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Abstract

Individuals often refer to opinions of others when they make decisions in the real world. Our

question is how the people’s reference structure self-organizes when people try to provide

correct answers by referring to more accurate agents. We constructed an adaptive network

model, in which each node represents an agent and each directed link represents a refer-

ence. In every iteration round within our model, each agent makes a decision sequentially

by following the majority of the reference partners’ opinions and rewires a reference link to a

partner if the partner’s performance falls below a given threshold. The value of this threshold

is common for all agents and represents the performance assessment severity of the popu-

lation. We found that the reference network self-organizes into a heterogeneous one with a

nearly exponential in-degree (the number of followers) distribution, where reference links

concentrate around agents with high intrinsic ability. In this heterogeneous network, the

decision-making accuracy of agents improved on average. However, the proportion of

agents who provided correct answers showed strong temporal fluctuation compared to that

observed in the case in which each agent refers to randomly selected agents. We also

found a counterintuitive phenomenon in which reference links concentrate more around

high-ability agents and the population became smarter on average when the rewiring

threshold was set lower than when it was set higher.

1 Introduction

In our society, individuals exchange information with one another [1–3]. Therefore, in many

circumstances, interdependence of individuals’ opinions is inevitable [4, 5]. This idea is often

considered in the literature of opinion formation, and the question about whether this interde-

pendence leads to a preferable result in the population has been studied extensively [4–7].

One example of opinion interdependence is found in the reference behavior called the

lead–follow relationship between financial analysts [8–13]. Financial analysts synthesize much

of information and provide reports such as forecasts of a firm’s forthcoming earnings for

investors. They revise their personal earnings forecasts at their own chosen time during the fis-

cal period. It has been suggested in the literature that less informative or less experienced
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analysts, to make their decisions more accurately, follow information developed by analysts

called lead analysts, who announced their forecasts earlier [8, 10, 13–15].

Such lead–follow behavior is not necessarily limited to financial analysts —we expect to see

it more generally in our society when each of us can refer to earlier opinions to make our deci-

sions. In this paper, we consider the process of decision-making in a population in which indi-

viduals are mutually connected by reference links. Individuals are assumed to base their

opinions on the majority of earlier opinions [16, 17] made by the referred individuals, i.e., we

assume a directed network in which each node represents an individual making his/her deci-

sion, and each directed link refers to a reference relationship. Thus, the accuracy of an agent’s

opinion depends on who the agent refers to. It is known that the majority-rule voting based on

various (independent) opinions can result in higher accuracy than the one decided by an

agent. This is known as collective intelligence [5, 17] (Table 1). However, it has also been

shown that the correlation between opinions collected for a majority vote can decrease the

advantage of collective intelligence [5, 6].

It should be natural to assume that each individual assesses the credibility of the referents

and decides to either keep or stop following them accordingly. Thus, a reference link is rewired

according to the accuracy of the referred agent, whose accuracy depends on who he/she refers

to. Therefore, we need to consider the interaction between the change in opinion caused by

network topology and the change of network topology induced by the opinion accuracy of the

nodes. This idea is related to adaptive or coevolutionary networks, in which feedback loops

between node dynamics and network topology are considered [18, 19]. There are a number of

adaptive network models under various link-rewiring rules including ones that assume game

interactions between nodes, such as the prisoner’s dilemma game and the minority game, in

which a link represents a game interaction or reference. These links are discarded and rewired

when the linked game partners are not preferable, when the linked advisers are not reliable,

and so on [16, 18–24]. Some of these models show the emergence of heterogeneous structures

in the evolved network, such as the scale-free degree distribution, in which a small number of

individuals come to acquire a large number of degrees after repeated events of rewiring, even

when starting from a homogeneous initial state [18, 20–24]. Some of these models also high-

light macroscopic quantities, such as the ratio of cooperators in the population and the quality

of propagated information (and “performance” in our model), that change through adaptive

rewiring [18, 20, 21, 24] and show, in some cases, that the evolved network with a heteroge-

neous structure has better performance than the initial homogeneous network.

In our model, we focus on the accuracy of decision-making of each individual, which we

call “performance”, in the evolved network. It is not clear whether the evolved network shows

Table 1. An example showing the effect of collective intelligence.

The way the person with the highest accuracy (p1 = 0.75) makes a

decision

Probability of answering a binary question

correctly

Independent decision 0.75

Majority vote by referring to two other persons with lower accuracy

(p2 = 0.7, p3 = 0.65)

0.785

Consider a society with three persons differing in their accuracy, or the probability, of giving the correct answer

for a binary question when they make a decision alone. Suppose their accuracy is given by p1 = 0.75, p2 = 0.7, and

p3 = 0.65. When person #1 (with accuracy p1 = 0.75) makes his/her decision independently, he/she gives the correct

answer with probability p1 = 0.75. In contrast, if he/she refers to two other persons that have lower accuracy than

him/herself for making a decision by the majority vote of all three, the probability of giving the correct answer is

raised to 0.785 (calculated as p1p2p3 + (1 − p1)p2p3 + p1(1 − p2)p3 + p1 p2(1 − p3) = 0.785).

https://doi.org/10.1371/journal.pone.0193983.t001
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good performance. If the evolved network has high heterogeneity, so that some individuals,

called leaders, receive a far larger number of reference edges than the others, then the opinions

of agents in the network should be highly correlated. This enhanced correlation between opin-

ions may harm the population performance in the long run. The opposite may be the case

because the network structure, which is biased toward referring to more accurate agents, may

improve the population performance. The performance in the evolved network should depend

on the network’s structure.

In the reference relationship, we ask (1) what property is generated in the in-degree (the

number of followers) distribution, that is, the correlation between the in-degree of an agent

and its ability to solve a problem, in the evolved network and (2) whether the reference rela-

tionship in the evolved network leads to higher performance than the initial random network.

To answer the questions listed above, we conducted extensive computer simulations and

developed an analytical theory to explain the results obtained in the simulations.

In Section 2, we explain our model and how it incorporates the interaction between collec-

tive intelligence and network evolution. In Section 3, we show the results —there, we see the

emergence of the heterogeneous structures with a nearly exponential in-degree distribution.

We also evaluate the performance of the evolved network. We explain these results by analyti-

cal calculations. The discussion is in Section 4.

2 Materials and methods

2.1 Model

We consider a directed network made up of N nodes, each of which represents an agent who

makes a decision. In this network, a directed link from node i to node j means that agent i
refers to agent j when he/she makes a decision. If there is a directed link from i to j, we call

agent i a follower of agent j, and agent j a referent of agent i. For each agent, the number of ref-

erence links from him/her is fixed to M. Let aij be the number of reference links from agent i
to agent j—(aij) is the adjacency matrix of the network (Table 2). By definition,

PN
j¼1

aij ¼ M

and
PN

i¼1

PN
j¼1

aij ¼ NM. Here we allow for both self-loops and the overlap of links, i.e., aii is

not necessarily 0 and aij can be more than 1. Each agent in our model repeatedly makes his/her

decision while updating his/her referents by the rule explained later (Fig 1).

Table 2. Definition of symbols.

Symbol Descriptions

N Number of agents

M Number of reference links from each agent

aij Number of reference links from agent i to agent j
pi Ability of agent i
Pi Probability that agent i gives a correct answer

yijt Evaluated performance of agent j by agent i at time t

y0 Initial value of yijt when agent i newly rewires to agent j
Iit The random variable whose value is 1 (0) if agent i succeeded (failed) in giving a correct answer

θ Rewiring threshold

α The extent to which people attach importance to the current result against the history so far in the

performance evaluation

Ti The mean duration that the agent i keeps his/her follower

kðpÞ The mean in-degree of an agent with ability p

https://doi.org/10.1371/journal.pone.0193983.t002
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In the initial condition, each agent refers to randomly selected M referents. In other words,

a directed random regular graph with M out-degrees is used as the initial state of our model.

In our model, the same binary choice question is given to all agents. One of the choices is

correct, and the other is wrong. We assume that agents vary in their probability of solving a

problem correctly by themselves (i.e., without referring to others’ opinions). We call the proba-

bility ability. The ability of agent i is denoted by pi. For example, a question is given to financial

analysts, such as whether the earning of a company in the next quarter increases, and all will

know the correct answer at the end of the next quarter. After many trials, the analyst’s (say

agent i’s) ability is calculated as the probability that he/she forecasted the correct outcome, that

is represented by pi. For each question, all agents state their answers sequentially in a randomly

determined order. Hereafter, we call specifically an actual stated choice an answer. Now, we

explain how agent i states his/her answer. When agent i’s turn comes, he/she first sets his/her

own choice for the given question without referring to those by his/her referents. The proba-

bility that this choice is correct is given by the agent’s ability, pi. In the next step, agent i puts

his/her own choice together with the answers of referents that have already been stated and

makes a final choice among those choice/answers according to the simple majority-rule. Agent

i then states a final choice as his/her answer. For example, if agent i refers to agents i1, i2, i3, i4
and i5, and agents i1 and i2 have already stated their answers, agent i collects the answer from i1
and i2’s along with his/her choice and states the majority among these three. In the case of a tie

in applying the majority-rule, agent i tosses a coin to decide which choice he/she states. In the

case where aii� 1, we regard that agent i’s choice has a weight aii + 1 in i’s majority-rule voting.

Similarly, when aij� 2(i 6¼ j), we regard that agent j’s answer has a weight aij in i’s majority-

rule voting. Since agent i incorporates other agents’ answers, it is clear that agent i’s ability pi is

different from the probability with which agent i actually states a correct answer, Pi. We

denote Pi as the performance of agent i.

Fig 1. Procedure to update the network. The initial network is a random regular network. Starting from this initial

network, we iterate sequential decision-making and rewiring of the reference links. Illustrated in the top-right part is a

sample network, in which the closed dot represents the focal agent, the gray dots represent the agents referred to by the

focal agents, and the arrows are reference links.

https://doi.org/10.1371/journal.pone.0193983.g001
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After all the agents state their answers, the correct answer to the question is given. We

assume that each agent monitors and evaluates the performance of his/her referents, as

explained later. Each agent breaks the link to the referent if his/her evaluated performance falls

below a certain threshold and rewires it to a randomly selected agent excluding referents that

are kicked off in this step. The assumption that the newly selected agents are determined ran-

domly is based on the idea that we cannot know the performance of strangers a priori.

We iterate decision-making and rewiring as explained above. In each iteration step t, the

evaluated performance of referent j by agent i, denoted as yijt , is updated as follows. When agent

i newly acquires referent j at time ts, his/her initial level of estimated performance, yijts , is set to

y0 for any pair of i and j. Let Ijt be a variable whose value of 0 represents the failure of agent j to

give a correct answer, and a value of 1 represents the agent’s success at the iteration time t. We

assume that the evaluated performance of agent j by agent i at iteration time t, yijt , is updated

recursively by

yijt ¼ ð1 � aÞyijt� 1 þ aIjt: ð1Þ

Here, α describes the extent to which people in the society attach importance to the current

result as compared to the referent’s past. We also assume that all agents adopt the same rewir-

ing threshold to kick-off referents, θ. The threshold represents severity of assessment in the

society. For example, if the threshold is low, people in the society are generous when they eval-

uate their referents.

2.2 Simulation conditions

We conducted agent-based simulations using parameters N = 100, M = 5, and α = 0.1. We

assume that the ability of agents, pi’s, are uniformly distributed in the range of 0.5 to 0.75 by

setting pi = 0.5 + 0.25i/N for i = 0, 1, . . ., N − 1. Note that the ability of each agent does not

change throughout a simulation run. The initial evaluated performance y0 is set to 0.625,

which is nearly equivalent to the mean ability in the population. We limit the range of the

rewiring threshold θ in 0.5� θ< y0 = 0.625. The lower limit for θ, 0.5, is only the accuracy of a

coin-toss. The upper limit y0 is set for the following reason—if we set the threshold greater

than this upper limit, the initial performance of a new referent is always evaluated lower than

the threshold.

At the initial state, the network is a directed random regular network with out-degree

M = 5, so the in-degree distribution of each agent is expected to obey the binomial distribution

with parameters NM (the total number of reference links in the population) and 1/N (the prob-

ability that a particular individual is chosen as a referent) and is approximated by the Poisson

distribution with mean M, because N� 1 (Fig 2).

In our simulation, a set of sequential decision-makings of agents, followed by the rewiring

of reference links, constituted the events in a unit of time, which repeats itself until the

“evolved network” at t = Tend = 20,000 was reached. For each parameter set, the simulations

were repeated 500 times. We calculated the frequency of agents having in-degree k at each

time step t and averaged them over 500 independent runs. Pt(k) denotes the averaged fre-

quency of agents having in-degree k at time t, which must depend on the rewiring threshold θ.

We regard PTend
ðkÞ as the in-degree distribution in the evolved network. We evaluated the per-

formance of each agent for each simulation run in the evolved network by averaging the num-

ber of correct answers stated in the last T = 100 time steps (i.e., the performance of agent i is

the average of Iit over Tend − T + 1� t� Tend), at which point we assumed that the network

has reached an equilibrium state. The average over 500 independent runs was then calculated
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and regarded as the mean performance of agent i, Pi. Therefore, the definition of Pi is

Pi ¼
PTend

t¼Tend� Tþ1
Iit=T , where the overline represents the average over 500 independent runs.

We also calculated the mean group performance and its standard deviation. For each single

run, we regarded
PN

i¼1
Iit=N as the group performance at time t and calculated the mean and

the standard deviation (SD) of
XN

i¼1
Iit=N

n o

Tend� Tþ1�t�Tend

, that is, for the last T = 100 time

steps. Then we took their average over 500 independent runs to evaluate the group perfor-

mance and its fluctuation.

3 Results

3.1 The heterogeneity in the in-degree distribution

The in-degree distribution PTend
ðkÞ in the evolved network significantly differed from the initial

Poisson distribution for the random network (Fig 2). As the in-degrees in the evolved network

were distributed approximately exponentially, there were a few nodes that had much larger in-

degrees than the mean. In other words, high heterogeneity in the number of followers evolved

through the adaptive rewiring process. The agents attracting many followers can be interpreted

as “opinion leaders” in our model.

The mean in-degree kðpiÞ ¼
PN

j¼1
aij of agent i with ability pi, that is the mean number of

followers of agent i, increased exponentially with pi for each rewiring threshold θ (Fig 3).

We were able to obtain an approximation equation which kðpiÞ satisfies in the equilibrium

state. Its derivation, which we will describe in detail in Sections 3.2 to 3.5, is illustrated as fol-

lows (Fig 4). Suppose we know kðpiÞ. In the equilibrium state, the probability that a randomly

sampled reference link from the population is referring to agent i should be proportional to

Fig 2. The distribution of the number of followers (in-degree) in the initial and evolved networks. (a) The solid

line is the initial Poisson distribution with a mean of 5. The markers (the circle and +) denote the in-degree

distributions of the evolved network with rewiring thresholds θ = 0.5 and 0.6, respectively, obtained over 500

independent runs of our simulation. The in-degree distributions in the evolved networks are significantly different

from the initial condition, showing much higher heterogeneity in in-degrees. (b) The same as (a) except that the

vertical axis is logarithmically scaled. We can observe the approximately exponential tails in the evolved networks.

https://doi.org/10.1371/journal.pone.0193983.g002
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Fig 3. Semi-log plot of the mean in-degree of an agent versus his/her ability in the evolved network obtained by

simulations. Different symbols represent the results for varying θ. The mean in-degree increases approximately

exponentially with ability, and slopes are steeper when we set the threshold lower. The vertical axis is scaled

logarithmically.

https://doi.org/10.1371/journal.pone.0193983.g003

Fig 4. The schematic diagram for the relationship between the ability of agent i, pi, his/her mean performance Pi,

the mean duration that he/she is kept linked by a follower Ti, and his/her mean in-degree ki in the equilibrium

state. The mean performance can be derived approximately by the ability pi and the mean in-degree function kð�Þ
through the function pð� j kÞ. The mean duration that the agent is kept linked by a follower is obtained by the mean

performance (the function τ). Then, the mean in-degree is obtained by the mean duration the agent is kept linked by a

follower (the function κ).

https://doi.org/10.1371/journal.pone.0193983.g004
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the mean number of followers of agent i and is expressed as

Pr: agent i is being referred½ � ¼
kðpiÞ

PN
j¼1

kðpjÞ
¼

kðpiÞ
NM

: ð2Þ

Based on these probabilities, we can derive the approximation of the mean performance Pi

of agent i, who has ability pi (see Section 3.2). Given Pi, the mean duration Ti that the agent is

kept linked by a follower is calculated in Section 3.3. Finally, given Ti , the mean number of fol-

lowers kðpiÞ of agent i is derived in Section 3.4. Therefore, we obtained an implicit equation of

kðpiÞ in the evolved network. This equation of kðpiÞ explains why agents with higher ability

have acceleratingly more followers. Since we cannot solve this equation for kðpiÞ, we per-

formed an iterative approximation method to numerically obtain kðpiÞ against pi. This proce-

dure is explained in Section 3.5. The results obtained by this numerical calculation agree well

with the simulation results.

3.2 The relationship between the mean performance of an agent and his/

her ability

We calculated the mean performance of agent i in the evolved network, Pi ¼
PTend

t¼Tend� Tþ1
Iit=T ,

as explained in Section 2. For each threshold, the mean performance of an agent increased line-

arly with his/her own ability (Fig 5(a)). This is because the probability that agent i with ability

pi gives a correct answer is given by the sum of two terms,

Pi ¼ ð1 � piÞPr:½ðthe number of referents who gave correct answersÞ � s=2þ 1�

þ piPr:½ðthe number of referents who gave correct answersÞ � s=2�;
ð3Þ

Fig 5. The mean performance Pi of an agent versus his/her ability p, the mean duration Ti that the agent is kept by a follower versus the agent’s mean

performance Pi, and the mean in-degree ki of an agent versus the mean duration Ti that the agent is kept by a follower in the evolved network. (a) The mean

performance Pi of an agent versus his/her ability p in the evolved network for each threshold θ (the circle and + for thresholds 0.5 and 0.6). The solid lines show the

analytical results. The mean performance increases linearly with ability. (b) The semi-log plot of the mean duration T i that the agent is kept by a follower versus the

agent’s mean performance Pi for each threshold in the evolved network (the circle and + for thresholds 0.5 and 0.6). The solid lines show the analytical results. The

mean duration increases nearly exponentially with the mean performance. (c) The mean in-degree ki of an agent versus the mean duration T i that the agent is kept by

a follower for each threshold in the evolved network (the circle and + for thresholds 0.5 and 0.6). The solid lines show the analytical results. The mean in-degree is

proportional to the mean duration.

https://doi.org/10.1371/journal.pone.0193983.g005
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when the number of referents of agent i who have stated their answers before agent i stated his/

her own, which we denote by s, is even. Note that here, we neglect self-loops or overlaps in the

reference links to simplify our approximation. Also note that the expression of Pi becomes a

slightly complicated when s is odd (Section A in S1 Text) since there are s + 1 answers/choice

including his/her own and we have to consider the tie of the number of answers/choice when

the majority-rule is applied. However, Pi can again be described as a linear function of the abil-

ity pi in both cases where s is odd and where there are self-loops or overlaps in the links (Sec-

tion A in S1 Text).

Note that each term Pr.[�] in the equations above depends on the ability and the perfor-

mance of agents who the focal agent refers to; therefore, Pr.[�] depends on the distribution of

the ability of referents, which means the ability of those who are referred to by others, not on

the ability of random agents.

We can derive an approximate formula for the slope and the intercept of the linear depen-

dence of Pi on pi (Section A in S1 Text), which agrees well with the simulation results (Fig 5

(a)). For later use, let us formally denote this relation as Pi ¼ pðpi j kÞ, where pð� j kÞmaps pi
to Pi, which itself depends on k. The approximated slope and intercept depend on the mean

ability of referents
PN

i¼1
pikðpiÞ=ðNMÞ, which is a value that represents the distribution of ref-

erents’ ability.

3.3 Relationship between the mean duration for which a referent is kept

linked by a follower and his/her performance

In our model, each agent monitors the performance of his/her referents and stops referring to

them when the evaluated performance falls below a rewiring threshold. Thus, the higher his/

her referent’s performance is, the longer duration that he/she keeps his/her follower. We

herein examine how the duration that an agent is kept referred by a follower is related to the

agent’s performance.

The mean duration that an agent is kept referred by a follower in the evolved networks

increased approximately exponentially with his/her performance (Fig 5(b)): Ti / expðbPiÞ,

where Ti is the expected duration that agent i keeps his/her follower, Pi is the performance of

agent i, and β is a positive constant.

This relationship between a referent’s performance and the mean duration for which the

referent is kept linked by a follower is derived analytically. As explained in the Method section,

an agent’s evaluation Yt of the performance of his/her referent is updated depending on

whether the referent’s t-th answer was correct (It = 1) or not (It = 0), as follows:

Yt ¼ ð1 � aÞYt� 1 þ aIt; t ¼ 1; 2; . . . ; ð4Þ

where the initial evaluation was set to Y0� y0. If the actual performance of the referent is P,

which its follower does not know, It (t = 1, 2, . . .) are mutually independent random variables

each of which takes a value of 1 with a probability of P, and a value of 0 with a probability of

1 − P. The sequence {Yt j Y0 = y0} then forms a stochastic process. Given Y0 = y, we defined

the expected time duration to the time when the evaluated performance hit θ for the first time,

TP(y), as TP(y)� E[min{t j Yt� θ} j Y0 = y]. TP(y) is the expected first hitting time to the

threshold θ of the stochastic process {Yt j Y0 = y}. Then TP(y) satisfies the recurrence equation:

TPðyÞ ¼ 1þPTPðaþ ð1 � aÞyÞ

þð1 � PÞTPðð1 � aÞyÞ; y > y;
ð5Þ

Emergence of opinion leaders

PLOS ONE | https://doi.org/10.1371/journal.pone.0193983 March 26, 2018 9 / 21

https://doi.org/10.1371/journal.pone.0193983


and

TPðyÞ � 0; y � y: ð6Þ

Eq (5) is derived as follows: if y> θ, the referent is kept linked to the next time step; hence, the

addition of 1 in the first term on the right-hand side of (5). In the case where the referent gave

the correct answer with probability P, the evaluated performance changes from y to (1 − α)y +

α, and the expected duration after the transition is TP((1 − α)y + α). The last term is similarly

derived for the case of failure. Eq (6) simply states that TP(y) equals 0 if the evaluation y is

already less than or equal to the threshold.

The mean duration that agent i with performance Pi is linked from a follower, Ti , is then

defined by TP(y) as follows:

Ti ¼ TPi
ðy0Þð� tðPiÞÞ; ð7Þ

The symbol τ in Eq (7) denotes the function that maps Pi to Ti (Fig 4). Note that Ti is greater

than 0 since θ< y0. We solved recurrence Eqs (5) and (6) numerically and obtained the mean

time TP(y) until which the evaluated performance of a referent with the initial evaluated per-

formance y and the actual performance P hits the threshold θ for the first time (see Section D

in S1 Text for the numerical procedure to obtain the mean hitting time). This then led to the

mean duration of reference Ti defined in Eq (7). The analytical formulas (5)–(7) agree well

with the simulation results (Fig 5(b)).

3.4 Relationship between an agent’s mean number of followers and his/her

ability

Here, we derive the mean number of followers or the in-degree kðpiÞ of agent i as a function of

his/her ability pi.
The probability that an agent is chosen as a new referent for each rewiring event is the

same as those for all the others’, because each agent rewires its link to a randomly selected

agent after he/she kicks off a referent. Thus, the expected number of reference links that

agent i receives in the evolved network is proportional to the mean lifetime of a link to agent i,
Ti . Therefore, the mean in-degree kðpiÞ of agent i can be expressed as a function of Ti as fol-

lows:

kðpiÞ ¼
Ti

PN
j¼1

Tj

NMð� kðTiÞÞ: ð8Þ

The symbol κ in Eq (8) denotes the function that maps Ti to kðpiÞ. This expression of kðpiÞ
agrees well with the simulation data (Fig 5(c)). The reason why k depends (only) on the ability

pi of agent i is that τ(Pi) is a function of the agent’s performance, Pi, and pðpi j kÞ is a function

of pi. See Section C in S1 Text for a more formal derivation of kðpiÞ from a master equation for

the probability distribution of the performance of a referred agent.

As noted in the last section and shown in Fig 5(a) and 5(b), the mean duration that the ref-

erence to agent i is kept linked by a follower increases roughly exponentially (but actually

slightly faster than exponential) with his/her performance Pi, and Pi increases linearly with

his/her ability pi, resulting in an roughly exponential relationship between Ti and pi: Ti / eb0pi .

Therefore, the mean in-degree of agent i also increases roughly exponentially with his/her
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ability:

kðpiÞ ¼ k � t � pð� j kÞðpiÞ � ðconst:Þ � eb0pi ; ð9Þ

where � in Eq (9) is the composition of functions.

As we discussed above, the mean duration of a link targeted to an agent versus his/her per-

formance is key to predicting how many followers an agent with a given ability can obtain. We

show the duration versus performance for various thresholds, which we derived analytically,

in Fig 6.

3.5 Numerical calculation to obtain kðpiÞ

Since Eq (9) is implicit in kðpiÞ, we solve it for kðpiÞ by an iterative approximation method as

follows. First, we set kð0ÞðpiÞ ¼ M for all pi as an initial condition (0-th step) of the iterative

method. Its n-th iteration counterpart is kðnÞðpiÞ. Here is the procedure to obtain kðnþ1ÞðpiÞ
from kðnÞðpiÞ. By assuming that a randomly chosen reference link from the population is

directed to agent i with a probability of kðnÞðpiÞ=ðNMÞ, the mean performance PðnÞ
i of agent i is

obtained as explained in Section 3.2. Given the mean performance PðnÞ
i of agent i, the mean

duration Ti
ðnÞ that the agent is kept linked by a follower is calculated as explained in Section

3.3. Then kðnþ1ÞðpiÞ is calculated as

kðnþ1ÞðpiÞ ¼
Ti
ðnÞ

PN
j¼1

Tj
ðnÞ
NM; ð10Þ

as explained in Eq (8) in Section 3.4. In other words, we derive kðnþ1ÞðpiÞ from kðnÞðpiÞ, by

kðnþ1ÞðpiÞ ¼ k � t � pð� j kðnÞÞðpiÞ: ð11Þ

We repeated this recurrence evaluation until when
PN

j¼1
ðkðnþ1ÞðpiÞ � kðnÞðpiÞÞ

2
became smaller

than 10−5 (Fig 7(a)). This predicted relationship (solid curves in Fig 7(b)) agrees well with the

simulation results (markers in Fig 7(b)).

Fig 6. Semi-log plot of the mean duration to be kept by a follower versus performance for each threshold value.

The mean duration is calculated analytically as shown in Section 3.3. The color of the lines ranges from dark to light as

the threshold increases.

https://doi.org/10.1371/journal.pone.0193983.g006
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3.6 Group performance in the evolved network

Studying the group performance,
PN

i¼1
Iit=N, in the evolved networks is another objective of

our paper. The temporal mean (Fig 8(a)) and the temporal standard deviation, SD (Fig 8(b)) of

the group performance in the evolved networks were decreasing functions of the rewiring

threshold. It is interesting that the stricter the agent’s evaluation threshold is for kicking off ref-

erents, the worse the long-term group performance is. For comparison, we showed in Fig 8(a)

and 8(b) the mean and the SD when all agents choose referents randomly (random reference),

as in the initial network state prior to adaptive rewiring (dashed lines in Fig 8(a) and 8(b)). We

also added those measures in the case where all agents make their decision independently

Fig 7. The derivation of the mean in-degree by the iterative approximation method. (a) The procedure of the iterative

approximation method for obtaining the relationship between the mean in-degree and ability. (b) Curves obtained from (a) are

shown against plots of simulation data.

https://doi.org/10.1371/journal.pone.0193983.g007

Fig 8. Mean and SD of group performance. (a) Mean group performance in the evolved network for each threshold.

The dashed line represents the group performance in the initial random network, and the thick horizontal line

representss the group performance in the case of independent decision-making. The mean group performance in the

evolved network is higher than that in the random network for all thresholds, and it declines with increasing threshold.

(b) The standard deviation SD of group performance versus threshold. The dashed line represents the SD in the

random network, and the thick horizontal line represents the SD in the case of independent decision-making. The SD

of group performance in the evolved network is also higher than that in the random network for all thresholds, and it

gradually declines with increasing threshold.

https://doi.org/10.1371/journal.pone.0193983.g008
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without constructing a network (independent decision; thick horizontal lines in Fig 8(a) and 8

(b)). The difference between the thick line and the dashed line represents the effect of collective

intelligence (decision-making through majority-rule). The difference between the dashed line

(random reference network) and the dots (evolved network after adaptive rewiring) represents

the effect of adaptive rewiring of the reference network on group performance, i.e., adaptive

rewiring generates a centralized network with preferred connections towards high perfor-

mance agents. The mean group performance was lowest when agents made decisions by them-

selves, which is improved by collective intelligence with randomly assigned referents and

further improved by adaptive rewiring based on the performance evaluation. Among adap-

tively rewired networks, those with lower kick-off performance thresholds (i.e., with more gen-

erous kick-offs) had higher group performance. We see that the SD of group performance also

increased in the same order as the mean group performance in this comparison, i.e., the group

performance fluctuated more when the mean group performance became higher.

The mean performance of each agent,
PTend

t¼Tend� Tþ1
Iit=T , against his/her ability in the evolved

networks was compared to both those in the cases of independent decision and of random ref-

erence (Fig 9). As in the group performance, for a fixed ability value of an agent, the mean per-

formance was the lowest when the agent made decisions independently of others (solid line in

Fig 9), which is improved by collective intelligence with randomly assigned referents (squares

in Fig 9) and further improved by adaptive rewiring (circles, triangles and + in Fig 9). The

effect of the rewiring threshold on the mean performance of each agent was similar to the

Fig 9. Mean performance of each agent versus his/her ability. A circle, triangle, and + mark the the mean

performance versus ability for thresholds of θ = 0.5, 0.55 and 0.6 in the evolved network. A black square represents the

random network. The solid diagonal line represents the case where performance is equal to ability. Even in the random

network, all agents improve their accuracy (the mean performance is higher than the ability for each agent), and low-

ability agents can particularly greatly improve it. The lower we set the threshold, the higher the mean performance

becomes for each agent.

https://doi.org/10.1371/journal.pone.0193983.g009
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effect of the threshold on the mean group performance: a looser kick-off threshold led to a

higher performance. Fig 9 illustrates that the difference between independent decisions and

majority voting, either adaptive or not, was reflected in both the slope and the intercept of the

performance–ability relationship. However, the differences between the random and adaptive

networks and those among different rewiring thresholds were reflected only in their intercepts.

This leads to an interesting observation: agents with a lower ability were merited the most in

their performance by collective intelligence, and the performance of all agents was improved

fairly well by the adaptive rewiring irrespective of their ability.

To summarize, performance in the evolved network improved compared with the initial

random network or the case of independent decision-making. However, the group perfor-

mance fluctuated more in the evolved networks, and even more in those networks with higher

mean group performance. This implies that a highly “intelligent” population with improved

performance, though biased with reference to high-ability agents, can be at risk of a temporal

crash in group performance.

3.7 The effect of threshold on the unevenness in in-degrees

The threshold θ used for rewiring, which stands for the severity of assessment, affected the

evolved network in the following aspects. First, thresholds affected the strength of heterogene-

ity in in-degrees among agents. We examined two heterogeneity measures of in-degree distri-

bution at time Tend, the Gini coefficient (G ¼
PN

i;j¼1
j ki � kj j =ð2N2k), where ki and kj are the

in-degrees of agent i and j respectively, and k is the mean in-degree of the population [25]),

and the coefficient of variation of in-degrees (CV¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðkÞ

p
=k). They showed substantial

dependence on the threshold θ (Fig 10). The Gini coefficient and the CV are indices that are

originally used to represent the inequality in the distribution of wealth in a society. Here “the

number of followers” (or “in-degree”) plays a role of “wealth”. We measured the inequality in

the number of followers by using these indices. Higher values of these indices mean strong het-

erogeneity in in-degrees. In Fig 10, for both indices, the lower is the threshold for rewiring, the

Fig 10. The Gini coefficient and the coefficient of variance (CV) of in-degree distribution. The Gini coefficient

(circle) and the coefficient of variance (triangle) (CV) of in-degree distribution versus threshold. Both of these indices

represent the strength of heterogeneity in in-degrees, where higher values mean stronger heterogeneity. Both the Gini

coefficient and the CV decline with increasing threshold. Herein, the Gini coefficient G can be calculated as

G ¼
PN

i;j¼1
jki � kjj=ð2N2kÞ, where ki is the in-degree of agent i and k is the mean in-degree [25].

https://doi.org/10.1371/journal.pone.0193983.g010
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higher are the values of these indices. Therefore, both of these two indices show that a lower

threshold for rewiring generates stronger inequality in the evolved in-degree distribution.

The threshold θ also affected the time needed for the system to reach the equilibrium state

(Fig 11). In Fig 11, the lighter colors represent a higher frequency of agents with a given in-

degree k (ordinate) against a threshold θ (abscissa) at time t. We can see that the class of indi-

viduals with higher k grows faster for higher rewiring thresholds.

Fig 11. The in-degree distributions for each threshold at the t = 0, 10, 1,000 and 20,000(Tend). The in-degree

distributions for each threshold at the random network (t = 0) and at times 10, 100, 1,000 and 20,000 (Tend) are shown

in (a), (b), (c), (d), and (e), respectively. For each panel, the horizontal axis corresponds to the threshold, and the

vertical axis represents the in-degree. The log10(frequency) is shown by the gray scale, so when we see a vertical section

at a threshold θ, we can see an in-degree distribution for the threshold θ, such as the one shown in Fig 2(b).

https://doi.org/10.1371/journal.pone.0193983.g011
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The exponential increase of the mean in-degree kðpÞ against ability p is also affected by the

threshold θ (Fig 3). This nonlinearity in kðpÞ became stronger as the rewiring threshold θ
decreased. Our analytical formula for the relationship between an agent’s mean in-degree and

ability (Eqs (8) and (9)) shows that the strongly biased links towards the agents of high ability

is due to the nonlinear dependence of the mean duration that an agent keeps a follower on

their performance. We have already seen that the extent to which the mean duration increased

with performance was stronger for lower thresholds (Figs 5(b) and 6). These results can be also

seen in Fig 12, which shows that the mean ability of referents (averaged over those who are

being referred), p� ¼
PN

i¼1
pikðpiÞ=ðNMÞ, was a decreasing function of the rewiring threshold.

This implies that the more the agents seek better referents, the lower is the mean ability of ref-

erents. These apparently counterintuitive results are discussed in Section 4.

The group performance and the performance of each agent also differed by the threshold.

The mean group performance and the performance of each agent became better as the thresh-

old θ decreased (Figs 8(a) and 9). The SD of the group performance, i.e., the fluctuation of the

group performance, also increased as the threshold θ decreased (Fig 8(b)).

Therefore, when we set the threshold lower, the heterogeneity in in-degrees became stron-

ger, and reference links were biased more toward higher ability agents. At the same time, we

also see that the group performance became better on average, though its temporal fluctuation

became greater. We discuss the reason why these results hold in the following Section 4.

4 Discussion

In this paper, we have shown that the reference structure of agents who try to make correct

answers by referring to credible agents self-organized into a heterogeneous structure with an

exponential in-degree distribution [26]. The mean in-degree increased exponentially with abil-

ity. Therefore small difference in ability can lead to large difference in the number of followers

in the evolved network. Our analytical calculation shows that it was the mean duration of an

agent to be kept linked by a follower that increased exponentially with his/her performance.

The performance-monitoring process in our model generated this nonlinear relationship

between performance and mean duration.

Fig 12. The mean ability of referents in the evolved network versus threshold. The lower we set the threshold, the

more the mean ability of referents increases.

https://doi.org/10.1371/journal.pone.0193983.g012
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We also looked at the performance of each agent and that of the group in the evolved net-

work and compared them to those in the random network. The mean performance of each

agent and the mean group performance improved in the evolved network through adaptive

rewiring compared with the random network. However, the fluctuation of the group perfor-

mance in the evolved network was larger than the one in the random network. We discuss this

trade-off later in this section.

In addition, we found that the threshold for rewiring, that is the extent of severity, affected

the strength of heterogeneity in the in-degrees in the evolved network. When we set the thresh-

old lower, the heterogeneity in the in-degrees became larger, and at the same time, the depen-

dence of an agent’s mean in-degree on his/her ability was more exaggerated, i.e., agents refer

more to higher ability agents in the evolved network, and the mean ability of referents

increases. This leads to a higher mean performance of each agent compared with when the

threshold was larger, i.e., when the mean ability of referents was lower. Actually, in our deriva-

tion of the mean performance explained in Section 3.2 and Section A in S1 Text, which pre-

dicts the simulation result well, we can show that the mean performance of each agent is an

increasing function of the mean ability of referents (Section B in S1 Text). However, it is a little

against our intuition that agents result in referring to higher ability agents when we set the

threshold lower (i.e., when they were more generous to their referents) than when we set it

higher (when they were stricter regarding their referents). We interpret this counterintuitive

phenomenon as follows. A lower rewiring threshold makes each agent more patient and lowers

the desire to kick-off low-ability referents. However, at the same time, a lower threshold con-

tributes to keeping high-ability referents more securely, because a lower rewiring threshold

leads to a longer duration for referent-monitoring, leading to a better overall sorting of refer-

ent’s quality. From our computer simulations, we find that the later effect is stronger. There-

fore, in our model, a lower rewiring threshold contributes to generating a more biased

reference toward high-ability agents. This result in our study can be tested by an empirical

study comparing the generosity of societies and their accuracy in decision-making. For exam-

ple, we may compare a group in which rewiring occurs easily (that may correspond to a high

threshold in our model) such as a group of individuals connected by a social network service,

with a group in which rewiring is difficult (that may correspond to a low threshold in our

model) such as a group of individuals in a company who are connected tightly, to examine

which group can predict the next political leader more accurately.

As we showed so far, how long one can keep a follower greatly affects the structure of the

evolved network. The extent to which people in the society attach importance to the current

result as compared to the referent’s past is measured by the parameter α. Its reciprocal, 1/α,

gives the mean time an individual remembers a success or a failure of its referent. Indeed, the

change in the evaluated performance of the referent, yijt , per each time step is proportional to

α: Dyijt ¼ yijtþ1 � yijt ¼ aðIjtþ1 � yijt Þ. In the numerical simulations of this paper, we set α = 0.1.

As α becomes larger, the agent’s evaluation becomes less dependent on the past and more

heavily dependent on the immediate success or failure. This makes the evaluation of followers’

performance less reliable. Therefore, a larger αmakes it difficult to sort subtle difference in

performance between the referents, resulting in weaker centralization of links toward high

ability agents and low performance. The effect of the kick-off threshold θ on group perfor-

mance would also become less pronounced because of the less reliable performance evaluation.

Conversely, if α becomes smaller, the evaluation for the performance of referents would

become more reliable. However, this raises another problem for a society, because the time

required for the referent network to reach an equilibrium, in other words, to acquire high
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centralization, would become too long. In fact, we confirmed those predictions on the effect of

α by computer simulations for several values of α. The results are shown in S2 Text.

There are several trade-offs in our model that affect the understanding of the quality of

decision-making by agents who are interacting with one another. First, when we set a lower

rewiring threshold, we have to wait longer until the network reaches the equilibrium state

where agents have higher mean performance. Thus, we can see a kind of speed–accuracy trade-
off here. Second, along with stepwise rises of the group performance from independent deci-

sion, to random references in the initial state, and then to the high-ability-agent-oriented

evolved networks, the SD of the group performance also increased, i.e., the fluctuation became

larger in this order. When we set the threshold lower, we saw again an increase in both the

mean and the SD of the group performance in the evolved network. Therefore, an increase in

both the mean and the “stability” (suppression of fluctuation) are difficult to be compatible.

High-ability agents collect more followers in the evolved network than in the initial network;

the same is true for the evolved network of a low threshold compared with that with a high

threshold. Adaptive rewiring and a lower kick-off threshold level lead to higher mean perfor-

mance. However, this is due to a more intense concentration of reference links to high ability

agents (Section B in S1 Text). This polarization seems to be the reason for the larger fluctuation

of the group performance. The agents who attract many followers tend to be the agents with

high ability and high performance. However, there are of course cases in which high-ability

agents give wrong answers. In such an occasion of failure by agents of high influence, the

group performance results in a very low value, which results in the group performance fluctu-

ating wildly.

We have examined only a few types of distribution of agent’s ability in the population,

which gives the seeds for the generation of a heterogeneous in-degree distribution through

adaptive rewiring. Actually, we assumed two types of ability distributions—one is in the cur-

rent study, the uniform distribution, and the other is shown in Section E in S1 Text. The den-

sity distribution of ability shown in Section E in S1 Text is a linear decreasing function on the

interval [0.5, 0.75]. Although both forms of ability distribution yielded exponential in-degree

distributions against varying ability, the robustness of the results for the other forms of ability

distributions should be tested in the future.

Lastly, we discuss possible modifications of our model. In our model, we assumed that a

new link comes randomly regardless of his/her ability value. This was based on the idea that

one cannot know the status of strangers —this may be true in some cases in our society. For

example, in a population of analysts where a lead-follow relationship (references) exists, a

financial analyst may not be able to evaluate the correctness of the analysts whom he/she is not

directly following. In such situations, the only thing that an agent can do to improve his/her

own performance is to replace an already connected referent who did not give correct answers,

with a new referent randomly chosen from the population [27] as we assumed in our model.

Actually, an empirical work on a social network in a university [27] shows that such global

rewiring is commonly found in a group of individuals sharing the same interaction focus (in

our case, making decisions for the same problem). However, it may also be possible to intro-

duce “reputation” into our model; i.e., we may assume that the probability of being newly cho-

sen as a referent depends on one’s ability or performance, which is recognized by others in

some way such as via reputation. We predict that, under this assumption, we will obtain a

scale-free network, which represents strong heterogeneity. Several reasons support this predic-

tion. There are a number of studies that explain how scale-free networks are constructed. The

“good get richer” mechanism (or fitness model) is one such explanation [23, 24, 28]. In the

models using the “good get richer” mechanism, each agent is assigned a value, such as fitness,
and the probability that one can obtain a link is determined based on the fitness value. In these
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models, strong heterogeneity with a power-law degree distribution emerges even if the fitness

is not power-law distributed. The fitness in such models corresponds to the ability component

in our model. Thus, we can predict that we will obtain a scale-free network if the probability of

being newly chosen depends directly on one’s ability or on one’s performance. It is not clear

whether a population can achieve high performance under a structure that evolved in the pres-

ence of “reputation” and whether it has high heterogeneity and/or a strong opinion correla-

tion. In addition, we think that the following issue is worth considering in future. In our study,

we assumed that all agents follow the same strategy for decision-making and have the same

rewiring threshold. With these simple assumptions, we were able to reveal what is the primar-

ily factor leading to the centralization of reference networks, and to discuss the decision accu-

racy in the self-organized reference structure. A possible next step would be to analyze the

model that allows ability-dependent strategy for each agent, as higher ability agents may have

less motivation for referring to others than lower ability agents. If so, the presence of such

independent decision makers would improve the efficiency of collective intelligence in the

population [29].
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