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FOREWORD

Changing rates of natural population growth, continuing
differential levels of regional economic activity, and shifts
in migration patterns are characteristic aspects of many
developed countries. In some regions they have combined to
bring about population decline of highly urbanized areas, in
others they have brought about rapid metropolitan growth.
Whether growing or declining, however, the large urban agglomera-
tions share common concerns related to their internal manage-
ability, the costs of spatial interaction, the quality of life,
and urban redevelopment issues.

One of the objectives of the Urban Change Task in IIASA's
Human Settlements and Services Area is to carry out the inter-
national review, assessment, and development of models of intra-
urban systems.

In this report, Dr. Boris Shmulyian, of the Institute for
Systems Studies, USSR Academy of Sciences in Moscow, discusses
the structure and applications of several urban models based
on the entropy approach. The paper presents a methodology for
incorporating detailed prior information concerning trip dis-
tribution patterns. It also focuses on applying the findings
to planning the location of working places and residences within
a large city.

A list of publications in the Urban Change Series appears
at the end of this paper.

Andrei Rogers
Chairman

Human Settlements
and Services Area
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ABSTRACT

This paper deals with general methodological questions of
urban systems modeling. The main feature of the models under
discussion is their analogy with models derived by the use of
statistics. This analogy is extended and generalized to take
into account the structure of a priori spatial preferences of
urban residents. Abstract systems that have been constructed
following this approach can be applied to the analysis and
simulation of individual urban subsystems as well as of the
urban systems as a whole.
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SPATIAL MCDELING OF URBAN SYSTEMS:
AN ENTROPY APPROACH

1. INTRODUCTION

The use of entropy methods in the spatial modeling of urban
systems has become increasingly popular in the past decades.
This paper considers a number of fundamental methodological
guestions raised by such an approach. To motivate the discus-
sion, we begin by listing a few examples related to forecasting.
All require some prior information, as well as assumptions on the

preferences of resident populations of particular regions.

1.1 Examples
Forecasting Shopping Center Attendance

For the forecasting of shopping center attendance we suppose
that j = 1,...,n shops (such as supermarkets and department
stores) are to be constructed in a region. It is known that they
will be attended by residents from i = 1,...,m districts. The
capacities of the districts Pi (amount of prospective buyers at
the time) are given. The average cost of a purchase in each
shop, cj, and the average cost ¢ of all purchases in the center
by all the buyers are statistically determined. We assume that
the buyers are socially homogeneous, shops are identical, and
buyers choose a shop in a random way. It is necessary, then, to
determine the distribution of the buyers among the shops.
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Forecasting the Population Distribution in a New City

In order to forecast the population distribution for a new
city, we suppose that n places of work with capacities Qj’ j =
1,...,n are given; m districts, which may be used for housing
construction are given also and the main characteristic of the
links between residential districts, i, and the places of work,

j, 1is the length of time necessary for the trip ts The average

time for home-to-work trips Tm’ for all residents,Jmay be deter-
mined by using analogies with existing cities of similar types.

It is again assumed that people choose working places independently
and in a random way. We note that the problem is essentially

of a non-optimal kind because Tm is fixed and is not to be mini-
mized. 1In this case it 1s necessary to determine the most appro-

priate allocation of housing construction within the city.

Analyzing and Forecasting Urban Traffic

This task is a classical one and has been investigated
since the 1930s. Here the graph of the city transport network
is given and zones of trip origins Pi' i=1,...,m and destina-
tions Qj' j=1,...,n are identified. The important feature
of this problem is the presence of prior information on £ (t),
the frequency distribution of the passengers over the trip length

between origin-destination pairs (i,j), where t;. is the shortest

]
route. It is necessary to determine interzonal links (trips)
xij and transport network loads. We assume that the passengers
choose a trip according to an origin-destination pair (i,j) in

a random way consistent with the prior distribution function f(t).

1.2 General Definitions

The above examples show how a stochastic spatial interaction
system can be defined. We define a system as a finite set of
N elements without regard to their internal structure. The
term spatial means that elements of the system belong to a space
(in particular, to a geometric space) and that they may be located
in some units of that space~-the elements belonging to the same

unit being indistinguishable.



The term Znteraction means that the system's work consists
in transporting elements from one group of units i = 1,...,m
(origins) to another j = 1,...,n (destinations). For each
origin-destination pair, a characteristic hij 2 0 is defined.
Finally, the term stochastice suggests that the (i,j) pair is
chosen in a random way and independently, with a probability
vij'

It then follows, that a random state of the system--the
flow matrix X = {xij}——is realized. The complete characteriza-
tion of random variables is represented by the distribution
functions of the variables, therefore we say that distributions
1 Y x.., and inter-
N {13

actions exist. In the last case, we may interpret a random

.. 1 . _
over origins p; = g % Xig0 destinations ay =

choice of an (i,j) pair as a realization hij of a random variable
H, provided the density distribution f(h) exists. Since hij
takes on a finite number of values, the distribution f(h) is a
discrete one; but since this number is large in actual systems,
we introduce the distribution density f(h) that clearly may be

constructed from the discrete distribution function.

1.3 Assumptions and Mathematical Structure

Each state of the system X can be realized in many ways,
differing only in the parts allocated to the (i,Jj) pairs when
the flows xij are fixed (Wilson 1974; Imelbaev 1978a). This
is the classical stochastic scheme of the multinomial distribu-

tion and is presented in Assumption A.

Assumption A. The individuals choose an (i,j) pair in
a random and independent way. The probability of occurrence
of each state is proportional to the number of ways that it may

be realized.

This number, for state X, is given by (Wilson 1974)

W(xX) = —Nv (1)



and the probability of this state is

1
P(X) =aN—'
T %54¢
1]
If Vij’ representing the prior probability that (i,3j) will
be preferred to other pairs, is given for all (i,]j) (Imelbaev

1978a), we have

| X. .
p(X) = N—"ﬂ' vi'lj (3)
x..! 13 | J
L B
1]
Expressions (2) and (3) completely determine the random
multi-dimensional variable X and allow us to calculate the

probability of the realization of every state. Taking algorithms

(3) and using the approximation 1ln Z! = (1ln Z - 1)Z, then
V.
$(X) = 1ln p(X) = | x,. 1n §—l + c (4)
i3 i3
Or, if Vij is constant for all (i,j) pairs
- - '
¢ (X) ) iy I ox54 t ooy (47)
1]
The expression (4') corresponds to the system's entropy
(Landau 197Q0). This fact, as well as the similarity of the

assumption given above to the assumptions used in statistical

mechanics, allows us to introduce the following assumption.

Assumption B. The system tends toward a stable state.
This state corresponds to the maximum of the system's entropy
(4), (4'), which for state X is

max ¢ (X)
X



Note. Assumption A, in general is a convenient abstraction
and can be confirmed in part by social studies and, eventually,
by comparison of the model results with observed data. On the
other hand, assumption B holds in physical systems (Kittel 1969)
(the second law of thermodynamics) and is highly probable in

urban systems.

1.4 Examples

The three problems of urban systems forecasting that were
presented in the first part of this paper can now be considered
again. Three examples are given in order to describe mathemat-

ically the planning problems.

a) A first example describes the flows xij between the

districts of origin and destination giving
max (- ¥ x;. 1n xi.)

X, - ij J J

1]

and the initial information corresponds to the exact constraints

on X, .
1]

It is convenient to present the cost constraints as

Q|

! c. %x;. =N
i3 J J

b) A second example is the problem of determining the flows

which correspond to



max <- i.xij 1n xij>
X, . ij
1]

under the constraints

L®3=0 o+ 3=T,..m
X i 17 = N Tm
ij J J
X.. 20
1]

c) The final example determines flows X35 from

i]
max ) X;5 1n &

xij ij 1j
subject to Z xij = Pi ’ i=1,...,m
J
% Xij = Qj ’ j=1,...,n

where the values Vij have to correspond with f(t) which is given.

1.5 Types of Prior Information

The problems considered above differ in terms of the data
needed on distributions over the interactions, origins, and

destinations. Let us introduce a classification of data types.

1. Data is absent.
2. Distribution parameter is given.

3. Distribution is given.

These data generate constraints on the flows xij' presented
in Table 1.1.



Table 1.1 Alternative constraints relating to different data

type.
Distribution
Data
type A-over interactions B-over origins C-over destinations
1 v, == } x.. =N ¥ x.. =N
ij mn I & AR B
ij 1]
}) h,. x,.=Nh
50 13 i3 - —
2 J z a, X, = N a Z b X .= N b
1 i3 ] ij ]
V,, = =
ij mn
Z X = P, X X = Q
ij i & ]
AV] =
3 i p{Em)} j i
i=1,...,m j =1, /n

Let us consider the determination of vij
more closely. For this purpose subdivide the range of distances
of h, from hmin to hmax’

and define characteristic functions for any interval Ak in this

under given f (h)
into intervals Ar’ r=1,...,k,...,1

range (Figure 1.1%1a)

1 heA
A (h) = { k
0 hea,
Calculate
fk = f f(h)dh
A

where fk is the probability of choosing links of a length within

the interval S hijEAk (Figure 1.1b). We note, that since

f(h) are aggregate data on the present state XO then



4 Ayih)

Characteristic
(a) 1 function

A f(n)

The distribution density
of individuals

(b)
///1 —p h (distance)
<—Ak—?
nih)
The quantity of the
communications
distribution
(c)

Figure 1.1 Calculation of probabilities Vi under the given
distribution density £ (h).



is the number of individuals traveling on trips with lengths
Ak.
We have no information implying that any one link hijEAk
is preferred over any other link in the same distance interval.
Therefore, we may define the probabilities vij as equal to each

other over the same group, i.e.,

f
_ "k
where
n, = 1 A (hyl) (5")
i3 ]

is the number of links with lengths in the range Ak (Figure 1.1c).

This classification allows for the definition of a set of
systems models. Designate them by 3-tuples {A B C}, where A,B,
C =1,2,3 are types of data referring to interactions, origins,
and destination. Thus the examples of section 1.4 correspond
to models {132}, {213}, and {333}.

1.6 Determining the Flows

All the models reduce to constrained optimization problems
(where constraints xij 2 0 are unessential) and are solved by
Lagrangian multipliers (see Imelbaev 1978a).

The general form of the problem is

I’T‘li}; ¢(xij) = ] X, ln —== (6)
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subject to

o~
'
N
I
o
N
1
—
%
o

z
where bz, ai

type.

3 and Vij are parameters, determined by the problem

The Lagrangian function, L, for (6) and (6') is

=
]
P
N
1
(!
H
=]
H] Iuc'
,_l.
+
N~

ij

where A% are Lagrangian mulipliers for constraints (6').

According to the general method, the solutions (6) and (6')

are determined from the equations

3 Vi S zZ _z
s = 1n -1+ ) A% a’. =aq
ij *ij z=1 +J
and is of the form
S z zZ
X553 = Vij exp(-1 + z£1 A aij) (8)

where A% are determined from the equations derived by substituting
(8) into (6').

The solutions for all problems, from Table 1.1 are given
in Imelbaev (1978a). According to the data type (constraints)
some problems have closed-form solutions and some may be reduced
to 1-3 transcendental equations. Problems {233} and {333},
where information is the most complete, constitute a special
case. Here it is necessary to solve a high order system of
equations to determine the flows xij' For example, the solution
of problem {333} is [see 1.4(c)]
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where a; = exp(=1 - a;), bj = exp (- Bj); a;

multipliers corresponding to the constraints {333}. The param-

’ Bj are Lagrangian

eters aj. b. must satisfy the system of equations

(9)

[The method to solve the problem ("balancing method") was pro-
posed in the 1930s.]

1.7 Reproduction of the Prior Distribution f (h)

As was already noted, models of the {333} type and their
solutions have been known for a long time. The distinguishing
feature of the models proposed here lie in the method of cal-
culating probabilities. 1In the models used earlier in this
paper (Wilson 1974), it was stated that Vij
equals (5) only when n, is constant. There are, however,

= fk' which

examples (Imelbaev 1978a, and section 2.2 of this paper) in

which it is shown that the distribution

1 *
wk=ﬁ FX

i Ay (hy ) (10}

J

*
where xij is the solution of the corresponding problem, equals

the prior distribution function £, subject to definition (5),

k
and is almost arbitrary under definition (Wilson 1974).
Another way to reproduce the prior distribution is to
introduce additional constraints of the (1Q) type for flows
xij' Since these constraints are nonlinear, let us introduce
into the models the third index k - the number of interaction
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groups with the characteristics hijEAk - to eliminate this
difficulty.

Let us introduce matrices with three indices

.. h, .€4
H . = ij i3 7k
13k infinite €A
(11)
_ { 0 hij¢Ak
Vijk v, . h;s€8,

1]

Now the state of the system is determined by the three-

index matrix X = {xijk
probability scheme, analogous to (3), for choosing the 3-tuple

}. It is now possible to develop a

(1,j,k). This generates the problem

Vak
max ) x,., 1ln —=3% (12)
X i3k IR X4y
ijk )
with the constraints (5) and (5') where the indices are cor-

respondingly modified. Note that the flows xijk in the k

plane are non-zero only if hijEAk [see (11), Figure 1.2].

To reproduce the prior distribution f (h) exactly, the

modified constraints (10) are added to the models, i.e.,

= N £ ' k=1,...,2 (13)

i.xijk k

1]

These three-index models are more general, although their
solutions are still rather complex. The models with complete
prior information on the distributions are the most complicated.
In order to calculate their parameters (Imelbaev 1978a) the

three-index balance method has been developed, and its conver-

gence has been proved.



index matrix.
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1.8 Generalizations

In some cases the assumptions, which are used in the models,
may be excessively restrictive. In particular, some parameters
for the distributions, 51,...,55, such as the average length
of the trip, dispersion, etc., may be known. Alternatively,
information on different distributions f(h) for particular
groups of origins and destinations may be available. For an
urban system this could mean that individual districts may differ
in terms of spatial preference of their residents (for example,
people living in the outer ring of a city may be accustomed to
long-distance commuting or shopping trips while those in the

inner-city are not).

These generalizations lead to a generalization in the
models and in the corresponding solution methods. This, in

turn, leads to some interesting results.

Several Transport Modes for the (Z,j) Pairs

Suppose that passengers traveling from i to j can use
several routes with characteristics hij, not necessarily the
shortest one. Here additional assumptions on the prior proba-
bility of choosing a transport mode are needed, because now
the choice of an (i,j) pair does not define the mode. 1In

particular the following hypotheses may be proposed:

- The 3-tuple (i,j,k), where k is the number of sequent
A, to which hij belongs, 1is chosen randomly. This
hypothesis may be justified for small variations of
hij from min hij corresponds to the shortest path.

S

- The choice of the segment k takes place in accordance
with a conditional distribution #(Z) where (i,j) is
fixed. Here Z = hij - min hij‘ This means that the

S
probability of passengers choosing longer trips 1is

smaller (but nonzero).

These generalizations generate some nonzero elements in

the matrix Vijk (and consequently 1in xijk)' The conditions
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of the balance over the index values, as given in (13), provide

an exact reproduction of the prior distribution f(h).

Disaggregation of Residents

For the urban system the disaggregation of residents means
an allocation of some social groups that differ in their mobility
[(distributions fs(h)]. If information on the total number of
individuals in each group Ns’ s=1,...,5 is available, we can
determine the layers of the model indexed by k and calculate
the soluﬁion of the three-index problem with constraints

analogous to (13).

2. MODEL APPLICATION: ANALYSIS OF PASSENGER FLOWS IN A LARGE
CITY
The methodology described in section 1 has been used to
construct a transport network model and has been realized as
a software package. Joint calculation of passenger trips using
two transport modes (public transportation and cars) for two
kinds of trips (home-to-work and home-to-service) has been

carried out.

2.1 The Model

The model and the software package were designed to solve
problems connected with alternative forecasts of transport
network development. The characteristic feature of the data
used in these problems is the inability of obtaining exact
travel time frequency distributions f(t) for both transport

modes.

Therefore, application of the models with an exact reproduc-
tion of the prior distribution [see (7)] is not advisable here.
It is more natural to use the model with two layers, indexed by
k (either of the two transport modes), and to determine the

corresponding v,

i3k for each of them. Thus the model is:
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max ) X.., ln _iik
X, .. i3k IR T Xig
ijk J
subject to
Ex" =P’ L4 i=1,---,m
sk ijk i
PoXio = Q. . j=1,...,n
ik Ik T3
(14)

z. ijk ~ Ny ! k=1,2
1]

ijk 20

where Pi’ Qj are capacities of the origins and destinations of

passenger trips [see section 1.1(c)], Nk is the volume (numbers)

of passengers that move using public (k = 1) transport or cars

(k = 2); and N = N1 + N2. The wvalues vijk are determined as in

(5), i.e.:

V. =

Ny
ijk T N

t jeA (15)

7?':,(”4 WH‘N
o
o]

where (Nk/N) are the probabiliites that passengers will choose

transport mode k

2 f £
£, = J i (£)dt
Be

is the conditional probability of the choice of a group of

routes with the trip time tijkeAZ using given transport mode k;
fﬁ/nﬁ are the same for each route in this group; and

AZ’ £ = 1,...,L is a regular subdivision of [0, t max].
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Data on the general form of the distributions £, (t) means
that functions £, (t,Bys-../8,, Ek) are given. Then, if Ek
1s known, we can fix values 61,...,62, calculate the valudes
xijk = xijk(81,...,Bz), calculate the estimate of the average
time

Fal

:
£ (ByyeensB) = o X
x (B P2 TNy iZj Bigk " Xijk (Bq B,

and begin an iterative process that will minimize the difference
between Ek and tk' In this case, parameters 81,...,82, are chosen

to minimize:

-~ 2
=1 (tk<e1....,ez) - tk) (16)

This procedure is simplest for just two unknown parameters

B,, B, (according to the number of the constraints in (14)].

This leads to the solution of the system

]
&l

€ (By/85)

(17)

|

£, (B4/8,)

using, for example, the generalized secant model. In the

model developed, a gamma-distribution was used as f(t)

R ak-1
e (tra By) = ey ¢ exp (=B, t) (18)

Here t, = ak/Bk and the distribution maximum is biased to the

k
left of tk at 1/Bk-



-18-

Quantitative characteristics of the initial data on trans-
port network are: 10,000 edges, 4,100 nodes, 750 districts.
The main calculation steps are the input and verification of
the initial data, the calculation of the shortest routes among
all the districts for two transport modes, the calculation of

matrix of flows x. the estimation of the loads on the network

ijk’
by summing the flows over the shortest routes, and the calcula-

tion of transport system characteristics.

2.2 Some Calculation Results

The complete calculation results for several stages of this
study were presented to the Institute of Moscow Master-Plan,
which has sponsored this research (Bolbot et al. 1978). Let us

consider some of them here.

As noted above, the model described in section 2.1 differs
from the known ones in its method of determining the probabilities

vij in equation (5). Comparison of the results by new and old
methods has shown that the curves f(t) and Y (t) using (5) are
rather close to each other, which is not the case when the condi-

tion (5) is abandoned (Figure 2.1).

In section 1.5 the notion of the interaction distribution
£

[or its discrete equivalent - ny. (5')] was presented, which

is used to determine vijk' Calculations have shown that overload
of the transport routes, especially radial ones intended for
long-distance trips, takes place if Ek is near to Hk (the average

x)» see Figure 2.2a. If Ek < Hk the load on all the high-

ways is lower and concentric highways (for short trips) take a

of n

relatively larger load (Figure 2.2b).

As to the question of modal split, only the total number
of the passengers on each mode [see section 1.8(b)] was given
a prior? in the model. Since the city of Moscow has a radial-
circular structure, the distributions f1(t) and f2(t) are close
to each other in the central zone (Figure 2.3a), but towards
the outskirts fz(t) is essentially to the left of f1(t)
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(Figure 2.3b). With this data it turns out that the proportion
of people using cars for traveling to work is lower in the
central zone than in the outskirts (Figure 2.3c). Note, that
this inference is based on the assumption that passengers
consider the length of the trip only and do not take into account

the possible social heterogeneity of urban space.

number of trips
A f(t) lllf"(t’

travel time

‘f{t) — orior distribution

Y *(t) — the calculated distribution accounting for N
¥**(t) — the calculated distribution without accounting for ny
n(t} — the quantity of the communications distribution

Figure 2.1 Réproduction of prior distribution f(t). Comparison
of the methods of calculating Vij'
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{a)

Frequency
of trips

» t (time)

(b)

Frequency
of trips

Figure 2.2 Comparison of traffic patterns for two different
trip—-length preference distributions [f(t)].
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(a)

.

\ f(t)

{c)

Central zone

(b)

A f(t)

p — proportion of passengers
using cars and public transport

Qutskirts

Figure 2.3 Distribution densities of the passengers for public
transport [f1(t)] and cars [fz(t)] for the central

zone and outskirts. Proportion of the passengers
using the two types of transportation for the zones.
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3. MODEL APPLICATION: ALLOCATION OF PLACES OF RESIDENCE AND
OF WORK WITHIN A CITY

3.1 An Outline of the Model

Let us divide the territory of the modeled urban system
for several (L) indexed districts and, following Wilson (1974),

and Lowry (1964), let us consider the following subsystems.

a) The basic sector (industry, scientific research insti-
tutions, administration, etc.) is a subsystem charact-
erized by the basic job distribution over districts

given by the basic employment vector, EB:

E- =1{E, =1,...,L}

b) A second subsystem is the service sector consisting of
R types of services (including daily and occasional
services such as public entertainment and sports).
This subsystem is characterized by the distribution

over districts of service employment vectors:

E"={E:, §=1,...,L} ' k=1,...,R

where k refers to types of service employment.
c) Another subsystem is the household sector which is
characterized by a distribution of the residents over

the districts:

We will consider the distribution wvector of the basic
sector EB as given, with the distributions of other subsystems,

the vectors N and Ek, to be determined.
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Interaction Between Subsystems

Let us assume that there are two types of interactions
between the subsystems. The first type refers to service
employment. The distribution of service Ek depends on the
distribution of population N and places of work EB and E° where
s =1,...,R. Residents working in the service subsystems are
(just as any workers) customers of the same subsystem and
introduce corrections into the distribution of working places.
The second type of interaction is the dependence of the distribu-
tion of population N on the distribution of the total number
of working places E

Thus, subsystems N and Ek are dependent upon each other.
Let us assume now, that under a fixed distribution of one
subsystem [given capacities of origins (i)] the choice of
destinations (j) occurs according to the general stochastic
scheme of our spatial interaction system [see (2) and (3)].
This assumption allows us to construct a scheme showing the

interaction between the two systems (see. section 3.2 below).

Note. The interdependence of subsystems accepted in this
model is analogous to one used in some earlier papers. In
principle, any subsystem considered here may be made more
important than another (Popkov 1977). For example, it is
possible to assume that the population distribution depends on
service and the distribution of places of work depends on the
distribution of the population. This issue may be discussed
only from the behavioral point of view. In any case, the
causal chain followed in the bulk of urban modeling is reflected

in the terms "basic" and "service" applied to the major sectors.

With regard to the initial data and constraints used,

the following assumptions are made.
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a) The distribution over the working places in the basic
sector {E?, j=1,...,L} is given.
b) Some of the districts iEIf are characterized by a fixed

population Nf.

These assumptions pertain to the existing parts of the city,
which will not undergo reconstruction within the foreseeable
future. In the remaining (ier™) districts the population N is

still to be determined.

c) To define the time-cost of interaction between districts

we choose the shortest route, that is hij = tij'
d) Density curves f(t) are given:

ka(t), k=1,...,R - for residents choosing service
type k:
ka(t), k=1,...,R - for those working in the basic
sector and choosing service type
k;
f5k(t), s,k =1,...,R - for those working in service
type s and choosing service
type k;
ENf .
£ (t) - for workers to be settled in the districts
n with fixed population sizes;
fEN {t) - for workers to be settled in the districts

where population numbers are not predeter-

mined.

e) The balance indices for entire urban systems are given:

E=E +) EX - places of work

EB - places of work in the basic sector

=
]

}
J

=k k .
X E" - places of work for service type k
3
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TR Nf - population already present
iert

N = 7 N; - population to be resettled
. =D
i€I

a, B, B - participation rates of customers, of
basic sector workers, and of service
sector employees, in using services

s, s=1,...,R.

Assuming service employment is proportional to total demand,

these coefficients must satisfy the equation

oXF + gB% EB + 7 g% E° = EF (19)
S

If cf and c® are the labor participation rates of residents

in the two types of districts, then
c N  +cN =E (20)

f) In each district the area A, available for allocating
service and population subsystems is given. Therefore

location of those subsystems must satisfy the inequalities

N k
Aj + ) A < Af (21)
k
where
k
N _ Vi x _ By
A, = — , A, = —&—
1 N i k
z. A
1 1
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are the areas required for locating Ny and E? accordingly;

Z?, ZE are dimensional coefficients (densities) given

in advance and generally specific to individual districts.
Let us assume that land required for service activities has

an absolute priority over land required for residential purposes.

Then
N, < Z;(a; - ) A;) (22)

In theory, it is possible that service needs may be greater
than Aj. Constraints such as (22) must thus be introduced for
the service allocation. These constraints are to be modified
for fixed-population-size districts, and the population size

in corresponding non-fixed districts may be forced to be zero.

3.2 Solution Steps

The assumptions introduced make it possible to construct
two submodels for the allocation of urban subsystems subject to
constraints. In the first submodel we must determine the stable
state of the service subsystem, by maximizing its entropy when
a state (allocation) of the population subsystem, as well as
allocation of work places are given. In the second submodel
we determine the stable state of the population subsystem in an

analogous way.

We must then construct an algorithm for computing the

required distributions, i.e., to determine operators

a{N; E°, s = 1,...,R}

~
o]
o
I
—t
d
N
il

z
]
o
—~
t1
~
|
o
o

Since each of these operators determines a stable state
for one subsystem, given fixed levels for all the other sub-

systems, the iteration process
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EVY k=1, R = aln; BSOY), 1,...,R}
v= (e =1, ) (24)
v=20,1,2,
. C s . k(0) (0) .
with the initial condition E ;, N can be interpreted as

a process of obtaining an equilibrium state for the city system

as a whole, taking into account interactions between subsystems.

Finally, after construction of the model and algorithms
to compute the model's parameters it seems natural to compare
the results with known models. Here the Lowry model (Lowry
1964) is of the utmost interest; the algorithms used constitute
a special case for those proposed in this paper (section 3.6
below).

3.3 Models of Subsystems Interactions

These models are constructed on common principles which
reduce to formal problems of entropy maximization when the

system states are constrained.

Allocation of Services

For each type of service k we introduce the destinations
j=1,...,L (according to the number of districts) and (2+R)
groups of origins £ = 1,...,(2+R)L (L for each group). The
first group corresponds to the population, the second represents
the basic sector workers, and the rest represent service workers.
Thus, the given capacities of origins (in places of work for
the corresponding service type) are equal to

for the first group; to
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for the second one; and to

for the rest. For the destinations we assume that their

capacity constraints related to (21) are irrelevant.

Probabilities V%j of choosing a given origin-destination
pair for service type k are determined according to (5) on the
basis of given curves f(t) and a distribution of link lengths
n. - The random event of selecting a pair (£,3) may'be conceived
of as a product of two random events: Y - selection of one
of (2+R) groups of origins and H - selection of destination j

by individuals in origin £.

Since these events are assumed to be independent of each
other, we have sz = p(Y)  p(H). The ratio of the number of
working places in group £ to the total number of working places,
E determines p(Y). The value for p(H) is determined from (5),
where we must take into consideration the fact that if some
origins have zero capacities, the flows X%j originating from

them must also be zero.

The probability distribution for choosing an interaction
link in group u, i.e., of trip time Au’ can be considered as
uniform over all links in the group u, excluding those gene-

rated by the origins with zero capacity. Thus we finally get:
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_ Nk
k N
a L] L4 u ’ »€=ll IL
E. Y
k u
Bk
k BBk.Eﬁ.f_u__ £ = L+l
v, - = - , = L+l,...,2L (25)
E n
sk ES fzk
gsk . = - , £ = (l+s)L+1l,..., (2+s)L
S
E n
u s=1,...,R

where u - the index of trip length is determined from the condi-

tions tkjeAu7 fﬁk, fﬁk, fik are the probabilities of choosing
a trip of length Au, which are obtained from corresponding curves;

and ng, ni, ni are the numbers of interactions (trips) in a
group u, which are determined when the origins with zero capacity

are accounted for.

Thus the allocation of services is reduced to the independent

solution of R problems:

k

(2+R)L L v

k 3

max 2 ‘Z Xps In —=

xk £ =1 j=1 X

23 J

subject to
:fj_x}zj =P}E , £=1,...,(2+R)L (26)
x?j 2 0

where xzj are flows from introduced origins to destinations;

and Pi are the capacities of origins of the introduced groups.
o}
The result of solving this problem must be the flows xij,

which when aggregated over all origins £ produce for each j

the service allocation
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(2+R)L o©

k k
ET = X . (26")
J 521 23]
Note, There is a definite contradiction in this model:

in one group of constraints the right-hand side contains values
and yet these are the results of solving (26'). We must recall
that this submodel is only part of an iteration process (24).
Therefore values at the right side (26) must be considered as
computed at step v, and (26') corresponds to the step (v+1)

of the process (24).

Population Allocation

Here the state of the system is determined by a matrix of
flows in between the working places with given capacities
Ej, j=1,...,L and the residences i, i = 1,...,L which satisfies
the conditions (22). The probabilities “ji of choosing pairs
(j,1) are determined according to the method discussed for
service allocations. This is performed separately for fixed

districts iEIf anG nonfixeé ier®

£
=f £
N_ ‘ _IE [} lEIf
N n
u
uji =
n
=n b
Nt y -—11_11 ’ lE_In
N nu

with corresponding determination of u, fi, fn, nf, n™.

u u u
Connections between working places and fixed and nonfixed
regions are taken into consideration for ni and ni - respectively.
Connections with origins of zero capacity and, for ni, connec-
tions directed towards the destinations with zero capacity are

ignored.

Thus population allocation is reduced to the problem:
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L u.l
max ) yy; In SREY
in J,1=1 in
subject to
.. = E. ' j = 1,...,L
:ZL Yy = By j
)) Y1 = cf nt ' iEIf
] (27)
) Yyi S ct d; , jert
J
in 20

where di is the feasible population of the district i [see (22)].
o
The result of solving this problem will be the flows yji and the

population allocation

1 o .
N. = —J y.. , i€1 (27")
i P 3 Ji

3.4 Service Allocation Operator

The methods of section 1.6 may be used to solve problem

(26). It is easy to see that the solution is of the form

o)
k k k
xﬂj = Vﬂj exp (-1 - Aﬂ) (28)

with Ai determined by substitution of (28) into the constraint
(26), i.e.,

exp (-1 - A
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From which

k
°% kY]
XZj = PK Z vk (30)
= L]
3 J
According to (26'), the service allocation then becomes
Kk (2+R) L K v?.
Ex = ;ops &L j=1,...,L (31)
J 2 k
2=1 yovo.
3 £]

The last expression can be rewritten in matrix form if we
k . . ..
replace PK by capacities of corresponding groups of origins

(see section 3.3). Then:

R
Bk FBk B Z SK Fsk S (32)

where F are row-normalized square matrices with elements equal

to
vk
24
Z Vij
J
The superscript indices of F in (32) correspond to indices
for curves f(t) in (25). Hence (31) and (32) define the operator

A of the iteration process (24).

Alternative Iterative Struciure

Consider briefly another approach to service allocation.
As noted earlier, service allocation Ek(v), obtained at the

previous stage of the iteration process (24), is given by (32).

Now we construct the second-level process (with index w)

at each stage of the process (24)
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ERD R = Al B2 s 21, LR (33)
_ L kK(v,w) -
where we consider the limit value {E , k=1,...,R} at
w > » of the process as a limit to service allocation at the
stage v+1. The resulting allocation does not depend on Es(v)’
s =1,...,R, i.e.,
(EROPD =, Ry = A (Y (33")

k(v+1)

We can compute the limit value E by considering

(32) as a system of linear equations with RL variables E?,
j=1,...,L; k=1,...,R. The value of RL in practical problems
is large, therefore this system must be solved by iteration
methods.

In the special case FSk = I (the identity matrix) and

BSk = 6k ¥ s,k, the solution of the system (32) can be obtained

in explicit form. From (32) we have

k, .k
(1-5E"-6% 57 ES=0% |,  x=1,...,R (34
s#k
where
Tk - ak FNk N + BBk FBk EB

Then the solution is of the form

X = g1 - ] &5m8 + g & 7 o8 (347)

s#¥k s#k
k=1,...,R

where
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which may be verified by direct substitution into (34).

3.5 Population Allocation Operator

In the problem (27), the objective function is convex, and
in addition constraints yji 2 0 are redundant, except for
i€rn,
optimality is (accoraing to Kuhn-Tucker's theorem) the zero-

As a result, the necessary and sufficient condition of

value of the generalized Lagrangian gradient. The Lagrangian

is:

% u.l L L
L = y.; In == + ¥ e.(g - ¥y >
ji=1 It Y5100 521 INI 4= TR
L
£ £
+ 1 Ei(c Ny - ) in> (35)
- j=1
i€r

ier”? ]
The Kuhn-Tucker optimality conditions are:

Uo . ,
8L - p 3L _q-5, )71 (35')
i1

with additional conditions, when ier?,

d, -] v:y) =0 ; Y. 20 (35")
j
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Generalized Balancing Algorithm

To solve problems similar to (27), with exact constraints
on the rows and columns of matrix yji only, the "balancing
algorithm" has been widely used. This consists of step-by-step
normalization of the groups of constraints [see, for example,
Imelbaev (1978a) and also section 1.6]. Now let us formulate

a generalized balancing algorithm. First, transform the expres-

sion for Y44 (35') into a form:
e-f
a5 b, Mg ’ i€r
L. = 36
le .eh 20
aj <y uji ’ i
where
aj = exp(~-1 - Gj) ’ bi = exp(-ei) , c; = exp(-Yi)
The conditions (35") take the form
= : n
c; =1 if % vy < ¢ a;
(36")
. n
, < =
c; <1 if % Yy = © d;

It follows from (36) and (36') that any multiplier <y is equal
to one (does not effect the solution) if its corresponding
constraint is not binding. Otherwise the value of c; must be

reduced in order to normalize row 1i.

The multipliers aj, b., c.

i i have to satisfy the constraints
in (27)
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tIf i€l
£ f __f
) ajy Wy; = ¢ Ny , i€r (37)
J
n n
S
c, g a:j Myi < c 4y , i€I

The algorithm solving the problem (27) follows from (37)
and (36'):

w Ej
a' = 1 J = 1’ ’IL
J w=—1 w-1
szi My * zncl Myg
i€1 i€r
£f _f
C N
bY = o , ierf (38)
a. M.
: i
3 J 3
n
¢ d.
c"i" = min{1, Z = , ier®
a oL
A i
j 3
Here, set bg = cg = 1. The superscript w = 1,2,..., refers to

the iteration step.

The following theorem can be proved.

-

Theorem 1. 1If the feasible set for the problem (27) is not
* * *
empty, the algorithm converges to the values aj, bi’ c; cor-
responding to §ji, the only solution of (27).
Proof of this theorem is based on the reduction of (27) to
the conditions of the more general theorem (Movshovitch 1976)

on convergence algorithms of this form.

o
The values Ni’ i€1™ whiceh are computed from yji according

to (27'), define the operator N = B(E) of the process (24).
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3.6 Aggregate Operators of Subsystem Allocations: The Link
with the Lowry Model
Recall the main characteristics of the Lowry model. 1Its
basic differences from those of the model presented here consist
in: absence of the districts with populations fixed a priorz,
and a "gravity" principle applied to interaction between

individual subsystems.

The first level of the Lowry model consists of a "linear"

distribution of the subsystems, i.e.,

kK _ k £ (cy ) k
Ej = o ] N g + 8'E; (39)
3
EN
N. = + ] E. C Gy 39"
17 e 5y N T (39°)
ij
3
where
Nk EN

are functions, analogous to those discussed in sections 1 and

3.1, dependent on generalized costs =N of the trips between

J
districts and normalized respectively along rows and columns;

ak, 6k, ¢ are balancing coefficients.

Note that (39) is similar to expressions (31) and (32)
for service allocation, but differs from them in the method
of computing vij' The influence of basic sector work places
on the "service" subsystem in the Lowry model corresponds to
the special case outlined in section 3.4. As shown there,
the wvalues E? can be computed from (39) in the explicit form

(34").



-38-

The second level of the Lowry model accounts for constraints
(22). For this purpose the values Ni’ computed from (39), are

changed according to a heuristic algorithm (see below).

We shall now outline some forms for computing operators
of the model which are more convenient than those obtained in
sections 3.4 and 3.5. These will be compared with the Lowry

model algorithms.

Aggregate Operator of Population Allocation

Solution of problem (27) is derived by the exact algorithm
(38). Note that the solution for the flows Ygi’ is used at the
end to compute values Ni’ jer”® only. Let us formulate a two-
stage algorithm to solve two problems aggregated from (27) and

compute these values in another way.

To formulate the first problem we consider the same origins
and destinations, as in (27), but with only two destination
constraints, derived by summation (aggregation) of the constraint

groups over If and I":

L 4
max Y u.. ln 3%
3

uji i,ji=1 ji
subject to
Zn ugg Zf uy; = E] , j =1, L
1€l i€l
L
7 Poug; o= f &t
jert 377 ’
(40)
L
7 7 ug; = c? W
. --n 3=1 ]
1€l
u 2 0
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o
In general the flows uji computed as the result of solving
(40) will not satisfy the separate constraint equalities and

inequalities at each destination i.

We shall interpret the values

o .
1

Il e~

= '
Ti T o (o™
c 73

as non-normalized prior probabilities ("preferences") of popula-
tion allocation in the districts i€I"™ without taking into account

the constraint-inequalities.

Now, excluding districts iEIf, we can formulate the second
problem of reallocating residents from one composite origin
with capacity N© to destinations with limited capacities 4, .

Removing the origin index j, we have

T.
max ) N. ln ﬁi
Nt ojer® i

subject to
_ =h
Xn N, = N (41)

i€
0 < Ni < dl

*
The values Ni computed as the result of optimizing (40)

constitute the objective for population allocation.

The algorithms of the problems (40) and (41) correspond
to the stages of the aggregate operator.

Solution of the first problem is computed analogously to

(9) using the expression
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(42)

where aj, gf, gn correspond to Lagrange multipliers calculated
from the system of equations. These are obtained by the sub-
stitution of (42) into (40)

£
a.(g” p: + gn p.) = E. ' j=1,...,L
] ]
ot 7 a, of =t Wt (42")
3 ] ]

where
f n
. = - and .= .
Py ) H ;5 211 Myg
i€l iel
The solution to (42') is computed by the standard balancing

method mentioned above. The relatively low dimension of (42')

reduces the computational difficulties significantly.

Substituting (42) into (40') and using (42') we have

u. .
Z E- Jl (42")
573 4F o§ + g o?

Note. If no districts have predetermined population sizes,
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the expression (42") coincides with (39'), although the method

of calculating “ji
first level of the Lowry model.

differs and therefore corresponds to the

Now let us move to the solution of the second problem
taking into account the land-constraints algorithm in the

Lowry model. According to this algorithm

* . *
N v T, p ier, (v )
(43)

d i *
. , lelzgw )

where I1(w) and Iz(w) are subsets of indices from In, which

depend on the parameter y:

= {.: P o}
I, = {i : ie1”, y T, < d;)
(43")
= (i . i=-n
I, = {i: ie1r”, y T, > di}
*
and ¢y 1is computed by a finite iteration process
sh - ) d.
Yoser, )t
w ”n
Y = (43")
w+1 2 7.
€1, )
The following theorem can be proved (see Appendix):
Theorem 2. Algorithm (43), (43') and (43") solves (41)

if a solution exists.

From this the aggregate population allocation operator
N = B(E) can now be defined. It can also be proved that the
operator is the same as the one used in the Lowry model and
leads the population subsystem to a stable state (see section
3.2), which differs from the state defined by operator N = B(E)
of section 3.5.
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Service Allocation Accounting of Constraints

The constraints E? < ek can arise in the service allocation

problem [see remarks to equations (3) and (4)]. In addition,
if only a small number of service work places is required within
a district, i.e., if E? < 8?, then we must set E? = 0. There-

fore the exact formulation of the problem is

k
(2+R)L V.
max ¥ xz. 1ln —él (44)
5. Kk =1 jerg X,
37 T4 ]
subject to
) Xij = P? ' £=1,...,(2+R)L
J€J,4
(2+R)L ~
k k k .
. < . < .
=3 £1 g = &y ! 189,
k
L2
xp3 2 0
where the index set J, € {1,...,L} corresponds to the destinations
for which
k k k
E. = X . 2 .
3j %_!13 3
For all other destinations j, X?j = 0.
In the problem (44), in addition to flows ij it is required

to compute the set Js- Therefore, (44) is a mixed-integer

programming problem. If J3 is fixed the solution may be computed

by a slight change in the algorithm for (27), but computation
of optimal outflows is unlikely.
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In practice approximate solution of this task can be
achieved only through tge aggregate Lowry algorithm. At its
first stage the values E? are calculated without taking into
account the constraints (32) or (34'). At the second stage
Ehey constitute a base for computing the set J3 and the values
Ek > e., jEI

3 J 37

At the third stage the values E? are computed
analogously to algorithm (43), (43') and (43").

4. CONCLUSION

The models discussed in this paper are characterized by
assumptions of homogeneity with regard to the behavior of
residents, within the framework of the observed patterns. The
homogeneity assumptions allow a unified formal definition of
both the processes of daily population movement (using the
transport system) and global migration (development of an entire
urban system). But one should emphasize that only models of
population behavior are constructed here. These models are
only intended to provide aggregate estimates as to the con-

sequences of alternative city-planning decisions.



APPENDIX: PROOF OF THEOREM 2

1. The problem (41) may be reduced to:

T,
max { ] Ny In Ni + A ( !N - §n>} (A1)
' i n
i

N i eI ier
0<N, <4, , i€®
i i
where A is the appropriate Lagrange multiplier from (41). The

unconditional maximum of the functicn is at the point

?

2
]

exp(-1 + A)T,.
i i (A2)

Y T,

1

If some values Ti = 0 then the dimension of the space of function

values may be reduced.

2. The objective function and constraints of the problem
(A1) are separable and therefore the maximum of the function

corresponds to the maximum of each term

Y-
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T
= =
f(Ni) = Ni(ln N + A)
i
under the constraint 0 < Ni < di‘ As £(0) = 0 and f(Ni)

increases monotonically when Ni increases from zero to Ni (A2,
see, for example, Imelbaev 1978b) the maximum is reached at

the point

N. =y T, if Y T. < d,
N, (y) = { * o oo (33)
dl if Y Ti > dl
Introduce the function
u) = 1 Ny(¥) (AL)
ier®
where Ni(w) are determined from (A3). The constraint-equality
in (41), i.e.,
U(yp) = N° (AS5)

. * . .
is intended for computing ¢y and is, therefore, the desired
*
distribution Ni(w ) .

4. Let us analyze the function U(y) and use the definition
(43') of index subsets I1(W) and Iz(w). Then

H
—
<
D
H
N
<
]
-

and if y increases from zero to ¥
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Y max i
. T.
1 1

then all the indices 1, pass step by step from I1(w) to Iz(w).
Using (A3), (A4):

vw) = 1 4, +w Ty (26)
i€I, () i€I, (v)

Therefore U(y) for 0 £ ¢y £ ¥ is a continuous piecewise-

linear monotonically increasing function (Figure A1).

5. A unigue solution of equation (AS5) exists for

Any standard method for identifying the root of a function
of one variable may be used to solve for this. Let us consider

Newton's method. The method leads to the iterative process,

for some equation ¢(x) = 0;
X = x = ° )
w+1 W ‘pl (x )
W
where ¢'(xw) is the derivative of ¢(x) at the point x . In

our problem after elementary transformations using (A6) we

have expression (42"), which was to be demonstrated.

Vote, It 1is convenient to put wo = Q0; followed by w1 =1,
*
and the sequence b increases up to the value ¢ corresponding

to the solution of the equation (A6).

The verification of the constraints wai < d., and transi-

ll
tion of those indices satisfying these constraints into subset
I2, take place at each stage of the process (43"). In the same
way as the index set is finite, the process (43") is also finite.

The condition for termination of the process is:
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4=

w1=1

?UM)

The form of U(y).

Figure A1.
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