

falsely rejected power-laws. The two-sided KS GOF-test in fact rejects an unacceptably large

percentage of samples drawn from exact power-laws. What the two-sided KS GOF-test in fact

rejects or accepts at a certain confidence level, is that the power-law with the estimated expo-

nent represent the same distribution function as the data, which has been used to estimate the

exponent. For more details on how to calibrate critical values of the statistical parameter used

in the KS GOF-test in order to control the false rejection rate of power-laws with respect to the

estimator, see S3 File APPENDIX C.

Here we simply focus on estimating power-law exponents from data on a sound probabilis-

tic basis, using a classic Bayesian parameter estimation approach, see e.g. [26, 27], that provides

us with maximum likelihood (ML) estimators for estimating power-law exponents over the

full range of reasonably accessible values. Other approaches restrict the limit of application to

power-laws with exponents smaller than −1 [23, 28, 29]. Having such estimators without any a

priori restriction of the exponent value is of particular interest for a large classes of situations

where exponents close to λ * 1 appear (Zipf’s law). We will argue here that whenever dealing

with data we can assume discrete and bounded samples spaces (domains), which guarantees

that power-laws are normalizable for arbitrary powers λ. We then show that the corresponding

ML estimator can then also be used to estimate exponents from data that is sampled from con-

tinuous sample spaces, or from sample spaces that are not bounded from above. Our approach

is equivalent to the one provided in [27].

Questions before fitting power-laws

In physics the theoretical understanding of a process sometimes provides us with the luxury of

knowing the exact form of the distribution function that one has to fit to the data. For instance
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think of critical phenomena such as Ising magnets in 2 dimensions at the critical temperature,

where it is understood that the susceptibility follows a power-law of the form (T − Tc)−γ, with γ
a critical exponent, that occasionally even can be predicted mathematically. However, often—

and especially when dealing with complex systems—we do not enjoy this luxury and usually

do not know the exact functions to fit to the data.

In such a case, let us imagine that you have a data set and from first inspection you think

that a power-law fit could be a reasonable thing to do. It is then essential, before starting with

the fitting procedures, to clarify what one knows about the process that generated this data.

The following questions may help to do so.

• Do you have information about the dynamics of the process that is generating what appears

to be a power-law?

• Is the data generated by a Bernoulli process (e.g. tossing dice), or not (e.g. preferential

attachment)?

• Is the data available as a collection of samples (a list of measurements), or only coarse-

grained in form of a histogram (binned or aggregated data).

• Is the data sampled from a discrete (e.g. text) or continuous sample space (e.g. earthquakes)?

• Does the data have a natural ordering (e.g. magnitudes of earthquakes), or not (e.g. word fre-

quencies in texts)?

The decisions one has to take before starting to estimate power-law exponents are shown as

a decision-tree in (Fig 1). If it is known that the process generating the data is not a Bernoulli

process (for example if the process belongs to the family of history dependent processes such

as e.g. preferential attachment), then one has the chance to use this information for deriving

parameter estimators that are tailored exactly for the particular family of processes. If no such

detailed information is available one can only treat the process as if it were a Bernoulli process,

i.e. information about correlations between samples is ignored. If we know (or assume) that

the data generation process is a Bernoulli process, the next thing to determine is whether the

data is available as a collection of data points, or merely as coarse grained information in form

of a histogram that collects distinct events into bins (e.g. histograms of logarithmically binned

data).

If data is available in form of a data set of samples (not binned), a surprisingly general maxi-

mum likelihood (ML) estimator can be used to predict the exponent of an underlying power-

law p(x)/ x−λ. This estimator that we refer to as ML�, will be derived in the main section. Its

estimates for the underlying exponent λ, are denoted by λ�. The code for the corresponding

algorithm we refer to as r_plfit. If information is available in form of a histogram of binned

data, a different estimator becomes necessary. The corresponding algorithm (r_plhistfit)

is discussed in S1 File APPENDIX A and in the section below on discrete and continuous sample

spaces. Both algorithms are available as matlab code [30]. For how to use these algorithms, see

S2 File APPENDIX B.

If we have a dataset of samples (not binned), so that the r_plfit algorithm can be used, it

still has to be clarified whether the data has a natural order or not? Numerical observables such

as earthquake magnitudes are naturally ordered. One earthquake is always stronger or smaller

than the other. If observables are non-numeric, such as word types in a text, then a natural

order can not be known a priori. The natural order can only be inferred approximately by

using so-called rank-ordering; or alternatively—by using the so-called frequency distribution of

the data. Details are discussed below in the section on rank-order, frequency distributions, and

natural order.

Fitting power-laws in empirical data with estimators that work for all exponents
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Other issues to clarify are to see if a given sample space is continuous or discrete, and if the

sample space is bounded or unbounded. These questions however, turn out to be not critical.

One might immediately argue that for unbounded power-law distribution functions normali-

zation becomes an issue for exponents λ� 1. However, this is only true for Bernoulli processes

on unbounded sample spaces. Since all real-world data sets are collections of finite discrete val-

ues one never has to actually deal with normalization problems. Moreover, since most experi-

ments are performed with apparati with finite resolution, most data can be treated as being

sampled from a bounded, discrete sample space, or as binned data. For truly continuous pro-

cesses the probability of two sampled values being identical is zero. Therefore, data sampled

from continuous distributions can be recognized by sample values that are unique in a data

set. See S1 File APPENDIX A for more details.

Statistically sound ways to fit power-laws were advocated and discussed in [23, 26–29, 31,

32]. They overcome intrinsic limitations of the least square (LS) fits to logarithmically scaled

Fig 1. Decision tree of questions that should be clarified before estimating power-law exponents from data. The tree shows under which

conditions the fitting algorithms developed in this paper r_plfit and r_plhistfit can be used.

doi:10.1371/journal.pone.0170920.g001
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data, which were and are widely (and often naively) used for estimating exponents. The ML

estimator that was presented in [23] we refer to as the MLCSN (for Clauset-Shalizi-Newman)

estimator; its estimates for the exponent we denote by l̂. The approach that leads to MLCSN

focuses on continuous data x that follows a power-law distribution from Eq (1), and that is

bounded from below x> xmin > 0 but is not bounded from above (i.e. xmax > x with xmax =

1). In [23] emphasis is put on how ML estimators can be used to infer whether an observed

distribution function is likely to be a power-law or not. Also the pros and cons of using cumu-

lative distribution functions for ML estimates are discussed, together with ways of treating

discrete data as continuous data. For the continuous and unbounded case, simple explicit

equations for the MLCSN estimator can be derived [23, 28]. The continuous approach however,

even though it seemingly simplifies computations, introduces unnecessary self-imposed limi-

tations with respect to the range of exponents that can be reliably estimated. MLCSN works

very well for a range of exponents between −3.5 and −1.5, see Fig (3).

Here we show how to overcome these limitations—and by doing so extend the accessible

range of exponents—by presenting the exact methodology for estimating λ for discrete

bounded data with the estimator ML�. While this approach appears to be more constrained

than the continuous one we can show also theoretically that data from continuous and poten-

tially unbounded sample spaces can be handled within essentially the same general ML

framework as well. The key to the ML� estimator is that it is not necessary to derive explicit

equations for finding λ�. Implicit equations in λ exist for power-law probability distributions

over discrete or continuous sample spaces that are both bounded from below and above, see

Eq (9), and also [27]. Solutions λ� can be easily obtained numerically. An implementation of

the respective algorithms can be found in [30], for a tutorial see S2 File APPENDIX B.

Rank-order, frequency distributions & natural order

There exist three distinct types of distribution functions that are of interest in the context of

estimating power-law exponents:

1. The probability distribution p(x) assigns a probability to every observable state-value x. Dis-

crete and bounded sample spaces are characterized by W state-types i = 1, � � �, W, with each

type i being associated with a distinct value x = zi.

2. The relative frequencies, fi = ki/N, where ki is the number of times that state-type i is

observed in N experiments. k = (k1, � � �, kW) is the histogram of the data. As explained below

in detail, the relative frequencies can be ordered in two ways.

• If fi is ordered according to their descending magnitude this is called the rank ordered
distribution.

• If fi is ordered according to the descending magnitude of the probability distribution p(zi),
then they are naturally ordered relative frequencies.

3. The frequency distribution ϕ(n) counts how many state-types i fulfill the condition ki = n.

In (Fig 2) we show these distribution functions. There N = 10000 data points are sampled

from x 2 {1, � � �, 1000}, with probabilities p(x)/ x−0.7. The probability distribution is shown

(red). The relative frequency distribution f is plotted in natural order (blue), the rank-ordered

distribution is shown with the yellow line, which clearly exhibits an exponential decay towards

the the tail. The inset shows the frequency distribution ϕ(n) of the same data. We next discuss

how different sampling processes can be characterized in terms of natural order, rank-order,

or frequency distributions.

Fitting power-laws in empirical data with estimators that work for all exponents
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Processes with naturally ordered observables. For some sampling processes the ordering

of the observed states is known. For example think of x representing the numerical values of

earthquake magnitudes. Here any two observations x and x0 can be ordered with respect to

their numerical value, or their natural order. Since power-law distributions p(x)/ x−λ are

monotonic this is equivalent to ranking observations according to the probability distribution

p they are sampled from: The most likely event has natural rank 1, the second most likely

rank 2, etc. In other words, we can order state-types x in a way that over the sample space

O = {zi|i = 1, � � �, W}, p = (p(z1), � � �, p(zW)) is a monotonic and decreasing function.

Processes with rank-ordered observables. If p is not known a priori because the state-

types i have no numerical values zi attached, as happens for example with words in a text, we

Fig 2. The four types of distribution functions. Data is sampled from a power-law distribution p(x)/ x−λ with an exponent λ = 0.7 (red line). The relative

frequencies fi are shown for N = 10000 sampled data points according to their natural (prior) ordering that is associated with p (blue). The rank-ordered

distribution (posterior) is shown in yellow, where states i are ordered according to their observed relative frequencies fi. The rank-ordered distribution

follows a power-law, except for the exponential decay that starts at rank*500. A low frequency cut-off should be used to remove this part for estimating

exponents. The inset shows the frequency distribution ϕ(n) that describes how many states x appear n times (green). The frequency distribution has a

maximum and a power-law tail with exponent α = 1 + 1/λ* 2.43. To estimate α, one should only consider the tail of the frequency distribution function.

doi:10.1371/journal.pone.0170920.g002
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can only count relative frequencies fi (a normalized histogram) of states of type i, a posteriori,
i.e. after sampling. To be clear, let k = (k1, � � �, kW) be the histogram of N recorded states. ki is

the number of times we observed type i, then fi = ki/N is the relative frequency of observing

states of type i. After all samples are taken, one can now order states with respect to fi, such

that the rank 1 is assigned to state i with the largest fi, rank 2 to i0 with the second largest fi0, etc.

f = (f1, � � �, fW) is called the rank-ordered distribution of the data.

The natural order imposed by p and the rank-order imposed by f are not identical for finite

N. However, if data points have been sampled independently, then f converges toward p (for

N!1) and the rank-order induced by f will asymptotically approach the natural order

induced by p. (This is true when data gets sample independently from a fixed distribution, but

not in general. If the observable states are not bounded from above as the number of samples

increases, then such processes showing emergent power-laws with exponents larger than −1 in

rank, cannot be Bernoulli processes. In such cases ML estimators can be derived specifically

for the particular sampling process, given the sampling process is known (compare the deci-

sion tree in (Fig 1)). If the sampling process is not known, as it often is the case, then one is left

with the only option, to treat the data points as if they were sampled independently.) The high-

est uncertainty on estimating the order induced by p using f is associated with the least fre-

quent observations. Therefore, when estimating exponents from rank-ordered distributions,

one might consider to use a low-frequency cut-off to exclude infrequent data.

Frequency distributions. Exponents of power-laws can also be estimated from frequency
distributions ϕ(n). These counts how many distinct state-types i occur exactly n times in the

data. It does not depend on the natural (prior) order of states and therefore is sometimes pre-

ferred to the (posterior) rank-ordered distribution. However, complications may be encoun-

tered for naturally or rank ordered distributions as well as for frequency distributions. If we

find a well defined power-like probability distribution p/ x−λ (and asymptotically to f), then

the associated frequency distribution ϕ(n) is not an exact power-law, but a non-monotonic dis-

tribution (with a maximum). Only the tail of the frequency distribution decays as a power-law,

ϕ(n)/ n−α. Conversely, if the frequency distribution is a well defined power-law ϕ/ n−α, then

the probability distribution p will not show a well defined power-law p/ x−λ over the entire

range of states x. As a consequence, one frequently needs to specify the data range for estimat-

ing the power-law exponent. The exponents λ and α are related through the well known equa-

tion [33]

a ¼ 1þ 1=l : ð2Þ

If the probability distribution has exponent λ, the tail of the associated frequency distribution

has exponent α. Since the frequency distribution behaves like a power-law only in its tail, esti-

mating αmakes it necessary to constrain the observed data to large values of n. Note that this

is equivalent to using a low-frequency cut-off. One option to do that is to derive a maximum

entropy functional for ϕ(n) and fit the resulting (approximate) max-ent solution to the data.

We do not follow this route here.

If the natural order of the data is known, one can directly use the natural ordered data in

the ML estimates for the exponents. If it is not known, either the rank-ordered distribution

can be used to estimate λ, or the frequency distribution to estimate α, see (Fig 1).

One might also estimate both, λ in the rank ordered distribution, and α in the frequency

distribution of the data. Using Eq (2) to compare the two estimates may be used as a rough

quality-check. If estimates do not reasonably coincide one should check whether the used data

ranges have been appropriately chosen. If large discrepancies remain between α and 1 + 1/λ
this might indicate that the observed distribution function in question is only an approximate

Fitting power-laws in empirical data with estimators that work for all exponents
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power-law, for which Eq (2) need not hold. For a tutorial on how to use r_plfit to perform

estimates see S2 File APPENDIX B.

Discrete and continuous sample spaces & normalization

Data can originate from continuous sample spaces Oc = [xmin, xmax], or discrete ones Od =

{z1, z2, � � �, zW}. To each state-type i = 1, � � �,W, there is assigned a state-value zi. Whether a dis-

tribution function pðxÞ ¼ Z� 1
l
x� l, with x 2 O, is normalizable or not, can only be decided

once the sample space O has been specified. The normalization factors for continuous and dis-

crete O are

ZlðOcÞ �
R xmax
xmin

dx x� l ¼
x1� l

max � x
1� l
min

1 � l

ZlðOdÞ �
P

x2Od
x� l ¼

PW
i¼1
z� l
i :

ð3Þ

For bounded sample spaces with 0< xmin� x� xmax <1, power-laws are always normaliz-

able for arbitrary exponents λ, and a well defined ML estimator of λ� exists (see below). The

normalization constants in Eq (3) can be specified in r_plfit (see S2 File APPENDIX B).

Data sampled from a continuous sample space Oc can essentially be treated as if it were

sampled from a discrete sample space Od, where x 2 Od are given by the unique collection of

distinct values in the data set. That is, the data set x = (x1, � � �, xN) contains N data points xn
(that have W unique values zi, the states of type i) which we collect in the discrete sample space

O = {z1, � � �, zW}. For truly continuous data we have N = W, since the probability of xm = xn for

n 6¼m is vanishing. As a consequence the histogram ki, which counts the number of times zi
appears in the data, is essentially given by ki = 1 for all i = 1, � � �, W. This provides us with a

practical criterion for when to use the normalization constant for discrete or continuous data.

For details see S1 File APPENDIX A.

The equation for the ML estimator ML�, that yields the estimate λ�, only requires the

knowledge of the relative frequency distribution fi = ki/N (in natural- or rank-order) of the

observed state-types i, as we will see in Eq (9) below. Therefore r_plfit can work either

with data sets x or histograms k over the unique values in the data sets. If data comes in coarse

grained form, i.e. histograms, where each bin may contain a whole range of observable values

x, then an estimator is required that is different from ML� [32], see also S1 File APPENDIX A. The

corresponding code r_plhistfit can also be downloaded from [30].

The ML*-estimator for power-laws from discrete sample spaces

Consider a family of random processes Y that is characterized by the parameters θ = (θ1, � � �, θR).

Let Y be defined on a discrete sample space O = {z1, z2, � � �, zW}, with 0< zi<1. The process Y
samples values x 2 O with probability,

pðxjy;OÞ : ð4Þ

Let us repeat the process Y in N independent experiments to obtain a data set y = (y1, � � �, yN).

k = (k1, � � �, kW) is the histogram of the events recorded in y, i.e. ki is the number of times zi
appears in y. Note that

PW
i¼1
ki ¼ N. As a consequence of independent sampling, the probability

to sample exactly k is,

Pðkjy;OÞ ¼ N
k

� �
YW

i¼1

pðzijy;OÞ
ki ; ð5Þ

Fitting power-laws in empirical data with estimators that work for all exponents
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where ð
N
k Þ ¼ N!=

QW
i¼1
ki! is the multinomial factor. Bayes’ formula allows us to get an estimator

for the parameters θ,

Pðyjk;OÞ ¼ Pðkjy;OÞ
PðyjOÞ
PðkjOÞ

: ð6Þ

Obviously, P(k|O) =
R
dθ P(k|θ, O)P(θ|O) does not depend on θ. Without further available infor-

mation we must assume that the parameters θ are uniformly distributed between their upper

and lower limits. As a consequence, P(θ|O) also does not depend on θwithin the limits of the

parameter range and can be treated as a constant. (Unfortunately, what works for parameters in

θ such as λ does not work for parameters such as xmin and xmax. For those variables it turns out

that P(θ|O) can not be assumed to be constant between upper and lower bounds of the respec-

tive parameter values. Bayesian estimators for xmin and xmax require to explicitly consider a non-

trivial function P(θ|O). Though in principle feasible, we ignore the possibility of deriving Bayes-

ian estimates for xmin and xmax in this paper.) From Eq (6) it follows that the value θ� that maxi-

mizes P(θ|k, O) also maximizes P(k|θ, O). The most likely parameter values θ� = (θ1, � � �, θR)� are

now found by maximizing the log-likelihood,

0 ¼
@

@yr

1

N
logPðyjk;OÞ ¼

XW

i¼1
fi
@

@yr
log pðzijy;OÞ ¼ �

@

@yr
Hcrossðf jjpðzjy;OÞÞ ; ð7Þ

for all parameters r = 1, � � �, R. HereHcrossðf jjpðzjy;OÞÞ � �
PW

i¼1
fi log pðzijl;OÞ, is the so-

called cross-entropy. In other words, ML-estimates maximize the cross-entropy with respect to

the parameters θr.

The ML*-algorithm for power-laws

To apply Eq (7) for ML-estimates of power-law exponents, one specifies the finite sample

space O = {z1, z2, � � �, zW}, and the family of probability density functions is,

pðxjl;OÞ ¼
x� l

ZlðOÞ
; ð8Þ

with x 2 O. Note that the set of parameters θ defined above now only contains λ, or θ = {λ}.

The normalization constant is Zλ(O) = ∑x 2 O x−λ. The derivative with respect to λ of the cross-

entropy, Hcrossðf jjpðzjy;OÞÞ ¼ l
PW

i¼1
filogzi þ logZlðOÞ, has to be computed, and setting

dHcross/dλ = 0 yields

XW

i¼1

fi log zi ¼
XW

i¼1

z� l

i

 !� 1
XW

i¼1

z� l

i log zi : ð9Þ

An equivalent version of this equation is derived in [27] using different means. The solution

to this implicit equation, λ = λ�, can not be written in closed form but can be easily solved

numerically. See [30] for the corresponding algorithm and S2 File APPENDIX B for a tutorial.

How to determine λ*
One possibility to find the solution λ = λ� from the implicit equation Eq (9), is to iteratively

refine approximate solutions. For this, select M + 1 values λ from the interval [λmin, λmax],

where M is a finite fixed number, say M = 100. Those values may be chosen to be given by the
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expression

lrðmÞ ¼ lr þ
m
M

lr � lr

� �
; ð10Þ

for m = 0, � � �, M. The parameters l r and lr are defined in the following way: First define

l
1
¼ lmin, and l1 ¼ lmax, where λmax and λmin are parameters of the algorithm. Then define

δλ1 = Δλ/Mwith Δλ = λmax−λmin. If l1ðm�1Þ is the optimal solution of Eq (9) for some m�
1
, then

we can choose l
2
¼ l1ðm�1Þ � dl1, and l2 ¼ l1ðm�1Þ þ dl1 and δλ2 = 2δλ1/M. One then con-

tinues by iterating r times until δλr< ε, where ε is the desired accuracy of the estimate of λ�.
As a consequence, the value m�r , for which jl

�
� lrðm�r Þj < ε holds, optimally estimates λ� in

the r’th iteration with an error smaller than ε. Note that ε is the error of the ML�-estimator

with respect to the exact value of the predictor λ�, and is not the error of λ� with respect to the

(typically unknown) value of the exponent λ of the sampling distribution.

Controlling the fit region over which the power-law should be obtained therefore becomes

a matter of restricting the sample space to a convenient O0 � O. This can be used for dynami-

cally controlling low-frequency cut-offs. These cut-offs are set to exclude states for which,

pðzijl;OÞN < kmin ; ð11Þ

where kmin is the minimal number of times that any state-type i is represented in the data set.

This means that we re-estimate λ on O0 � O with

O
0
¼ fzi 2 Ojpðzijl;OÞN � kming : ð12Þ

We see in Eq (9) that iteratively adapting O to subsets O0, and then re-evaluating λ, requires to

solve,

X

i2IðO0Þ

f 0i log zið Þ ¼
X

i2IðO0Þ

z� l

i

 !� 1
X

i2IðO0Þ

z� l

i log zi ; ð13Þ

where N0 = ∑i 2 I(O0) ki is the restricted sample-size and f 0i ¼ ki=N 0 are the relative frequencies

re-normalized for O0. I(O0) = {i|zi 2 O0} is the index-set of O0.

Iterating this procedure either leads to a fixed point or to a limit cycle between two low-fre-

quency cut-offs with two slightly different estimates for λ�. These two possibilities need to be

considered in order to implement an efficient stopping criterion for the iterative search of the

desired low-frequency cut-off in the data. The algorithm therefore consists of two nested itera-

tions. The “outer iteration” searches for the low-frequency cut-off, the “inner iteration” solves

the implicit equation for the power-law exponent. The matlab code for the algorithm is found

in [30], see S2 File APPENDIX B for a tutorial.

Testing the new estimator with numerical experiments and known

data sets

To test the proposed algorithm implementing the estimator ML�, we first perform numerical

experiments and then test its performance on a number of well known data sets.

Testing with numerical experiments

For 400 different values of λ, ranging from 0 to 4, we sample N = 10,000 data points x 2 O =

{1, � � �, W}, with W = 1000 states, with probabilities p(x|λ, O)/ x−λ. We fit the data in three

ways, using (i) least square fits (LS), (ii) the CSN algorithm MLCSN providing estimates l̂, and

Fitting power-laws in empirical data with estimators that work for all exponents
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(iii) the implicit ML� method providing estimates λ�. In Fig 3 we show these estimates for the

power exponents, as a function of the true values of λ. The LS, MLCSN, ML� estimators are

shown as the red, green, and black curves respectively. Obviously ML� and MLCSN work

equally well for power-law exponents λ with values 1.5< λ< 3.5. In this range the three

approaches coincide. However, note that in the same region the mean square error. (The mean

square error is defined as s2ðlÞ ¼ N � 1
rep

PNrep
m¼1 ðlestðmÞ � lÞ

2
, where Nrep is the number of repe-

titions, i.e. the number of data-sets we sampled from the p(x|λ, O), x = 1, . . ., W. λest(m) is the

value estimated for λ from the mth data set. Depending on the estimator λest corresponds to

Fig 3. Comparison of the three power-law exponent estimators, LS, MLCSN, and ML*. For 400 values of λ in the range between 0 and 4, we sample

N = 10,000 events fromΩ = {1, � � �, 1,000}, from a power-law probability distribution p(x|λ,Ω)/ x−λ. The estimated exponents λest for the estimators LS

(red), the MLCSN (green, lest ¼ l̂), and the new ML* (black, λest = λ*), are plotted against the true value of the exponent λ of the probability distribution

samples are drawn from. Clearly, below λ * 1.5 the MLCSN estimator no longer works reliably. MLCSN and ML* work equally well in a range of 1.5 < λ <
3.5. Outside this range ML* performs consistently better than the other methods. The inset shows the mean-square error σ2 of the estimated exponents.

The LS-estimator has a much higher σ2 over the entire region, than the ML*-estimator. The blue dot represents the ML* estimate for the Zipf exponent of

C. Dickens’ “A tale of two cities”. Clearly, this exponent could never reliably be obtained from the rank ordered distribution using MLCSN, whereas ML*
works fine even for values of λ * 0.

doi:10.1371/journal.pone.0170920.g003
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l̂ (MLCSN), λ�, (ML�), or the LS estimator. We used W = 1000 and Nrep = 25 for any given λ.)

σ2 for the LS method is much larger than for ML� and MLCSN. Outside this range the assump-

tions and approximations used for MLCSN start to lose their validity and both LS and ML� esti-

mates outperform the MLCSN estimates. The inset also shows that ML� consistently estimates λ
much better than the LS estimator (two orders of magnitude better in terms of σ2) for the

entire range of λ. The blue dot in Fig 3 represents the ML� estimate for the Zipf exponent of C.

Dickens’ ‘A tale of two cities’. Clearly, this small exponent could never be obtained by MLCSN,

see also Table 1.

Testing with empirical data sets

We finally compare the new estimator ML� on several empirical data sets that were used for

demonstration in [23]. In Table 1 we collect the results. The second column states if λ or α
were estimated. Column CSN1 presents the value of the estimator MLCSN as presented in [23].

Column CSN2 contains the values of the same estimator using the data from [23] and using

the algorithm provided by [31]. (The reason for the differences might be that some of the data

has been updated since the publication.) The results for the ML� estimator agrees well with

those of MLCSN in the range where the latter works well. To demonstrate how ML� works per-

fectly outside of the comfort zone of MLCSN (for λ< 1.5), we add the result of the rank distri-

bution of word counts in the novel “A tale of two cities” (Charles Dickens, 1859), which shows

an exponent of λ * 1.035. This exponent can be fitted directly from the data using the pro-

posed ML� algorithm, while MLCSN can not access this range, at least not without the detour

of first producing a histogram from the data and then fitting the tail of the frequency distribu-

tion. The values for the corresponding Kolmogorov-Smirnov tests (see e.g. [23]) for the two

estimates, KSCSN and KS�, are similar for most cases.

Table 1. Comparison of the estimators ML* and MLCSN on empirical data sets that were used in [23]. These include the frequency of surnames, inten-

sity of wars, populations of cities, earthquake intensity, numbers of religious followers, citations of scientific papers, counts of words, wealth of the Forbes 500

firms, numbers of papers authored, solar flare intensity, terrorist attack severity, numbers of links to websites, and forest fire sizes. We added the word fre-

quencies in the novel “A tale of two cities” (C. Dickens). The second column states if α or λ were estimated. The exponents reported in [23] are found in column

CSN1, those reproduced by us applying their algorithm to data [23, 34–37] is shown in column CSN2. The latter correspond well with the new ML* algorithm.

For values λ < 1.5, CSN can not be used. We list the corresponding values for Kolmogorov-Smirnov test for the two estimators, KSCSN and KS*.

exp. CSN1 CSN2 ML* KSCSN KS*

blackouts λ 2.3 2.27 2.25 0.061 0.031

surnames α 2.5 2.49 2.66 0.041 0.019

int. wars λ 1.7 1.73 1.83 0.078 0.076

city pop. λ 2.37 2.36 2.31 0.019 0.016

quake int. λ 1.64 1.64 1.88 0.092 0.085

relig. fol. λ 1.8 1.79 1.61 0.091 0.095

citations λ 3.16 3.16 3.10 0.010 0.018

words α 1.95 1.95 1.99 0.009 0.015

wealth λ 2.3 2.34 2.30 0.063 0.066

papers λ 4.3 4.32 3.89 0.079 0.082

sol. flares λ 1.79 1.79 1.81 0.009 0.021

terr. attacks λ 2.4 2.37 2.36 0.018 0.017

websites λ 2.336 2.12 1.72 0.025 0.056

forest fires λ 2.2 2.16 2.46 0.036 0.034

Dickens novel λ - - 1.04 - 0.017

doi:10.1371/journal.pone.0170920.t001
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Conclusions

We discuss the generic problem of estimating power-law exponents from data sets. We list a

series of questions that must be clarified before estimates can be performed. We present these

questions in form of a decision tree that shows how the answers to those questions lead to dif-

ferent strategies for estimating power-law exponents.

To follow this decision tree can be seen as a recipe for fitting power exponents from empiri-

cal data. The corresponding algorithms were presented and can be downloaded as matlab

code. The two algorithms we provide are based on a very general ML estimator that maximizes

an appropriately defined cross entropy. The method can be seen as a straight forward generali-

zation of the idea developed in [23]. The two estimators (one for binned histograms and ML�

for raw data sets) allow us to estimate power-law exponents in a much wider range than was

previously possible. In particular, exponents lower than λ< 1.5 can now be reliably obtained.
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S1 File. APPENDIX A: Sampling from continuous sample spaces. Provides a short discus-

sion on ML estimates performed on data sampled from continuous sample spaces.

(PDF)

S2 File. APPENDIX B: Using r_plfit. Gives a short introduction on how to use the matlab

implementations of the algorithms r_plfit and r_plhistfit.

(PDF)

S3 File. APPENDIX C: The false rejection rate of power-laws. Discusses the p-value of the

method and how the p-values obtained from the KS goodness of fit test can be interpreted.

It also includes a figure that exemplifies how r_plfit_calib_eval.m can be used to visualize cali-

bration curves sampled with r_plfit_calibrate.m, in order to control the false rejection rate

(p-value) of r_plfit.m.

(PDF)

S4 File. APPENDIX D: Code. Contains the code for all the m-files in print form. Alternatively

to the download we provide, [30], the code can be accessed using copy-and-paste.

(PDF)

Acknowledgments

This work was supported in part by the Austrian Science Foundation “Fonds zur Förderung

der wissenschaftlichen Forschung” (FWF: https://www.fwf.ac.at/) under grant P29252. BL is

grateful for the support by the China Scholarship Council, file-number 201306230096. The

funders had no role in study design, data collection and analysis, decision to publish, or prepa-

ration of the manuscript.

Author Contributions

Conceptualization: RH.

Data curation: BL.

Formal analysis: RH BL.

Funding acquisition: ST BL.

Investigation: BL.

Fitting power-laws in empirical data with estimators that work for all exponents

PLOS ONE | DOI:10.1371/journal.pone.0170920 February 28, 2017 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0170920.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0170920.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0170920.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0170920.s004
https://www.fwf.ac.at/


Methodology: RH BCM.

Project administration: RH ST.

Software: RH.

Supervision: RH ST.

Validation: RH BCM BL ST.

Visualization: RH BL.

Writing – original draft: RH ST.

References
1. Newman MEJ (2005) Power-laws, Pareto distributions and Zipf’s law, Contemporary physics 46 323–

51. doi: 10.1080/00107510500052444

2. Mitzenmacher M (2004) A Brief History of Generative Models for Power-Law and Lognormal Distribu-

tions, Internet Mathematics 1 226–51. doi: 10.1080/15427951.2004.10129088

3. Kadanoff LP, Gotze W, Hamblen D, Hecht R, Lewis EAS, Palciauskas VV et al. (1967) Static Phenom-

ena Near Critical Points: Theory and Experiment, Rev Mod Phys 39 395–413. doi: 10.1103/

RevModPhys.39.395

4. Sornette D (2006) Critical Phenomena in Natural Sciences, in Springer, Berlin.

5. Bak P, Tang C, Wiesenfeld K (1987) Self-Organized Criticality: An Explanation of 1/f Noise, Phys Rev

Lett 59 381–84. doi: 10.1103/PhysRevLett.59.381 PMID: 10035754

6. Simon HA (1955) On a class of skew distribution functions, Biometrika 42 425–40. doi: 10.1093/

biomet/42.3-4.425
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