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Abstract
Greenhouse gas and air pollutant precursor emissions have been increasing rapidly in India.
Large uncertainties exist in emissions inventories and quantification of their uncertainties is
essential for better understanding of the linkages among emissions and air quality, climate, and
health. We use Monte Carlo methods to assess the uncertainties of the existing carbon dioxide
(CO2), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxides (NOx), and particulate
matter (PM) emission estimates from four source sectors for India. We also assess differences in
the existing emissions estimates within the nine subnational regions. We find large uncertainties,
higher than the current estimates for all species other than CO, when all the existing emissions
estimates are combined. We further assess the impact of these differences in emissions on air
quality using a chemical transport model. More efforts are needed to constrain emissions,
especially in the Indo-Gangetic Plain, where not only the emissions differences are high but also
the simulated concentrations using different inventories. Our study highlights the importance of
constraining SO2, NOx, and NH3 emissions for secondary PM concentrations.
1. Introduction

Understanding the spatial and temporal distribution
of greenhouse gases (GHGs) and air pollutant
precursor emissions is vital to the implementation
of appropriate climate and air quality mitigation
measures. Obtaining accurate anthropogenic emis-
sions estimates is especially critical in India, which is
currently the world’s third largest emitter of carbon
dioxide (CO2) from fossil fuel combustion and from
industrial processes (production of cement, metals
© 2017 IOP Publishing Ltd
and chemicals) behind China and USA (Olivier et al
2015), after India surpassed Russia in 2010. Half of the
top twenty most polluted cities in the world are in
India (WHO 2016) and India is ranked the third worst
of 180 countries for PM2.5 (particulate matter with an
aerodynamic diameter less than 2.5 mm) exposure
(Hsu et al 2016). Several emissions inventories have
been developed recently either specifically for India or
for larger regions that include India (Streets et al 2003,
Garg et al 2006, Ohara et al 2007, Klimont et al 2009,
2013, 2016, Zhang et al 2009, EC-JRC/PBL 2011,
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Lu et al 2011, Smith et al 2011, Sahu et al 2012,
Kurokawa et al 2013, Pandey et al 2014, Sadavarte and
Venkataraman 2014, IEA 2014, Janssens-Maenhout
et al 2015). These inventories are being used in the air
quality and climate model simulations to better
understand air pollution and climate change in India,
in Asia, and globally.

Several studies have compared emissions invento-
ries in India and other Asian countries (Garg et al
2006, Granier et al 2011, Kurokawa et al 2013, Klimont
et al 2016). However, most studies focus their analysis
on similarities and differences in national total
emissions and do not analyze regional scale or source
sector level emissions. These studies also do not
include the recent national emissions inventories.
Pandey et al (2014) and Sadavarte and Venkataraman
(2014) evaluated their Indian emissions inventory
against several but not against many others, including
the Regional Emissions inventory in ASia version 2.1
(REAS) and Emissions Database for Global Atmo-
spheric Research version 4.2 (EDGAR), the two most
commonly used datasets for Asian and global
emissions, respectively.

In this study, we first compare emission invento-
ries of anthropogenic, combustion-related surface
emissions of CO2 and air pollutant precursors (carbon
monoxide CO, sulfur dioxide SO2, nitrogen oxides
(NOx ¼ NO þ NO2), and particulate matter with an
aerodynamic diameter less than 10 mm, PM10) for
each of the four source sectors and compare existing
estimates within subnational regions in India. We then
use Monte Carlo sampling to assess the uncertainties
of the existing emissions estimates per sector and per
species. We further conduct a chemical transport
model simulation with two different gridded emis-
sions to validate them and assess their impacts on air
quality.
2. Methodology
2.1. Datasets
This work relies on existing emissions inventories that
provide estimates at provincial and/or national levels
in India. We use the following eight inventories to
compare and to assess uncertainties at the source
sector level, using Monte Carlo sampling methods: 1)
EDGAR v4.2 (EDGAR) (EC-JRC/PBL 2011); 2) REAS
v2.1 (REAS) (Kurokawa et al 2013); 3) INTEX-B
(Zhang et al 2009); 4) National emissions inventory
for residential and road transportation emissions
(Nagpure–Gurjar) (Nagpure and Gurjar 2012); 5)
National emissions inventory for all sectors (Sada-
varte–Venkataraman) (Pandey et al 2014, Sadavarte
and Venkataraman 2014); 6) IEA (2014), 7) GAINS
(Amann et al 2011, Klimont et al 2016); and 8) Lu et al
(2011). The emissions inventories analyzed in this
paper were developed using a similar bottom-up
methodology, where emissions were calculated as the
2

product of activity data, such as fuel consumption, and
fuel- and technology-dependent emission factors.
Table 1 describes the details of each inventory
including years, source sectors, and species covered,
its horizontal resolution, proxies used, as well as its
coverage. In addition to these eight that provide
sector-level emissions, we also use total CO2, CO, SO2

and NOx emissions estimates by Garg et al (2006),
total SO2 emissions estimates by Smith et al (2011)
and Klimont et al (2013), as well as the total NOx

emissions estimates by Ghude et al (2012).

2.2. Emissions comparison
We compared emissions of CO2, CO, SO2, NOx, and
PM10 from four source sectors, including power plants
(power), industrial combustion and processes (indus-
try), domestic combustion (domestic), and road and
non-road transportation (transport) for the years
between 2000 and 2010 at national and nine sub-
national regions. Table S1 available at stacks.iop.org/
ERL/12/065002/mmedia describes how we categorize
sources for each inventory into the four described
above. For the national level analysis, we used seven
inventories (EDGAR, REAS, Nagpure–Gurjar, Sada-
varte–Venkataraman, IEA, GAINS, and Garg) for
CO2, seven inventories (EDGAR, REAS, INTEX-B,
Nagpure–Gurjar, Sadavarte–Venkataraman, GAINS,
and Garg) for CO and NOx, seven inventories
(EDGAR, REAS, INTEX-B, Nagpure–Gurjar, Sada-
varte–Venkataraman, GAINS, and Lu) for SO2, and
four inventories (EDGAR, REAS, INTEX-B, and
GAINS) for PM10. For the subnational level analysis,
we used five inventories (EDGAR, REAS, INTEX-B,
Nagpure–Gurjar, and GAINS).

We also conducted one million Monte Carlo
samplings, choosing an emissions inventory per sector
per year randomly. We sampled a normal distribution
for most but a few emission estimates in Sadavarte–
Venkataraman inventory (CO all sectors; SO2 trans-
port and domestic; and NOx all sectors), which
assumed a log-normal distribution. We used the
standard deviation (SD) values reported by each
inventory if such information was available. For the
inventories where this was not provided, the relative
uncertainty estimates provided by REAS for each
sector were used. The mean and the SD of the newly-
composed emissions estimates were then calculated
from one million samples. The uncertainty is reported
as the 95% confidence interval, following Kurokawa
et al (2013).

2.3. Air quality simulation
In order to assess how differences in emissions inputs
affect air quality simulations, we conducted two
simulations using the Weather Research and Fore-
casting model coupled with Chemistry (WRF-Chem)
version 3.5 (Grell et al 2005), which has been
validated previously in Asia (Zhong et al 2016). We
chose two gridded emissions inventories, EDGAR

http://stacks.iop.org/ERL/12/065002/mmedia
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Table 1. Description of emissions inventories used for this study.

Years Source Sectors Species Horizontal

Resolution

Proxies for

allocating emissions

Coverage Reference

EDGAR 1970–2008 energy, industrial

processes, product use,

agriculture, large scale

biomass burning, and

other anthropogenic

sources

CO2, N2O,

SO2, CO,

PM10, NOx

0.1° � 0.1° Rural, urban, and

total populations,

roads, railways,

power plant maps,

and selected

industrial

production

Global EC-JRC/PBL 2011

REAS v2 2000–2008 power plants,

combustible and non-

combustible sources in

industry, on-road and

off-road sources in

transportation,

residential and

agricultural sources

CO2, N2O,

SO2, CO,

PM10, PM2.5,

NOx, BC, OC,

NH3,

NMVOC

0.25° �
0.25°

Rural, urban, and

total populations,

as well as road

network

33 Asian

countries

Kurokawa et al 2013

INTEX-B 2006 power plants, industry,

residential, and

transportation

SO2, CO,

PM10, PM2.5,

NOx, BC, OC,

NMVOC

0.5° by

0.5°

spatial proxies at

1km � 1km

resolution

22 Asian

countries

Zhang et al 2009

Nagpure–

Gurjar

2001–2011 residential and road-

transport

CO2, N2O,

SO2, CO,

PM10, NOx

provincial

level

NA India

Sadavarte–

Venkataraman

1996–2015

(projected

using 2010

data)

industry,

transportation,

residential, and

‘informal industries’

including brick

production and

processing operations

for food and

agricultural products

CO2, N2O,

SO2, CO,

PM2.5, NOx

25 �
25 km

(0.25° �
0.25°)

Census data, urban

population, road

network, and

district-level

production data

India Pandey et al 2014,

Sadavarte and

Venkataraman 2014

IEA 1960–2012 fossil fuel combustion CO2 national

level

NA Global IEA, 2014

GAINS 1990–2030

(5 year

intervals,

projection

starting in

2015)

energy, domestic,

industrial combustion

and processes, road and

non-road

transportation and

agriculture

CO, NOx,

PM10, PM2.5,

CO2, SO2

0.5° � 0.5° RCP and GEA

(Global Energy

Assessment)

sectoral proxies,

population, and

selected industrial

plants location

(e.g. smelters)

Global Amann et al 2011,

Klimont et al 2016

www.iiasa.ac.at/web/

home/research/

researchPrograms/air/

Global_emissions.

html
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and REAS, and performed simulations in January
and July of 2008. These two months were chosen to
simulate the seasonality in air pollutant concen-
trations. January is the dry winter month with mostly
high air pollutant concentrations, whereas July is in
the middle of the monsoon season with relatively low
concentrations (Gaur et al 2014). For O3, it is
similarand July tends to have higher mixing ratio than
in January. The model covered the entire India, with a
horizontal resolution of 20 � 20 km and 31 vertical
levels. The initial and lateral chemical boundary
conditions were taken from a present-day simulation
of the NOAA Geophysical Fluid Dynamics Labora-
tory (GFDL) global chemistry-climate model AM3
3

(Naik et al 2013). The meteorological data were
obtained from the National Center for Environmen-
tal Prediction (NCEP) Global Forecast System final
gridded analysis datasets. We used Carbon-Bond
Mechanism version Z (CBMZ) (Zaveri and Peters
1999) for gas-phase chemistry and the Model for
Simulating Aerosol Interactions and Chemistry
(MOSAIC) (Zaveri et al 2008) for aerosol chemistry.
The model simulation was spun-up for ten days
before the beginning of each monthly simulation.

2.4. Surface observations
We compared our air quality simulations with existing
instantaneous surface observations of SO2 and NOx

http://www.iiasa.ac.at/web/home/research/researchPrograms/air/Global_emissions.html
http://www.iiasa.ac.at/web/home/research/researchPrograms/air/Global_emissions.html
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Figure 1. Time series of mean emissions and one standard deviation (green shade) from Monte Carlo results and mean and one
standard deviation of different emission inventory estimates for Indian national CO2, CO, SO2, NOx and PM10. Different inventory is
represented by a different style line or point. Sadavarte–Venkataraman emissions are represented by S–V and Nagpure–Gurjar
emissions are represented by N–G in the legends.
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concentrations (Maharashtra Pollution Control Board
2016), and monthly average CO and O3 mixing ratio
(Kumar et al 2012) for January and July 2008. In
addition, we used Aerosol Optical Depth (AOD)
retrieved from the MODerate Resolution Imaging
Spectrometer (MODIS) instrument aboard the Terra
satellite and compared it with the simulated AOD
fromWRF-Chem. MODIS provides AOD retrievals at
a resolution of 10 � 10 km. In this study, we use Level
2 and Collection 6 aerosol optical thickness at 550 nm.
We calculated the monthly mean AOD values from
daily observations of AOD over land and ocean.
3. Results

We present the mean and the SD of our Monte Carlo
samplings for the national total emissions estimates for
thefive species infigure 1, aswell as the estimates andSD
provided by existing emissions inventories. The detailed
means andSDof each sector per species from theMonte
Carlo simulations are listed in table S2.
4

3.1. CO2

Our Monte Carlo analysis illustrates that there is up to
±76% uncertainty in India’s national total CO2

emissions estimates when we combine all the existing
estimates equally. This is larger than the REAS’ existing
uncertainty of±49% (figure 1). The largest uncertainty
comes from the domestic sector, with the maximum
being±149%. The IEAdomestic CO2 emissions are the
lowest of all the inventories at 63 Tg CO2 yr

�1 in 2000,
contributing to only 13% of REAS domestic CO2

emissions. This large difference can be explained in part
because IEAdoes not include biofuel emissions in their
estimates, similar to GAINS and Garg.

The smallest uncertainty stems from the power
sector, which is the primary source of CO2 emissions
in India. EDGAR, REAS, GAINS, Sadavarte–
Venkataraman, and IEA power sector CO2 emissions
continuously increase over time, with Sadavarte–
Venkataraman emissions being the highest of all at all
times.

Using EDGAR, REAS, GAINS, and Nagpure–
Gurjar, we further compared the emissions in the nine



Figure 2. Map of India regions and 2005 emissions of CO2, CO, SO2, NOx, and PM10 from EDGAR, REAS, GAINS, and Nagpure–
Gurjar datasets from industrial (ind), transport (tra), power (pow), domestic (dom) sectors. Provinces included in each region are
listed in supplementary table S4.
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subnational regions in 2005 (figure 2). The largest
difference of 75% SD in the domestic sector exists in
region 8 on the Indo-Gangetic Plain (IGP). This is also
the region with the largest difference for the regional
total CO2 (47% SD) and for transport (44%) among
EDGAR, REAS, and GAINS. Another large difference
of 73% SD in industry come from region 1, which is
also on the IGP, and the largest difference for the
power sector is found in region 3 (44%), where the
greatest number of large (> 2000 MW) power plants
exist.

3.2. CO
The majority of CO emitted in India stems from the
domestic sector, making up 69%–70%, 49%–56%,
76%–79%, and 64%–77% of total EDGAR, REAS,
GAINS, and Sadavarte–Venkataraman, respectively.
5

The uncertainty of domestic sector CO emissions
from the Monte Carlo simulations is on average
±195% and is the largest of all sectors. This value
is equivalent to the ±192% uncertainty provided
by the REAS inventory for the same sector. On a
regional scale, we find the largest differences in
domestic emissions within the region 2 on IGP in
2005 (figure 2) being 4.4 Tg yr�1 between GAINS and
Nagpure–Gurjar.

The uncertainty of industrial CO emissions from
the Monte Carlo samplings is the second largest
among the four sectors with ±154% and is larger than
the ±118% uncertainty by REAS. REAS industrial CO
emissions are consistently high in all nine regions with
the largest difference of 2.3 Tg yr�1 (55% and 310%
larger than EDGAR and GAINS, respectively) occur-
ring in region 2 on the IGP.
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While transport is not as large of a CO source as the
domestic and industry sectors, the difference between
theREASandEDGARestimates has grown from521Gg
yr�1 (within 10%) in 2000 to 6278Gg yr�1 by 2008with
REAS emissions over three times larger than those of
EDGAR. The difference among the four inventories in
the transport sector ismost apparent in regions 2, 4, and
7 with larger than 50% SD. It is most likely that
Nagpure–Gurjar until 2008 and REAS assumed much
larger emissions either from super-emitters or signifi-
cantly lower penetration of vehicles equipped with
catalytic converters; the comparison of NOx emissions
in transport also support this.

3.3. SO2

Fossil fuel combustion in the power sector contributes
the largest portion of SO2 emissions in India but has
the least uncertainty of ±46%. Power plant SO2

emissions make up 61%–63% of total SO2 in EDGAR,
47%–50% of REAS, 54%–57% of GAINS, and 70%–

75% of Sadavarte–Venkataraman. Although the
relative contributions of the power sector to total
India SO2 emissions for EDGAR and REAS differ,
power sector emissions agree well for the two
inventories between 2000 and 2008. Power plant
emissions are within 10% of each other and both
increase by 46%–47% from 2000 to 2008.

For SO2 emissions, our Monte Carlo analysis
shows the largest ±99% uncertainty, on average, in the
domestic sector. Industry and transport share±69 and
±66% uncertainty, respectively, on average. Because of
the large differences among the inventory estimates,
the national SO2 emissions have an average uncer-
tainty of ±48% over time, which is higher than any of
the individual inventory estimates (figure 1). These
values are also higher than the calculated uncertainty
of ±16% in Streets et al (2003) for Asian SO2

emissions.
The difference is apparent also on a subnational

scale in every region (figure 2). In region 6, where the
REAS total SO2 emissions are the highest, their
industrial SO2 are 14.5 times that of EDGAR. Although
the totalmagnitude is not as large as in region 6, region 1
on the IGP has the highest difference (132% SD) in
industrial SO2 with REAS estimating 34 (six) times
greater than EDGAR (GAINS). Region 1 also has the
highest difference for the total SO2 with 108% SD.
Besides region7,where thepower sectordifference is the
largest with 63%, REAS total SO2 emissions are always
the highest, followed by GAINS and EDGAR.

3.4. NOx
Transport NOx emissions differ substantially among
inventories and while the transport sector is the largest
NOx source in REAS and GAINS, it is the second
largest in EDGAR and Sadavarte–Venkataraman. The
average uncertainty from the Monte Carlo methods
for the transport NOx emissions is the second highest
of all sectors (118%). This large difference confirms
6

that part of the difference is due to the assumptions
about the fleet characteristics (i.e., share of super-
emitting vehicles and penetration of vehicles with
catalytic converters) assumed in each inventory.
EDGAR, without emissions from super-emitting
vehicles, has the second lowest transport emissions
throughout the years. Excluding the emissions from
super-emitting vehicles in GAINS, the difference
between GAINS and EDGAR transport NOx emis-
sions is reduced to 28% from 49%with super-emitting
vehicle emissions. For CO, super-emitters are mainly
gasoline vehicles but for NOx, they can be either
gasoline or diesel. We therefore find even larger
uncertainties in transport NOx emissions than in CO.
Within the same region, the ratio of the transport NOx

emissions among the four inventories remaining the
same as that of transport CO emissions provides
further confirmation of this assumption. In all regions,
REAS transport emissions are at least three times as
large as those of EDGAR, confirming larger emissions
either from super-emitters and/or lower penetration of
control technology, similarly to CO.

The largest NOx source sector in India in EDGAR
and Sadaverte-Venkataraman and the second largest in
REAS and GAINS is power generation. The trend is
the same in all inventories and the only noticeable
difference is that GAINS and Sadaverte-Venkataraman
(REAS) have approximately 1 (0.3) Tg/year difference
from EDGAR. This sector has the second best
agreement among the inventories and the average
uncertainty is ±83%. The best agreement is seen in the
industrial emissions, where the uncertainty from the
Monte Carlo simulation is, on average, ±65%. Both of
these are, however, still larger than the uncertainties in
the existing inventories.

NOx domestic emissions show the largest uncer-
tainty of ±196% from the Monte Carlo samplings,
much higher than the ±37% in Streets et al (2003) for
Asian NOx emissions (2003). In all regions, it is clear
that EDGAR and GAINS have similarly low domestic
emissions, with much higher REAS and Nagpure–
Gurjar emissions. The average SD among the four
inventories is the second highest with 31% and region
1 again has the largest difference for the domestic
sector (80%) as well as for total emissions (89%).

3.5. PM10

Primary PM emissions typically include black carbon
(BC), organic carbon (OC), metals, and dust; composi-
tion varies strongly between sources. Ambient PM
composition includes, beyond primary components,
also a variety of secondary compounds, such as sulfates,
nitrates, ammonium, metals and other organic and
inorganic compounds. REAS and EDGAR emissions of
PM10 in India donot show good agreement in anyof the
sectors explored in this paper. Indeed, uncertainty in all
sectors from the Monte Carlo simulation exceeds
±120%. PM10 emissions from the power sector in
EDGAR are over three times larger than those of REAS



(a)

(b)

Figure 3. Monthly mean surface concentrations of PM10, O3, CO, NO2, and SO2 simulated using REAS and EDGAR as model inputs
in (a) January and (b) July of 2008.
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and GAINS and six times larger than those of
Sadaverte–Venkataraman estimates. It is not only the
magnitude of emissions from power sector that is
different among the inventories, but the inventories
also have a varying emissions trend. While EDGAR,
REAS, and Sadaverte–Venkataraman show a 44, 58,
and 45% increase in power sector emissions over
time, respectively, GAINS estimates an 18% decrease.
Since power capacity has grown in the considered
period, different trends are likely due to the
assumptions on penetration and efficiency of control
equipment (electrostatic precipitators, fabric filters)
on newly build power plants.
7

Domestic sector is the largest source sector for
PM10 in REAS, GAINS, and Sadaverte–Venkataraman
and is the second largest in EDGAR. This is also the
sector with highest uncertainty of, on average,
±315% in the Monte Carlo samplings. EDGAR
domestic sector emissions are more than twice (50%)
as large as those of REAS (Sadaverte–Venkataraman).
However, unlike the varying growth rate shown for
the power sector emissions, the trend over time is
consistent among all inventories. Industry sector is
the second largest in GAINS and Sadavarte–
Venkataraman and the third largest in EDGAR and
REAS. The uncertainty of, on average, ±123% from



Table 2. Regional difference of monthly mean (a) emissions between EDGAR and REAS and (b) concentrations between simulations
using EDGAR and REAS. Results are shown with deviations of REAS from EDGAR in January and July of 2008.

(a)

Regions 2008 January 2008 July

(REAS-EDGAR)/EDGAR (%) (REAS-EDGAR)/EDGAR (%)

PM10 CO SO2 NH3 NOx PM10 CO SO2 NH3 NOx

1 �14 28 238 96 94 �16 26 242 95 123

2 �7 16 19 185 52 �10 15 12 185 70

3 �70 47 �53 77 �36 �70 47 �56 77 �35

4 �50 4 29 131 95 �52 4 19 131 99

5 �52 �4 33 101 63 �54 �5 27 101 64

6 �62 3 13 85 �7 �64 2 1 85 �2

7 �38 19 15 70 76 �40 16 1 70 105

8 �24 4 �5 163 17 �29 0 �11 162 53

9 �29 44 86 175 100 �46 9 75 168 117

(b)

Regions 2008 January 2008 July

(REAS-EDGAR)/EDGAR (%) (REAS-EDGAR)/EDGAR (%)

PM10 NO3 NH4 SO4 O3 CO SO2 NO2 PM10 NO3 NH4 SO4 O3 CO SO2 NO2

1 45 140 85 36 9 7 122 84 24 73 52 12 20 3 193 96

2 55 107 74 23 11 13 21 42 21 96 60 6 14 6 23 59

3 5 109 46 0.4 10 17 �30 �24 �18 71 46 0 14 10 �38 �11

4 19 148 60 5 11 7 6 44 �5 89 86 23 20 2 17 69

5 19 203 60 14 11 4 10 33 �16 42 53 6 9 �2 4 36

6 38 124 80 32 12 11 18 �3 �11 33 30 �7 7 �2 �11 �2

7 72 152 123 67 10 20 50 72 11 87 61 5 20 5 1 70

8 43 95 75 32 11 13 �1 13 23 104 66 12 18 2 �16 36

9 52 91 82 55 2 20 85 100 43 152 108 55 17 4 67 120

(a)

Figure 4. Model-observation comparison of monthly CO and O3 mixing ratios (a); model-simulated daily mean comparison with
instantaneous SO2 and NOx concentrations (b); and model-simulated monthly mean with MODIS AOD in January and July 2008 (c).
For SO2 and NOx concentration comparison, the letters denote the following sites: A—Ambernath, B—Amravati, C—Aurangabad, D
—Chandrapur, E—Chiplun, F—Delhi, G—Jalna, H—Kolhapur, I—Latur, J—Nagpur, K—Nashik, L—Pune, M—Solapur.

Environ. Res. Lett. 12 (2017) 065002
this sector in the Monte Carlo simulation is the
smallest for PM10.

On the subnational scale, REAS total PM10

emissions are the lowest among the three inventories
in all regions (figure 2). EDGAR PM10 emissions
from the industrial and transport sector are, however,
constantly lower than REAS or GAINS in every
region, with national average EDGAR just 6% of
REAS transport PM10 in 2008. Transport sector has
8

more than 100% SD in all years, except 2000 and
2005. The main reason for this large difference is due
to the lack of super-emitters in EDGAR as mentioned
earlier and there is good agreement between REAS
and GAINS transport PM10 emissions. However,
even after omitting super-emitter contribution,
GAINS transport emissions are still 450% higher
than EDGAR emissions, which indicates that there
are also other differences in emission factors and



(b)

(c)

Figure 4. (Continue)
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technology trends among inventories and possibly
the way non-exhaust emissions (road, tire, and break
wear) are represented.

3.6. Emission impacts on air quality
Figure 3 compares the simulated monthly mean
surface CO, SO2, NO2, and O3 mixing ratios, as well as
PM10 concentrations in January and July 2008, using
9

the REAS and EDGAR emissions inventories. Table 2
highlights the differences in emissions between the two
inventories and in simulated concentrations by region.
We compare these two simulations with existing
observations of CO and O3 mixing ratios, SO2 and
NOx concentrations, and AOD in figure 4. The
simulation with REAS emissions leads to higher CO
but the regional difference is less than 20% in most
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regions. The model always underestimates but REAS
does a better job in reproducing them. For O3, the
simulation using REAS produces a slightly higher
mixing ratio than EDGAR in all regions, but the
difference is often less than 12% (7 ppbv). The model
usually overestimates and EDGAR thus reproduces
better, except for one site in Ananatpur.

Although the two simulations show similar spatial
distributions of NO2 and SO2 surface concentrations,
their magnitudes differ substantially. The difference is
particularly apparent in regions 1 and 9, where the
simulation using REAS emissions estimates 36%–55%
higher SO2 and 84%–100% higher NO2 due to 86%–

238% and 95%–100% higher emissions, respectively.
The comparison of NOx and SO2 concentrations with
surface measurements indicate that the model over-
estimates in cities but usually underestimates NOx in
rural areas.

The REAS model simulation reproduces SO2

better in general, and NOx better in most non-urban
regions, while the EDGAR model simulation repro-
duces O3 better. There is also significant overestima-
tion of NOx in urban areas and significant
underestimation in rural areas using both inventories.
These suggest first that transport emissions are
possibly overestimated in REAS, as transport sector
emissions are mainly from the urban centers. We find
that India’s O3 is largely sensitive to NOx (table 2), as
found in Sharma et al (2016), and considering that
REAS transport emissions were estimated high for all
species affirms this hypothesis. Second, the spatial
distribution of the different proxies (i.e. population)
used by the two inventories may be the cause of the
differences in gridded emissions, as reflected in the
model simulations.

The simulation using REAS produces 19%–72%
(6–24 mg m�3) higher surface concentrations of PM10

in most regions than those using EDGAR, even
though the primary PM10 emissions is lower in REAS.
The highest difference occurs in region 7 (72%) and
we find that this is due to over 150, 120, and 65%
differences in nitrate, ammonium, and sulfate aerosols
in the simulation using REAS emissions. SO2, NOx,
and NH3 emissions in most regions are much greater
in REAS as compared to those in EDGAR (table 2).
Larger emissions of these species lead to a greater
production of secondary inorganic aerosols in the
model, and consequently, to higher PM10 concen-
trations despite the lower primary PM10 emissions.
Spatial and temporal emissions of SO2, NOx, and NH3

play an important role in secondary PM formation, as
found in EMEP (2016). We further find that REAS
reproduces the MODIS AOD better than when using
EDGAR emissions in region 7, confirming the
importance of these SO2, NOx, and NH3 emissions
on PM concentrations.

Differences in emissions estimates affect concen-
trations and mixing ratios of pollutants in varying
ways, depending on a region. Emission differences are
10
large in regions 1, 2, 3 and 9 but we find the largest
difference in concentrations and mixing ratios of
various pollutants in region 7 in January. In July, the
largest differences in air quality and emissions for most
species are both in regions 1, 3 and 9. We find that this
is due to pollution transport from neighboring regions
and to seasonal changes in prevailing wind patterns
and precipitation. Constraining the emissions in IGP
(regions 1, 2 7, 8, and 9) through field emission
measurement campaigns and enhanced surface mea-
surement network, therefore, will be most useful for
the development of air pollution mitigation strategies
in India.
4. Conclusions

In this study, various inventories of anthropogenic
CO2 and air pollutant precursor emissions are
compared in India on national, regional, and sectoral
scales. For the global CO, SO2, and NOx emissions, the
difference between inventories is 28%, 42%, and 17%
in 2000, respectively (Granier et al 2011). In India, we
find the differences of total CO, SO2, and NOx

emissions among existing inventories to be 15%, 62%,
and 58% in 2000. However, our analysis of regional
and sector-specific emissions revealed that much
higher differences exist at the sector level than the
national total emissions. Our Monte Carlo results also
highlight higher uncertainties in existing emissions
estimates both at the national total and source sector
levels than currently considered for most species.
Although we can infer whether some differences result
from activity data or emission factors, in order to fully
understand the reasons behind discrepancies among
the multiple inventories, data needs to be transparent
and available. Our model results on the impact of
emissions uncertainties highlights the importance of
constraining emissions through field emission mea-
surement campaigns and enhanced surface measure-
ment network in the IGP region for understanding the
local and regional air quality. Our study further
highlights the importance of constraining SO2, NOx,
and NH3 emissions for secondary PM formation.
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