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ABSTRACT

This paper suggests the applicability of a method recently
developed by systems engineers to the estimation of the state
transition matrices involved in the construction of increment­
decrement life tables. Relevant to the case of piecewise­
constant force functions, this method comes out as an alter­
native to the usual truncation of the infinite series obtained
from the exact expansion of the state transition matrices. It
generates a sequence of formulas which, interestingly enough,
subsumes the linear formula of Rogers and Ledent (1976) as a
special case. An illustration of the method is provided with
applications to the analysis of marital status, labor force
participation, and interregional migration.
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DISCRETE APPROXIMATION OF A CONTINUOUS
MODEL OF MULTI STATE DEMOGRAPHY

INTRODUCTION

Just as in natural sciences, analytic models used in social

sciences are commonly formulated in terms of differential equa­

tions rather than difference equations, i.e., relying on a

continuous rather than discrete specification. For example, in

mathematical demography, all the columns of the ordinary life

table model originate from the simple differential equation.
i(x) = -~(x)i(x), where ~(x) is the force of mortality at age

x applicable to a cohort whose number of survivors at age x is

f.(x) •

In all branches of applied science, including engineering

as well as demography, the data necessary for the application

of such continuous models usually come in discrete form.

Consequently, two recurring methodological problems in applied

science are (1) discretization of a continuous model to fit

the data, and (2) smoothing the discrete data to fit a continuous

model.

Despite the commonality of these problems, the difficulties

of communication between different disciplines result in either

the rediscovery of the "wheel" several times or, more unfor­

tunately, many decades of delay for a useful method to be
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transmitted from one discipline to another. In this paper, we

would like to avoid another manifestation of such events.

Specifically, we want to introduce to other demographers a

method of discrete approximation of a continuous multistate

linear model, which has been discovered recently by systems

engineers (Shieh et al. 1978). This method lends itself a

useful application in the emerging field of multistate demography

(for an enlightening review of this field, see Keyfitz 1980).

We intend to make this method as immediately useable as the

spline method for data smoothing presented by McNeil, Trussell,

and Turner (1977).

We will first recall the continuous formulation of the

demographic model of particular interest here, namely the

increment-decrement life table model (see Rogers 1973; Schoen

1975), and review briefly the methods currently in existence

for its discretization. The~, we will introduce the basic

ideas underlying the engineering method of discretization with

the help of an easily understandable example and present the

sequence of approximdtion formulas they lead to. Finally, we

will demonstrate the applicability of this method to the esti­

mation of increment-decrement life tables with examples relating

to various demographic pheno~ena and, in such a way, empirically

evaluate the goodness of these formulas.

1. THE INCREMENT-DECREMENT LIFE TABLE·MODEL: CONTINUOUS
FORMULATION AND EXISTING PROCEDURES FOR ITS DISCRETE

APPROXIMATION

The increment-decrement life table model is a generalization

of the ordinary life table model which allows for entries into

(increments) as well as withdrawals from (decrements) different

states. (The state space is assumed to have n+1 states, one

of which is an absorbing state of death whereas at least two

of the remaining states intercommunicate.) Because of its

general nature, this model is valuable in analyses of marital

status, labor force participation, i~terregional migration,

etc. In studies of marital :.:tatus, the non-absorbing states

may number to four: single, married, widowed, and divorced

(see Krishnamoorthy 1979). :::n studies on labor force partici-
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pation, the states may be active and inactive (see Hoem and

Fong 1976 and Willekens 1980). In studies of interregional

migration, they are the regions of the geographical population

system under consideration (see Rogers 1975).

In general, let ~(y) be an n x n matrix of transition

forces relating to an infinitesimal age interval (y, y+dy)

such that

a) its (i,j)-th off-diagonal element is equal to minus

the force of transition from state j to state i and

b) its i-th diagonal element is the sum of all the forces

of transition (including death) out of state i.

Also, let l(y) be an n x n matrix of transition probabil-z_
ities whose (i,j)~th element is the probability for a person

present at age x in state j to survive to age y in state i.

Then, assuming a Markovian-generated mobility process, we have

the following Kolmogorov forward differential equation (see

Schoen and Land 1979; Willekens 1980)

l(y) = -~(y) l(y)
z- - z-

( 1 )

.
where z~(y) is the derivative of z~(y) with respect to y.

Concentrating on the evolution of the cohort of people

corresponding to the choice of z equal to zero and then omitting

this subscript, we obtain the solution of (1) as:

(2)

where l(O) is the diagonal matrix showing the initial state

allocation of the cohort considered. As for ~(y), whose (i,j)-th

element represents the proportion of the individuals in the j-th

radix who survive to age y in state i, it can be shown to be

equal to (Krishnamoorthy 1979)



~(y) = J
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~ (t) J
t

~(s)ds dt ...

o
(3 )

The property of this matrix or matricant (see Gantmacher 1959)

is such that, when the interval (0, y) is divided into k inter­

vals of length h, we can write

~(y) = ~(k-1)h ~(k-2)h ... ~O (4 )

where each P is a proper transition probability matrix relating
-x

to interval (x, x+h) (see Ccx and Miller 1965).

Then letting l denote the value of l(y) at the equally
-x

spaced ages x = O,h,2h, .•. , we have that the exact discrete

representation of the contiruous model described above is

(J = P l
':-x+h -x-x

(5)

in which all the ~XIS can be derived from-the knowledge of ~o

and the set of P '5.-x
Thus, in practice, the estimation of the increment-decrement

life table model reduces to the estimation of a set of transi­

tion probabilities from which all the multistate life table

functions (see Rogers 1975) constituting the output of such

model originate. In most situations, such estimation is per­

formed through a linkage with the observed values of the discrete

equivalents of ~(x), denoted as M. Note that the observation
- -x

of ~x is only possible when the data come in the form of counts

of moves rather than transitions (for a contrast between these

two notions, see Ledent 198(').

In brief, there exist three main procedures of estimating

P in equation (5). The first (linear) procedure introduced
-x
by Rogers and Ledent (1976) is based on the assumption that

~(y) is linear for x s y S }+h. The resulting approximation

formula is
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P = (I + ~M )-1 (I - ~M )
-x 2 -x 2 -x (6 )

The second (exponential) procedure shown in Krishnamoorthy

(1979) is based on the assumption that the forces of transition

are piecewise constant. That is, ~(y) is constant and equal to

M for x $ y $ x+h. ~his leads to the exact formula
-x

p
-x

e
-hM

-x
(7 )

For computation, P is generally approximated by-x

. 1 ( _ hl-1 ) (k- 1 )
(k-1)! -x (8 )

In other words, the tail of the Taylor series beyond the first

k terms is discarded.

- The third (cubic) procedure is more elaborate. Essentially,

it relies on the assumption that ~(y) is a third degree poly­

L0rnial for x-h $ y $ x+2h. The procedure, detailed in full in

Ledent and Rees (1980), starts with the calculation of an initial

set of matrices l from equation (5) where P is computed
-x -x

according to equation (6). It is continued with the calculation

J
h

of L = _l(x+t)dt from-x
o

which, using the flow equation (Rogers and Ledent 1976)

l - l = M L-x -x+h -x-x

(9)

( 10)
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leads to a new set of matrices t. The procedure is repeated-x
until consistency of (9) and (10) is achieved. Then ~x is

estimated from

p = t t- 1
-x -x+h-x

( 11)

Although equation (6) is exactly of the same form as the

corresponding estimation formula in the ordinary life table,

the matrices P obtained with the linear procedure' are not-x
necessarily proper transition probability matrices (see Ledent

1980), especially if the magnitude of the off-diagonal elements

of Mx is large. The interpretation of P then becomes impos-
- -x

sible. As for the cubic procedure, it makes the age profiles

of the elements of t less irregular than those produced by-x
other procedures, a property which makes it particularly suitable

for less reliable data base. Nevertheless, the transition

probability matrices obtained with this procedure may also be

improper. In contrast to the linear and cubic procedures, the

exponential procedure avoids, in principle, producing improper, -
transition matrices. In practice, this simply requires an

adequate estimation of the Exponential matrix in (7), i.e.,

the calculation of the sequence of matrices ~k' as defined by

(8), until a predetermined number of digits, for all elements,

remains unchanged.

Actually, an alternative sequence of formulas, based on

the matrix continued fraction method recently discovered by

system engineers (Shieh et ale 1978), can be used for the same

purpose. In the next section, we will introduce this sequence

which, interestingly enough, subsumes the estimation formula

of the linear approach as a special case and moreover converges

"quicker" than the sequence ~k does. (Note that the quickness

of convergence relates to the index of the sequences rather

tha~l to actual computing tirr.e.)
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2. THE MATRIX CONTINUED FRACTION (MCF) METHOD OF
DISCRETE APPROXIMATION

To make the basic logic of the MCF method transparent,

we will start with a simple numerical example and then present

the matrix results that were obtained by Shieh et ale (1978).

We begin by considering the expansion of a number, say, 1.2345

into a continued fraction in the following manner:

After a few divisions we get

1.2345 = 1 +

4 +
3 +

1

1

1 +

1
1

3 + •••

( 12)

By letting H. be the integer before the i-th division line,
~

equation (12) can be written as

1.2345 =

or, more compactly,

1 ( 13)

1. 2345
-1 -1 -1 -1

= Hi + [H2 + [H3 + [H4 + [HS + ..• ] ] ] ] ( 14 )
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The important point is that the retention of only the first

few H. in equation (13) will result in a fairly good approxima­
J

tion of the original number. For example, consider the approx-

imation

=

=
H1H

2
H3 + H1 + H3
H

2
H

3
+ 1

-1 .= [H2H3 + 1J [H 1H2H3 + H1 + H3 J

( 1 5 )

where only the first three H. in equation (13) are preserved.
J

Substituting the H. by their values, equation (15) becomes
J

G
3

= (4) (3) ~ U-1 (1) (4) (3) + 1 + 3J = 16/13 .;. 1.2308

The estimation ~r~or is only 0.3%.

( 16 )

It is useful to consider the right-hand side of equation

(14) [or equival~:1t equation (13)J as a system which is designed

for the approxim.lcion of the left-hand side. That is, when a

unit input is applied (i.e., multiplied) to the system, the

resul~~ns output becomes the estimated value. The system is

diasramat.ically shm,m in Figure 1a and is in the form of a

multi-fe,,=dback ! :'11 ti-feedfmward control system. It has been

observed that t~e behavior of such a system is relatively

insensitive to the changes or omissions of the inner paths (for

an elernentlry explanation, sae Melsa and Schultz 1969:86-91).

A simplifjed system using only the first three outer paths is

shown in ~igure 1b, and we have seen it through equations (15)

and (16) that it performs well for our admittedly trivial

example.
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Hi

H3

+ ++
+0-

+ +
HS + ...

Input - - Output

H
4

H
2

(a)

Hi

+
+ +

Input
H

3 Output-

H2

(b)

Figure 1. Block diagrams for (a) H1 + [H2 + [H 3 + [H4 + [Hs +
-1 -1 -1 -1 -1 -1 -1... ] ] ] ] and (b) H1 + [H2 + H3 ] ] • For a

good explanation of block diagrams, see Schwarz and
Friedland (1965) or Melsa and Schultz (1969).
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The procedure of going from equation (12) to equation (16)

demonstrates the basic logic of the MCP method that was used

by Shieh et al. (1978) to derive a sequence of estimation

formulas for e~h, where we may let A = -M for the increment-
o - -x

decrement life table model. The only difference is that now

we have matrices rather than just numbers. The outline of

derivation is as follows.

P ' . Ah 1 'd' 'd d b1rst, we wr1te e- as a Tay or ser1es 1V1 e y an

identity matrix. That is,

e~h = [I + Ah + iT (Ah) 2 + ... ] [I] - 1 ( 17 )

Next, we apply the technique of continued fraction to equation

(17) to obtain a sequence of matrices {~1'~2'~3'... } such that

(18)

which is exactly in the same form as equation (14). The matrices

~j could be obtained by Routh's algorithm (see Schwarz and

Priedland 1965:406-408), which is a tabular way of carrying out

the type of divisions used jn equation (12). It is shown in

Shieh et al. (1978) that

H I !22
(Ah) -1

!23 -21 ~4
_ 3 (Ah) -1

--I -

H~ 21 !26
5(Ah)-1

~7 -21 ~8 = -7 (Al'l)-1
-:J

H.
-J

21 H. 1-J+
j(Ah)-l H 0 ..,

-J+.:.
-21 H. 3-J+

-1
-(j+2)(Ah)

for j = 5,9,13, ... ( 19)
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N t 1 t G b h . f Ah b .. 1 th f'ex, e . e t e est1mate 0 e- y reta1n1ng on y e 1rst
-J

j H matrices in equation (18). Then, just as we did in equations

( 15) and (16), we get

~2 = ~1
+ H- 1

= I +Ah = I - hM (20)
-2 -x

~3 [~2
-1 -1

[~2~3
I]-1 H= ~1 + + ~3 ] = ~1 + +
- -3

= [~2~3 + I]-1
[!.I1~2~3 + ~1 + ~3]

= [ (Ah) -1 (- 2I) + I]-1 [I (Ah) -1 (-2I) + I - 2I]

= [-2(Ah)-1 + 1]-1 [-2(Ah)-1 - I]

= [I _ ~(~) ]-1 [I + ~(~h)]

[I + Q M ]-1 [I h (21)= - -M ]
2 -x 2 -x

Clearly, equation (21) is identical to the estimation formula

obtained by Rogers and Ledent (1976) using a different assump­

tion. To avoid cluttering the text, all G. up to j = 13 are
-J

shown in Appendix A.

There is a basic difference between ignoring the higher

~j in the MCF method and the chopping-off of the tail of the

original Taylor series. For illustration, Shieh et al. (1978)

sho\-; t.hat

00

93 = I + Ah + ~(Ah)2 + I ~(Ah)j
2. - j=3 2J-1 -

and

00

G_
4

= I + Ah + ~(Ah)2 + ~(Ah)3 + 1 I .1_(Ah)j
2. - 3. - (1.5)(4!) j=4 3J-4-
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It is argued that the retention of the first three (or four)

H. must be preferable to discarding the tail of the Taylor series
-J
beyond the first three (or four) terms, because the MCF method

(for j > 2) preserves a systematically modified tail--not a

single term in the original series has been discarded. The

demographic examples in the next section support this argument

strongly.

3. APPLICATION OF THE MCF METHOD TO THE ESTIMATION OF
INCREMENT-DEC~mNT LIFE TABLES: AN EMPIRICAL EVALUATION

For evaluation purposes, the MCF method has been applied

to the estimation of the age-specific transition probabilities

underlying the construction of three empirical increment-decrement

life tables. A comparison was then made with the more popular

method based on the Taylor series expansion of formula (7).

The first application takes advantage of data originally

used by Krishnamoorthy (1979) to construct a marital status life

tdb~e for US females in 1970 on the basis of 18 age groups:

0-4, ~-9, ... , 80-84, 85+. The second one utilizes data employed

by Hoem and Fong (1976) to calculate a working life table for

Danish males on the basis of 59 age groups (16, 17, •.. , 74).

Finall~, the third application makes use of interregional migra­

tion data in the Netherlands collected for 18 age groups (0-4,

5-9, ... , 80-84, 85+), by Drewe (1980) in view of the calculation

of a f~ur-region life table.

Tables 1 through 3 illustrate our computational results by

presenting, for young adult age groups, the elements of the

fo:low~ng estimated matrices:

a) ~3 and ~3

b, ~k and ~k where k is the smallest integer for which

the elements of ~k' for any k 1 > k, has the same first

f3ve digits as in ~k

~, t·~ "exact" solution defined as the first matrix in

~r.8 series ~k or ~k such that all elements of ~k and

Gk have their first five digits in common.
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Table 1. Marital status life table for US females, 1970:
transition probabilities between ages 20 and 25.

Transition

From To ~3 ~3 ~O ~10 ~13 & ~13

S S .53175 .23001 .28593 .28593 .28593
S M .38646 .74260 .68218 .68213 .68213
S W .00678 .00325 .00380 .00380 .00380
S D .07137 .02040 .02435 .02440 .02440
M S 0 0 0 0 0
M M 1.00530 .93465 .94323 .94327 .94327
M W .00763 .00846 .00830 .00830 .00830
M D -.Q1667 .05314 .04473 .04468 .04468
W S 0 0 0 0 0
W M .31493 .34950 .34275 .34274 .34274
W W .65607 .63715 .64219 .64219 .64219
W D .02526 .00960 .01132 .01133 .01133
D S 0 0 0 0 0
D M -.31479 1.00341 .84451 .84369 .84369
D W .01155 .00439 .00517 .00518 .00518
D D 1.29950 -0.01155 .14657 .14739 .14739

S = single M = married W = widowed D = divorced

SOURCE OF INPUT OATA: Krishnamoorthy (1979) .

Table 2. Table of working life for danish males: transition
probabilities between ages 20 and 21.

Transition

From To ~3 ~3 ~6 ~6 ~8 &~8

I I .66750 .64019 .64712 .64715 .64715
I A .33128 .35859 .35166 .35163 .35163
A I .06678 .07228 .07089 .07088 .07088
A A .93200 .92650 .92789 .92790 .92790

I = inactive A = active

SOURCE OF INPUT DATA: Hoem and Fong (1976) •
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Table 3 . Multiregional life table for the Netherlands: transi-
tion probabilities between ages 20 and 25.

Transition

From To ~3 ~3 ~5 ~5 ~6 & ~6

1 1 .81193 .80886 .80977 .80976 .80976
1 2 .07186 .07472 .07391 .07392 .07392
1 3 .09096 .09180 .09153 .09153 .09153
1 4 .02151 .02086 .02104 .02103 .02103
2 1 .04061 .04218 .04174 .04175 .04175
2 2 .77242 .76554 .76750 .76747 .76747
2 3 .12614 .12994 .12885 .12887 .12887
2 4 .05706 .05856 .05813 .05814 .05814
3 1 .02412 .02438 .02430 .02430 .02430
3 2 .05553 .05722 .05674 .05674 .05674
3 3 .87103 .86852 .86925 .86925 .86925
3 4 .04631 .04689 .04671 .04671 .04671
4 1 .01068 .01036 .01045 .01045 .01045
4 2 .04660 .04774 .04741 .04741 .04741
4 3 .09382 .09510 .09472 .09472 .09472
4 4 .84505 .84295 .84357 .84357 .84357

SOURCE OF INPU'1' DATA: Drewe (1980) .

It turns out that:

a) ~k gives better estimates. than does ~k especially when

k is small (see also Figure 2)

b) the higher the off-diagonal elements of the matrix

-hM , i.e., the higher the propensity to move out of
-x

a state and t~e higher the width of the age groups

considered, the greater the value of k necessary to

reach the "exact" solution

c) even in the most favorable situations, ~3 (equivalent

to the linear forT.ula) fails to produce more than a

couple of significant digits (see Table 3).
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DISCUSSION

Of the three main procedures currently existing for the

estimation of increment-decrement life tables--the so-called

linear, exponential, and cubic procedures--, only the exponential

procedure (based on piecewise-constant forces of transition)

ensures that the age-specific survival matrices P are proper
-x

transition probability matrices.

In this paper, we have proposed for its implementation a

sequence of estimation formulas, based on the method of matrix

continued fraction, which a) subsumes the estimation formula

of the linear procedure and b) converges "quicker" than the

commonly-used sequence based on the Taylor series expansion of

the exact survival matrices P .
-x

Actually, the method of continued fraction and its matrix

generalization have wide applicability in the analysis of linear

control systems and may become more useful to mathematical

demographers as we broaden our scope of investigation to control

mechanisms in population systems. Besides being a good way of

discretizing continuous-time linear control systems, these

methods have been used to determine conveniently (i.e., without

finding the roots of the characteristic equation) the stability

of a system (see Schwarz and Friedland 1965:404-408) and to

transform a difficult high-order linear differential equation

into a relatively easy low-order one without losing the essential

dynamic properties of the physical system (see Shieh and Gaudiano

1975) .

Finally, let us observe that, to date, the development of

multistate mathematical demography has depended heavily on

extending the approach of the classical life table analysis.

Recent progress in multistate analysis demostrates the fruit­

fulness of this research strategy. Actually, progress in other

scientific disciplines also relies heavily on extending and

generalizing old analytic methods. The development of the MCF

method is a good example in engineering. However, to avoid

wasting much time in rediscovering the methods w.hich have already

been found in other disciplines, mathematical demographers should

be alert to methodological developments in mathematically advanced

fields such as systems engineering.
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APPENDIX A: THE MCF FORMULAS FOR ESTIMATING P
-x

[Source: Shieh et ale (1978)]

~2 = I - hM
-x

[I 1 -1 [I 1
~3 = + - hM ] . - - hM ]

2 -x 2 -x

[I 1 -1 (I 2 + !.(hM ) 2]~4 = +-hM] • - - hM
3 -x 3 -x 6 -x

~5 = [I + !. hM + ~(hM )2]-1 • [I - !. hM + 11
2

(hM_
x

)2]
2 -x 12 -x 2 -x

G_
7

= (I + ! hM + 11
0

(hM_
x

)2 + __1__(hM )3]-1 •
2 -x 120 -x

1 1 2 1 3
[I - -2 hM + 10(hM) - 120(hM) ]- -x -x -x

~8
[I + l hM + ~(hM )2 + __1__(hM )3]-1 •

7 -x 14 -x 210-x

1 3 2 1 3 1 4 -1
~9 = (I + 2" ~x + 28(~x) + 84(~x) + 1680(~X)] •

(I - ~ ~x + :8(~x)2 - :4<'~x)3 + li80(~x)4]

G_
10

= [I + ! hM + 11
2

(hM_
x

) 2 + .....!..-(hM ) 3 + _1_(hM ) 4] -1 •
9 -x 126 -x 3024-x

[I - ~ hM + 2-(hM )2
9 -x 36 -x

1 5
15120(~X) ]

1 5
30240(~x) ]

* Note that the coefficient of the fifth power terms in ~11 as given in Shieh
et al. (1978) is incorrect.
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[1 +2....hM
1 2 1 3 1 4 1 5 -1

~12 = + 11 (~x) + 99 (~x) + 1584(~x) + 55440 (~x) ]
.

11 -x

[1
6 3 2 _ ~(hM ) 3 1 4 1 5 1 6

- - hM + -(hM ) + 528 (~x) - 9240(~x) + 332640(~X) ]11 -x 22 -x 99 -x

[1
1 5 2

+ 6
1
6 (~x) 3

1 4 1 5 1 6 -1
~13 = + - hM + 44(~x) + 792(~x) + 15840 (~x) + 665280(~X) ]2 -x

[1 152 _ .l...(hM ) 3 1 4 1 5 1 6
- - hM + -(hM ) + 792(~X) 15840(~x) + 665280 (~x) ]2 -x 44 -x 66 -x




