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 24 
Abstract 25 
Human activities have a profound influence on river discharge, hydrological extremes, and water-26 
related hazards. In this study, we compare the results of five state-of-the-art global hydrological models 27 
(GHMs) with observations to examine the role of human impact parameterizations (HIP) in the 28 
simulation of the mean, high, and low flows. The analysis is performed for 471 gauging stations across 29 
the globe and for the period 1971-2010. We find that the inclusion of HIP improves the performance of 30 
GHMs, both in managed and near-natural catchments. For near-natural catchments, the improvement in 31 
performance results from improvements in incoming discharges from upstream managed catchments. 32 
This finding is robust across GHMs, although the level of improvement and reasons for improvement 33 
vary greatly by GHM. The inclusion of HIP leads to a significant decrease in the bias of long-term 34 
mean monthly discharge in 36-73% of the studied catchments, and an improvement in modelled 35 
hydrological variability in 31-74% of the studied catchments. Including HIP in the GHMs also leads to 36 
an improvement in the simulation of hydrological extremes, compared to when HIP is excluded. Whilst 37 
the inclusion of HIP leads to decreases in simulated high-flows, it can lead to either increases or 38 
decreases in low-flows. This is due to the relative importance of the timing of return flows and 39 
reservoir operations and their associated uncertainties. Even with the inclusion of HIP, we find that 40 
model performance still not optimal. This highlights the need for further research linking the human 41 
management and hydrological domains, especially in those areas with a dominant human impact. The 42 
large variation in performance between GHMs, regions, and performance indicators, calls for a careful 43 
selection of GHMs, model components, and evaluation metrics in future model applications. 44 

1. Introduction 45 

Human activities have a profound influence on river discharge, hydrological extremes, and water-46 

related hazards, like flooding, droughts, water scarcity, and water quality issues (Van Loon et al., 47 

2016; Liu et al,. 2017; Padowski et al., 2015; Veldkamp et al., 2017; Wada et al., 2011; Winsemius et 48 

al., 2016). As a result, research efforts have been made to parameterize human activities in global 49 

hydrological models (hereafter: GHMs, a full list of abbreviations is presented in supplementary 50 

table 2) (Bierkens, 2015; Pokhrel et al., 2016). These model parameterizations include: the 51 

Page 1 of 27 AUTHOR SUBMITTED MANUSCRIPT - ERL-104434.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



2 
 

incorporation of dam and reservoir operations; the representation of human water use and return 52 

flows; and the representations of land use, land management, and land cover change (Pokhrel et al., 53 

2016; Wada et al., 2016a, 2017).  54 

 55 

GHMs are widely used in scientific studies. For example, they have been used to assess the historical 56 

and future impacts of socioeconomic developments and/or hydro-climatic variability and change, on 57 

freshwater resources, droughts, and water scarcity (Biemans et al., 2011; Döll et al., 2009; Döll and 58 

Müller Schmied, 2012; Fujimori et al., 2017; Gosling et al., 2017; Haddeland et al., 2006, 2007, 2014; 59 

Hanasaki et al., 2013; Van Huijgevoort et al., 2013; Kummu et al., 2016; Müller Schmied et al., 2016; 60 

Munia et al., 2016; Rost et al., 2008; Veldkamp et al., 2015a,b, 2016, 2017, Wada et al., 2011, 61 

2013a,b, 2014a, Wanders et al., 2015). They are also increasingly used in practice. Global institutions 62 

increasingly rely on GHMs to conduct first-order assessments of water-related hazards because data, 63 

time, or resources are in short-supply for setting-up and executing multiple in-depth local studies. For 64 

example, GHMs have provided input into a multitude of high-level policy documents, such as: UN 65 

World Water Development Reports (e.g. Alcamo and Gallopin, 2009); Global Environmental 66 

Outlooks (UNEP, 2007); World Bank series on climate change and development (Hallegatte et al., 67 

2016, 2017); and IPCC assessment reports (IPCC, 2007, 2013). 68 

 69 

As GHMs continue to improve in terms of detail, granularity, and speed, their importance for global, 70 

regional, and local applications is likely to increase further (Bierkens, 2015). Therefore, it is essential 71 

to have a thorough understanding of how well these GHMs represent real-world hydrological 72 

conditions. However, most GHM validation studies are limited to near-natural river catchments and 73 

make use of naturalized discharge data (Beck et al., 2016; Gudmundsson et al., 2011, 2012). Studies 74 

that have validated GHM simulations where human activities included have either focused on a single 75 

GHM and/or few selected river catchments (Biemans et al., 2011; Döll et al., 2003; 2009; De Graaf et 76 

al., 2014; Haddeland et al., 2006; Masaki et al., 2017; Müller Schmied et al., 2014; Pokhrel et al. 77 

2012; Wada et al., 2011, 2013a, 2014a). 78 

 79 

To date, a comprehensive validation of the ability of multiple GHMs to represent the influence of 80 

human activities on discharge and hydrological extremes in near-natural and managed catchments is 81 

missing. As a result, there is a limited understanding of whether (and where) the parameterizations of 82 

human activities in GHMs leads to an increase (or decrease) in model performance. To address this 83 

issue, the main objectives of this study are: (a) to evaluate the performance of five state-of-the-art 84 

GHMs that include the parameterizations of human activities in their modelling scheme; and (b) to 85 

compare the performance of these GHMs when run with and without human impact 86 

parameterizations. 87 

 88 
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2. Data and Methods 89 

The overall methodological framework used in this study is shown in figure 1. In brief, the method 90 

involves three main steps: (1) obtaining river discharge from GHMs with human impact 91 

parameterizations (HIP) and without human impact parameterizations (NOHIP); (2) selecting 92 

observed river discharge data; and (3) evaluating model performance. Each of these steps is explained 93 

in the following subsections. 94 

 95 

Figure 1: Flowchart of the methodological steps taken in this study. Steps 1, 2, and 3 correspond to 96 
paragraphs 2.1, 2.2 and 2.3.  97 

 98 

2.1 Obtaining river discharge from GHMs with and without HIP 99 

We used modelled monthly discharge (0.5° x 0.5° spatial resolution) for the period 1971–2010 from 100 

five GHMs: H08 (Hanasaki et al., 2008a,b), LPJmL (Bondeau et al., 2007; Rost et al., 2008; 101 

Schaphoff, et al., 2013), MATSIRO (Pokhrel, et al., 2012, 2015;Takata et al., 2003), PCR-GLOBWB 102 

(van Beek et al., 2011; Wada et al., 2011, 2014b), and WaterGAP2 (Müller Schmied et al., 2016). All 103 

simulations were carried out under the modelling framework of phase 2a of the Inter-Sectoral Impact 104 

Model Intercomparison Project (ISIMIP2a: https://www.isimip.org/protocol/#isimip2a). For each 105 

GHM, we used two simulations: (1) HIP: a model run including time-varying land use and land cover 106 

change, historical dam construction and operation, irrigation, and upstream consumptive water 107 

abstractions; and (2) NOHIP: a ‘naturalized’ model run without HIP. 108 

 109 

An overview of the model characteristics of each of the GHMs, and the methods used to parameterize 110 

hydrological processes and human impacts, can be found in supplementary table 1, and details on 111 

each GHM can be found in the individual model references provided therein. In the following 112 

subsections, we briefly outline the most important characteristics of the hydrological and human 113 

impacts parameterizations. 114 
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 115 

2.1.1 Parameterizations of hydrological processes 116 

Each GHM in this study is forced with daily (MATSIRO: three-hourly) inputs from the GSWP3 117 

historical climate data-set (http://hydro.iis.u-tokyo.ac.jp/GSWP3). The GHMs applied in this study 118 

differ in hydrological representation and parameterizations (supplementary table 1.A). H08 and 119 

MATSIRO model the energy balance explicitly and use the bulk formula in the evaporation scheme 120 

(Hanasaki et al., 2008a,b; Pokhrel, et al., 2012, 2015;Takata et al., 2003). LPJmL, PCR-GLOBWB, 121 

and WaterGAP2 do not include the energy balance explicitly and use the Priestley-Taylor and 122 

Hammon formulas in their evapotranspiration schemes (van Beek et al., 2011; Bondeau et al., 2007; 123 

Müller Schmied et al., 2014,2016; Schaphoff et al., 2013; Verzano et al., 2012; Wada et al., 2011).  124 

 125 

To generate runoff, all GHMs use a saturation excess formula, although the formula is integrated 126 

differently in the various GHMs. Snow accumulation and melt are integrated in the modelling 127 

framework via the energy balance (H08, MATSIRO) or by means of a degree-day calculation method 128 

(LPJmL, PCR-GLOBWB, WaterGAP2). All GHMs use a linear reservoir method in their routing 129 

scheme. Whilst H08, LPJmL, and MATSIRO route with a constant flow velocity (based on 130 

Manning’s Strickler), PCR-GLOBWB and WaterGAP2 use variable flow velocities. The number of 131 

soil layers and their depths vary significantly between GHMs, from one layer with varying depth (e.g. 132 

WaterGAP2, H08) to 12 fully resolved layers.  133 

 134 

2.1.2 Parameterizations of human impacts  135 

All GHMs use a combination of socioeconomic and hydro-climatological parameters to estimate 136 

sectoral water demands (Hanasaki et al., 2008a,b; Müller Schmied et al., 2016; Pokhrel, et al., 2015; 137 

Rost et al., 2008; Schaphoff, et al., 2013; Takata et al., 2003; Van Beek et al., 2011; Wada et al., 138 

2014b). Livestock water needs (supplementary 1.B) are estimated by combining historical gridded 139 

livestock density maps with their species-specific water demands. Domestic water demands 140 

(supplementary table 1.C) are derived by applying a time-series regression at the country-scale, 141 

accounting for drivers like population and per capita GDP, and in some cases (PCR-GLOBWB) total 142 

electricity production, energy consumption, and temperature. Industrial water demands 143 

(supplementary table 1.D) are based on historical country-scale estimates from the WWDR-II
 144 

dataset (Shiklomanov, 1997; Vorosmarty et al., 2005; WRI, 1998) and the FAO-AQUASTAT 145 

database (http://www.fao.org/nr/water/aquastat/dbase/index.stm), for PCR-GLOBWB and H08 146 

respectively. WaterGAP2 simulates global thermoelectric water use using spatially explicit 147 

information on the location of power plants. Manufacturing water demand is simulated in WaterGAP2 148 

for each country using its yearly Gross Value Added (GVA), and factors representing technological 149 

change and water use intensity. The models estimate irrigation water use (supplementary table 1.E) 150 

by multiplying the area equipped for irrigation with its utilization intensity, the total crop-specific 151 
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water requirements – determined by the hydro-climatic conditions (temperature, precipitation, 152 

potential evapotranspiration, soil moisture, crop-growth curves, length and timing of the crop-growth 153 

season), and a parameter that accounts for the irrigation water use efficiency. 154 

 155 

LPJmL, H08, and MATSIRO use surface water (first) to accommodate the sectoral water needs 156 

(supplementary table 1.F). WaterGAP2 uses the groundwater to fulfil water demands, and surface 157 

water is only used if enough is available. PCR-GLOBWB applies a share of readily available 158 

groundwater reserves, based on the ratio between simulated daily base-flow and long-term mean river 159 

discharge, to be used for consumptive water needs. The remainder of the water needs are fulfilled in 160 

PCR-GLOBWB by means of surface water. Whilst all GHMs deal consistently with return flows 161 

(supplementary table 1.G) for industry (surface water, same day), domestic (surface water, same 162 

day), and livestock (no return flow), returns from irrigation water use are incorporated differently. 163 

PCR-GLOBWB and H08 allow excess irrigation water return to the soil and groundwater layers by 164 

means of infiltration and additional recharge. LPJmL and MATSIRO return directly to the rivers, for 165 

which LPJmL uses a fixed ratio of 50%. Excess irrigation water in WaterGAP2 is returned to the 166 

surface waters using a cell-specific artificial drainage fraction, while the rest of the excess water is 167 

returned to groundwater.  168 

 169 

All GHMs include either irrigation and/or non-irrigation purposes in their reservoirs schemes 170 

(supplementary table 1.H), and PCR-GLOBWB also includes flood control and navigation. The 171 

retrospective operation schemes of Hanasaki et al. (2006), Biemans et al. (2011), and Haddeland et al. 172 

(2006) form the basis of the reservoir operation schemes in most models. PCR-GLOBWB uses a 173 

prospective reservoir operation scheme that integrates efforts of Haddeland et al. (2006) and Adam et 174 

al. (2007). H08 is the only model that does not account for increased evapotranspiration over 175 

reservoirs. 176 

 177 

2.2 Selecting observed river discharge data 178 

Observed monthly river discharge data were taken from the Global Runoff Data Centre (GRDC, 179 

56068 Koblenz, Germany). From the 9,051 gauging stations in the GRDC database, we selected 180 

stations that meet the following criteria: (1) a minimum of 5-year coverage (not necessarily 181 

consecutive) during the period 1971–2010 with a completeness of observations of ≥95%; and (2) a 182 

minimum catchment area of 9,000 km
2
, to omit catchments whose hydrological processes cannot be 183 

adequately represented by models operating at 0.5° x 0.5° (Hunger and Döll, 2008). Finally, we 184 

discarded the stations for which the difference in catchment area in GRDC database and that 185 

estimated by using the DDM30 river routing network (Döll and Lehner, 2002) is >25%.  186 

 187 
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We then made a distinction between near-natural and managed catchments. Following Beck et al. 188 

(2016), a catchment is classified as near-natural if the share of land-area subject to irrigation is <2% 189 

and the total reservoir capacity is <10% of its long-term mean annual discharge. If these conditions 190 

are not met the catchment was classified as managed. The classification was based on the HYDE 191 

3/MIRCA land cover dataset (Fader et al., 2010; Klein Goldewijk and Van Drecht, 2006; Portmann et 192 

al., 2010; Ramankutty et al., 2008) together with the Global Reservoir and Dam database (Lehner et 193 

al., 2011). Two stations shifted from near-natural to human impacted conditions between 1971 and 194 

2010, and were discarded from further analysis.  195 

 196 

The aforementioned steps resulted in 471 stations with a total catchment area covering 19.8% of the 197 

global land (figure 2), of which 92 are located at the outlet of a catchment area. The mean length of 198 

observations is 32.8 years for all stations. Of all stations, 226 are located in managed catchments and 199 

245 in near-natural catchments. Of the stations located at the outlet of a catchment, 45 are managed 200 

(4.8% of the global land area), and 47 are near-natural (15.1% of the global land area).  201 

 202 

Figure 2 shows that the majority of selected stations (blue) are located in Northern and Latin-203 

America, Europe, Southern Africa, and Australia. The number of stations in Northern and Central 204 

Africa and Asia is relatively small. We selected 12 stations in river basins located in different 205 

geographic regions (green circles in figure 2: Amazonas, Amur, Colorado, Congo, Guadiana, 206 

Mackenzie, Murray, Ob, Rhine, Tocantins, Volga, and the Zambezi) for which a detailed analysis is 207 

provided in the Supplementary results section (Supplementary). 208 

 209 
Figure 2: Spatial distribution of GRDC stations used for this study.  210 
Each dot shows a GRDC station (n = 9,051) from the station catalogue. Blue dots indicate all GRDC stations (n 211 
= 471) that meet the selection criteria, whereas the red dots refer to the stations (n = 92) that are located at the 212 
outlet of a catchment. The green dots indicate those stations (n = 12) that were selected for detailed analyses. 213 
 214 

2.3 Evaluating model performance 215 
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To evaluate the GHMs’ simulation of monthly discharge and hydrological extremes under HIP and 216 

NOHIP conditions, we compared modelled results with observed river discharge data using several 217 

evaluation metrics described below. To ensure a consistent comparison between modelled and 218 

observed data, we only used modelled data for the same years for which observations were available. 219 

We also corrected modelled discharges for potential over-/underestimations caused by the difference 220 

in catchment size between model and GRDC. To do this, we used a multiplier that represents the 221 

difference in upstream area as reported by the GRDC and as estimated from the DDM30 network.  222 

 223 

First, we applied the modified Kling-Gupta Efficiency index (KGE) with its sub-components: the 224 

linear correlation coefficient (rKGE); the bias ratio (βKGE); and the variability ratio (γKGE) (Gupta 225 

et al., 2009; Kling et al., 2012). The KGE is a widely applied indicator for the validation of 226 

hydrological performance in modelling studies at the global and regional scale and provides a good 227 

representation of the “closeness” of simulated discharges to observations (Huang et al. 2017, Kuentz 228 

et al., 2013; Nicolle et al., 2014; Revilla-Romero et al. ,2015; Thiemig et al., 2013, 2015; Thirel et al., 229 

2015; Wöhling et al., 2013). Moreover, use of its three sub-components enables the identification of 230 

reasons for sub-optimal model performance (Gupta et al., 2009; Kling et al., 2012; Thiemig et al., 231 

2013). This was achieved by estimating for each sub-parameter its distance to optimal performance, 232 

and by subsequently comparing these distances across the different sub-parameters. Statistical 233 

significance of the change in KGE outcomes due to the inclusion of HIP was tested by means of 234 

regular bootstrapping (n = 1,000, p ≤0.05 (two-tailed)), following the method of Livezey and Chen 235 

(1982) and Wilks (2006).  236 

 237 

Second, we applied the Nash-Sutcliffe Efficiency test (NSE, Nash and Sutcliffe, 1970) to evaluate the 238 

representation of Q1 (high-flow) and Q99 (low-flow) conditions (e.g. Beck et al., 2017a; Blösch et al., 239 

2013; Hejazi and Moglen, 2008; Mohamoud, 2008), obtained under fixed threshold level settings (van 240 

Loon, 2015). By means of a two-sample Kolmogorov-Smirnov (KS) test (Massey, 1951; p ≤ 0.05) we 241 

tested how often HIP leads to significant changes in the fit of the full modelled exceedance 242 

probability curve for hydrological extremes compared to the full observed exceedance probability 243 

curve. 244 

 245 

Table 1: The performance metrics used in this study and their calculation procedure.  246 
Here, si  and oi are simulated and observed monthly discharge at station i; μs and μo are simulated and observed 247 
mean monthly discharge at station i; σs  and σo  are the standard deviation of the simulated and observed 248 
discharge at station i, respectively; Qs and Qo are the simulated and observed hydrological extremes. 249 
 250 

Abbreviation  Name Calculation procedure Range and ideal value 

𝐾𝐺𝐸 

Modified Kling-

Gupta Efficiency 

Index 

𝐾𝐺𝐸 =

1 − √(r𝐾𝐺𝐸∗ − 1)2 + (𝛽𝐾𝐺𝐸∗ − 1)2 + (𝛾𝐾𝐺𝐸∗ − 1)2  
-∞ - 1 (ideal value: 1) 

rKGE 
KGE correlation 

coefficient 
rKGE =  

∑ (𝑠𝑖−𝜇𝑠,𝑖)(𝑜𝑖−𝜇𝑜,𝑖)𝑛
𝑖=1

√∑ (𝑠𝑖−𝜇𝑠,𝑖)2𝑛
𝑖=1 √∑ (𝑜𝑖− 𝜇𝑜,𝑖)2𝑛

𝑖=1

  -1 - 1 (ideal value: 1) 
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(Pearson) 

𝛽𝐾𝐺𝐸 KGE bias ratio 𝛽KGE =  𝜇𝑠,𝑖/ 𝜇𝑜,𝑖  0 - ∞ (ideal value: 1) 

𝛾𝐾𝐺𝐸 
KGE variability 

ratio 
𝛾KGE =  

𝜎𝑠,𝑖
𝜇𝑠,𝑖

⁄

𝜎𝑜,𝑖
𝜇𝑜,𝑖

⁄
  0 - ∞ (ideal value: 1) 

NSE 
Nash-Sutcliffe 
Model Efficiency 

𝑁𝑆𝐸 = 1 −
∑(𝑄𝑠−𝑄𝑜)2

∑(𝑄𝑜−𝑄𝑜̅̅ ̅̅ )2
  -∞ - 1 (ideal value: 1) 

Q1 
High-flow 

indicator 

Monthly discharge (m3/s) that is exceeded on average in 1 out 

of 100 months 

 

Q99 
Low-flow 
indicator 

Monthly discharge (m3/s) that is exceeded on average in 99 out 
of 100 months 

 

KS 

Two sample 

Kolmogorov-
Smirnov test 

[h, p] = kstest2(cdf(Qs,), cdf(Qo), 'Alpha',0.05)*  

For p > 0.05 H0 (the two cdfs 

come from the same 
distribution) is not rejected. 

* Calculation procedure for the two-sample Kolmogorov-Smirnov test presented in the table is the Matlab function for the KS-test. 251 

 252 

3. Results 253 

3.1 Validation and influence of human impact parameterizations on overall model performance  254 

Including the parameterizations of human impacts in the GHMs leads to a large improvement in 255 

overall model performance. Hydrological performance under the HIP simulations shows a significant 256 

improvement compared to the NOHIP simulations for between 40.8% and 72.3% of the land area 257 

studied, depending on the GHM (figure 3a). For most GHMs, the positive effects of including HIP in 258 

the simulations outweigh the negative effects. This is the case for both near-natural and managed 259 

catchments, although the positive effects are more pronounced for the managed catchments (figure 260 

3a-d). Near-natural catchments are only indirectly impacted by HIP, for example by receiving 261 

improved or altered water simulations from upstream managed catchments. The KGE sub-262 

components show significant improvement in performance in large shares of the land area studied, 263 

especially for the bias and variability ratio. The bias ratio improves significantly for 36.1-73.0% of the 264 

total land area for all catchments, compared to 64.8-90.6% and 24.3-70.4% in managed and near-265 

natural catchments respectively (figure 3b). For the variability ratio, improvements were found for 266 

31.4-74.4% of land area for all catchments (48.9-92.6% for managed / 23.0-73.2% for near-natural) 267 

(figure 3c). The lowest improvements are found for the correlation coefficient, with improvements for 268 

15.9-58.1% of total land area for all catchments (22.1-75.1% for managed /13.9-61.4% for near-269 

natural) (figure 3d). 270 

 271 

Results are shown for each station in figure 4 for the overall model performance (KGE), and in 272 

supplementary figure 1 for the KGE sub-parameters. The results show particularly strong 273 

improvements in overall performance in Latin America, Southern Africa, and Northwest U.S.. There 274 

are only a limited number of stations for which the inclusion of HIP leads to a significant decrease in 275 

overall hydrological performance for the majority of GHMs or where no to limited changes occur, for 276 

example in near-natural areas (e.g. the Amazonas). 277 

 278 
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 279 

Figure 3: Global weighted-mean (improvement (‘+’) or deterioration (‘-’) in the) representation of 280 
hydrological performance due to HIP for all catchments, managed catchments, and near-natural 281 
catchments.  282 
Figures 3a-d visualize for each GHM the share of land area with a significant change in overall hydrological 283 
performance due to the inclusion of HIP. Figures 3e-h indicate the globally weighted-mean hydrological 284 
performance after inclusion of HIP. On each box, the red mark indicates the median. The bottom and top edges 285 
of the box indicate the 25th and 75th percentiles of the model ensemble, respectively 286 
 287 
When considering overall hydrological performance for each GHM under HIP conditions (figure 3e), 288 

WaterGAP2 and MATSIRO show the best performance globally. Even though the simulations with 289 

HIP include human impact parameterizations by definition, all GHMs still show better performance in 290 

near-natural catchments than in managed catchments (figure 3e-h). The KGE bias ratio values >1 291 

indicate that all models systematically overestimate long-term mean monthly discharge (figure 3f), up 292 

to 5-fold for LPJmL in managed catchments. For the variability ratio (figure 3g), WaterGAP2 is the 293 

only GHM that tends to slightly underestimate variability (variability ratio <1) in monthly discharge, 294 

in both the managed and near-natural catchments. All other GHMs show overestimations, up to 1.55-295 

fold for LPJmL for near-natural catchments. All GHMs show a reasonable correlation with observed 296 

monthly discharge estimates (figure 3h), with values ranging between 0.49 to 0.69 in the managed 297 

catchments and 0.50 to 0.79 in the near-natural catchments. The highest correlation coefficients 298 

including HIP are found for WaterGAP2, with a global mean value across all catchments of 0.76 (0.69 299 

for managed catchments / 0.78 for near-natural catchments). 300 
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 301 

Figure 4: Number of GHMs with a significant improvement or deterioration in overall hydrological 302 
performance (KGE) due to inclusion of HIP.  303 
Figures for the underlying KGE sub-parameters (bias ratio, variability ratio, correlation coefficient) are 304 
presented in supplementary figure 1. Supplementary figure 2 shows the KGE performance values per GHM 305 
under HIP conditions.  306 
 307 
For each catchment (and therefore its associated land area), it is possible to distinguish which of the 308 

KGE sub-parameters contributes most to sub-optimal performance. These results are summarised in 309 

figure 5. The results show that under HIP conditions, the bias ratio contributes most to sub-optimal 310 

performance in managed catchments for most GHMs, except WaterGAP2 (for which the correlation 311 

coefficient contributes most). For near-natural catchments, sub-optimal performance is most often 312 

caused by the variability ratio for H08, LPJmL and WaterGAP2, by the bias ratio for MATSIRO, and 313 

by the correlation coefficient for PCR-GLOBWB. 314 

 315 

Spatially explicit results vary per GHM and are shown in supplementary figure 3. The distribution 316 

of dominant contributors to the sub-optimal overall hydrological performance is similar for H08, 317 

LPJmL, and PCR-GLOBWB. For these GHMs, we find a dominant contribution of the bias ratio in 318 

Southern Africa, Australia, and inland U.S. Dominant contributions of the variability ratio and the 319 

correlation coefficient for these GHMs are found in Latin America, and at higher latitude and altitude 320 

regions. For Europe, the dominant contributions for H08, LPJmL, and PCR-GLOBWB are the 321 

variability ratio, the correlation coefficient, and the bias ratio respectively. The dominant contributors 322 

that cause sub-optimal overall hydrological performance for MATSIRO and WaterGAP2 are more 323 

equally distributed across the globe. While sub-components contribute to sub-optimal overall 324 

hydrological model performance for MATSIRO, it is predominantly the correlation coefficient and 325 

the variability ratio that determines the sub-optimal performance in WaterGAP2.  326 

 327 
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 328 
Figure 5: Share of land area with dominant contribution of the different KGE sub-components (KGE 329 
correlation coefficient, KGE variability ratio, KGE bias ratio) to sub-optimal overall hydrological 330 
performance under HIP conditions.  331 
Supplementary figure 3 shows per model the spatial distribution of dominant KGE sub-components.  332 
 333 
3.2 Validation and influence of human impact parameterizations on the simulation of hydrological 334 

extremes 335 

The inclusion of HIP in the simulations affects the ability of GHMs to estimate hydrological extremes 336 

correctly in the majority of the land area studied (figure 6). The inclusion of HIP leads to better model 337 

performance for all GHMs, across a substantial share of the land area studied (figure 6a-b). For high-338 

flows, HIP improves model performance significantly across 34.6-77.0% of the land area for all 339 

catchments (36.4-94.7% for managed / 24.1-79.2% for near-natural). For low-flows, HIP improves 340 

model performance significantly across 39.4-80.4% of the land area for all catchments (29.3-81.8% 341 

for managed / 42.7-90.3% for near-natural). The KS-test results (supplementary figure 4) show that 342 

HIP only leads to significant changes in the representation of the exceedance probability curve in a 343 

limited number of cases for H08 and LPJmL (up to 14.1% of the land area studied), predominantly in 344 

managed catchments. 345 

Overall, hydrological extremes are represented reasonably well under HIP conditions, with globally 346 

weighted-mean NSE values ranging between 0.80-0.98 for high-flows, and 0.84-0.98 for low-flows 347 

(figure 6c-d). However, there is a significant difference in the ability of the GHMs to represent 348 

hydrological extremes between managed and near-natural catchments. 349 
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  350 
Figure 6: Global weighted-mean (improvement (‘+’) or deterioration (‘-’) in the) representation of 351 
hydrological extremes (Q1 high-flow and Q99 low-flows) due to HIP, for all catchments, managed 352 
catchments, and near-natural catchments respectively. 353 
On each box, the red mark indicates the median. The bottom and top edges of the box indicate the 25th and 75th 354 
percentiles of the model ensemble, respectively 355 
 356 
 357 

 358 
Figure 7: Number of GHMs with a significant improvement or deterioration in representation of 359 
hydrological extremes due to inclusion of HIP.  360 

Page 12 of 27AUTHOR SUBMITTED MANUSCRIPT - ERL-104434.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



13 
 

 361 
Figure 7 indicates that for the majority of stations, the inclusion of HIP leads to an improvement in 362 

the representation of hydrological extremes, for most GHMs. A deterioration in the representation of 363 

hydrological extremes across the majority of GHMs as a result of the inclusion of HIP was only found 364 

in selected areas, for example at higher latitudes and along the east-coast of the U.S.. When 365 

comparing the results for the Q1 high-flows with the Q99 low-flows, no large differences in the spatial 366 

distribution of the number of GHMs with a significant improvement or deterioration are found.  367 

 368 

The effects of HIP on the magnitude of extreme discharge differ for low-flows and high-flows 369 

(supplementary figure 5). Whilst the magnitude of high-flows mostly decreases with the inclusion of 370 

HIP, the effects on the magnitude of low-flows are both positive and negative. The convergence of 371 

results towards higher observed discharges, in both high- and low-flow estimates (as identified for all 372 

models in supplementary figure 5), indicates that HIP becomes less important for the correct 373 

representation of hydrological extremes with increasing discharge volumes. 374 

 375 

4. Discussion  376 

Our results show that including HIP in GHMs generally improves the overall hydrological 377 

performance of the models, as well as their representation of hydrological extremes. However, we 378 

also show that further improvements are needed. In this section, we discuss: (1) possible reasons for 379 

the improved model performance due to HIP; (2) the main limitations of the current modelling 380 

frameworks and their representation of HIP, and potential ways to improve them; and we reflect on 381 

(3) general limitations in the current study design and provide suggestions for further research.  382 

 383 

4.1 Improvements in model performance due to HIP and challenges ahead  384 

Whilst the inclusion of HIP predominantly leads to the largest improvements in simulated discharge 385 

in the managed catchments, simulated discharge is also improved in a large share of the near-natural 386 

catchments. Improvements in model performance associated with the inclusion of HIP can be 387 

attributed to improvements in the different KGE sub-components, and in turn to different model 388 

components parameterizing the hydrological and human processes. In addition, insights into those 389 

factors bounding the optimal hydrological model performance under HIP conditions may help to 390 

identify priorities for further model improvement. 391 

4.1.1 Representation of long-term mean discharges (bias ratio) 392 

Our study shows that the representation of long-term mean discharges significantly improved with the 393 

inclusion of HIP, especially in managed catchments. Inclusion of HIP generally results in lower 394 

simulated discharges. As most GHMs systematically overestimate river discharges in the NOHIP 395 

simulation, this results in an improved performance. When HIP is included, we only find a 396 
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deterioration in the bias ratio in selected higher latitude/altitude regions, where discharges are 397 

underestimated; this finding is in line with outcomes of single-model studies performed by Döll et al. 398 

(2009), De Graaf et al. (2014), and Haddeland et al. (2006). Improvements in bias ratios due to the 399 

inclusion of HIP can be attributed to the inclusion of water abstractions and return flows 400 

(supplementary table 1.B-G), and the incorporation of irrigated areas and irrigation rules, which 401 

influence evapotranspiration rates and the generation of runoff (supplementary table 1.E).  402 

However, despite improvement in the bias ratio with the inclusion of HIP, this KGE sub-indicator 403 

contributes most to sub-optimal performance in managed catchments for H08, LPJmL, MATSIRO, 404 

and PCR-GLOBWB under HIP conditions. As the GHMs continue to overestimate long-term mean 405 

discharges in most cases under HIP conditions, future model improvements should be targeted to 406 

correcting this bias in these locations. This may be achieved by critically revisiting the methods used 407 

to represent evapotranspiration rates (supplementary table 1.A), runoff generation processes 408 

(supplementary table 1.A) and the level of water abstractions in managed catchments 409 

(supplementary table 1.B-E). The relatively good performance of WaterGAP2, in which biases in 410 

long-term mean annual discharge are adjusted using a parameter that determines the portion of 411 

effective precipitation that becomes surface runoff (Müller Schmied et al., 2014), highlights the 412 

potential importance of including a calibration routine (supplementary table 1.I). Calibration is also 413 

performed for H08, but this calibration aims to minimize runoff bias by modifying two parameters of 414 

subsurface flow for four climatic groups (Hanasaki et al., 2008a,b); it is therefore less effective in 415 

minimizing the bias ratio under HIP conditions. 416 

 417 

4.1.2 Representation of hydrological variability (variability ratio) 418 

The inclusion of HIP leads to mixed results regarding the representation of hydrological variability. 419 

Whilst HIP improved the representation of variability in some catchments and for some GHMs, it 420 

deteriorated the representation of variability for others. For example, it led to improvements in west-421 

coast U.S., Southern Africa, and Australia, but a deterioration for most GHMs in Europe and inland 422 

U.S.. Similar results were found by Biemans et al. (2011), De Graaf et al. (2014), and Masaki et al. 423 

(2017) for a selection of catchments. Changes in the variability ratio due to the inclusion of HIP are 424 

predominantly driven by the timing of water abstractions and return flows, as well as by reservoir 425 

operation rules (supplementary table 1.F-H). These human activities influence the relative size of 426 

high- and low-flows compared to their long-term mean discharge values. 427 

The variability ratio is the KGE sub-parameter that contributes most to the sub-optimal performance 428 

in near-natural catchments with the inclusion of HIP, for H08, LPJmL, and WaterGAP2. These 429 

GHMs significantly overestimate hydrological variability in near-natural catchments (except 430 

WaterGAP2, which underestimates variability in managed and near-natural catchments), and model 431 

improvement should therefore focus on better representing the speed of hydrological response, e.g. 432 
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through an improved representation of the soil moisture storage capacity or the ratio between surface 433 

and sub-surface runoff (supplementary table 1.A). In those cases where the variability ratio is also 434 

the KGE sub-parameter that contributes most to sub-optimal performance in managed catchments, 435 

model improvement should target the timing of water abstractions, return flows, and reservoir 436 

management (supplementary table 1.F-H).  437 

 438 

4.1.3 Representation of the goodness-of-fit (correlation coefficient) 439 

The inclusion of HIP only led to improved correlation coefficients in limited cases, and often resulted 440 

in a deterioration, even in managed catchments. Correlation coefficients between observed and 441 

modelled discharges, which are predominantly determined by the hydro-meteorological forcing data 442 

(Döll et al., 2016; Beck et al., 2016), were found to be generally high under both HIP and NOHIP 443 

conditions. Perturbations of the hydrological cycle due to human activitiesleading to changes in the 444 

timing of discharges and in the shape of the hydrograph, like return flows and reservoir operations, 445 

explain the observed decrease in the correlation coefficient in a substantial share of catchments and 446 

models globally (supplementary table 1.F-H).  447 

Under HIP conditions, the correlation coefficient is the KGE sub-parameter that contributes most to 448 

sub-optimal performance only in PCR-GLOBWB for near-natural catchments and WaterGAP2 for 449 

managed catchments. It should be acknowledged, though, that correlation coefficients for PCR-450 

GLOBWB and WaterGAP2 are relatively high, especially compared to the other GHMs. The 451 

relatively low correlation coefficients in near-natural catchments found at higher latitudes in all 452 

models may be addressed by critically reviewing the snow accumulation and melt processes in the 453 

GHMs (supplementary table 1.A). Higher correlation coefficients in the managed catchments may 454 

be established by improving the timing and quantification of return flow estimates and the 455 

representativeness of reservoir operations (supplementary table 1.F-H).  456 

4.1.4 Representation of hydrological extremes  457 

The inclusion of HIP also led to significant changes in the ability of most GHMs to represent 458 

hydrological extremes (both high- and low-flows), although the strength of this change is very much 459 

dependent on the location and GHM in question. Whilst the magnitude of high-flow estimates mainly 460 

decreased due to the inclusion of HIP, low-flow estimates showed mixed results. This is because the 461 

impacts of human activities tend to be greater for lower discharges, as the relative ‘size’ of human 462 

perturbations (such as water abstractions, return flows, or delayed releases of water via reservoir 463 

operations) is higher as a percentage of overall discharge when flows are low. Both De Graaf et al. 464 

(2014) and Wada et al. (2013a) found similar results when investigating hydro-climatic extremes. 465 

However, even with inclusion of HIP, the representation of hydrological extremes is sub-optimal. 466 

Future model improvements should aim to better characterize these extremes and to improve the 467 

representation of human activities during extreme hydrological conditions. 468 
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 469 

4.2 Limitations and further research 470 

As the GHMs have very different parameterizations of hydrological and human processes, the current 471 

study does not allow a systematic assessment of specific cause-effect relations between HIP and the 472 

observed improvements in performance (Döll et al., 2016; Haddeland et al., 2014; Hagemann et al., 473 

2013; Schewe et al., 2014; Beck et al., 2016). To do this, a substantial Monte-Carlo analysis would be 474 

required, whereby individual parameters and combinations of parameters are systematically modified 475 

for all GHMs (Döll et al., 2016). Undertaking such an analysis in parallel for the different GHMs 476 

incorporated is computationally expensive and requires a strict modelling-protocol. It may provide, 477 

however, additional information on how to adapt and improve the individual models and would be a 478 

valuable addition to the results presented in this study.  479 

 480 

When interpreting the results of this study one must take into account that we only evaluated the 481 

GHMs with respect to monthly discharge. Whilst monthly discharge may be sufficient for the 482 

assessment and management of low-flows, droughts, and freshwater resource availability, flood risk 483 

assessment and management require information on daily peak discharge. Further research should 484 

therefore attempt to validate GHMs using daily peak discharge and assess how daily peak discharge is 485 

affected by the inclusion of HIP.  486 

 487 

The spatial resolution of the GHMs applied in this study is 0.5° x 0.5° (~50 km x 50 km at the 488 

equator), dictated by the resolution of the GSWP3 input dataset. At a 0.5° spatial resolution 489 

hydrological processes are often represented by GHMs in a simplified or generalized form not fit for 490 

local applications (Bierkens, 2015). To account for this, we applied a minimum catchment size of 491 

9,000 km
2
, thereby omitting catchments too small to be adequately represented by GHMs (Hunger 492 

and Döll, 2008). Newer versions of several of the GHMs now operate at higher resolutions; for 493 

example WaterGAP and PCR-GLOBWB have recently published 5-min/6-min versions respectively 494 

(Verzano et al., 2012; Wada et al., 2016b). Future research could investigate whether the inclusion of 495 

these high-resolution model-runs improves the representation of discharges and hydrological extremes 496 

in the selected catchments and whether these high-resolution runs also allow for the inclusion of 497 

smaller catchments. 498 

 499 

In this study, a relatively simple distinction was made between managed and near-natural catchments 500 

using two parameters: irrigated agriculture and reservoirs. These parameters were chosen as they have 501 

been reported to be the most significant human parameters on river hydrology (Beck et al., 2016, 502 

2017a). However, to make a more detailed distinction between catchments that are impacted by 503 

human activities and those that are not, future studies could consider incorporating additional criteria, 504 

such as the share of sectoral water abstractions and return flows, and the share of built-up land area. 505 
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Additional catchment descriptors (Eisner, 2016), like climate conditions and physiographic properties 506 

of the drainage area, could also be applied to further assess the important controls on modelled 507 

discharges.  508 

 509 

When evaluating the impact of HIP on hydrological extremes we only incorporated results for the Q1 510 

high-flow and Q99 low-flow. In this study we did not consider other ranges of the extreme value 511 

distribution explicitly. Although the inclusion of HIP shows influences these hydrological extremes 512 

substantially, we found very few instances in which this led to a significant change in the full 513 

exceedance probability curve . Future research should therefore also incorporate other ranges of the 514 

probability exceedance curve in order to do a full assessment of the influence of HIP on high- and 515 

low-flow extremes.  516 

Next to the parameterizations and representation of hydrological processes and human impacts, other 517 

sources contribute to the uncertainty in the modelling of discharges and hydrological extremes. , 518 

These include the quality of, and uncertainties in, input data and observation datasets, and the 519 

calibration/validation strategy (Döll et al., 2016; Sood and Smakhtin, 2015). The quality of the 520 

selected forcing data, for example, may limit the representation of monthly discharges and 521 

hydrological extremes significantly (Döll et al., 2016; Beck et al., 2016), but has not been evaluated 522 

explicitly in this study. However, climate forcing uncertainty is probably a dominant driver for model 523 

outputs (Müller Schmied et al 2014, 2016). A benchmarking of the GSWP3 dataset against historical 524 

observations of precipitation and temperature, or against other forcing datasets (e.g. similar to Beck et 525 

al., 2017b; Sun et al., 2017), may therefore be of added value. 526 

 527 

Differences in the quality and trustworthiness of the historical discharge observations (e.g. due to 528 

sampling, measurement, and interpretation errors), may potentially result in artificial biases in the 529 

validation results (Renard et al., 2010). The spatial representativeness of our results is limited by the 530 

availability of consistent publicly available in situ observations of sufficient quality. Future research 531 

should therefore consider extending the GRDC data-points with regional repositories of observed 532 

discharges, such as recently attempted by Beck et al. (2016), Do et al. (2017), and Gudmundsson et al. 533 

(2017). However, increasing the spatial representation comes at the cost of consistency, and special 534 

attention should be paid to the harmonization of these different databases. The use of remotely sensed 535 

data could also provide a valuable way of carrying out calibration and validation in ungauged regions 536 

(Döll et al., 2014a,b; Scanlon, et al. 2018). Remotely sensed data can also be of added value in: the 537 

assessment of the water consumed by agricultural irrigation (Peña-Arancibia et al., 2016), operational 538 

drought monitoring and early warning (Ahmadalipour et al., 2017); and the estimation of terrestrial 539 

water budgets (Zhang et al., 2017). Moreover, a clear potential exists for the assimilation of remotely 540 

sensed data into models (Eicker et al., 2014).  541 
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 542 

Calibration and validation are essential for compensating for factors such as the impossibility to 543 

measure all required model parameters at the applied scale, the lack of process understanding, the 544 

simplistic process representation in GHMs, and errors in forcing data (Beck et al., 2016; Bierkens, 545 

2015; Döll et al., 2016; Liu et al., 2017). Hence, calibration/validation is key for realistic model 546 

performance. It should be acknowledged, though, that the representation of hydrological and/or 547 

human processes is artificially altered by means of calibration/validation processes and that a limited 548 

calibration may introduce uncertainties to the model output (Sood and Smakhtin, 2015). Before using 549 

any calibrated/validated model-data one should therefore critically reflect on whether the 550 

calibration/validation procedure executed, together with their optimization objectives, are fit for the 551 

specific application in-mind.  552 

 553 

5. Summary and conclusions 554 

This study shows that the inclusion of human activities in GHMs can significantly improve the 555 

simulation of monthly discharges and hydrological extremes, for the majority of catchments studied. 556 

The finding is robust across both managed and near-natural catchments. The global and spatially 557 

distributed results presented in this study indicate that the inclusion of human impact 558 

parameterizations is associated with improvements in the bias ratio and the variability ratio. Whilst 559 

the biases in long-term mean monthly discharge decrease significantly in 36.1-73.0% of the studied 560 

catchments due to the inclusion of HIP, the modelling of hydrological variability improves 561 

significantly in 31.4-74.4% of the catchments. Estimates of hydrological extremes are also 562 

significantly influenced by the inclusion of HIP, although the influence is highly dependent on the 563 

location and GHM in question. While HIP generally leads to a decrease (and thus improvement) in the 564 

absolute magnitude of simulated high-flows, its impact on low-flows is mixed.  565 

 566 

Even when human activities are included in GHMs, their performance is still limited; this is 567 

particularly the case in managed catchments Moreover, the systematic misrepresentation of 568 

hydrological extremes across all GHMs calls for a careful interpretation of risk assessments based on 569 

their results, and further study into the overarching research theme of water resources, hydrological 570 

extremes, human interventions, and feedback linkages. The large variation in performance between 571 

GHMs, regions, and performance indicators, highlights the importance of a careful selection of 572 

models, model components, and evaluation metrics in future model applications. For example, for a 573 

study of droughts it is essential to correctly represent hydrological variability, whilst to study water 574 

scarcity it is crucial to minimize biases. 575 

 576 

Sub-KGE results, which were presented in this study for each GHM, allow for the attribution of 577 

different hydrological and human impact model-components limiting optimal hydrological 578 
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performance. In most GHMs model performance is limited due to the overestimation of long-term 579 

mean discharges. The correlation coefficient is the limiting factor for optimal model performance for 580 

WaterGAP2, despite the high correlation coefficients that were found for this model relative to the 581 

other GHMs studied. A better understanding of these factors, as provided by this study, may assist in 582 

the identification of priorities for further model improvement. 583 
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