
Article

Quality of Crowdsourced Data on Urban
Morphology—The Human Influence
Experiment (HUMINEX)

Benjamin Bechtel 1,*, Matthias Demuzere 2, Panagiotis Sismanidis 3,4, Daniel Fenner 5,
Oscar Brousse 6, Christoph Beck 7, Frieke Van Coillie 2, Olaf Conrad 1, Iphigenia Keramitsoglou 3,
Ariane Middel 8, Gerald Mills 9, Dev Niyogi 10, Marco Otto 5, Linda See 11 and
Marie-Leen Verdonck 2

1 Center for Earth System Research and Sustainability, University of Hamburg, D-20146 Hamburg, Germany;
olaf.conrad@uni-hamburg.de

2 Department of Forest and Water Management, Ghent University, 9000 Ghent, Belgium;
matthias.demuzere@ugent.be (M.D.); Frieke.Vancoillie@UGent.be (F.V.C.);
marieleen.verdonck@ugent.be (M.-L.V.)

3 Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing,
National Observatory of Athens, Athens GR-15236, Greece; panosis@noa.gr (P.S.); ik@noa.gr (I.K.)

4 School of Chemical Engineering, National Technical University of Athens, Athens GR-15780, Greece
5 Institute of Ecology, Technische Universität Berlin, D-12165 Berlin, Germany;

daniel.fenner@tu-berlin.de (D.F.); marco.otto@klima.tu-berlin.de (M.O.)
6 Department of Earth and Environmental Sciences, KU Leuven, 3001 Leuven, Belgium;

oscar.brousse@kuleuven.be
7 Institute of Geography, University of Augsburg, D-86159 Augsburg, Germany;

christoph.beck@geo.uni-augsburg.de
8 School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ 85287, USA;

ariane.middel@asu.edu
9 School of Geography, University College Dublin, Dublin 4, Ireland; gerald.mills@ucd.ie
10 Purdue University, West Lafayette, IN 47906, USA; climate@purdue.edu
11 Ecosystems Services and Management Program, International Institute for Applied Systems Analysis,

A-2361 Laxenburg, Austria; see@iiasa.ac.at
* Correspondence: benjamin.bechtel@uni-hamburg.de; Tel.: +49-40-42838-4962

Academic Editors: Elizabeth Wentz, Lindsey Conrow and Heather Fischer
Received: 13 March 2017; Accepted: 6 May 2017; Published: 9 May 2017

Abstract: The World Urban Database and Access Portal Tools (WUDAPT) is a community initiative
to collect worldwide data on urban form (i.e., morphology, materials) and function (i.e., use and
metabolism). This is achieved through crowdsourcing, which we define here as the collection of
data by a bounded crowd, composed of students. In this process, training data for the classification
of urban structures into Local Climate Zones (LCZ) are obtained, which are, like most volunteered
geographic information initiatives, of unknown quality. In this study, we investigated the quality of
94 crowdsourced training datasets for ten cities, generated by 119 students from six universities. The
results showed large discrepancies and the resulting LCZ maps were mostly of poor to moderate
quality. This was due to general difficulties in the human interpretation of the (urban) landscape and
in the understanding of the LCZ scheme. However, the quality of the LCZ maps improved with the
number of training data revisions. As evidence for the wisdom of the crowd, improvements of up to
20% in overall accuracy were found when multiple training datasets were used together to create a
single LCZ map. This improvement was greatest for small training datasets, saturating at about ten
to fifteen sets.
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1. Introduction

The role of cities as drivers of global environmental change and as places that are uniquely
exposed to a range of natural hazards (both current and projected) has highlighted a data gap. While
there are numerous studies on urban growth [1–3], building urban resilience [4–6], and on urban
analytics and smart cities [7–9], there is a dearth of information on the place-specific character of urban
landscapes worldwide. This information is needed to make informed decisions about the nature of
urban risks, to provide a basis for planning of sustainable cities, to transfer knowledge between cities,
to run increasingly sophisticated models on urban impacts on ecosystems, and to link global/regional
environmental change to city outcomes. Fundamentally, urban science needs data on the form and
functions of cities at a scale that is useful for decision making. Form describes the physical layout of
the city (land-cover), while function captures the ‘metabolic’ processes that consume energy, materials
and water and generate wastes (land-use). Urban adaptation and mitigation strategies seek to modify
and regulate these aspects of cities to manage risk and its components. Data on form and function
must be acquired using consistent methodologies to have universal relevance. Satellite-based sensors
are ideally suited to this task and have been used to generate global urban masks (that is, the extent
of urban cover) [10,11] but these have not provided any detail on the internal make-up of cities [12].
The World Urban Database and Access Portal Tools (WUDAPT) project is designed to address this
lacuna [13].

WUDAPT takes a hierarchical approach to urban data acquisition; its first objective is to map the
basic physical geography of cities worldwide using a standard classification scheme, Landsat data
and crowdsourced knowledge. The Local Climate Zones (LCZ) system [14] provides the framework
for data gathering. LCZ types (also referred to in this paper as LCZ categories and LCZ classes) are
comprised of 10 urban and 7 natural types that are each associated with data values that describe
variables on the typical building, thermal, radiative and metabolic properties of urban neighborhoods
(≥1 km2). The LCZ scheme was designed primarily for assessing local climate impacts [15–19]; but as
it describes the urban landscape generally (e.g., vegetative and building fractions), a map of LCZ types
across a city also encodes its internal structure. As such, WUDAPT data can be used to assess current
and project urban impacts on the local atmosphere and hydrosphere and can be used to map exposure
to existing and projected hazards [20–22]. Moreover, these maps can provide a spatial framework
for gathering related information on ecosystems, carbon emissions, public health, etc. A worldwide
LCZ database on cities would provide much of the data infrastructure to support global initiatives on
urban-scale risk assessment and appropriate adaptation and mitigation strategies.

Several methods for creating LCZ maps have been proposed, including supervised
pixel-based classification from multiple Earth Observation (EO) data streams [23], model-based GIS
approaches [24–26], and object-based image analysis [27,28]. For WUDAPT, it was decided that a
simple and efficient computing workflow based on free software and data was needed. This resulted
in a universal WUDAPT methodology [29] that uses high-resolution imagery from Google Earth as
the basis for identifying and digitizing training areas (TAs) that represent typical examples of the
LCZs present in their city. Along with free Landsat satellite imagery, these TAs are used in the LCZ
classification, which here refers to the process of using a machine learning approach to assign the LCZ
types to derive a complete LCZ map for the respective city. This method has been implemented in a
single LCZ classification tool in the open source SAGA software [30]. While several improvements
with new sources of data [31–34] and methods [35–38] are currently being investigated, this simple
methodology has proven to be useful: to date, a large number of individuals around the world have
classified over 50 cities worldwide [31,32,39]. As such, WUDAPT is an example of the crowdsourcing
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of geographic information—also referred to as volunteered geographic information (VGI) [40] and
citizen science—amongst other terms related to user generated content [41]. Generally, crowdsourcing
involves the distribution of tasks to a crowd [42], often due to the sheer volume of the work involved
and the lack of labour needed to complete it. For WUDAPT, another important element in involving
the crowd is to elicit the knowledge of individuals located in different cities around the world. Hence,
members of the International Association of Urban Climate [43] are the main contributors to WUDAPT
due to their strong interest in urban climate related issues but anyone with an interest in contributing
to the WUDAPT database can participate.

Since the LCZ maps are intended for use in a range of different applications, such as climate
models at various scales, there is a clear need for a common quality assessment process. Critical for
mapping accuracy is the quality of the TAs provided by the crowd. Previous examinations of TAs
for different cities revealed that not everyone in the crowd follows the WUDAPT recommendations
for TA sizes and shapes and that often LCZ TAs have simply been misidentified. This is mainly
driven by the large variability in human interpretation of imagery, which is a common problem in
supervised classification [44–46]. Similar concerns have recently been raised with respect to the quality
of crowdsourced data [47,48]. Hence, new methods are emerging to assess and improve the quality of
crowdsourced data, both during data collection and in post-processing afterwards [49,50].

To investigate the effect of the crowdsourcing of TAs on the LCZ mapping process within the
WUDAPT methodology, the HUMan INfluence EXperiment (HUMINEX) was designed. The overall
aims are to (1) investigate the quality of LCZ maps produced by different individuals (hereafter
referred to as the operators) using the WUDAPT methodology; (2) address the influence of their
individual perception and interpretation, which is based on their experience and prior knowledge;
and (3) investigate how the mapping accuracy can be improved, e.g., by revision of the initial training
data or by joining crowdsourced data from several operators. This paper provides the first results of
HUMINEX, organized as follows: (i) in Section 2 the experiment is introduced; (ii) in Section 3 the
data collection for the experiment and the analysis methods are outlined; (iii) the results obtained are
presented in Section 4; followed by (iv) a discussion of the implications of the findings for future LCZ
mapping in Section 5; (v) and finally, the conclusions are presented in Section 6.

2. Description of the Human Influence Experiment

HUMINEX was designed to evaluate how individual perception and bias impacts the mapping
accuracy of cities following the WUDAPT framework across different cities in the world. The
experiment was set up as a coordinated effort among student courses from several universities.
Participants were provided with materials (software, website, and papers) for their classroom exercises,
which included the LCZ mapping workflow as described briefly below. However, since the courses
had different starting times and different formats, the degree of standardization was limited.

2.1. The LCZ Scheme

The LCZ scheme presented in Figure 1 includes ten urban types that describe urban
neighbourhoods in terms of typical building heights and densities, construction materials (i.e.,
lightweight vs. concrete), and vegetation cover. These urban types can be further categorized as: dense
urban fabric (LCZs 1 to 3), open urban fabric (LCZs 4 to 6), and commercial and other urban fabric
(LCZs 7 to 10). The LCZ scheme also contains seven natural types, which are discriminated by the
abundance and kind of vegetation, bare soil, bare rock and water.
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Figure 1. Urban (1–10) and natural (A–G) LCZ types and their characteristics (adapted from Table 2 
in [14], text shortened, icons reworked) and colour code used in the WUDAPT framework. B: 
Buildings; C: cover; M: materials; F: function; Tall: >10 stories, Mid-rise: 3–9 stories, Low: 1–3 stories. 

2.2. LCZ Classification Workflow 

The classification workflow is outlined in Figure 2. Since LCZs are visually identifiable from 
high-resolution satellite imagery, the first step is to identify and digitize representative examples 
(=polygons) of all LCZ types present in a city (i.e., the TAs) using the Google Earth desktop application. 

 
Figure 2. LCZ classification workflow (by operators) and HUMINEX evaluation (by authors of this study). 

The second step in the LCZ classification workflow (Figure 2, point 2) is to download Landsat 
imagery for the city, clip it to the region of interest (including a buffer around the city built-up), and 
resample the imagery to a common 100 m grid (grid cells are referred to as pixels here) using the 
SAGA GIS software [30]. Subsequently, a supervised random forest classifier [51] is applied to the 
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2.2. LCZ Classification Workflow

The classification workflow is outlined in Figure 2. Since LCZs are visually identifiable from
high-resolution satellite imagery, the first step is to identify and digitize representative examples
(=polygons) of all LCZ types present in a city (i.e., the TAs) using the Google Earth desktop application.
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Figure 2. LCZ classification workflow (by operators) and HUMINEX evaluation (by authors of
this study).

The second step in the LCZ classification workflow (Figure 2, point 2) is to download Landsat
imagery for the city, clip it to the region of interest (including a buffer around the city built-up),
and resample the imagery to a common 100 m grid (grid cells are referred to as pixels here) using
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the SAGA GIS software [30]. Subsequently, a supervised random forest classifier [51] is applied to
the multispectral and thermal satellite image data to create an LCZ map (Figure 2, point 3). This is
implemented in the LCZ classification tool in SAGA as detailed in [29]. The LCZ map is then inspected
visually by the operator using Google Earth to evaluate how well it matches the underlying urban
landscape. Subsequently, additional TAs are digitized and existing TAs are modified for those LCZ
classes that are not well represented or where confusion between different LCZ classes has occurred
(Figure 2, point 4). This procedure is then repeated iteratively until no further improvements are
deemed necessary.

This basic LCZ workflow was provided as a set of online training materials that were used in
designated student exercises. Typically, the students (subsequently referred to as operators) were
introduced to the LCZ scheme and the WUDAPT framework before they were provided with the
software and a template containing predefined folders for each LCZ class. Each participant was
asked to define TAs for their specific city according to the WUDAPT protocol, i.e., to be of a size
of approximately 1 km2; to be as homogeneous as possible; to be compact in shape, and to have
sufficient space along the borders with neighbouring LCZ areas. In addition, the TAs of each LCZ class
should include at least five to ten TA polygons in the first round to cover the city-specific class internal
variation (e.g., for an urban LCZ class the internal variation due to different roof colors/materials).

2.3. Collection of Metadata on Individual Operators

In addition to the TAs and LCZ maps, comprehensive metadata was collected from each operator
using a questionnaire. Table 1 provides an overview of the collected metadata, ranging from basic
information (e.g., age and gender) to LCZ specific knowledge, details on the TA collection and
LCZ classification (e.g., number of iterations), and questions relating to the behavioural aspects and
personality (e.g., “I like to collaborate”). Additionally, some self-assessment questions were asked,
including their assessment of the final LCZ map, their knowledge of the city being mapped, and
their image classification experience. The design of the questionnaire was influenced largely by Van
Coillie et al. [46], who found that the operator performance is mainly determined by demographic,
non-cognitive and cognitive personality factors, and less by external and technical factors.

Table 1. Metadata collected from the participants. The allowed answers are provided in brackets.

Category Metadata Collected

General ID; City name

Operator
Number of operators per training area set; highest degree (B.Sc./M.Sc./Ph.D.); total years
of study (Number of years); University course; Experience with Image Classification
(Self-Estimation 1); Age; Gender; City of origin

LCZ knowledge

Introduction in seminar/course (Yes/No); WUDAPT website visit (Yes/No); study of
Stewart & Oke 2012 paper (Yes/No); study of LCZ fact sheets (Yes/No); completion of
LCZ Driving test (Yes/No); Numbers of cities classified before (Number of cities); LCZ
knowledge self-estimation (0–100%)

City knowledge
How long have you lived in the city of interest (Number of years); how long have you
lived in similar (climate, morphology) cities (Number of years); Familiarity with city of
interest self-estimation (0–100%)

Classification
Time invested for training area collection (Number of hours); Number of iterations
(Number of iterations); Used online manuals? (Yes/No); Which LCZ did you find difficult
to distinguish? (LCZ type)

Overall Self-Rating (0–100%) of final classification [map] quality

Personality 2

I like to follow a schedule; I know how to captivate people; I am relaxed most of the time; I
don’t mind being the centre of attention; I see myself as sympathetic/warm, I see myself as
dependable, self-disciplined; I see myself as open to new experiences; I see myself as calm,
emotionally stable; I like to collaborate.

1 Experience with image classification: 0-Novice; 1-Advanced Beginner; 2-Competent; 3-Proficient; 4-Expert; 2 The
answer to the personality questions was a value between 1 and 5, where 1 corresponds to “strongly disagree” and 5
to “strongly agree”.
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It should be noted that some courses had already started when HUMINEX was fully set up, so that
the metadata was not always collected during the mapping exercise. In these cases, the questionnaire
was filled in retrospectively, which impacted completeness and may have affected answers depending
on the recall of the participants.

3. Data and Methods

3.1. TAs and LCZ Maps Collected during HUMINEX

In total, six institutions took part in HUMINEX, creating multiple versions of TAs and LCZ maps
for ten different cities, as outlined in Table 2 and shown in Figure 3. 119 students participated, while
the number of operators working on a single city varied between institutions, ranging from four for
Antwerp, Belgium, and Dublin, Ireland, to 31 for the city of Leuven, Belgium. Moreover, operators were
given different times for completion, from twelve hours to several weeks as a homework assignment.
In a few cases, two or more participants worked together to digitize the TAs while creating only
a single LCZ map. A few operators only submitted the classified maps and not the TAs and were
excluded from the analysis. One map was not considered due to an erroneous output format of the
classification result. In total, 94 TA sets were evaluated.

Table 2. Participants and cities in the HUMan INfluence EXperiment. For AUG and TUB multiple
operators were working on joint TA sets. Students from NOA additionally classified Hamburg,
Madrid, Milan, Prague, Vienna, which were not included in the evaluation due to the small number of
classifications per city.

Institute ID Name Number of
Students

Cities
Classified

(Number of
Students)

Maximum
Time for

Completion

Number of TA
Sets Used in
Evaluation

ASU Arizona State
University 7 Phoenix (7) 2 weeks

(homework) 7

AUG University of
Augsburg 12 Augsburg (12),

Vancouver (12) homework 14

KUL University of
Leuven 31 Leuven (31) 9 h 28

NOA

National
Observatory of

Athens &
University of
Peloponnese
(Joint course)

8 Athens (8) homework 8

TUB
Technical

University of
Berlin

14 Berlin (14) 2 days (16 h) 9

GU Ghent
University 28

Antwerp (4),
Berlin (5),

Brussels (5),
Dublin (4),
Ghent (6),

Vancouver (4)

12 h 28

Since the WUDAPT protocol involves an iterative process, additional TAs were digitized and
new LCZ maps were produced after each iteration. The number of iterations varied widely between
operators. TUB, NOA, and KUL saved the TA sets from each iteration for further analysis.
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3.2. Accuracy Assessment of the LCZ Maps

We assessed the accuracy of the training data based on the resulting LCZ maps; other sources
of error that are inherent in the machine learning process were ignored. For each city, a sample of
reference areas were identified by an LCZ expert (in most cases, the course teacher) familiar with
the methodology and the city under study. Since the reference data are also affected by subjective
interpretation, a second expert reviewed them to minimize this effect; unclear cases were excluded
from the study.

For each map, we derived the following standard accuracy measures from their respective
confusion matrices: overall accuracy (OA = percentage of correctly classified pixels); producer accuracy
(PAi = percentage of correctly classified pixels for class i); user accuracy (UAi = percentage of the pixels
classified as class i that actually belong to class i); the F1 value, which is the weighted harmonic mean
of UA and PA: F1i = 2 × UAi × PAi/(UAi + PAi); and the κ-index, which is a single standard measure
accounting for the class-wise performance. A summary of relevant accuracy measures can be found
in [52].

Since the urban LCZ types are of particular relevance (e.g., with respect to intra-urban climatic
differentiations) and because several of these types are quite similar, we introduced additional accuracy
measures. The OAurb is the OA of only the urban reference polygons and thus gives the quality for
the urban classes. The OAbuiltup is the overall accuracy of built vs. natural types only, ignoring their
internal differentiation. Therefore, we reclassified the maps into urban and natural only (class E is
omitted since it can be paved (artificial) or rock (natural)). Finally, we introduced a weighted accuracy
(WA) measure, which uses a similarity matrix called the LCZ metric (cf. Appendix A) to account for
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the similarity between LCZ types. WA is based on the climatic impact as discussed in [15] and consists
of up to twelve points for the properties openness, height, cover, and thermal inertia, penalizing
confusion between dissimilar types more than confusion between similar classes [53]. For example,
LCZ 1 is most similar to the other two compact urban types (LCZs 2 and 3) and hence these pairs have
higher weights than classes which are very different, such as LCZ 1 and the natural types. The weights
are applied to the confusion matrix so that WA measures the accuracy of the LCZ map in terms of the
expected thermal impact, rather than the percentage of predicted LCZ values that exactly match those
in the reference areas.

In addition, we used ordinal statistics to assess the spatial and type wise accordance of the
classification results of different operators. In particular, the modal LCZ type (most frequently chosen
LCZ type among N operators) was calculated for each pixel. The consistency of the class for this pixel
was further defined as the percentage of classifications where the modal class was chosen.

4. Results

The analysis was performed in different phases. First, we compared the classifications of the same
city to assess the impact of the operator on the classification result (Section 4.1). Second, we conducted
a class-specific analysis through the comparison with reference data to determine if some LCZ types
were consistent and generally had higher accuracies than others (Section 4.2). Third, we assessed the
accuracy of the different iterations by diverse accuracy measures (Section 4.3); and finally, the added
value of combining multiple TA datasets to create a single LCZ map was assessed (Section 4.4).

4.1. Variation in Classification Results

The LCZ classifications showed considerable variation when compared with each other. This
is the case for all cities included in HUMINEX. Figures 4 and 5 show the classification results from
the final iteration of each participant for Berlin and Vancouver, respectively, highlighting differences
between LCZs and their size and extent. Overall, the differentiation between urban and natural areas
for one city was similar. Yet, some classification results differed considerably from the rest (e.g., for
Berlin, the map in the second row, second column of Figure 4). Moreover, the differentiation between
water (LCZ G) and land surfaces was generally good, especially for coastal cities (e.g., Vancouver,
Figure 5) or cities with an abundance of water surfaces. However, some deviations from this general
pattern exist, e.g., the first classification result for Vancouver (Figure 5).

The modal LCZ type of all classifications for Athens, Greece, is shown in Figure 6a, along with
the corresponding consistency map (Figure 6b). As stated above, consistency is defined here as the
fraction of all maps that match the modal class for that pixel. The highest agreement amongst the LCZ
maps for Athens can be found for water surfaces (LCZ G), dense trees (LCZ A), and central areas of
the city (LCZ 2) (Figure 6). For the other types, no clear pattern exists.

Figure 7 shows, as an example, the distribution of consistency amongst different operators for
urban and natural LCZ types for each city (Figure 7a) and for each LCZ type in Vancouver (Figure 7b).
For the majority of the considered cities, the median consistency for natural types was higher than for
urban types; while for Antwerp and Phoenix, the median consistency values were the same (Figure 7a).
Since the possible values are discrete according to the number of maps per city and the median is
always one of these values, the mean consistency was also evaluated (not shown in Figure 7). The
mean urban consistencies varied between 0.45 for Phoenix and 0.69 for Brussels. With the exception of
Antwerp, the mean consistency was higher for natural types than for urban, with the largest differences
found in Vancouver (mean consistencies of 0.78 for the natural types (LCZs A to G) and 0.59 for the
urban types (LCZs 1 to 10) and Berlin (0.73 and 0.52, respectively). Figure 7b illustrates the reason
behind this finding: for Vancouver, the most prominent natural LCZ types are LCZ A (23% of pixels)
and LCZ G (24% of pixels). The estimated consistency for these two LCZ types was high (average
values of 0.82 and 0.92, respectively), while for the urban types the mean consistency ranged between
0.39 (LCZ 10, 1% of pixels) and 0.62 (LCZ 6, 17% of pixels). The natural types with lower average
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consistency were only present in a small number of pixels (with the exception of LCZ D; 0.50, 8% of
pixels). This implies that the dominant natural types (LCZs A to G) showed high consistency amongst
different operators. However, high consistency does not necessarily mean that the modal LCZ is
correct. For this reason, a comparison with reference data, which is presented in the next section, was
also performed.
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Figure 4. Classification results using different training area sets for Berlin, Germany.



Urban Sci. 2017, 1, 15 10 of 21

1

2

3
4
5

6
7

8

9
10

A

B
C

D

E

LCZ
F
G

Figure 5. Classification results using different training area sets for Vancouver, Canada.
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4.2. LCZ Type Specific Accuracies

The type-specific accuracies for all operators are shown in Figure 8, which plots F1 scores by LCZ
type. LCZs A (dense trees), D (low plants), and G (water) were recognized consistently by all operators
(high F1 scores). Of the urban types, LCZs 2 (compact midrise), 6 (open low-rise), and 8 (large low-rise)
performed well, while LCZ 4 and 5 (open high- and midrise) did not. LCZs 1 (compact high-rise) and
7 (lightweight low-rise) were not present in most cities under study. In addition, there were differences
between cities (vertical lines in Figure 8).
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Figure 9 provides a more detailed illustration of the F1 accuracy score for Augsburg, Germany
and Leuven, Belgium. Similar to Figure 8, some LCZ types were accurately classified (F1 close to 1)
in both cities, while others were not. As expected, for both cities, LCZ G was digitized accurately by
all operators and none reported in the questionnaire that this LCZ type was difficult to identify (cf.
Table 1). For LCZ A, again most operators identified this category accurately, but some found it hard
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to distinguish (25% and 9% for Augsburg and Leuven, respectively). Lowest F1 accuracies were found
for LCZs 9 (sparsely built) and B (scattered trees). For Augsburg, 86% of the operators identified LCZ
B, although 25% stated that it was difficult to identify. This is reflected in a low median F1 accuracy
of approximately 0.1. For Leuven, the same percentage of operators identified this LCZ but only 9%
considered it difficult to identify; here, the overall median accuracy was slightly better (0.35). LCZ 9
in Leuven was mapped by 55% of the operators although 82% considered this category as difficult
to identify. The accuracy of this LCZ was variable, between 0 and 0.75. For most of the other classes
it was difficult to find a direct relation between the F1 accuracy scores for LCZ categories and the
self-assessed level of difficulty in identifying that category. For example, LCZ 6 in Leuven was mapped
by all of the operators with relatively high accuracies, despite the fact that all operators indicated that
LCZ 6 was difficult to identify. By comparison, LCZ 2 in Augsburg had accuracies between 0.5 and
0.9, yet 75% of the operators found this class difficult to distinguish. Note that these inconclusive
results may partly originate from the fact that some of the operators have provided their answers to
the questionnaire retrospectively.
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Figure 9. Distributions of F1 accuracy for all LCZs for Augsburg, Germany (left), and Leuven, Belgium
(right). Box and whiskers refer to the interquartile range and min -and maximum values, respectively.
Numbers in blue denote the percentage of operators identifying a specific LCZ in the city, red numbers
indicate the percentage of operators tagging a LCZ as difficult to distinguish in the questionnaire (cf.
Table 1).

4.3. Iterations

Figure 10 presents the OAurb and κ for Berlin, and OAbuiltup for Leuven by iteration, whilst
Figure 11 shows the increase in OA as a function of the iteration round for different operators. The
different accuracy indicators clearly improved with the number of iterations. Figure 10a reveals that
the mean OAurb increased from iteration 1 to iteration 4 by more than 10% (from 0.53 to 0.67), while
Figure 10b shows that the mean κ increased from 0.67 for iteration 1 to 0.74 for iteration 4 (an increase
of 7%). This trend is also visible in Figure 10c, where the mean OAbuiltup for Leuven increased by 6%
after three iterations (from 0.83 for iteration 1 to 0.89 for iteration 3). As the iteration process progresses,
the classification accuracy achieved by the different operators also converged to a higher accuracy
value. This is depicted in Figure 10, where the box size (25th–75th percentiles) and the whisker length
(5th–95th percentiles) decrease with number of iterations, and also in Figure 11b, where the OA,
which shows considerable variability at iteration 1, converges at approximately 0.7 for iteration 3.
In addition to the relationships between accuracy and iteration, classification time and classification
accuracy self-rating were also reported in the metadata and thus also investigated, but no meaningful
correlations were found.
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Figure 10. Results of different iterations. (a) urban OA for Berlin, Germany; (b) k for Berlin, and
(c) OAbuiltup for Leuven, Belgium.
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Figure 11. Results of individual operators at different number of iterations. (a) OA for Berlin, Germany
and (b) OA for Leuven, Belgium.

4.4. Multiple Training Sets

The final experiment tested if additional training data improve the classification. Therefore, the
accuracy measures were compared across the different cities (Table 3) using:

(1) the mean accuracies achieved across individual runs, i.e., the LCZ maps created with one TA set
as shown in Figure 12a for Leuven (=µ of individual runs);

(2) the best accuracies achieved across the individual runs, which requires prior knowledge and
therefore cannot be done without reference data (=best run);

(3) the accuracies achieved when selecting the most frequently chosen category across the individual
maps (=modal LCZ); and

(4) the accuracies achieved when combining all TAs into a single LCZ classification per city.

Figure 12b shows all the TAs digitized by the operators for Leuven, which are then used to
create a single LCZ map for the city (=all in). This example implements the idea of the wisdom of the
crowd [54] or verification of Linus’ Law [55], and examines whether the combined efforts might yield
a better LCZ map than individual ones.
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Table 3. Results of the experiment comparing the use of multiple training areas. N: number of training
area sets; 1. mean (µ) and 2. best accuracies of N individual classifications; 3. Modal of all TA: accuracies
of modal LCZ type from N classifications; 4. all TAs used to create a single LCZ map: accuracies if one
classification using all training areas.

CITY Antwerp Athens AugsburgBerlin Brussels Dublin Ghent Leuven Phoenix Vancouver

N 4 8 7 14 5 4 6 28 7 11

1. µ single runs

OA 0.71 0.56 0.66 0.76 0.71 0.71 0.61 0.72 0.18 0.78
k 0.67 0.52 0.58 0.72 0.67 0.65 0.55 0.64 0.12 0.73

OAurb 0.70 0.54 0.60 0.61 0.59 0.55 0.55 0.60 0.30 0.57
OAbuiltup 0.93 0.92 0.85 0.96 0.94 0.93 0.96 0.89 0.66 0.91

WA 0.93 0.91 0.90 0.95 0.93 0.91 0.91 0.92 0.64 0.93

2. best single run

OA 0.75 0.74 0.71 0.93 0.85 0.74 0.72 0.83 0.28 0.87
k 0.72 0.71 0.63 0.92 0.82 0.68 0.68 0.78 0.20 0.83

OAurb 0.72 0.74 0.81 0.89 0.74 0.65 0.75 0.80 0.44 0.82
OAbuiltup 0.93 0.97 0.90 0.99 0.98 0.95 0.99 0.97 0.79 0.96

WA 0.95 0.95 0.92 0.98 0.97 0.91 0.95 0.95 0.72 0.97

3. mode all TA

OA 0.79 0.73 0.79 0.95 0.81 0.75 0.66 0.85 0.23 0.87
k 0.76 0.70 0.72 0.93 0.78 0.69 0.61 0.80 0.17 0.83

OAurb 0.76 0.75 0.66 0.89 0.70 0.69 0.76 0.77 0.41 0.74
OAbuiltup 0.94 0.97 0.91 0.99 0.98 0.93 0.95 0.94 0.75 0.93

WA 0.95 0.95 0.94 0.99 0.97 0.92 0.93 0.95 0.68 0.96

4. all TA in

OA 0.79 0.75 0.85 0.94 0.86 0.79 0.80 0.92 0.23 0.93
k 0.77 0.72 0.80 0.93 0.84 0.74 0.76 0.90 0.17 0.91

OAurb 0.72 0.77 0.85 0.87 0.79 0.66 0.72 0.89 0.36 0.84
OAbuiltup 0.94 0.99 0.92 1.00 0.97 0.95 0.99 0.98 0.82 0.97

WA 0.96 0.96 0.96 0.99 0.98 0.93 0.97 0.98 0.72 0.98
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The accuracy of the modal LCZ maps (3. in Table 3) was better than the average accuracy of the
maps from the individual TA sets (1) for all measures and cities except for OAbuilt-up for Dublin and
Ghent. The classification results using multiple TA sets (4) were always better than the average of the
individual runs (1), and for 82% of the cities and measures, the accuracy was even higher than for the
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best individual TA set (2). The average increase over the ten cities in OA (OAurb) was 0.102 (0.151)
for the modal category (3), and 0.145 (0.184) for the multiple TA classification (4) compared to the
mean of the individual runs (1). Compared to the best individual run for the multiple TA classification
(2), the average (urban) OA still increased by 0.042 (0.010). Figure 13 shows the distribution of the
improvements for the modal classification (3) and the classification using multiple TAs compared (4)
with the average accuracies of the individual maps (1). It can be seen that OA, κ, and OAurb benefited,
in particular, from the additional training data.
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OA
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Figure 13. Improvements with additional training data: (a) modal type and (b) multiple training areas
(TA) result vs average of individual TA sets. Distribution for ten cities.

Figure 14 shows the dependency of the accuracy improvement in the five standard measures
on the number N of available TA sets. There was a strong positive correlation found between the
improvement and N. Less improvement was seen in the OAbuiltup and the WA, since both are already
quite high for the individual classifications. This increase was not linear but rather showed a strong
increase in the beginning and saturation at about ten to fifteen TA sets for most accuracy measures.
This seems to be a strategy to improve the accuracy of WUDAPT LCZ maps, but the effect of bad
quality TAs and the need for filtering processes in such a setup need to be investigated in more detail.
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Figure 14. Dependency of the accuracy improvement on the number of available TA sets.

5. Discussion

HUMINEX showed that there are large differences between different LCZ maps generated for a
single city. The consistency and accuracy measures indicated that the quality of single TA sets and
the resulting LCZ maps was, in most cases, poor to moderate. Furthermore, there were differences
found between the cities, which can partly be explained by small differences in the experimental setup.
In particular, the Phoenix classifications performed substantially worse than the other cities. This
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could be explained by the structure of the exercise on this city, which allocated operators to different
areas in the Phoenix metropolitan area; the TAs were supposed to be combined into a city-wide TA set
subsequently, but nevertheless were evaluated separately here. Therefore, the individual TA sets did
not include all LCZs (for example, high-rise (LCZs 1 and 4) was only found in Phoenix Downtown,
but nowhere else) and did not represent the variation within the scene. Yet, even by combining all the
TAs, the overall accuracy was not greatly improved for this city, mainly because iterations were not
performed until the accuracy converged to a stable value.

For many TA sets, the number of iterations was low and iterations were not performed until
classification results converged to acceptable results due to the schedules of the different courses.
While these problems could clearly be identified in the accuracy assessment, there are other factors
such as the number and type of classes present, domain size, and frequency distribution in reference
data, which hamper an inter-city comparison. For instance, coastal cities typically achieve higher
OA, since the LCZ type G (water) is comparably easy to detect. This underlines the added value
of the new accuracy measures based on the urban types, built-up and WA for different purposes.
However, it remains a shortcoming of a non-stratified sampling approach that the accuracy measures
may be biased towards some categories, which was addressed by careful selection and checking of the
reference data.

Generally, the results show that it is more difficult for largely untrained operators to identify
TAs for LCZ classification than expected. While this influence of human interpretation is a general
topic in remote sensing [46] and crowdsourcing [56], some aspects are specific to the LCZ typology. In
particular, urban morphologies are a continuum and the real existing forms are more diverse than the
idealized types (e.g., mixture of different height and densities), which implies a certain fuzziness of the
system. Moreover, the size of homogenous areas greatly depends on the existing and past planning
regulations and there is some evidence that in some cases (e.g., smaller towns, historic cores, and
rapidly evolving cities), the typical patches might be smaller than the neighbourhood scale (≤1 km2).
In addition, some LCZ categories cause specific problems. For example, LCZ 9 (sparsely built) is urban,
but has a built fraction of less than 20%, which is difficult to define in the given spatial resolution, since
at the local scale many pixels will contain no houses. LCZ E (bare rock or paved) can be either paved
or natural stone, which makes little difference for the climatic impact but an enormous difference
for settlement mapping. Moreover, operators often do not follow the recommendation for defining
TAs regarding size, shape, and distance to other LCZs as specified in the instructions. In summary, it
can be stated that: (1) operator knowledge is critical (hence the need for standardized training and
assessment); and (2) independent controls (reference data or review by a trained expert) are necessary.

However, there is also good news for the validity of crowdsourced data on urban structure in
the WUDAPT framework. First, the quality of the classifications clearly improved with the number
of iterations, which indicates that good classifications can be achieved if sufficient time is invested,
even though the general relation between time and accuracy over all datasets was unclear. The latter
was also the case for most other parameters of the metadata and the few significant correlations found
were partly contradictive or counter-intuitive and thus need further investigation before publication.
In addition to the difficulties in inter-city comparisons discussed above, this can be related to the partly
retrospective collection of metadata, since some courses had already started while the experiment was
still in the design phase, resulting in a reduced quality of, and considerable gaps in, the metadata.
This might also partly explain why there was generally little agreement between the quality of the
classification and the self-assessment by the participants. Therefore, the experiment is currently being
repeated with a more rigid setup and more standardized protocols in a second phase of HUMINEX.

Second, a striking and welcome finding was that considerable improvement of the LCZ maps
could be achieved by combining multiple training datasets. Despite the variable accuracy of individual
LCZ maps, the aggregation of all TA sets showed improved accuracy, which is evidence for the
‘wisdom of the crowd’. Moreover, the dependency of the accuracy on the number of available TA
sets showed a strong increase in the beginning, with saturation afterwards, indicating that TA sets



Urban Sci. 2017, 1, 15 17 of 21

from about ten to fifteen individuals could result in a good quality LCZ map. This is similar to the
finding by Haklay et al. [55] in the context of the positional accuracy of road features in OpenStreetMap
as a function of the number of volunteers, who found that the first five volunteers make the largest
contributions to improving the positional accuracy. Thus, one future strategy for WUDAPT will be to
focus on the collection of a minimum of ten sets of TAs per city.

6. Conclusions

In this paper, we have presented the results of HUMINEX, an experiment to assess the influence
of individual operators in classifying urban areas into LCZs according to the WUDAPT protocol. Six
universities contributed to the experiment with a total of 94 sets of training data from 119 operators
for ten different cities. Despite some limitations in the experimental setup, we were able to collect
consistent results across the institutions. Specifically, we found that some LCZs could be identified in
the landscape without difficulty (e.g., LCZs A or G), while other categories posed problems resulting in
lower consistencies and accuracies. This was independent of the geographic location of the city
or climatic region. In most cases, these LCZ categories were also reported as ‘hard to classify’
(=identify) by the participants, indicating that this question might be relevant for evaluation of single
LCZ classifications. In addition, we found that with an increasing number of iterations in the LCZ
classification process, the accuracy of the classification improved, indicating that the existing WUDAPT
protocol is a valid approach for LCZ mapping, but that at least four iterations should be carried out.
Finally, it was shown that classifications using the mode of all available classifications or using multiple
training data sets for one classification had higher accuracies than the mean accuracy of individual
classifications of a city, and often even higher than the best one. This was especially true for the urban
LCZ types. From these results, we conclude that at least ten individual TA sets should be used for one
city to produce a LCZ map of good quality, although this aspect needs further investigation.

Hence, HUMINEX is currently being continued in a second phase with a more systematic
approach. This includes a standardized introduction to the topic as part of the student courses
within participating institutions and a focus on a single city. This could help to address further
questions, such as: Can the quality of LCZ TAs be assessed from the TA themselves? Can the quality
of LCZ TAs be assessed from operator self-assessment? Does the personality of the operator influence
the classification quality? Is local knowledge a key factor for an accurate LCZ classification?

It goes without saying that education and the motivation of the operators are indispensable for
achieving good results. Thus, improved course materials and a ‘driving test’ for LCZ knowledge to
help become familiar with the LCZ scheme and to better recognize LCZ classes from aerial imagery
are currently being developed.
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