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Abstract

Adverse post-natural disaster outcomes in low-income regions, like elevated internal migration
levels and low consumption levels, are the result of market failures, poor mechanisms for stabiliz-
ing income, and missing insurance markets, which force the affected population to respond, and
adapt to the shock they face. In a spatial environment, with multiple locations with indepen-
dent but inter-connected markets, these transitions quickly become complex and highly non-linear
due to the feedback loops between the micro individual-level decisions and the meso location-
wise market decisions. To capture these continuously evolving micro-meso interactions, this paper
presents a spatially-explicit bottom-up agent-based model to analyze natural disaster-like shocks
to low-income regions. The aim of the model is to temporally and spatially track how population
distributions, income, and consumption levels evolve, in order to identify low-income workers that
are “food insecure”. The model is applied to the 2005 earthquake in northern Pakistan, which
faced catastrophic losses and high levels of displacement in a short time span, and with market dis-
ruptions, resulted in high levels of food insecurity. The model is calibrated to pre-crisis trends, and
shocked using distance-based output and labor loss functions to replicate the earthquake impact.
Model results show, how various factors like existing income and saving levels, distance from the
fault line, and connectivity to other locations, can give insights on the spatial and temporal emer-
gence of vulnerabilities. The simulation framework presented here, leaps beyond existing modeling
efforts, which usually deals with macro long-term loss estimates, and allows policy makers to come
up with informed short-term policies in an environment where data is non-existent, policy response
is time dependent, and resources are limited.
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1. Introduction

According to the latest Global Assessment Report on Disaster Risk Reduction (UNISDR 2015),
in the last three decades alone, over 1.6 million people have died as a result of natural disasters, of
which 80% reside in low- and middle-income countries. Additionally, the total population displaced
between 2008 and 2015 is estimated to be 26.4 million of which 95% live in low-income regions
(IDMC 2015). 80% of the population in disaster-prone regions is considered food insecure and
depends on agriculture as a main source of livelihood, a sector that is highly vulnerable to disaster-
like shocks (FAO 2013; UNU-EHS 2015; WFP 2015; FAO 2015).

Adverse post-shock outcomes in low-income regions, like elevated internal migration levels, and
low consumption levels are the result of market failures, poor mechanisms for stabilizing income,
and missing insurance markets, which force the affected population to respond, and adapt to the
shock they face (Kahn 2005; Kellenberg and Mobarak 2008; Noy 2009; Cavallo and Noy 2010;
Schumacher and Strobl 2011). If individuals and markets are able to hedge against the shock,
or policies are efficiently implemented, then vulnerabilities can be better managed and adverse
post-shock outcomes can be contained (Dückers et al. 2015). Reasons for poor policy responses
in low-income regions are the lack of, first, reliable pre- and post-natural disaster data on various
disaster related indicators and, second, effective policy planning tools that allow for some reasonable
prediction of post-natural disaster outcomes in the short-run (Okuyama 2007; Toya and Skidmore
2007; Noy 2009; Cavallo and Noy 2010).

Literature suggests that any tool that aims to analyze shocks scenarios, especially in the short-
run, needs to address three key issues: time, geography, and feedback loops (Okuyama 2007). In
order to construct a useful modeling framework, the processes following a natural disaster scenario
need to be systematically understood and modeled. Natural disasters can have direct and indirect
(or second-round) effects. The direct effects are the immediate losses resulting from the destruction
of productive capital and loss of human life (Skoufias 2003). In a natural disaster setting, these
immediate losses to output and labor, are not uniformly distributed across a region. The highest
damage is near the epicenter, which dissipates as one moves away from the origin of the shock.
Assuming markets exhibit stable trends pre-shock, a sudden, spatially-localized change in capital
and labor ratios results in an immediate disequilibrium in one part of the region. As a consequence
of these sudden losses, the regional economy enters into a second-round adjustment phase where
labor and goods (assuming capital stock is fixed in the very short-run) respond to gaps created by
the shock. Labor and goods respond to market signals from across the region, causing the economy
to transition to a new equilibrium, and in the process, potentially cascading the shock to the rest of
the region. As a result, new or additional vulnerabilities can be created, such as low consumption
levels resulting from either low incomes caused by excess labor supply, or rising food prices caused
by output losses, or a combination of both. In a spatial environment, with multiple locations with
independent but inter-connected markets, these transitions quickly become complex, and highly
non-linear, due to the feedback loops between the micro individual-level decisions and the meso
location-wise market decisions.

To deal with these complex transitions, this paper presents an application of a spatially-explicit
agent-based model (ABM), or a “geo-simulation”, of spatial non-linear adjustment processes fol-
lowing a natural disaster-like shock scenario. The goal of this model is to allow policymakers to
identify levels of displacement and spatial clusters of “food insecure” populations in low-income
regions following a natural disaster-like shock scenario. This leaps beyond the existing modeling
efforts on natural disasters that usually deal with macro aggregated loss estimates in the long-run.
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Standard modeling tools, for example Input-Output models, CGE models, and Social Accounting
Matrices (SAMs), lack the ability to analyze heterogeneous and spatial micro and meso level im-
pact of shocks, and the short-run adjustment processes where vulnerabilities can emerge in short
time span.

This paper builds on the agent-based model presented in Naqvi and Rehm (2014) where the
interaction of six decision-making modules – Production, Wages, Consumption, Buying, Selling,
Migration – form a complete economy with decentralized labor and goods markets with a focus on
the decision making process of low-income workers. The original model is extended through two
channels. First, market interactions are updated to allow for a more innovative search algorithm
which allows supply networks to continuously adapt to a changing environment. Second, the model
allows for a more dynamic migration decisions through endogenous location-wise probability as-
signments which go through several iterations to avoid completely arbitrary outcomes. In addition
to updating the two behavioral rules, the model is extended to allow for incorporation of actual
GIS data, bringing it one step closer to actual policy analysis.

The model framework is applied to the 2005 earthquake in Pakistan which resulted in a massive
loss of output and human life. A large fraction of the population was displaced while majority of
the inhabitants in the region were left “food insecure” within weeks of the earthquake shock (ADB-
WB 2005; ERRA-UN 2006). The region required immediate policy response to target vulnerable
populations especially those facing food insecurity, but lacked reliable data for evidence-based
policy planning. This region is selected for two reasons. First, the region is fairly closed, both
geographically and economically, comprising a large rural agrarian sector with simple economic
dynamics and decision-making rules which are easy to implement in an agent-based modeling
environment. Second, baseline data on population ratios, income, and consumption levels for pre-
shock trends exists allowing for model calibration. Additionally, the event was an isolated large-
scale natural disaster incident in 2005 which received unprecedented attention in the aftermath from
local and international organizations. Given the focus on the region, the level of aid disbursed,
and the involvement of various national and international disaster management institutions in this
“best-case” scenario response, the effectiveness of policy response is still being debated a decade
after a earthquake.2

The model is set up using actual GIS data on village and city locations, and road networks.
Using the actual location of the fault line, the spatially-defined artificial economy is subjected to a
calibrated earthquake-like shock to determine loss of output and labor. Model results are spatially
and temporally tracked on demographic changes, and on changes in income and consumption
patterns which allow for identification of food insecure populations in the short-run. The results
show how geo-simulations can provides one plausible way of replicating natural disaster-like shock
scenarios in a lab like setting for a more informed policy planning in a short-run setting where data
is non-existent, policy response is time dependent, and resources are limited.

The remaining paper is structured as follows. Section 2 discusses relevant literature and the
role of geo-simulations in the analysis of natural disasters. Section 3 presents stylized facts from
the 2005 earthquake affected region of northern Pakistan. Section 4 describes the model framework
and behavioral rules in detail. Section 5 presents the simulations setup and Section 6 gives the
results of the earthquake experiment. Section 7 concludes.

2See, for example, a recent 2016 newspaper article: “Remembering Oct 8, 2005: The day the earth shook”, URL:
http://www.dawn.com/news/1211695.
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2. Literature

Two broad strands of literature are discussed in this section. The first strand discusses existing
modeling efforts of natural disasters and the related empirical literature, both of which focus on a
long-period analysis. The second strand summarizes the literature on micro household adaptation
strategies in the face of natural disaster-like shocks. The last subsection provides a rationale for
using geo-simulations as a modeling tool that can fill in the short- to medium-run gap for disaster
related policy planning.

2.1. Models of natural disasters and long-period analysis

Existing modeling frameworks on natural disasters focus on long-run loss estimations using
three popular techniques; Input-Output (I-O) models, Computational General Equilibrium (CGE)
models, and Social Accounting Matrices (SAMs). I-O models of natural disasters stem from the
pioneering work of Dacy and Kunreuther (1969) and focus on long-run direct and indirect loss esti-
mations. While the initial I-O models focused mainly on western high-income economies (Cochrane
1974; Wilson 1982; Rose and Benavides 1998; Cho et al. 2000), focus quickly shifted to other parts
of the world (for example, the 1995 Kobe earthquake and the 2004 Indian Ocean Tsunami Okuyama
(2004, 2007)). These models were later expanded to accommodate inter-regional dependencies as
more data became available (Okuyama and Santos 2014). I-O models have been criticized on re-
strictive assumptions of linearity, and lack of sensitivity to parameter changes. As a result they
assume very little adaptation in behavior to shock-like scenarios and tend to over-estimate economic
losses (Rose 2004).

To overcome some of these limitations, Computational General Equilibrium (CGE) models
were introduced in the 2000s and have been extensively used in disaster analysis at the national
(Ueda et al. 2001; Rose and Guha 2004; Rose and Liao 2005) and at the regional level (Tsuchiya
et al. 2007; Hallegatte and Ghil 2008; Hallegatte and Dumas 2009). CGE models in their standard
formulation of optimizing firms and households assume a long-run steady-state equilibrium which
is achieved through smooth transitions based on agile reactions. Therefore, the models tend to
estimate rather minimal losses. The issue, of whether households and firms even optimize in a
highly uncertain environment, has been raised several times in literature (Rose 2004; Okuyama
2007).

To further advance modeling efforts, a third wave of models based on Social Accounting Matrices
(SAMs) were developed to bring in some of the structural aspects of economies which dealt with
inter-sectoral interactions, for example between households and firms (Cole 1995, 1998, 2004).
While SAMs handle distributional aspects of natural disasters better than earlier modeling tools,
they also suffer from fixed parameters bounding estimates at the upper end, and do not factor
in supply side constraints, which tend to restrict estimates (Okuyama 2007; Okuyama and Sahin
2009).

Analysis of disaster affected regions has been further boosted due to a growing consensus to
push for more research on disaster-affected low-income regions (Toya and Skidmore 2007; Cav-
allo et al. 2013), and due to the availability of standardized longitudinal data sets which makes
systematic empirical analysis possible (for example, the widely used CRED database EM-DAT
2016). Furthermore, the development of the modeling literature introduced several hypotheses for
further testing which has resulted in a growing body of empirical literature in the last two decades.
For example, Albala-Bertrand (1993) introduces three key hypotheses that have been extensively
tested. First, the impact of natural disasters is small in the aggregate but sufficiently large at the
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regional level. Second, the magnitude of the shock, its impact, and the level of social vulnerability
are heterogeneous, and spatially and temporally distributed. Third, the shock impacts the most
vulnerable parts of the economy – the low-income unskilled workers and low-quality productive
capital – the most.

The empirical literature based on these models usually discusses the extent of the negative
impact of natural disasters on output and growth (Toya and Skidmore 2007; Noy 2009). However,
several studies show that the impact is restricted to certain regions and do not necessarily affect the
overall economy (Horwich 2000; Strobl 2012; Loayza et al. 2012), or are just limited to short-run
variations without having a significant long-run impact (Raddatz 2007; Felbermayr and Gröschl
2014). Some studies also claim that natural disasters allow for positive long-run growth due the
“creative destruction” process where policy planners can reconfigure the economy to achieve higher
growth trajectories in the future (Skidmore and Toya 2002; Hallegatte et al. 2007; Hallegatte and
Dumas 2009).

This ambiguity of the impact of natural disasters on economies, both in the long-run and at
the national level, has prompted for a more refined analysis at the micro level where individual
behavioral decision-making and meso level institutions need to be studied further to understand
which factors exacerbate losses or allow regions to be resilient towards natural disasters.

2.2. Micro adaptation studies

Several micro empirical studies have looked at ex-post household income and consumption
smoothing strategies (Morduch 1995) following a natural disaster like scenario based on Friedman’s
(Friedman 1957) permanent income hypothesis (PIH) (see Auffret 2003 for a comprehensive review
of literature on post-disaster coping strategies). The literature tests the conditions under which the
PIH hypothesis holds especially in the absence of formal insurance mechanisms. Three short-term
household strategies are prominent within this literature; precautionary money savings, holding
food inventories, and internal regional migration.

Precautionary money savings are key to consumption smoothing in the absence of formal fi-
nancial services and can provide quick liquidity in the short-run (Deaton 1991; Paxson 1992; Udry
1995). These can also take the form of investment in productive assets, for example livestock
(Townsend 1994), and are preferred over informal loans with high interest rates (Chaudhuri and
Paxson 2002). Several studies also highlight the role of food inventories in areas with poorly func-
tioning food markets (Townsend 1994; Lim and Townsend 1998). Literature also highlights this as
an imperfect mechanism for consumption smoothing that only allows households to hedge against
minor shocks in the short-run (Auffret 2003; Kazianga and Udry 2006; Park 2006).

A third strategy discussed in literature is internal regional migration to ensure income and
consumption smoothing. The standard “push–pull” model of migration (Harris and Todaro 1970;
Todaro 1980) suggests that real income differences across locations incentivizes workers to move
around equalizing real income levels in the absence of barriers. Short-run internal migration has
been highlighted in literature as a coping mechanism to ensure a continuous income stream (Rosen-
zweig and Stark 1989; Borjas 1994; Beegle et al. 2011) especially in a post-shock scenario when
households might not have enough resources to move outside the region (Halliday 2006).

2.3. Why geo-simulations?

Meso and macro outcomes emerges through the interaction of individuals which then feedback
on individual decisions. The result of this process is a complex adaptive system which exhibits
path dependency and non-linearity (Schelling 1978; Holland and Miller 1991). In the type of spatial
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economy that is presented in this paper, multiple locations feature their own decentralized goods
and labor markets, and interact with each to form a complete economic system. Therefore changes
in one part of the region can have repercussions on the rest of the system resulting in complex
adjustment processes.

ABMs allow for easy incorporation of such feedback mechanisms at the micro, meso, and the
macro level which entails a bottom-up approach where agents iteratively solve complex non-linear
economic problems using simple decision making rules in a way that might not be possible using
optimization techniques (Axtell 2000; Borrill and Tesfatsion 2011). Such a framework provides
a powerful tool for conducting a natural disaster-like shock experiment. The lab setting allows
establishing counter-factual scenarios that can help general probabilistic post-shock outcomes that
can inform policy especially in the absence of any reliable data. Additionally, a salient feature of
ABMs is their ability to incorporate a spatial dimension to understand how patterns unfold across
various parts of an economy (Axtell 2000; Farmer and Foley 2009). They are a powerful tool
that allows simulating out-of-equilibrium states in a spatially defined decentralized multi-market
framework (Schelling 1978; Epstein and Axtell 1996; Epstein 1999; Tesfatsion 2006; Farmer and
Foley 2009). Integration of geographical information systems (GIS) makes it possible to use actual
locations and road networks to represent a real world setup. Such a model can be calibrated
using baseline data to validate it against empirical benchmarks. If it is found to replicate actual
outcomes accurately, it can then be used to investigate the process through which outcomes in
disaster scenarios might emerge and, thus, what could be entry points for policy responses.

3. Stylized Facts from the 2005 Pakistan Earthquake

In October 2005, the northern region of Pakistan was hit by a massive earthquake measuring
7.6 on the Richter scale. Figure 1 shows the detailed geographical setup of the earthquake af-
fected region. Large dots represent three major cities – Muzaffarabad, Mansehra, Abbottabad –
in the selected region, small dots represent villages, while major road networks are shown as lines
networks.

The shock originated along the fault line between the Eurasian and Indian tectonic plates which
spans 300 kilometers in a south-east direction (shown as the thick line in Figure 1). The fault line
passes along a major city, Muzaffarabad, which had a population of 90,000 in 2005. Shock waves
generated by the earthquake spread in both directions of the fault line causing massive destruction
within a 10 km buffer with the intensity of the shock dissipating as one moved further away. Since
the epi-center of the earthquake was a straight fault line, locations equidistant from the fault line
faced the same magnitude of the shock.

In 2005, the estimated population of the region was 5.7 million, of which approximately 84%
were classified as rural.3 The region had a very low annual per capita income of around USD 360
in 2005, that is, less than a dollar per day. This compares to the national average of USD 693
(ERRA-UN 2006).4 Economic activity is mostly rural subsistence farming, and a small service
sector in cities, mostly providing health, schooling, small businesses, and tourism. As a result of
low income levels, approximately 80-90% of income is spent on food and other essential items like
health and schooling, resulting in low savings (FBS 2011). Due to a large dependance on agrarian
production for income and food, and due to weather variability, households hold food inventories

3The regional population was 3.5% of total country population estimated at 160 million for 2005.
4The exchange rate in 2005 was USD 1 = PKR 60.
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Figure 1: Map of the Affected Region
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to smooth out consumption across employment and seasonal variations (Morduch 1995; ERRA-
UN 2006). Financial institutions are minimal, private sector insurance mechanisms are virtually
non-existent, and public social safety nets are similarly poorly developed, forcing the population
to adapt to income variability locally. Due to a high number of low-income jobs across the region,
and a socially and culturally homogenous landscape, there is high rural-urban mobility within the
region (ERRA-UN 2006).

The 2005 earthquake caused major physical damage and a large loss of human life. Landslides
destroyed crops and rendered many farms non-functional while cities saw a significant collapse
of production facilities. The immediate death toll of the shock was estimated to be over 73,000
individuals (1.3% of the regional population), while 70,000 individuals (1.2%) were estimated to
be seriously injured. Muzaffarabad, the city on the fault line, reported over 80% of all physical
structures as damaged and over 70% of lives lost. The other two cities, Mansehra and Abbottabad,
faced relatively minor losses as they were further away from the fault line. Approximately 3.5
million people (61%) were directly affected by the shock and 2.3 million (40%) were left “food
insecure” (ERRA-UN 2006). In the first few days alone approximately 300,000 individuals (5.2%
of regional population) were displaced (ADB-WB 2005), mostly to cities and to the east away from
the fault line. From an economic perspective, GDP of this region was about USD 2.3 billion (2.6%
of 2005 national GDP). Total damage was in the range of USD 3.5 billion, that is 150% of regional
GDP but only 4% of the 2005 national GDP (ADB-WB 2005). Therefore, the economic impact of
the earthquake was restricted to the regional level with a minimal impact at the national level.5

The earthquake caused a major distributional shock both as a result of damage to capital
stock and population displacement. Since sparse pre-shock baseline data existed on this region,
the effectiveness of the relief efforts was difficult to assess. However, levels of food vulnerability
remained high and livelihoods remained disrupted despite the aid spent on the region (ADB-WB
2005; ERRA-UN 2006). One reason for the poor response was a lack of knowledge as to where
markets were non-functioning, where there were food shortages, or where clusters of vulnerable
populations existed. Most of the aid went to major cities due to better road access and better
communication networks, even though a lot of the vulnerable population was located in remote
areas with poor, or no access to any form of aid (ADB-WB 2005; FAO 2009). Therefore, a modeling
tool that could help pinpoint potential vulnerability hotspots might have made a big difference to
the relief efforts which focused mostly on urban cities leaving out most of rural villages.

4. Setting up a Simulation Framework

In order to create a geo-simulation framework that can replicate natural disaster-like outcomes
in low-income regions, three inputs are required. First is the spatial layout of the region where clus-
tering of locations, road connectivity, and distance from the fault line can play a role in determining
post-shock outcomes. The spatial layout also plays a crucial role in migration and selling decisions.
For example, if individuals need to decide between two locations at different distances offering
the same level of income, they will chose the closer one (in spirit of Hotelling’s rule (Hotelling
1929)). Similarly, it is cheaper to transport goods to nearby locations. Second, the economic
setup of the region is important to understand how the market for labor and goods (food and
non-food tradeable items) function, how wages are determined, and market demand and supply

5Annual GDP growth rates in Pakistan were 7.7% and 6.2% in 2005 and 2006 respectively.
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are generated. Third, an understanding of behavioral responses to a crisis situation is necessary
to capture region specific cultural and sociological variations. This, for example, can include how
an individual will adapt income and consumption decisions in the face of a highly uncertain and
rapidly changing environment. The interaction of these three inputs produces a spatially defined
regional economy where population and goods markets engage in exchanges that lead to stable
long-run population distributions, and income and consumption trends. Each of the three inputs
for the 2005 earthquake-affected region are discussed below.

4.1. GIS Data

The baseline map (Figure 1) is used to extract useful location and road information to represent
the region in the simulations. For the 2005 earthquake, data for all 53 villages and three cities is
extracted from Figure 1 as location nodes.

In the next step, road networks are coded as links shown as straight lines in Figure 1. While
the road network data in Figure 1 is fairly detailed, ranging from paved roads to dirt tracks, only
the information on major paved roads is used. The decision to just use major roads is made for
two reasons. First, unpaved dirt roads and trails were destroyed or disrupted due to landslides and
landscape changes and thus were not the obvious choice for mobility following the 2005 earthquake
(ADB-WB 2005). Second, a simpler road network is computationally easier to handle for behavioral
rules dealing with selling goods and migration decisions carried out by a large number of agents
over a large set of location destinations. A larger road network, which is possible to construct in the
simulation framework, can quickly result in computational bottlenecks especially when calculating
optimal paths for migration and selling across a large set of agents.

Modeling the fault line

In order to replicate the damages caused by an earthquake, two loss functions are used in the
model. First is the productive capital loss function which determines damage to output. Second,
is the human life loss function which determines lives lost affecting availability of productive labor.
The extent of damage caused by the shock is a function of the Euclidean distance to the fault line
(Figure 2). Mathematically it is calculated as the perpendicular distance from a village or city
node to the fault line. These are highlighted by the dotted lines in Figure 2.

The intensity of the earthquake shock, which resulted in capital and labor losses, is defined as a
logistic function which falls exponentially as distance increases. To calibrate the damage functions,
estimates are used from the 2009 census of earthquake affected districts in Pakistan analyzed in
Andrabi and Das (2010) and summarized in Figure 3.

Andrabi and Das (2010) show an exponential decline in property and human loss relative to
the fault line (Figure 3a). The lines representing “House Destroyed” and “Someone Died” are used
for estimating the capital stock and labor losses in the model, respectively. The lines shown in
Figure 3a follow a generic inverse logistic function of the form:

Lossj = 1− 1

α1 + α2e−βd̂j
(1)

where d̂j is the normalized Euclidean distance to the fault line from a location j. Normalization
converts distances from kilometers to a {0,1} scale. The furthest location from the fault line in
terms of the Euclidean distance, is used as a normalizing factor for distances for all other locations.
The parameter values α1, α2, β are calibrated to replicate the original curves resulting in Figure
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Figure 2: GIS Fault line
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Figure 3: Empirical loss estimates

(a) Empirical

Source: Andrabi and Das (2010) Figure 2a: p. 47.

(b) Simulated
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3b. For loss of output parameters take on the following values: αoutput1 = 1, αoutput2 = 6, βoutput = 5.

For loss of life, parameters equal: αlife1 = 1, αlife2 = 0.2, βlife = 4. The two loss functions are shown
in Figure 3b.

According to Figure 3, capital stock damage equals almost 85% on the fault line while workers
have an approximately 18% chance of losing their lives. The unequal treatment of loss of capital
and labor together with spatially heterogeneous distribution of locations and road network implies
that a natural disaster-like shock will lead to complex adjustment processes as each location deals
with its remaining stock of production capacity and workforce.

4.2. Economic setup

The 2005 earthquake-affected region, is characterized by relatively homogenous “villages” en-
gaged in agrarian production. Workers in villages produce food in exchange for subsistence levels
of income. A large number of villages are connected to “cities” which produce non-food trade-
able goods demanded within the region. Tradeable goods, for example, can include schooling,
healthcare, clothing, or jobs paying daily wages like construction work. Low-income workers move
around responding to real income signals across the region to ensure higher income and saving
levels implying better consumption smoothing opportunities. Assuming free mobility of workers
within a region, in the long-run worker population distributes itself across the region to stabilize
real income levels resulting in a long-run stable rural-to-urban population ratio.

Villages and cities exchange food and tradeable goods which allows supply networks to form
across the region based on distances, demand, and price signals. If food production is insufficient
in a location, it is imported from other locations. Similarly, cities, which are much larger in size,
import all their food from villages. Since all sellers are considered homogenous, they compete for
sales across locations based on expected profits. Fewer sellers in the neighborhood result in the
formation of local monopolies while competitive prices emerge if many sellers are catering to few
locations. If sellers have excess stock, that is not sold in regional markets, it is exported outside
the region at competitive prices.

In the model, all workers are assumed perfectly homogenous in their productivity levels and
their access to information. Similarly all locations produce homogenous type of goods; perfectly
substitutable food items in villages, and goods in cities. This simplifying assumption serves two
purposes. First, it is not far from reality that low-income regions have a large stock of low-income
unskilled or semi-skilled workers which are easily able to substitute jobs, for example, between
farm labor in villages and factory work in cities with roughly similarly daily wage rates. Second,
homogeneity of agents helps presenting the results, such that the emergence of distributions, and
heterogeneity in outcomes is driven by variations in the level of shock faced by spatially-distributed
locations rather than adjustment processes of heterogeneous workers. A fully heterogeneous model,
which is possible to execute in the current setup, will make it hard to untangle the direct distribu-
tional effects of natural disasters.

The dual circulation of population and goods, summarized in Figure 4, forms a circular flow
semi-closed economy. The economy comprises multiple autonomous decision making locations –
villages and cities – that evolve their own labor and goods markets.

Each location is assumed to own a stock of workers and goods which it can exchange with
other location based on market signals. Locations are inter-connected through road networks with
varying distances which also play a role in decision-making processes. Locations further away have
a negative weight on migration and selling decisions while higher income gains and profits have a
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Figure 4: A multi-market circular flow economy with distances
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positive weight. These trade-offs between distance and welfare gains are continuously evaluated by
agents in the model.

The model is driven by the migration and market selling procedures which act as stabilizing
mechanisms across the region. Rising prices in one location imply lower real incomes forcing workers
to find work in other locations. An out-migration from a location reduces its demand resulting in a
reduction of prices. This, in-turn, also affects real incomes, and subsequently demand and supply
decisions to this location. This endogenous micro-meso adjustment process allows for observing
cascading effects of the type that are typical in a natural disaster like scenario. If one location is
affected, it sets in motion a sequence of adjustment processes across the region where incomes and
prices continuously and endogenously adjust to equalize disparities across locations.

4.3. Behavioral setup

The primary goal of low-income workers is to ensure at least a minimum level of subsistence
food consumption, below which, they are considered starving or “food insecure”. Consumption is
tracked at the individual worker level and a minimum consumption line is used to check if an agent
is starving or not. Consumption levels are assumed to be non-linear in their relation to income.
This non-linear relationship is summarized in Figure 5.

According to Figure 5, beyond a certain income level, labeled as Y min, at which the minimum
consumption bundle Cmin is affordable, workers consume a fixed fraction of their income. If income
falls below Y min, such that the minimum consumption bundle Cmin becomes unaffordable, two
decision rules are triggered. First, workers search for other locations offering them higher real
income gains. Migrating to other locations, if a preferable option exists, allows workers to sustain
higher levels of consumption. Second, if income cannot be increased, all income is directed towards
purchasing food. If income is insufficient, workers run down their savings to allow the consumption
to stay at the minimum consumption level. As savings run out, workers’ consumption fall below
the minimum consumption threshold Cmin forcing them to starve. The aim of the model is to
identify the time and place the populations that fall below the minimum consumption line. As
indicated in Figure 5, the region to the right of Y min allows for the build-up of food inventories
and savings, while the region to the left of Y min results in a run down of food inventories and
savings causing vulnerabilities to arise.

The formal logical sequence of behavioral rules as used in the model is summarized in the box
below.
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Figure 5: Workers’ consumption decision
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Earning income?
→ Produce goods, earn income
→ Check for other locations offering higher real income
→ If a favorable location exists then migrate

Has sufficient food inventories?
→ Check for income relative to cost of minimum consumption bundle
→ Income > Minimum consumption cost
→ Buy food = MPC Income
→ Increase food inventories for desired number of days
→ Increase money savings
→ Consume a fraction of food inventories

→ Income = Minimum consumption cost
→ Buy food = Income
→ Consume at least the minimum food bundle

→ Income < Minimum consumption cost
→ Buy food = Income
→ Check savings
→ Savings ≥ Minimum consumption cost
→ Spend savings to ensure minimum food bundle
→ Consume the minimum food bundle

→ Savings < Minimum consumption cost
→ Spend all savings on food
→ Consume all the food in stock

According to the box above, each time period two independent checks are made by workers
simultaneously. The first check “Earning income?” determines relative real income levels. A higher
real income will always guarantee higher food consumption. Workers, therefore constantly evaluate
locations in the region to find work offering a higher real income gain. If real income differences
across locations are minimal, workers stay at their current location. The second sequence is the food
consumption decision, where several condition checks are used. These include checking whether
sufficient income exists to purchase food, how much of it should be spent on food, and if it is
insufficient how much of savings should be redirected towards purchasing food. If food inventories
exist, then a fraction of inventories are consumed, otherwise workers try to ensure that workers
consume at least the minimum consumption bundle. If workers run out of all options, they fall
below the minimum consumption line and are labeled as starving.

Decision-making rules

The behavioral rules are adapted from Naqvi and Rehm (2014) which are characterized by
four micro procedures – Production, Wages, Buying, Consumption –, and two meso procedures –
Selling, Migration. The detailed model description is given in Appendix A.

The four micro procedures determine how individual-level decisions are made. Production and
Wages determine output per worker and the average wages earned. Buying and Consumption
rules follow the decision making logic described in the box above which ensures a minimum level
of consumption is maintained even in the face low income levels.
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Two meso procedures defined how locations interact with each other; Selling and Migration.
The meso procedures are extended over the original model to make the decision making process
considerably more dynamic. The extensions include a more advanced search-and-match algorithm
for selling goods across a large set of markets and a migration procedure that allows agents to make
a more informed decision about the choice of destination. The two meso procedures are central to
model outcomes and are summarized below (see Appendix A for a formal description).

The Selling procedure is driven by locations having a preference for maximizing profits. In order
to do so, locations evaluate all markets in the region. Profits are earned when the selling price is
greater than the production cost plus distance-based transportation costs. The location offering
the highest profit margin is selected first before moving onto the next location offering the second
best profit margin. Subsequently, rest of the locations are iterated until either, all stock is sold, or
all locations are exhausted. Relative changes in expected profits drive the decision on how much to
sell in each location at each time period. If any stock is leftover after exhausting all the locations in
the region, it is sold outside the region at cost price. The assumption here is that sellers prefer to
be locally monopolistic with some power over price setting, allowing them to earn monopoly rents,
as opposed to being globally price-takers selling goods at cost. The search-and-match algorithm,
which follows a tatonnement process (Albin and Foley 1992; Foley 1994), is repeated until all
locations achieve their equilibrium price trends. In such a system, a shock to one seller, or a
number of sellers, results in the reconfiguration of the supply network. In case, there are few sellers
available in a location, or there is insufficient supply due to production shock, prices will go up in
the short-run to adjust to existing demand. The search-and-match algorithm developed for this
model is unique in its formulation as it allows sellers to maintain their characteristic profit-seeking
behavior while being to operate in a continuously evolving environment. This iterative process
is better able to adjust to sudden shocks and changes in the spatial environment as opposed to
standard modeling techniques where sellers solve a portfolio maximization problem with perfect
information and perfect foresight in a deterministic environment.

The original Migration procedure presented in Naqvi and Rehm (2014) is extended to allow
agents to make a more informed migration decision choice using migration probabilities across
multiple draws. The location selection decision is operationalized as a two-step process. In the
first step, an agent evaluates all locations in terms of real incomes and distances to come up with a
migration probability vector. Once relative probabilities are determined, a probability distribution
is generated where locations with a higher real income gain have a higher chance of being selected.
Through this process, an agent has a chance of selecting the “right” location, but it does not
guarantee it. In other words, an agent is allowed to make a mistake. This has multiple effects.
Across different simulation runs, the same agent can choose different locations even if starting from
the same point (referred to as “random seeding” in ABM terminology). Therefore, by changing
the destination choice of one agent, the next agent’s probability vector is modified, changing the
subsequent structure of migration decisions. In a second step, an agent’s destination choice is
controlled by allowing for multiple draws for a location choice. If the same location is repeatedly
selected, it becomes a sure destination choice. Multiple draws allow for minimizing complete
randomness in the choice of destination where a sequence of bad decisions, an outcome that is
probabilistically possible, can result in implausible model outcomes. In theory, some agents can
make mistakes but not all of them. A higher number of draws ensures that on average the right,
or at least the better, destination is almost always selected.
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5. Simulations

The model is set up in Netlogo (Wilensky 1999), an open-source software for ABMs. Location
data is extracted from the GIS map shown in Figure 1 as “nodes” and standardized to the Netlogo
coordinate system called the “grid”. The Netlogo grid takes on a value of {0, 0} in the center,
therefore latitude and longitude information is transformed to coordinates relative to the origin.
Road information is extracted as “links” connected between nodes to form a network in Netlogo.

The model runs for a period of 1200 “ticks”, a Netlogo time unit, where two ticks are assumed to
equal one day. Simulations are conducted multiple times with random seeds, to allow for variations
in migration decisions to emerge which subsequently feed back on all other decisions. Data is
collected for each agent and each location, for each tick across each simulation run. To make the
information presentable, data points are averaged out across all simulations runs to generate mean
trends. Data is further aggregated at the monthly level (60 ticks = 1 month) for temporal analysis
and at the location (village or city) level for spatial analysis (see Section 6 below). Simulations run
for a total of one year to allow stable post-shock patterns to emerge. The movement of workers
across locations is also tracked in the model. The movement speed only determines the speed of
convergence of the model to a new steady state and does not play a crucial role in determining
outputs.

5.1. Calibration

The model requires two sets of information to initialize. A set of parameter values which drive
the decision making rules described in Appendix A and a set of initial conditions which allow the
model to reach the target set of indicators. Since poor data exists for the region on post-shock
outcomes, the model is calibrated to replicate pre-shock levels of population distribution, and
income and consumption levels as the starting point for the earthquake shock experiment.

Parameters

The model is defined by a benchmark parameter vector summarized in Table 1.

Table 1: Parameters

Parameter Description Benchmark Source

w Daily wage rate ($) 0.25 ERRA-UN (2006); FBS (2010b)
c1F MPC food out of income 0.9 FBS (2006)
c1G MPC good out of income 0.05 FBS (2006)
δ Food inventories (days) 10 ERRA-UN (2006); FBS (2010a)

The values of these parameters are derived from empirical literature using either region specific
studies or using various national censuses. As shown in Table 1, four parameters drive the model.
The unit wage rate w which defines the wage bill is set to a value of USD 0.25 per unit of output
per day. The baseline marginal propensity to consume food out of income c1F is set at the higher
end of 0.9 out of current income, the marginal propensity to consume goods out of income c1G
is fixed at 0.05. The desired number of days, the food inventories are held, is assumed to be 10
days. The model is also tested for parameter sensitivity and loss function sensitivity. The results
of sensitivity testing are discussed in Appendix C.
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Initial conditions

Two key initial conditions are used to achieve pre-crisis empirical trends in three key indicators;
population distributions across villages and cities, income levels, and consumption levels.

The first key initial condition is the relative size of cities to villages. According to the national
level databases (FBS 2006), villages are roughly equal in size with an average population of 9,000
individuals. The relative size of the three cities – Muzaffarabad, Mansehra, Abbottabad – to
villages in terms of low-income work availability, is extracted from the labor force survey (FBS
2010b) using crude estimates and is summarized in Table 2. Since the production process in both
villages and cities require the same type of homogenous labor, the relative output sizes are sufficient
to determine pre-crisis population distributions of low-income. The level of output in villages is
set exactly equal while the output in cities is set as a multiple of village output according to Table
2.

Table 2: Baseline distribution of City populations

Location Low-income jobs Urban-to-Rural job ratio

Muzaffarabad 72,300 8:1
Abbottabad 44,500 5:1
Mansehra 37,700 4:1

The second key initial condition is the ratio of output-to-workers which determines the relative
average income per worker. In order to achieve an average annual income level that is close to
the yearly average of USD 3956, the model is populated with 1,000 workers. In the model, output
is defined in kilos such that the level of output is set to achieve pre-crisis income levels based on
the number of agents, and the average wage rate. For the the model this is set at 58 kilos of food
production in villages while cities calculate their average output as a multiple defined in Table 2.
For example, in Muzaffarabad, total output equal 58× 8 = 464 kilos of food-equivalent tradeable
goods.

The initial conditions are summarized in Table 3.

Table 3: Initial variables

Variable Description Value

Xmax
j Food output per village per day 58 kilos∑
n Total workers 1000 agents

Cmin Minimum food consumption per day 1 kilo = 1700 kcal
uj Autonomous production in villages 7 kilos

In addition to the first two variables in Table 3, described above, two other variables are defined.
The third variable in Table 3 is the minimum consumption threshold, Cmin, where consumption of
1 kilo of food is assumed to provide 1700 kilo calories (kcals) of nutritional value per adult per day.
This is the absolute minimum consumption threshold, in caloric value, below which individuals are
considered starving (FAO 2010).

6Values are converted into US dollars (USD) based on 2005 exchange rate of USD 1 ≈ PKR 60.
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The fourth variable is the autonomous production output uj in villages which is set equal to
7 kilos per day, or approximately 12% of pre-crisis production levels. Autonomous production
in cities is set as a multiple of this based on Table 2. In the earthquake-affected region, this
assumption also mimics a shared tenancy scheme where owners of productive capital (land, in case
of villages) can produce a certain level of output (for example through mechanization) while the
rest is outsourced to workers (Ray 1998: Chap. 10). Similarly in cities, small firms can expand
production by hiring more workers. Autonomous production implies that some minimum level of
economic activity will always exist in each location even in the absence of workers. A minimum
level of economic activity ensures that some minimum level of food and goods supply is always
available, preventing prices from exploding, an unlikely scenario, even in a high intensity shock
environment.

Replication of pre-crisis trends

The simulations are initialized using the benchmark parameter together with initial conditions
and run until stable trends are achieved. The initial conditions are set to ensure several outcome
variables – population distributions, income, and consumption levels – match pre-crisis trends.
The simulations are conducted 50 times using random seeds to allow for variations in migration
decisions. Outputs from the model are summarized in Table 4.

Table 4: Simulations vs Empirical estimates

Indicator Simulations Empirical Source

Rural population (%) 84.4 84 World Bank 2010
(0.17)

Average annual income (USD) 389.05 395 ADB-WB 2005
(3.31)

Average daily consumption 2,059.10 2,100 FAO 2009; FBS 2006
(kcal) (8.91)

Note: Standard deviations given in brackets. Table generated from 50 simulation runs using random seeds.

The model achieves the rural population level of 84%, while average annual income in the
simulations is USD 389, close to the empirical values of USD 395 per worker. Food consumption
in the model approximately matches to average caloric intake of 2,100 kilo calories (kcal) per day.

The results above show a weak form of validation of the model for pre-crises trends. Lack of
reliable post-shock data for this region, makes any kind of validation and micro analysis almost
impossible to conduct.

6. Results

Once stable pre-crisis trends are achieved, the model is subjected to an earthquake-like shock
using capital and labor loss functions described in Section 4.3. Key indicators are tracked for a
period of one year. Three sets of results are presented. The first set discusses overall changes in
key economic indicators, the second set shows temporal variations in key indicators, and the third
set deals with location-wise changes.
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Table 5 shows percentage changes in key region-wide macro indicators between a pre-shock
period and a one year post-shock time period, two time periods that exhibit stable trends in
outcomes.

Table 5: Macro indicators

Variable Pre-shock One year % change

Total output (Index) 100 45.3 -54.7
(0) (0)

Total workers (Agents) 1287 1123 -12.7
(0) (10.7)

Percentage urban (%) 14.1 14.4 2.7
(0.24) (0.59)

Real income (Index) 100 37.7 -62.3
(0.944) (0.958)

Food price (Index) 100 111 11
(0.32) (0.65)

Percentage starving (%) 7.9 46.9 492.9
(0.5) (1.8)

Income (Gini) 0.12 0.19 53.4
(0.0054) (0.015)

Consumption (Gini) 0.11 0.16 42.2
(0.0042) (0.012)

Note: Standard deviations given in brackets. Table generated from 50 simulation runs using random seeds.

Table 5 shows that there is approximately a 55% decline in overall output and a 13% loss of
human life. Displacement leads to a slightly higher share of urban population which increases by
almost 3%. Income levels are 62% lower, and food prices 10% higher on average. These changes
imply rising levels of starvation, which increase almost five fold, as both food availability and
affordability falls. This is also reflected in a rise in income inequality (53.4% increase) and con-
sumption inequality (42.2% increase). The last two indicators have two implications. First, a rise
in income and consumption inequality implies that the impact of the shock is not homogeneously
distributed across workers. Second, change in consumption inequality is lower than change in in-
come inequality highlighting that workers on average are able to better smooth out consumption
despite facing a large decline in income.

The indicators in Table 5 indicators show plausible trends at a regional level, but they do not
highlight temporal and spatial impacts of the shock. Figure 6 shows the location-wise output and
labor losses from an earthquake-like shock in the simulations. These are generated based on the
loss functions described in Figure 3.

As shown in Figure 6, the ratio of output-to-labor lost varies based on the normalized Euclidean
distance from the fault line. Furthermore, the spatial distribution of villages and cities, with various
degrees of road connectivity, implies that location-specific characteristics will also have a non-
homogenous impact on remaining capital and worker stocks. Therefore the temporal and spatial
evolution of various indicators becomes relevant for understanding how vulnerabilities might be
distributed across the region.
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Figure 6: Model loss estimates
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Figure 7 shows the temporal evolution of aggregate indicators. Figure 7a highlights the changes
in real incomes. As the loss in output after the shock is higher than the loss of workers, real incomes
fall disproportionately across locations. As a result of real income disparities, workers migrate
across the region to find better work opportunities. The consequence of this worker movement is a
region-wide decline in overall real income levels as they stabilize at a lower level. Similarly, Figure
7b shows a rise in food prices as a result of output losses, which also exhibit different trends across
villages and cities.

As real incomes fall and prices rise, workers are unable to afford their desired consumption
levels. To purchase food, at least the minimum consumption bundle, workers start reducing their
money savings. This is indicated by Figure 7c, where the pre-crisis savings rate of 10% quickly
decline to zero eventually falling below resulting in negative savings as workers run down their
money stocks. According to Figure 7c, at the disaggregated level, villages are worse off than cities
with negative saving rates as high as -30% while workers in cities manage to stabilize savings rates
to slightly above zero. Figure 7c also highlights that the changes in the savings rates are not
homogenous across time. The time between zero and six months shows high volatility levels due to
the population adjustment process. This transition phase shows the potential emergence of high
levels of vulnerability and food insecurity, which one would not observe, for example, if data is
collected six months after the shock. This is also reflected in Figure 7d, where around the three
month mark, there is a sharp increase in the level of starvation in a very short time span before the
rate-of-change slows down. Figure 7d also highlights rural-urban variation where cities are better
able to prevent populations from starving as opposed to villages. This can be explained by an
increase in rural population and a rise in food prices. These rural-urban disparities also highlights
the major challenges faced by aid institutions after the shock. They tend to focus more on cities,
due to better infrastructure and accessibility, usually assuming that populations are likely to move
towards more developed urban cities in a post-shock scenario. A risk of this approach is that some
of the most vulnerable populations left behind in remote areas are at the risk of missing out on
much-needed aid.

Figures 7e and 7f show the evolution of income and consumption distributions broken down by
quintiles. These two graphs highlight how some workers manage to completely hedge against the
shock while others quickly fall below minimum income and consumption thresholds. Therefore,
heterogeneity in outcomes can still persist despite homogeneity in skills across workers. This can
potentially depends on several factors including the location of the worker at the time of the shock,
proximity to the fault line, timing of migration, and the level of savings. Figure 7e shows that
the income of all quintiles fall below the cost of minimum consumption line, implying that, no one
can afford the minimum consumption based on their current income level. The graph also shows
that the rate of decline of income is not homogenous. The bottom two quintiles fall very fast while
the top three show a relatively slower decline allowing them to implement consumption smoothing
strategies more easily. As a consequence, not all groups fall towards the minimum consumption line
at the same rate as shown in Figure 7f. Once, the quintiles do approach this minimum consumption
threshold, they manage to stay on it except for the bottom quintile. The bottom quintile runs
out of savings immediately, falling to starvation levels at the three month mark. This insight,
that income and consumption vulnerabilities vary, can help policy makers decide between different
policy response schemes. This, for example, can include distinguishing populations requiring food
versus cash transfers, two popular policy instruments used in low-income regions (see for example,
Currie and Gahvari 2008).
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Figure 7: Temporal transitions

(a) Real income (b) Food price

(c) Savings rate (d) Percentage starving

(e) Income distribution (f) Consumption distribution
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While Figure 7 gives an interesting temporal breakdown of disaggregated trends, the geo-
simulation framework presented here can also analyze the above indicators at the location level
over time. Figure 8 analyzes these trends for six key indicators. In order to account for limitations
of space, results are presented only for changes in indicators a year after the shock at the location
node level. Changes from baseline indicators are shown as “O” for positive and “4” for negative.
Relative sizes indicate the scale of the change and the extent of the change is indicated at the
bottom of each sub-figure. The first four graphs show percentage changes while the last two show
level differences. For the last two variables – Starvation and Consumption Gini – level differences
have been used for convenience of representing changes in reasonable numbers since percentage
changes are extremely high due to very small baseline values.

Figure 8a shows the percentage of output lost. The city on the fault line – Muzaffarabad –
losses as much as 80% of its output. In contrast, farther away cities – Abottabad and Mansehra
– are barely affected. Since the damage dissipates over distance, villages show progressively fewer
losses in output as the distance from the fault line increases.

Population adjustments are shown in Figure 8b. A year after the shock, locations near the
fault line see a decline in population as agents move farther away. The change in populations near
the fault line is also not homogenous. One can attribute this to the level of clustering of locations,
and density of road networks which might play a role in mitigating the extent of migration.

Figures 8c and 8d shows the economic impact of the shock in terms of food prices and real
income levels respectively. Food prices in Figure 8c show two interesting trends. First, the villages
near the fault line see the highest increase in prices as production levels fall drastically relative to
further away locations. Second, locations on, or very close, to the fault line see an actual decline
in prices. This is driven by a demand-side affect resulting from out-migration of local populations.
Figure 8d shows an overall, relatively homogenous, decline in real income levels. This result is not
surprising since migration allows for equalization of real income differences and is a main driver of
migration in the model.

Figures 8e and 8f provide two indicators of vulnerability; starvation levels and consumption
inequality, respectively. Starvation is defined as the percentage of population that has fallen below
the minimum consumption line. As shown in Figure 8e, starvation levels rise across the whole region
but are not uniformly distributed. The remote villages, especially to the east of the fault line, are
affected the most. This result can be explained by poor road connectivity to cities or proximity
to nearby village clusters resulting in insufficient food supply for local populations. Figure 8f
shows consumption inequality captured by the Gini index. While consumption inequality worsens,
especially near the fault line, the rate of change is not homogenous across locations. Several factors
play a role in this outcome. First, consumption levels for all workers might be falling resulting in
a reduction in the inequality index. Second, spatial clustering of locations and road connectivity
can allow some locations to have better access to food supplies at lower prices.

Detailed spatial transition graphs are shown in Appendix B using heat maps at three month
intervals to highlight how some of the patterns evolve in the simulations. The contours of the heat
maps are generated using Shepard interpolation where inverse distance-weights are used to fill in
the missing data points to generate a continuous surface (Jacobs et al. 1986; Press et al. 2007).
These graphs show the percentage change from baseline indicators, and highlight how network
density, proximity, and clustering plays a role in determining the spatial and temporal non-linear
emergence of outcomes.

The analysis presented above shows that the impact of a natural disaster is non-uniformly

25



Figure 8: Spatial indicators one year post-shock (Change from baseline value)

(a) Output (% change) (b) Population (% change)

(c) Food prices (% change) (d) Real incomes (% change)

(e) Starving (difference) (f) Consumption Gini (difference)
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distributed even with homogeneous agents and a homogenous work environment. Results highlight
how a geo-simulation framework can help identify patterns of internal migration and clusters of
consumption vulnerability and can help formulate more effective and timely policies to help limit
second-round negative effects of natural disasters.

7. Conclusions

This paper applies a spatially-explicit ABM, or a geo-simulation, to a specific natural disaster
and geographical region; the 2005 earthquake in northern Pakistan. The aim of this exercise
is to show the applicability and usefulness of geo-simulations for near real-time policy responses
especially when reliable data post natural disasters is not available. Geo-simulations are preferred
over other modeling techniques in their ability to handle short-term non-linear spatial-adjustment
processes using bottom-up rules. The paper uses a simulation framework developed for low-income
workers where the decision making is governed by six behavioral modules – Production, Wages,
Buying, Consumption, Selling, and Migration – the combination of which, produces a complete
artificial economy with location-specific independent by inter-connected labor and goods markets.
The behavioral modules are developed to specifically focus on the decision making process of low-
income workers in order to identify extent of migration and consumption vulnerability in a post
natural disaster-like scenario.

The model is calibrated to replicate pre-crisis outcomes in population distributions, income, and
consumption levels. To this end, this paper extends the model of the artificial economy developed
in Naqvi and Rehm (2014) by incorporating the spatial setup of the earthquake affected region in
northern Pakistan, and extends two meso level procedures – Selling and Migration – to allow for
more dynamic decision making processes. This includes a more efficient search-and-match selling
algorithm across a large set of markets, and a more informed migration decision making process
using multiple draws to select destinations. A GIS map of the region is used as the physical
environment in which the model of the artificial economy is situated. This includes salient features
key to the functioning of the model such as the precise locations of villages, cities, and roads. This
artificial region is subsequently shocked to simulate an earthquake using the actual location of the
fault line along with calibrated output and labor loss functions.

The model outputs shows plausible patterns; there is a large decline in the level of output and
income that is heterogeneously distributed across the region. This triggers low-income worker pop-
ulations to smooth out consumption using three strategies; increasing consumption out of income,
consuming out of savings and food inventories, and migration to find better income opportunities.
The result of this is a demographic transition where populations from affected locations move to
unaffected areas, cascading the shock and exacerbating inequalities in the process. Disruptions
to the flow of goods result in market imbalances and food price spikes. The combination of low
income levels and rising food prices imply that consumption levels fall, leading to an increase in
starvation levels. Due to heterogeneity in the spatial layout of the region, and variations in the
decision making processes, not all workers are equally affected. Some show high level of resilience
against the shock while others quickly fall below the minimum consumption line resulting in star-
vation and food insecurity. The model is equipped to highlight both spatial and temporal patterns
as they evolve over time and can pin-point reasonably where clusters of vulnerability are likely
to emerge. This goes beyond what existing modeling tools which usually focus on long-term loss
estimations of natural disaster affected regions.
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While these results are exploratory in nature and validation remains a challenge due to limited
data availability, they help provide insights about distributional changes as regional economies
respond to shocks. If the model is able to provide an adequate description of outcomes of pre- and
post-shock in real-world scenarios, then the insights drawn from the model can be used to identify
pockets of vulnerable populations so that a more timely and effective policy response following
natural disasters can be implemented. In particular, since food insecurity can be traced in the
model, it can point to required policy measures to minimize starvation with limited aid resources.
Furthermore, timely action can alleviate bottlenecks through targeted policy response and help
limit secondary spillover effects, namely mass internal migration and the disruption of functioning
markets in other parts of the region, that might hamper regional growth and well-being in the
long-run.

Much remains to be done in helping low-income regions prepare for natural disaster relief and
bolster communities’ resilience. The framework presented here can be extended in several ways
before any real policy implications can be drawn. First, a larger, more detailed geographical
component can be added to the model that can help more accurately predict population and goods
flows. This, for example, can include altitude and slope information, variations in road types,
and weather conditions. Second, a more detailed behavioral component can be added where more
complex household decisions are simulated. This, for example, can include households with multiple
members, community based network decisions, heterogeneity in skill endowments, heterogeneity in
access to information, and incorporating learning behavior in a limited information environment. In
addition to this, geo-simulations are well suited to incorporate cultural and sociological aspects of
decision making as well. For example, different behavioral rules for men, women, and children, role
of asset ownership and extent of property rights in decision making processes, and community-based
versus family-based migration decisions. Third, given modern technologies, real-time data can be
integrated within such a model. This can include incorporating satellite data that is currently
available at frequent intervals and can quickly give damage estimates especially on infrastructure
losses. Additionally, crowd-sourced information can help calibrate the model based on some real
time information. This, for example, can include identifying food shortages, transport bottlenecks,
and location preferences for migration.

In conclusion, a geo-simulation framework can provide a rich tool for estimating a host of
policy questions in a lab-like setting, allowing for a more accurate and nuanced policy response
that can minimize second-round impacts of natural disasters and help reduce risk in the long-run.
Such a tool can play an essential role in low-income regions where knowledge of local markets and
community-specific behavioral responses can be simulated to estimate post-shock outcomes for an
effective, and timely response, with limited resource availability.
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Appendix A. The Model

In order to present the model, some notations are introduced for the sake of clarity. Agents are
indexed as i = 1...n and locations are indexed as j = 0...m where 0 is an agent’s current location.
The time subscript t represents a “tick” or half a day in the simulations. Symbols without the
time subscript are parameters for calibration or initial conditions. Model procedures are discussed
below.

Appendix A.1. Micro procedures

• Production: Each location j has a pre-defined maximum production capacity Xmax
j given

in standard output units. Production is defined as either agriculture output referred to as
“food” in villages and a tradeable “good” output in cities. The production process is split
into two part. Owners of productive capital can produce an amount uj ≤ Xjt ≤ Xmax

j of
the total output themselves using existing technologies. Autonomous production is added in
the model as a stabilizing mechanism to avoid the doomsday scenario where all production
activity will die out in the absence of workers causing prices to spike out of control. This
assumption is not unrealistic. Even in the face of very high shocks, some minimal level
economic activity persists. Therefore prices can rise if demand outweighs supply but not
indefinitely.

Since owners of productive capital are not explicitly modeled, total output is determined at
the location level where output per worker for each location j is defined as:

λijt =
Xjt − uj
njt

(A.1)

where njt is the number of workers employed at location j at time t. Equation A.1 implies
that if Xjt is shocked, such that Xjt < Xmax

j , less will be available for workers to produce
resulting in less output per worker.

• Wages: Total wage bill is determined by a fixed rate w per unit of output times the total
output produced by workers:

WBjt = w(Xjt − ujt) (A.2)

Wage earned per worker i in location j at time t can be derived as:

Wijt =
WBjt
njt

= wλijt (A.3)

or wage rate times worker productivity. Equation A.3 implies that a higher workforce, njt,
will reduce average income per worker earned.

• Buying: The amount of goods purchased are defined by two parameters. A preference to
consume at least a minimum level of subsistence bundle Cmin evaluated at current market
prices pjt and a preference to hold inventories of food for a certain time period δ days to
allow for minor consumption smoothing. The amount of goods purchased Bijt, in monetary
terms, by a worker i is defined as:

33



Bijt = Max[pjtC
min, c1itWijt + c2itmij,t−1] (A.4)

where c1 ≤ c1it ≤ 1 is the marginal propensity to consume out of income and c2it is the
marginal propensity to consume out of money savings mijt. Marginal propensity to consume
out of income in normal times, where income is sufficient to afford more than the minimum
consumption level, equals c1. c1 = c1F + c1G is a calibration parameter based on empirically
defined value usually in the range of 0.7-1 for low-income populations, of which a large fraction
is spent on food (c1F ) while a very small amount is allocated to purchasing tradeable goods
(c1G). c1 can endogenously increase to 1 depending on the food price and income relationship
such that, all the income can be used up to purchase food (c1F = 1) (see Figure 5). In this
scenario the tradeable good is not purchased (c1G = 0).

The second parameter c2it, the propensity to consume out of wealth, is also endogenously
determined. If income is insufficient to sustain a minimum level of food consumption then
c2t > 0, implying a negative savings rate. In this scenario, the value of c2t keeps increasing to
allow purchasing the minimum food consumption bundle provided workers still have money
savings left.

Changes in money savings are derived as:

∆mijt = (1− c1it)Wijt − c2itmij,t−1 (A.5)

Equation A.5 implies that in normal times, savings accumulate at a rate of (1 − c1it). In
a shock like scenario, saving rates become zero when c1it = 1 or negative if c1it = 1 and
c2it > 0.

• Consumption: Agents hold food inventories Fijt out of which they consume a fraction δ every
time period. From this consumption is defined as:

Cijt = Max[Cmin, δFij,t−1] (A.6)

The proportion of food stock consumed adjusts endogenously to income levels. Since con-
sumption levels are bounded below at Cmin, If workers have sufficient income, they will
buy more food than they can consume and add it to their stockpile such that they hold
food inventories for a duration of δ days. If consumption levels are low, then workers will
prefer to consume the minimum amount Cmin, either through shifting more of the income
to consumption, or running down food stocks. They will continue this trend until their
income-consumption choice allow them to do so. If for several reasons they cannot afford the
minimum food bundle, they will reduce their consumption below the minimum consumption
threshold to starvation levels.

The change in the food stock, Fijt, of agent i can be derived as:

∆Fijt = Fij,t−1(1− δ) +
Bijt
pjt

(A.7)

where Bijt is the value of food in money terms (equation A.4) and pjt is the current price level
of the food bundle at location j. For the sake of simplicity the tradeable goods (education,
health, other services) are consumed as they are purchased with no stock-piling.
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Appendix A.2. Meso procedures

To ensure consistency of calibrating the decision making processes, network distances are nor-
malized between 0 and 1. The normalized network distance χj , to a location j, takes a value of 0
if it is the distance to self otherwise χj > 0. A value of 1 is the largest distance in the network.
Normalized network distances are used for two reasons. First, they allow for easier calibration of
distance-based probabilities. If actually distances are used (for example in kilometers or miles),
parameters would need to be calibrated if the network size changes. Second, distances bounded
between 0 and 1 give a neat mapping to probabilities which are also bounded between 0 and 1.

• Selling: Locations sell the goods they produce either in different locations in the region or
export them outside the region. The condition for selling in local markets is determined by
profits earned over minimum costs. Unit costs are determined as:

rjt =
WBjt
Xjt

+ χj (A.8)

where WBjt is the total wage bill and the only production cost in the model, Xjt is the total
output at the current location, and χj is the normalized network distance to market j which
proxies for distance costs to location j.

Locations have a preference to maximize their own profits and thus evaluate all markets.
Profits are earned where the selling price is greater than the cost price or pjt ≥ rjt. Markets
offering the highest profit margin are selected first before moving on to the next market
providing the next best profit margin. Subsequently, rest of the markets are iterated until
either, all stock is sold, or all markets are exhausted. If a market continuously offers profits,
supply is incrementally increased in that market until supply is exhausted or the market
no longer offers high profit margins. Any leftover stock is sold outside the region at cost
price. The search-and-match algorithm, which follows a tatonnement process (Albin and
Foley 1992; Foley 1994), is repeated until markets achieve their equilibrium trend prices.

Total supply Sjt in location j at time t can be defined as:

Sjt =
m∑
j=0

θjtXjt (A.9)

where θjt is the fraction of output Xjt sold in market j from all other locations j = 0...m.
Based on price signals, each location adjusts its supply to other locations by varying 0 ≤
θjt ≤ 1. If profits in location j are expected to rise or decline, θjt increases or deceases
accordingly.

• Migration The probability of migrating to a location j is based on a joint probability distri-
bution, Πjt, defined as:

Πjt = Π
χj

t ×Π
ŵjt

t (A.10)

where Π
χj

t is the probability of migration based on network distances and Π
ŵjt

t is the proba-
bility of migrating based on the real income ratio of target location to the current location.
Real income ratio, ŵjt, is defined as:
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ŵjt =
wjt/pjt
w0t/p0t

(A.11)

or the real income in location j over real income in current location indexed as 0.

Since distances reduce probability of migration and incomes increase the probability of migra-
tion, locations have convex trade-offs as depicted by the joint-probability function in Figure
A.9.

Figure A.9: Migration probability

Note: Adapted from Naqvi and Rehm (2014)

Figure A.9 implies that, if other locations have the same income as a worker’s current location,
the probability of migration will be low since no incentives exist to switch locations. The
probability increases exponentially as real income in a target location increases as a multiple
of real income in current location. Additionally, the income-distance combination can give
different locations the same probability assignment. For example, a father away location
offering a higher real income gain can have the same probability of migration as a nearby
location offering a lower real income gain.

Agents operationalize a two-step process to select a location which are explained through
two hypothetical scenarios presented in Table A.6 where an agent needs to make a migration
decision across three locations. In the first step, all locations are evaluated using equation
A.10 to come up with a migration probability vector. If several locations are offering high
real income gains, they can be assigned very high probabilities for migration. Therefore, the
probability vector can sum up to more than one. In Scenario 1 in Table A.6, the probability
vector for three locations adds up to 1.39. A value higher than 1 implies that several locations
are offering a higher real income gain controlling for distances over the current location.
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Table A.6: Hypothetical probability scenarios

Loc 1 Loc 2 Loc 3 No mig Sum

Scenario 1 Probability of migration 0.56 0.65 0.18 1.39
Normalized probability 0.40 0.47 0.13 1
Cumulative probability 0.40 0.87 1

Scenario 2 Probability of migration 0.18 0.05 0.2 0.43
Normalized probability 0.18 0.05 0.2 0.57 1
Cumulative probability 0.18 0.23 0.43 1

These probabilities are normalized by the sum such that the second row in Scenario 1 adds
up to 1. The second step simply normalizes the probability vector without losing the relative
weights of locations. In the third row, these probabilities are cumulatively added such that
the last location in the vector is always given a value of 1. The normalized probability
distribution, which is bounded between 0 and 1, gives locations with a higher chance of
migration a larger interval. To select a location, an agent randomly draws from a uniform
distribution between 0 and 1. Using this draw, the agent hits a target interval on the
cumulative probability distribution. A larger interval will have a larger chance of being
selected, or two equally sized intervals will have an equal chance of being selected. For
Scenario 1, the highest interval exists for Location 2 while Location 1 is a close second. In
Scenario 2, all three locations provide small gains thus the “no migration” column has the
higher interval with a 0.57 probability of being selected.

In the second step, multiple draws are used to come up a location destination to minimize
complete randomness in outcomes. As an example, if three draws are used for Scenario 1
in Table A.6, an agent can end up with a destination vector {Loc2, Loc1, Loc2} where the
modal value is Loc2, the destination with the highest probability of migration. Thus by
manipulating the number of draws, the randomness in the model can be controlled. In the
simulation runs, three draws are used to avoid completely arbitrary choices while allowing
some room for random outcomes.

Prices

Prices are taken as a residual in the model and are central to Buying, Selling and Migration
decisions. Each location determines its own price level based on the local demand and supply
mechanisms. In its simplest form the price is given as a moving average of past prices plus recent
supply and demand conditions. Changes in price levels for each location j can be tracked as:

∆pjt = (1− θ)pj,t−1 + (θ)
Dj,t−1

Sj,t−1
(A.12)

where Dj,t−1 is last period’s realized demand at location j, Sj,t−1 is last period’s supply to
location j. The parameter 0 ≤ θ ≤ 1 gives the level of adjustment to the changes in prices where
θ = 1 implies no price smoothing. The parameter θ allows price spikes, for example through
sudden food shortages, to be smoothed out, sustaining minor fluctuations in the short-run. Large
sustained market shocks will eventually force prices to adjust to a new level.

In the model, prices play a key role in determining population and good distributions. Price
changes across locations forces labor and goods to readjust while high price spikes might make food
expensive or reduce real income levels causing pockets of vulnerability to emerge in the short-run.
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Appendix B. Transition graphs

Figure B.10: Spatial transitions

(a) Percentage change in population

(b) Percentage change in real income

(c) Percentage change in food price

(d) Percentage starving
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Appendix C. Sensitivity analysis

Two sets of sensitivity analyses are conducted on the model. The first set varies the initial
parameter conditions to test for deviations from the benchmark parameter vector given in Table
1. The second set uses the benchmark parameter vector but varies the decay rates of the loss
functions described in Figure 3b to test for senstivity of model outcomes.

Appendix C.1. Baseline parameters

The parameters are varied within a reasonable range of calibrated values given in Table 1. The
aim of this exercise is to show deviations from the benchmark vector of parameters defined in Table
1 and test for sensitivity of the model to variations in parameter values.

Table C.7 show the combinations of parameters values. Each parameter is given a minimum
value, maximum value, and the step between these values which gives the total number of combina-
tions. For example, for the first parameter, the wage rate w, takes on the values of {0.2, 0.25, 0.3},
a total of three parameter values.

Table C.7: Sensitivity 1

Parameter Description Min Step Max Combinations

w wage rate (USD) 0.2 0.05 0.3 3
c1F mpc income (proportion) 0.7 0.1 0.9 3
δ food stocks (days) 8 2 12 3
uj Autonomous production 5.7 1.4 8.6 3

The model runs for each parameter permutation (3 × 3 × 3 × 3 = 81 in total) for a total of
10 times per permutation with random seeds. In total 810 simulations are conducted. The model
runs till stable pre-crisis trends are achieved which are compared with the values of benchmark
parameters.

Figure C.11 shows simulations of all parameter combinations. The values on the x-axis represent
different parameter combinations and their results from ten runs are shown on the y-axis. The
benchmark parameter vector is identified by the red vertical line and a fitted Lowess curve shows
the smoothed-out average trends across all simulation runs. The figures highlight the robustness
of the model in not being very sensitive to parameter values.
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Figure C.11: Sensitivity analysis

(a) Real income (b) Food price

(c) Wheat consumption (d) Percentage starving

(e) Income Gini (f) Consumption Gini
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Appendix C.2. Loss functions

In this subsection, the parameters for the loss estimation using the equation 1 where by using
a ±20% variation in the decay function. This is set by modifying the β’s in the loss function
(βoutput = 5± 20% and βlife = 4± 20%) such that the following ranges are used:

Table C.8: Sensitivity 2

Parameter Description Min Step Max Combinations

βoutput Slope the output loss function 4 0.5 6 5
βlife Slope of the life loss function 3.2 0.4 4.8 5

A total of 5 values of for each parameter are used which gives a total of 5× 5 = 25 parameter
combinations. Each combination is run for a total of 10 times giving a total of 250 simulation runs.
The ±20% bands around the loss function are shown in Figure C.12.

Figure C.12: Loss estimate bands

Table C.9 shows the sensitivity of the results pre-shock and one-year post-shock similar to Table
5. Pre and one year post-shock results are shown in the first two columns while column three shows
the percentage changes. The last column shows the 10-90th percentile bands which compares the
value ranges generated by the benchmark β’s versus the value ranges generated by the full range
of β’s used for sensitivity analysis at the one year cut-off.

Figure C.13 shows the average temporal trends for six key indicators. The 10th–90th percentile
bands are compared for the benchmark βs with the band generated from using the sensitivity βs.
Graphs show reasonable trends around the mean values of the simulations given the variation in
the decay rates of the loss functions.
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Figure C.13: Sensitivity analysis

(a) Real income (b) Food price

(c) Wheat consumption (d) Percentage starving

(e) Income Gini (f) Consumption Gini
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Table C.9: Sensitivity 2 – Summary Statistics

Variable Pre-shock One year % change 10-90th percentile
Benchmark (first row)

Sensitivity (second row)

Output (Index) 100.00 53.41 -46.59 52.18 - 54.38
(0) (4.60) 47.29 - 60.25

Workers (number) 1287 1130.74 -12.14 1119.00 - 1143.50
(0) (16.77) 1109.50 - 1153.00

Percentage urban (%) 15.40 13.42 -12.86 12.71 - 15.099
(0.37) (0.68) 12.54 - 14.23

Real income (Index) 100.00 43.80 -56.20 40.94 - 45.89
(1.23) (8.29) 32.84 - 55.59

Food price (Index) 100.00 114.35 14.35 111.71 - 114.69
(0.28) (1.67) 112.58 - 116.09

Percentage starving (%) 8.12 47.17 480.91 44.48 - 49.96
(0.59) (14.32) 32.27 - 70.83

Income (Gini) .122 .191 56.56 0.182 - 0.195
(0.007) (0.008) 0.180 - 0.201

Consumption (Gini) 0.110 0.159 44.55 0.148 - 0.161
(0.005) (0.0116) 0.147 - 0.177

Note: Standard deviations given in brackets. Table generated from 250 simulation runs.
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