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Abstract

Path-dependent stochastic processes are often non-ergodic and observables can no longer be
computed within the ensemble picture. The resulting mathematical difficulties pose severe limits to
the analytical understanding of path-dependent processes. Their statistics is typically non-multi-
nomial in the sense that the multiplicities of the occurrence of states is not a multinomial factor. The
maximum entropy principle is tightly related to multinomial processes, non-interacting systems, and
to the ensemble picture; it loses its meaning for path-dependent processes. Here we show that an
equivalent to the ensemble picture exists for path-dependent processes, such that the non-
multinomial statistics of the underlying dynamical process, by construction, is captured correctly in a
functional that plays the role of a relative entropy. We demonstrate this for self-reinforcing Pélya urn
processes, which explicitly generalize multinomial statistics. We demonstrate the adequacy of this
constructive approach towards non-multinomial entropies by computing frequency and rank
distributions of Pélya urn processes. We show how microscopic update rules of a path-dependent
process allow us to explicitly construct a non-multinomial entropy functional, that, when maximized,
predicts the time-dependent distribution function.

1. Introduction

‘Tt seems questionable whether the Boltzmann principle alone, meaning without a complete [...] mechanical
description or some other complementary description of the process, can be given any meaning’. Einstein’s
famous critical comment on the completeness of Boltzmann entropy [1], is still thought provoking. For ergodic
systems, e.g. [2], over a well defined set of states, this critique has turned out to be of minor relevance. Here we
demonstrate how Einstein’s observation becomes relevant again when dealing with non-ergodic, path-
dependent systems or processes, i.e. processes where ensemble and time averages cease to yield identical results
and the ensemble descriptions of a processes fails to describe the dynamics of a particular process (e.g.

compare [3]).

Moreover, for path dependent systems we have to specify what we mean with ‘entropy’, since no unique
generalization of entropy from equilibrium to non-equilibrium systems exists. However, Boltzmann’s principle
is grounded in the idea that in large systems the most likely samples we may draw from a process, i.e. the so called
maximum-configuration, also characterize the typical samples, while it becomes very unlikely to draw atypical
samples. In fact we will demonstrate the possibility to directly construct ‘entropic functionals’ from the
microscopic properties determining the dynamics of a large class of non-ergodic processes using maximum-
configuration framework. In this approach we identify relative entropy (up to a multiplicative constant) with the
logarithm of the probability to observe a particular macro state (which typically is represented by a histogram
over a set of observables states), compare e.g. [4]. By construction, maximization of the resulting entropy

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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functionals leads to adequate predictions of statistical properties of non-ergodic processes, in maximum
configuration.

For ergodic processes it is possible to replace time-averages of observables by their ensemble-averages, which
leads to a tremendous simplification of computations. In particular, this is true for systems composed of
independent particles or for Bernoulli processes, i.e. processes where samples are drawn independently, and the
states of the independent components or observations collectively follow a multinomial statistics. The
multinomial statistics of such a system with W observable states i = 1,..., W is captured by a functional that
coincides with Shannon entropy [5], H (p) = —X_I", p, log p.. In this context p = (p,, ..., p,,) is the empirical
relative frequency distribution of observing states 7 in an experiment of drawing from the process for N times, i.e.
p = k/Nis the normalized histogram of the experiment where state i has been drawn k; times. Clearly,
>; ki = N.In this context H(p) can be understood as the logarithm of the multinomial factor, i.e.

—Z}Lpi logp, ~ % log (IZ), where and (IZ) = N!/ 1Y, k;!(e.g. compare [6]).

Maximization of Shannon entropy under constraints therefore is a way of finding the most likely relative
frequency distribution function (normalized histogram of sampled events) one will observe when measuring a
system, provided that it follows a multinomial statistics. Constraints represent knowledge about the system.
Bernoulli processes with multinomial statistics are characterized by the prior probabilities, g = (q;, ..., qy,). In
general, the set of parameters characterizing a process, we denote by 6. In the multinomial case § = 4.

Denoting the probability to measure a specific histogram by P (k|6, N), the most likely histogram &, that
maximizes P (k|f, N),is the optimal predictor or the so-called maximum configuration. For a multinomial
distribution function, P (k|6, N) = (IZ ) Hl{i X qikl’ where g; are the prior probabilities (or biases), the functional
that is maximizedis ¢ (p|0) = H (p) + 3=, p; log g,, which is (up to a sign) called the relative entropy or
Kullback-Leibler divergence [7]. The term H(p) coincides with Shannon entropy, the term that depends on g is

called cross-entropy and is alinear functional in p. By re-parametrizing g, = exp(— (¢;), where 3 > Oisa
constant, one gets the standard max-ent functional

Y (pl0, N) = H(p) — 522‘51‘ [Zpi = 1]. (1)

In statistical physics, the constants ¢; typically correspond to energies and ( to the so called inverse temperature of
a system. Maximization of this functional with respect to p yields the most likely empirical distribution function;
this is sometimes called the maximum entropy principle.

Clearly, systems composed of independent components follow a multinomial statistics. Note that a
multinomial statistics is also a direct consequence of working with ensembles of statistically independent
systems. In this case the multinomial distribution function reflects the ensemble property and is not necessarily a
property of the system itself. Therefore H(p) only has physical relevance for systems that consist of sufficiently
independent elements. For path-dependent processes, where ensemble- and time-averages typically yield
different results, H(p) remains the entropy of the ensemble picture, but ceases to be the ‘physical’ entropy that
captures the time evolution of a path-dependent process. Obviously, assuming that the entropy functional H,
which is consistent with an underlying multinomial statistics, in general also is adequate for characterizing path-
dependent processes that are inherently non-multinomial (break multinomial symmetry), is nonsensical.

Surprisingly, the possibility that non-multinomial max-ent functionals can be constructed for path-
dependent processes seems to have caught only little attention. In [4] it was noticed that a particular class of non-
Markovian random walks with strongly correlated increments can be constructed, where the multiplicity of
event sequences is no longer given by the multinomial factor, and the max-ent entropy functional of the process
class exactly violates the composition axiom of Khinchin [8]. The general method of constructing a relative
entropy principle for a particular process class does not inherently depend on the validity of particular
information theoretic axioms, which opens a way for a general treatment of path-dependent, and non-
equilibrium processes. We demonstrate this by constructing the max-ent entropy of multi-state Pélya urn
processes [9, 10].

In multi-state Polya processes, once a ball of a given color is drawn from an urn, it is replaced by a number of
0 balls with the same color- see figure 1. They represent self-reinforcing, path-dependent processes that display
the the rich get richer and the winner takes all phenomenon. PSlya urns are related to the beta-binomial
distribution, Dirichlet processes, the Chinese restaurant problem, and models of population genetics. Their
mathematical properties were studied in [11, 12], extensions and generalizations of the concept are found in
[13, 14], applications to limit theorems in [15—17]. Pélya urns have been used in a wide range of practical
applications including response-adaptive clinical trials [18], tissue growth models [19], institutional
development [20], computer data structures [21], resistance to reform in EU politics [22], aging of alleles and
Ewens’s sampling formula [23, 24], image segmentation and labeling [25], and the emergence of novelties in
evolutionary scenarios [26, 27]. A notion of Pélya-divergence was recently defined in [28] in the context of
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Figure 1. Schematic illustration of a Pélya process. When a ball of a certain color is drawn, it is replaced by 1 + 6 balls of the same
color. Then the next ball is drawn and the process is repeated for Niterations. Here 6 = 2. This reinforcement process creates a
history-dependent dynamics. The configurations obtained after successive iterations have non-multinomial structure.

Sanov’s theorem [29]. This work characterizes P6lya urns in a regime of weak reinforcement. More precisely the
Pélya divergence is derived for situations where the ratio between N, the number of samples drawn from the
Pélya urn, and the number A, of balls initially contained in the urn, are asymptotically fixed by the parameter

8 = N/Agsuchthatoo > 3 > 0.Asaconsequence, in the limit N — oo the reinforcement parameter

v = §/Ao asymptotically approaches zero (y ~ §3/N — 0). So even if the number 6 of balls added to the urn at
each trial is large, the number of balls initially contained in the urn is much larger. In this regime of weak
reinforcement Pélya urns behave similarly to Bernoulli processes. Our constructive approach allows us to access
strong reinforcement parameters v > 0 and the transition of Pélya urn dynamics from Bernoulli-process like
behavior to a winner-takes-all type of dynamics can be studied.

2. Non-multinomial max-ent functionals

The general aim is to construct a max-ent functional for a path-dependent process, which allows us to infer the
maximum configuration, i.e. the most likely sample we may draw from a process of interest. From a given class
of processes X we select a particular process X (6), specified by a set of parameters, §. Running the processes

X (0) for N consecutive iterations produces a sequence of observed states x (0, N) = [xj, ..., xy], where each x,,
takes a value from W possible states. As before, we assume the existence of a most likely histogram £, that
maximizes P (k|d, N). To construct a max-ent functional for X, one has to conveniently rescale P (k|f, N),
which happens in two steps. First, we define U(p|d, N) = log P (Np|6, N). Note, if k maximizes P (k|0, N),
then p = k /N maximizes U( plf, N). Second, a scaling factor ¢ (IN') can be used to scale out the leading term of
the Ndependence of W. Typically ¢ (N) = N¢, for some constant1 > ¢ > 0, compare [4]. ¢ (N) corresponds to
the effectivenumber of degrees of freedom of samples of size N. We identify the max-ent functional with

Y (pld, N) = ¥(pld, N)/¢p(N). Again, if k maximizes P k|0, N)with ", k; = N, then p = Ig/N maximizes
Y (plf, N),with 3, p, = 1.Inother words, 1 (p|@, N) represents (up to a sign) a functional providing us with a
notion of relative entropy (information divergence) for the process-class X. If this process-class X is the class of
Bernoulli-processes, such that P (k|q, N) is the multinomial distribution, then asymptotically

—(plg, N) ~ X, p.(logp, — logg,), is the Kullback-Leibler divergence, and ¢ (N) = N.In the following we
compute ¥ (p|6, N) for P6lya urn processes.

3. Max-ent functional for Polya urns

In urn models observable states i are represented by the colors balls contained in the urn can have. The likelihood
of drawing a ball of color i is determined by the number of balls contained in the urn. Initially the urn contains a;
balls of color i = 1,..., W. The initial prior probability to draw a ball of color iis given by q; = a; /A, where

Ay = Y_; a;isthe total number of balls initially in the urn. Balls are drawn sequentially from the urn. Whenever a

3
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ball of color iis drawn, it is put back into the urn and another ¢ balls of the same color are added. This defines the
multi-state PSlya process [9]. A particular Pélya process is fully characterized by the parameters,
0 = (g ---»qy5 Ao 6). Drawing without replacement is the hypergeometric process, drawing with replacement
(6 = 0), is the multinomial process.

If 6 > 0, after Ntrials there are a;(IN) = a; + Ok;balls of color i in the urn (a; = a;(0)). The total number
ofballsis A(N) = >-a;(N) = Ay + N&, and the probability to draw a ball of color iin the (N + 1) thstepis

a;(N)  a;+ k6
ANN) Ao+ N§’

p(ilk, 0) = )

which depends on the history of the process in terms of the histogram k. With x (0) = [ ] the empty sequence, the
probability of sampling sequence x can be computed

W 6.k
a;
p(x|0) = H pxnlk(x(n — 1)), 0) = I_IAW, 3

n=1

where the function (%" is defined as
m®) = m@m + 8)(m + 26) --- (m + (r — 1)6). (4)

Note that m®") generalizes the multinomial law,

(6,N)
BT
i {KIN=3". k)
and forms a one-parameter generalization of powers m". For § = 0, m®” = m" and for
S=1,m") =m+r—1D!/(m— 1
The probability of observing a particular histogram k after N trials becomes

N)I'LW1 a®k)

P(k|9,N):(k I (©6)
0

with Yiksos k=N P (kl0, N) = 1. Note that P (k|#, N) is almost of multinomial form, it is a multinomial
factor times a term depending on 6. One might conclude that the max-ent functional for Pdlya processes is
Shannon entropy in combination with a generalized cross-entropy term that depends on 6. However, this turns

out to be wrong, since contributions from the generalized powers m(>" in equation (6) cancel the multinomial
factor almost completely. To see this we first rewrite

a® =a;(a; + 6) -+ (a; + (ki — 1)6)

=(a; +8) - (ai + ki6)

=k,-!5kf(1+%)...(1+%)

6)a;i+ kb

~ k185 (k; + 1)%51, o )

where we use Ei:1% ~ log(s + 1)and1 + y ~ exp(y), whichisvalid for sufficiently small y = a; /6, i.e. for
sufficiently large 6. With the notation v = §/A, we obtain

N

1+ N ( i+ p)"

P(kl6, N) = x| Saron e
(1 +N) i=1 ’yqi

®)

where k = pN. Following the construction discussed above, we identify U(p|6, N) = log P (pN|f, N), which
no longer scales explicitly with N, but ¢ (N) = 1(c = 0), so that ¢ = . Inserting equation (7) into (6), leads to
the expression

B (pld) =~ f:( = )tog(pi + )

i=1

- Zlog[l + Lg’ T ] + Zlogql

i N i=1

— Llog(1 + ) + log(1 + Ny) — W log(Ny). )

More precisely, the finite size Pélya ‘entropy’ can be conveniently identified with the terms in ¢ (p|#) that do not
depend ong,
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. W A
HPolYa(p) — —Zlog(Pi —+ N)) (10)
i=1

where A > 0 can in principle be chosen freely. Up to a constant depending only on «yand N, the finite size cross-
entropy can be identified with

. . 1 1 g — X
Heold (plg) = =3 &log(ﬂ + —) ~log[1+ — LT+ logg, | (1)
i | N Ny p; + N

Convenient choices for A are the following. A = 1, represent log ¢ as in equation (9). Alternatively, one may
choose A = 1/(W~), which is a convenient choice if one considers a uniform initial distribution, q, = 1/W, of
balls in the urn. The finite size Pdlya entropy equation (10), yields a well defined entropy even if some states i
have vanishing probability p; = 0.

To simplify the following analysis we consider the limit N — oo of this functional, where the notion of
‘information divergence’ for Pélya processes, essentially reduces to

w 1 w w
Y(pl) = =) logp, + — > g;logp, + > _logg; (12)

i=1 i=1 i=1

up to terms of order 1/N and terms that do not explicitly depend on p; or g,. In this limit the asymptotic Pélya
‘entropy’ is given by,

w
HPélya(p) — 7210gp’_. (13)
i=1

We observe that one cannot derive H”9%2 (p) from the multiplicity of the system, which gets canceled by counter
terms, as we have seen above. In addition, we note that the g dependent terms, Y, g; log p;, in equation (12) play
the role of the Pélya ‘cross-entropy’, which is no longer linear in p.

Maximizing 1 (p|6) with respectto pon >_p, = 1, either leads to the solution
1
¢

for 0 < p; < 1, or, if this can not be satisfied, to boundary solutions p; = 0. (is a normalization constant. There
exist three scenarios:

p,=—=0q - (14)

(A) For v < min(q), equation (14) is the max-ent solution for all i (no boundary-solutions). The limit v — 0
provides the correct multinomial limit p, — g;.

(B) If max(gq) > v > min(q), ¥ gets maximal for those i with g, > y and follows solution equation (14); those
i where g; < y are boundary-solutions, p, = 0.

(C) For v > max(q) all p; are boundary-solutions, meaning that one winner i takesitall, p, = 1, while all other
states have vanishing probability.

Since 9*1hpeiya / Bpl.z < 0 ify < g forall i, case (A) applies. If g, < -y, equation (14) becomes negative but
also unstable and is replaced by a boundary solution: cases (B) and (C). The Pélya max-ent not only allows us to
predict p; from the initial prior probabilities g;, it also identifies yas the crucial parameter that distinguishes
between the three regimes of Pélya urn dynamics’. For sufficiently large but finite N, the analysis above is more
involved but solvable.

Assuming uniformly distributed priors, g, = 1/W for all i, the max-ent result equation (14) correctly
predicts uniformly distributed p. = 1/W, while observed distributions p may strongly deviate from this
prediction. This result reflects the fact that despite the P6lya urn process being inherently instable (e.g. winner
takes all) with little chance of predicting who in particular will win, i.e. which color of balls will dominate the
others, repeating the experiment many times every color of balls has the same chance to win (or biased according
to the priors g). This discrepancy between ensemble average and time average makes it impossible to predict who
in particular will win or loose in the course of time. However, using detailed information about the process one
can predict how winners win. In particular one can (i) predict the onset of instability, i.e. the emergence of colors
i that will effectively never be drawn, at 7, = min(q) (compare figure 2), and (ii) construct a maximum entropy

> Note thata Pélya urn U, that initially contains A, balls and has evolved for N'steps with v = 6,/A, can be regarded as another P6lya urn,
U,, in its initial state, containing Ay = A + ON balls, that evolves with an effective reinforcement parameter v (N) = ¢ /Ay, and the
initial distribution of balls g (N') = p (ilk (N), 0), where k(N) is the histogram of colors drawn in the first N steps of the original urn process
U,. Obviously the asymptotic behavior of Pélya urns gets determined early on in the process, where the effective reinforcement parameter
v (N) is largest. The probability of a P6lya urn to enter a winner-takes-all dynamics, i.e. to end up in one of the scenarios A, B, or C, depends
on the reinforcement parameter .
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Figure 2. The fraction of distinct colors contained in the Pélya urn, which at least get sampled once within the first N = 500 steps of
the process, for numbers of colors W = 2, 3, ..., 10 for uniformly distributed initial conditions g, = 1/W, i = 1,..., W, evaluated
from 250 runs for each v = 0.01, 0.02, ..., 1. The onset of instability 4 (9) = min(q) = 1/W (circular markers) is very well
reproduced experimentally.

functional for predicting the time dependent frequency distribution of a process, i.e. the number of times one
observes states i for n times. As a consequence, one also can derive the rank distributions of the process, i.e. the
frequency of observing balls of some color after ranking those frequencies according to their magnitude.

3.1. Rank and frequency distributions of Pélya urns
With the presented max-ent approach we now compute frequency distribution functions. Given the histogram
k = (k;, ko, ...ky ) is obtained after N iterations of the process,we define new variables,

w
n, (k) = ZX(kl = 2), (15)
i=1

where Y is the characteristic function that returns 1 if the argument is true and 0 if false. 7,(k) is the number of
colors i that occur z times after running the Pdlya process for N iterations. n, is subject to the two constraints,

N N
W= an(k) and N = an(k)z, (16)

z=0 z=0
which can be included in the maximization procedure introducing Lagrange multipliers, o and (3. The
probability of observing some n = (n,...,1ny) is
Pn|d, N) = > P(kl6, N). (17)
{ki=0|n=n(k)}

Defining the relative frequencies 7, = n, /W and p, = z/N we can construct the max-ent functional from
P(n|6, N). Weidentify ¢(7|0, N) = log(P(n]0, N))/W.

For the multinomial P (k|f, N) = (IZ) I1; qik", and uniform priors g, = 1/W we find up to an additive
constant,

N
U(rlf, N)=— > mlogm,

z=0

N
— N> m.p,logp,. (18)

z=0

¥(7|0, N)has to be maximized subject to equation (16),

N N 1
Ym=1 and > mp = W (19)
z=0 z=0




R Hanel etal

10P Publishing

New]. Phys. 19 (2017) 033008

rep=100

rep=5000

5=2

W=100

pfreq

10°

Figure 3. Frequency distribution of a Pélya urn process and uniform initial conditions (red line), for W = 100, 6 = 2,a; = 1forall
i = 1,and N = 10° steps. Simulations are shown for 100 (green) and 5000 (blue) repetitions of the process. Inset: rank distributions

of the max-ent result and the numerical realizations in semi-log scale.

so that we get the asymptotic solution for large Wand large N, (N > W > 1),
¢Z
™, = . (20)
¢ z!
This is the Poisson distribution, exactly as expected for multinomial processes. p = N e (%), (isa
normalization constant, and 7, gets maximalat Z = ¢ ~ N/W.
For the Pdlya urn with uniform priors we get from equation (17)
1.
— 1 \w~y
| N + =)
L w e .
b+ aN

P(n|f, N) =
ZO, N T, m! s
Z (8, N)is the normalization. Up to a constant the max-ent functional ﬂzpélya (m|0, N) = log(P (n|6, N)) / W is

N
Prsiya (7|0, N) = — >, log(m,)

z=0

_ Zéwz tog (5. + —1x)
(22)

+ WL”ZiOFZ log (ﬁz + %)

maximizing @pélya (m|0, N)under the conditions of equation (19) provides the frequency distribution of the

Pélya process for uniform priors,
1 1)w:
r= Lo 2t D0 (23)
C z + ')—W
with ¢ = exp(—(3), and normalization {( = exp(l + Q)Nw, 1
The rank distribution of states, f(r), can now be obtained as follows. r = 1 is the state that occurs most
frequently, r = Wis the least occupied state. For r = 1, ..., W we define intervals [#,.1t,] with 4 = N and
(24)

twy1 = 0,suchthat}>, . m ~ 1/W.Tofind?; wesubstitute sums by integrals and get
1 t 1%% t
— = dzm and f(r)=— f dz m,z.
w tril N tri1

Results for the frequency distributions fora; = 1, W = 100, and § = 2 are shown in figure 3, together with a
numerical simulation for the same process. The inset shows the rank distribution. The Pélya max-ent predicts

frequency and rank distribution extremely well.
The above results were all derived under the assumption that v > 0 is sufficiently large. By numerical
simulation we find that the solution equation (23) also works remarkably well for very small values of , if the

value of yin equation (23) is appropriately renormalised, ¥ — ~,. In particular for v = 0 (multinomial process)

7
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we sample the Poisson distribution function, equation (20). The Pélya max-ent solution recovers the Poisson
distribution extremely wellif y = 0 — ~,(W, N) = 1/(N + 3W).In this sense the P6lya max-ent remains
adequate in the limit of small .

4. Discussion

Pélya urns offer a transparent way to study self-reinforcing systems with explicit path-dependence. They behave
similarly to Bernoulli processes if the reinforcement is weak, i.e. if the number of balls initially contained in the
urn is large in comparison to the number of balls added to the urn at each trial. This weak reinforcement regime
hasbeen studied in [28].

If reinforcement gets stronger, Pélya urns start to behave differently and the Pélya divergence derived in [28]
no longer applies. Based on the microscopic rules of the process, we constructively derive the generalized
information divergence or relative entropy —1, for strongly reinforcing Pélya urns. The functional ) acts as the
corresponding non-multinomial max-ent functional. This provides us with an alternative to the ensemble
approach for path-dependent processes that enables us to predict the statistics of the process. The maximization
of the functional leads to an equivalent of the classical maximum configuration approach, which by definition
predicts the most likely distribution function. In this sense maximum configuration predictions are optimal,
and can be used to understand even details of the statistics of path-dependent processes, such as their frequency
and rank distributions.

It is interesting to note that the functional playing the role of the entropy in the Pélya processes violates at
least two of the four classic information theoretic (Shannon—Khinchin) axioms which determine Shannon
entropy [8]. Even more, for the finite size Pélya entropy, three of the four axioms are violated. This indicates that
the classes of generalized entropy functionals that are useful for a max-ent approach may be even larger than
expected [30, 31]. One might speculate that in this sense the classic information theoretic axioms are too
rigorous, when it comes to characterizing information flow and phase space structure in non-stationary, path-
dependent, processes. The observation that each particular class of non-multinomial processes requires a
matching max-ent functional that can in principle be constructed from the generative rules of a process, opens
the applicability of max-ent approaches for a wide range of complex systems in a meaningful way. The
generalized max-ent approach in this sense responds to naturally Einsteins comment on Boltzmann’s principle.

Finally we note the implications for statistical inference with data from non-multinomial sources, which
implicitly involves the estimation of the parameters 6 that determine the process that generates the data. Ina
max-ent approach this is done by fitting classes of curves to the data, that are consistent with the max-ent
approach. For doing this, the nature of the process, i.e. its class, needs to be known. For path-dependent
processes, which are non-multinomial by nature, entropy will no longer be Shannon entropy H, and the
information divergence will no longer be the Kullback—Leibler divergence.
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