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A B S T R A C T

This paper proposes for the purposes of freight generation a spatial autoregressive model fra-
mework, combined with non-linear semi-parametric techniques. We demonstrate the capabilities
of the model in a series of Monte Carlo studies. Moreover, evidence is provided for non-linearities
in freight generation, through an applied analysis of European NUTS-2 regions. We provide
evidence for significant spatial dependence and for significant non-linearities related to em-
ployment rates in manufacturing and infrastructure capabilities in regions. The non-linear im-
pacts are the most significant in the agricultural freight generation sector.

1. Introduction

Regional freight generation models are widely used to model the volume of freight originating from regions. This modeling
approach is a popular way of predicting future freight volumes, especially in the context of the so-called four-stage model of freight
analysis. Moreover, such models are an important cornerstone in transportation planning (Ortúzar and Willumsen, 2011; Sánchez-
Díaz, 2017; Sánchez-Díaz et al., 2015).

The classic freight generation model does not take spatial dependencies between the modeled regions into account. This limitation
has been pointed out in recent literature, among others in Novak et al. (2011) and Sánchez-Díaz et al. (2016). Both studies emphasize
the importance of spatial lags of the dependent variable in freight generation models. The theoretical motivation for such de-
pendencies are economic spillovers, as well as the shared transportation infrastructure. Moreover, spatial dependence is more likely
than spatial independence. Ignoring such dependencies can lead to severely biased estimates, as noted by Anselin and Bera (1998),
Anselin et al. (2004), LeSage and Pace (2009) and Fischer and Wang (2011) among others.

A second shortcoming of the classic freight generation model, is that it does not control for non-linear impacts of the independent
variables. Recent literature provides strong evidence for the presence of such non-linearities (Ranaiefar et al., 2013; Chow et al.,
2010; De Grange et al., 2010; Hesse and Rodrigue, 2004). However, there is a lack of consensus in the literature over which functional
form to use for the explanatory variables. Sánchez-Díaz et al. (2016) suggest multiple non-linear transformations (for example
logarithmic, quadratic or exponential transformations, as in Novak et al. (2011)) of the explanatory variables, until a sufficient value
of the chosen measure of fit is achieved. As noted by Tavasszy et al. (2012) and Rodrigue (2006) such an exploratory approach shows
some drawbacks: first, it is difficult to specify ex ante which functional form would be the most appropriate for each variable. Second,
testing for a wide number of transformations can be computationally burdensome, and third, including polynomials of higher order
can lead to numerical instability.

Such non-linearities in the parameters (besides the non-linearities in the variables introduced by spatial dependencies), however,
seem to play a central role in freight generation. Suggestions to deal with this issue include regression trees (Rodrigue, 2006; Holguín-
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Veras and Patil, 2008; Ranaiefar et al., 2013; Al-Deek and El-Maghraby, 2000). These approaches, however, neglect to simulta-
neously control for spatial dependencies in the model. While some non-linear approaches, such as those by Ranaiefar et al. (2013)
and Al-Deek and El-Maghraby (2000) might implicitly model spatial spillovers, they do not explicitly measure the intensity of the
spatial dependencies between freight generating regions. Such information, however, can be of value for policy makers. Novak et al.
(2011) account for spatial dependence in the error term, while opting for an explorative approach in testing out non-linear speci-
fications for selected covariates. They conclude that there is strong support for non-linearities in the parameters even while taking
into account spatial dependencies in the error terms.

While Chow et al. (2010) and De Jong et al. (2013) neglect taking the spatial aspect of freight generation into account, they
capture non-linearities in the parameters in the freight generation model through a semi-parametric approach. Semi-parametric
modeling in the context of spatial autoregressive (SAR) models was recently addressed by Basile (2008), Del Bo and Florio (2012),
Fotopoulos (2012), Basile et al. (2014). These papers use a form of parameter expansion called basic splines,1 based on locally defined
piecewise polynomials, to model explanatory variables in a flexible way (Ruppert et al., 2003). Such basic splines have been a
popular way for modeling non-linearities in a semi-parametric fashion, ever since their introduction in the seminal work by DeBoor
(1978). The main advantage of this approach lies in the fact that each piecewise polynomial only forms a local basis, with unit
integrals, and overlaps only with a limited number of other polynomials. Moreover, the upper range of basis function is limited, and
the differentials of basic splines are readily available, as they are composed of piecewise polynomials themselves (Eilers and Marx,
1996). All of these properties ensure that the spline functions are easily tractable, both numerically and analytically (Fahrmeier et al.,
2004). Moreover, in the case of spatially dependent explanatory variables, basic spline models can be estimated in the same fashion
as classic SAR models (Basile, 2008).

The main disadvantage of using basic splines lies in the fact that the modeler has to choose a set of support points for the spline.
On the one hand, if this set of support points is too small, the splines may not adequately reflect the non-linearity of the modeled
function. On the other hand, if the number of support points is too large, the model may be severely overparameterized. This issue is
quite relevant in the context of regional freight modeling, where usually cross-sectional data or small-scale panels are used for
inference. Multiple approaches have been proposed to deal with this problem. As suggested by e.g. Koop and Poirier (2004), one
could vary the number of spline support points in order to minimize certain criteria, for example, some form of information criterion
(such as the one proposed by Akaike or the Bayesian information criterion). Another approach relies on selecting a priori a relatively
large number of uniformly spline support points and using a form of Bayesian shrinkage through adequate choice of hyperpriors, such
as in Eilers and Marx (1996).

This paper addresses the issue of spatial dependence and non-linearities in the parameters in freight generation models. Spatial
dependence is addressed by using a SAR model, which features a spatial lag of the dependent variable, for freight generation
modeling (Anselin, 1988; LeSage and Pace, 2009; Fischer and Wang, 2011). The theoretical motivation for such dependencies are
economic spillovers amongst regions, as well as their shared transportation infrastructure. Moreover, spatial dependence is more
likely than spatial independence. Ignoring such dependencies can lead to severely biased estimates, as noted by Anselin and Bera
(1998), Anselin et al. (2004), LeSage and Pace (2009), Fischer and Wang (2011) among others.

The novelty of our approach lies in combining a spatial econometric model with a semi-parametric framework in an adaptive
manner. Current spatial econometric approaches, such as Basile et al. (2014), rely on setting a fixed number of equidistant support
points over the range of the non-linearly modeled variables. We argue, that such an approach does not adequately capture the non-
linearities, and instead propose an adaptive method using a variant of genetic algorithms to find the – in terms of AIC – optimal
number and position of support points for modeling each co-variate. We aim to demonstrate in this paper through multiple Monte
Carlos studies that this approach leads to lower bias in parameter estimates, especially in the presence of moderate non-linearities.
The basic principles of the adaptive spline knot selection algorithm are based on the ideas presented in Koch and Krisztin (2011). We
differ from the approach presented in Krisztin (2017) by using an adaptive strategy for direct selection of spline knots, instead of a
Bayesian approach with a penalization term (which relies on a large number of pre-selected spline knots). While the penalization
strategy is a valid approach to this problem, the genetic algorithm approach presented in this paper allows for a more flexible
estimation and does not have to resort to Bayesian methods.

Section 2 introduces the classic SAR model in the context of freight generation, and discusses common issues in parameter
interpretation and estimation. Section 3 puts forth a semi-parametric variant of the classic SAR model, as a possible way of modeling
non-linearities in the parameters coupled with a spatial lag of the dependent variable. This section develops a semi-parametric SAR
model, which uses basic splines, coupled with a numerical optimization procedure, to adequately limit the problem of over-
parametrization. Section 4 discusses in detail the estimation algorithm and further econometric issues related to the estimation
procedure. Section 5 provides evidence in the context of a Monte Carlo simulation study that the proposed approach can adequately
model non-linearities in the parameters, without over-fitting. Moreover, the proposed estimation method is compared to a classic SAR
model (with no semi-parametric modeling). Section 6 includes an application in freight generation modeling. In the context of this
application, the proposed semi-parametric approach is applied to European freight generation data, covering 258 NUTS-2 regions in
2011. The dataset includes both aggregate freight generation over all sectors and sector specific data for the agricultural, mining and
food sectors. Based on this data, the applicability of the proposed semi-parametric estimation approach is demonstrated. Moreover,

1 Basic splines are a class of semi-parametric basis function, which can be used to approximate non-linearities in the parameters. This is achieved by using a large set
of overlapping piecewise polynomials (the so-called bases) in order to model each explanatory variable (DeBoor, 1978). Note, however, that basic splines are linear in
the parameters and only approximate non-linearities in the parameters by transforming the explanatory variable in a non-linear fashion.
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the proposed modeling approach is contrasted with a classic SAR model, which is linear in the parameters. The results provide
evidence for significant spatial dependence. The semi-parametric variant of the model performs better, both in terms of in-sample fit
and in predicting freight generation in 2012. The results suggest significant non-linear impacts in regions’ road infrastructure and in
the share of manufacturing employment. Finally, Section 7 concludes.

2. The spatial autoregressive model of freight generation

Let us consider a set of N freight generating regions and let i denote a specific region ( = …i N1, , ). Further, let us denote the volume
of freight originating from these regions by the ×N 1 vector y. The core assumption of the SAR model is that the volume of freight
originating from region i does not solely depend on K explanatory variables and a normally distributed error term, but also on the
freight generation of neighboring regions. More formally, we assume that y can be modeled in the following fashion:

= + + +y y ι β ερ βW XN 0 (1)

∼ε σI(0, )N
2N

where W is an exogenously given ×N N spatial weight matrix of known constants. wi j, is a typical element of W in the i-th row and j-
th column ( = …i j N, 1, , ). If regions i and j are considered to be neighbors, >w 0i j, , otherwise =w 0i j, . Moreover, no region can be
considered a neighbor to itself, therefore =w 0i j, ∀ =i j. We assume that W is doubly stochastic, that is ∑ = ∑ =w w 1i

N
i j j

N
i j, , . ρ

denotes the spatial autoregressive parameter. We assume that ρ is restricted to the parameter space− ⩽ ⩽ρ1 1. The SAR model in Eq.
(1), subsumes the classic linear freight generation model as a special case, in the case of =ρ 0. ιN an ×N 1 vector of ones, β0 the
corresponding intercept, X is an ×N K matrix of explanatory variables, and β the corresponding ×K 1 coefficient vector. ε is an

×N 1 vector of independently and identically distributed error terms, with zero mean and σIN
2 variance, where IN denotes an ×N N

identity matrix.
A special feature of the spatial autoregressive model in Eq. (1) is that the volume of freight generated by region i does not only

depend on the explanatory variables associated with i, but on its neighbors as well (and these in turn depend on their neighbors). Due
to the spatial dependence of y, it would not be correct to estimate the model in Eq. (1) via ordinary least squares (OLS), using

y ιW X[ , , ]N as a matrix of explanatory variables. Besides leading to biased estimates (Anselin and Bera, 1998; Anselin et al., 2004;
LeSage and Pace, 2009; Qu and Lee, 2015), such a model would suffer from endogeneity and from serial correlation in the errors.

Instead the model should be estimated as a system of equations. This is apparent if we re-write the model its reduced form:

= − + + −− −y ι β ερ β ρI W X I W( ) ( ) ( ) ( ).N
1

0
1 (2)

This is a non-linear model, which cannot be estimated via OLS. However, estimates for βρ β, ,0 , and σ2 in Eq. (2) can be found by
maximizing the log-likelihood function (see LeSage and Pace, 2009, p. 47):

= − + − ′e eN πσ σAlog( )/2 log[det( )] /22 2L (3)

= − −e y ι ββA XN 0

where L denotes the log-likelihood, = −ρA I W( )N and Adet( ) denotes the determinant of A. Conditional on ̂ρ (let estimates be
denoted with ∧), estimates for ̂ ̂ββ ,0 and ̂σ 2 are available in closed form. LeSage and Pace (2009) provide efficient computational
algorithms to estimate ̂ρ , conditional on the closed form estimators for ̂ ̂ββ ,0 and ̂σ 2. These can be used of the parameter

∈ρ wmin wmax[1/ ,1/ ] (where wmin and wmax denote the smallest and largest eigenvalue of W, respectively) and if the matrix W is
row-stochastic.

As opposed to models containing no spatial lag of the dependent variable, in SAR models interpreting the impact of the k-th
( = …k K1, , ) explanatory variable xk (where xk denotes the k-th column of X) on the dependent variable is richer, but more com-
plicated. This is due to the spatial connectivity relationships incorporated in the model. Consider, that a change in a single ex-
planatory variable in region i has not only a “direct” impact on the volume of freight generated by region i (denoted as yi), but also on
the volume of freight generated by region j as well (where ≠j i). More formally, we can re-formulate the SAR model as:

∑= + +−

=

−y ι xβ εA S AN
k

K

k k
1

0
1

1

(4)

= − βS A I( )k N k
1

where the ×N N matrix Sk contains the partial derivative impacts of a change in xk. Its i j( , )-th element – denoted by S i j( , )k – contains
the partial derivative impact of the k-th co-variate on yi, that is:

∂
∂

=
y

x
S i j( , ).i

j k
k

, (5)

This implies that the standard interpretation of the estimated parameters as partial derivatives does not apply in the case of SAR
models. However, interpreting the full ×N N partial derivative matrix Sk is not practicable. To alleviate this issue, LeSage and Pace
(2009) introduce scalar summary impact measures. They label the average of the diagonal elements of Sk – that is S i i( , )k for all

= …i N1, , – as the average direct effect of the k-th variable on y. These effects include all impacts of the k-th variable on the freight
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generation of region i, as well as the feedbacks to the observation itself, stemming from neighboring regions. Average indirect effects
arise as the average of the changes in all typical elements of the k-th explanatory variable xj k, , where ≠j i. They can be obtained by
taking the average of the off-diagonal elements of the i-th row of the matrix Sk, for each observation i. The sum of average direct and
indirect effects of the k-th covariate equal the average total effects.

Note, that the model in Eq. (1) is non-linear in the case of ≠ρ 0. The SAR model term, yρW , gives rise to this non-linearity. In
essence, each element yi of the dependent variable y depends upon its neighbor’s freight generation (as they depend on their
neighbor’s in turn, etc.). The strength of this non-linear influence is determined by the coefficient ρ, and the structure is given by the
exogenous matrix W.

The model, however, is linear in the influence of the explanatory variables on the term yA , that is, the model in Eq. (1) is linear in
the parameters β. This can be an issue if the SAR model is to be used in the context of freight generation, where multiple studies
(Hesse and Rodrigue, 2004; Chow et al., 2010; Tavasszy et al., 2012; Rodrigue, 2006; Novak et al., 2011; De Jong et al., 2013)
provide evidence on non-linearities in the parameters. The classical approach to address this issue (see Novak et al., 2011; Ortúzar
and Willumsen, 2011) is to explore multiple candidate models using non-linear transformations of the explanatory variable (such as
logarithmic or quadratic functions). The most appropriate of these candidate models can then be determined using a fit statistic, such
as the coefficient of determination. Such an approach of course only explores a very limited number of non-linear transformations and
explanatory variables. Moreover, using polynomial transformations can lead to orthogonality and numerical issues in the matrix of
explanatory variables.

3. A semi-parametric extension using splines

In order to incorporate non-linearities in the parameters, we extend the basic SAR freight generation model from Eq. (1). In this
context, let us consider two sets of explanatory variables. The ×N Q matrix X1 contains the first set of explanatory variables. These
are modeled in a fashion that takes into account non-linearities in the parameters. The ×N D matrix X2 contains the second set of
explanatory variables, which are modeled linearly in the parameters. We model X1 through an unknown function (·)F :

= + + + +y y ι β ερ βW X X( )N 0 1 2 2F (6)

where β2 is the ×D 1 coefficient vector corresponding to X2.
We further specify the function (·)F as being the sum of Q unknown functions f (·). Each function f (·) models a column of X1,

which we denote by the ×N 1 vector xq (where = …q Q1, , ):

∑=
=

x θfX( ) ( , ).
q

Q

q q1
1

F
(7)

Note, that each f (·) also depends on an ×L 1q parameter vector θq, where the length Lq of the parameter vector can differ from
covariate to covariate and < ∞Lq , as well as �∈ +Lq . In the general formulation presented in Eq. (7), the parametrization of f (·)
may be non-linear in the explanatory variable xq, non-linear in the parameters θq, or it can be non-linear in both.

The advantage of using the non-linear function f (·) to model xq over a simple linear representation is that this allows a greater
flexibility, and – in principle – a greater accuracy in prediction and impact estimation (see White, 2000). Offsetting these two
advantages are some potentially severe disadvantages: first, non-linear models can overfit the data, which would result in inferior
performance in comparison to linear models. Second, the estimation might pose a serious computational challenge. Finally, the
resulting parameter estimates can be difficult to interpret.

A direct approach might assume that the function f (·) is truly non-linear in the parameters. In such a case, there generally is no
closed form solution for an optimal coefficient vector θq (White, 2000). A potentially useful estimation algorithm might be con-
structed through an iterative approach, which tries out successive candidate values until convergence – as defined by a suitably
chosen metric – is achieved. Such an optimization procedure, however, can be challenging to apply in practice. It involves fine-tuning
the optimization algorithm, which might not be well behaved. Moreover, convergence is not guaranteed, and when confronted with a
complex solution space featuring a large number of local optimum values, the algorithm might fail to converge altogether. Even if
convergence was achieved, it is impossible to determine whether the algorithm converged merely to a local or to the desired global
optimum.

Since these computational challenges arise from f (·) being truly non-linear in the parameters, one could find a class of functions,
which – although linear in the parameters – possess sufficient flexibility to approximate f (·). This motivates semi-parametric ap-
proaches, which use a form of parameter expansion for f (·), divided into Lq (potentially overlapping) segments of basis functions,
denoted as B (·)l (where = …l L1, , q). Subsequently, f (·) is modeled as a linear combination of the Lq basis functions:

∑≈
=

x θ xf θ B( , ) ( )q q
l

L

l q l q
1

,

q

(8)

where we denote the l-th element of the parameter vector θq as θl q, .
This spline parametrization is non-linear in xq, but linear in the parameters θq, thus it allows for flexible modeling of f (·). This

eliminates the computational challenges arising from non-linearity in the parameters: the model is not prone to be stuck at local
minima and it can be estimated in the same fashion as the classic SAR model. For the purpose of interpreting the summary impact
measures of the SAR model, it is essential that the basis functions be smooth, continuous polynomials, with continuous first-order
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derivates. A further condition is that the basis functions be orthogonal. We follow evidence form Basile (2008), Basile et al. (2014),
and Basile et al. (2013), and use basic splines to model B (·)l .

3.1. Basic splines

Basic splines are essentially locally defined polynomials of the m-th (with = …m M0, , ) degree (DeBoor, 1978). They consist of
recursively defined basis functions B (·)l

m . Each basis function B (·)l
m is a polynomial and is defined over only a partial range of the

modeled explanatory variable vector xq. Let the + + ×L m( 1) 1q vector κq, denote the total set of support points for xf ( )q , with the l-
th element of κq being denoted as κl q, . Then, the l-th basis function B (·)l

m is defined only between the knots κl q, and + +κl m q1, and is zero
otherwise.

The total vector of support points κq must satisfy the requirement that:

⩽ …⩽ ⩽ …⩽ + +κ κ κq l q L m q1, , 1,q (9)

where the first and last support points are defined so that = xκ min ( )q q1, and =+ + xκ max ( )L m q q1,q . Here, xmin ( )q denotes the smallest
and xmax ( )q the largest element of xq, respectively.

The nature of basis functions of varying degree is illustrated in Fig. 1. The top row [panels (i) to (iii)] depicts spline basis
functions. The bottom row [panels (iv) to (vi)] shows the resulting functional fit, when the basis functions multiplied by the para-
meter vector = − − − ′θ [1.00, 0.75,1.00, 0.50,0.50,0.00,0.00,1.50, 0.50] , respectively.

Panels (i) to (iii) illustrate basis functions of the 0-th, first and second degree, respectively. In all three panels the range of the
semi-parametrically modeled variable is subdivided into nine equal segments by eight equally distributed spline knots. The position
of spline knots is marked on the x-axis. The varying colors denote different basis functions, which are positive only in a specific range
and zero otherwise. For illustration purposes, the fourth basis function is outlined in black in panels (i) to (iii).

The full functional forms of the spline functions using 0-th, first and second degree basic functions and multiplied by a specific

Fig. 1. Illustration of spline basis functions of the 0-th (i), first (ii), and second degree (iii), as well as their respective functional forms (iv) to (vi).
Notes: The splines model a ×10,000 1 vector x , containing uniformly distributed observations between zero and one. The position of the equally
spaced support points is marked on the x-axis of each panel. For constructing the functional forms in panels (iv) to (vi) the coefficient vector

= − − − ′θ [1.00, 0.75,1.00, 0.50,0.50,0.00,0.00,1.50, 0.50] was used.
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parameter vector θ are illustrated in panels (iv) to (vi) in Fig. 1. Splines of 0-th degree ( =m 0) [in panel (i)] are only defined in the
interval between two spline knots, where they are equal to one, and zero otherwise. They do not overlap and their resulting spline
function in panel (iv) is not continuous. Basis functions of the first degree ( =m 1) – depicted in panel (ii) – span the interval of exactly
two spline knots and overlap with exactly one of their respective left and right neighbors. The left- and rightmost basis functions
extend beyond the range of the modeled variable. First degree basis functions, however, also do not produce a continuous spline
function [see panel (v)]. The second order basis functions ( =m 2) in panel (iii) are quadratic polynomials, defined exactly over the
range of three spline knots and they overlap with exactly four neighboring basis functions. In an analogous fashion to =m 1 in panel
(ii), the two left- and rightmost basis functions extend beyond the range of the modeled variable. As illustrated in panel (vi), quadratic
basis functions produce a continuous non-linear spline curve in conjunction with an additive parameter vector. The functional form of
the resulting quadratic spline polynomial is depicted in panel (vi).

Basic splines have a recursive definition. Following DeBoor (1978) we can write the definition of a 0-th degree basic spline (where
=m 0) as:

= = ⎧
⎨⎩

⩽ < +
+x xB

κ x κ
( ) ( )

1
0 otherwisel q κ κ q

l q i q l q0
[ , ]

, , 1,
l q l q, 1,I

(10)

where xi q, is the i-th element of xq, and + (·)κ κ[ , ]l q l q, 1,I is a function, which takes on the value of one if xi q, lies in the interval κl q, to +κl q1, ,
but is zero otherwise. It is evident that the basis function of order =m 0 in Eq. (10) does not overlap with any neighboring splines. It
should also be obvious that a basic spline representation of the 0-th degree of xq is not a continuous function.

A first order basic spline, with =m 1 is defined in a recursive fashion:

=
−

−
+

−
−+

+

+ +
+x

x
x

x
xB

κ
κ κ

B
κ

κ κ
B( ) ( ) ( )l q

q l q

l q l q
l q

l q q

l q l q
l q

1 ,

1, ,

0 2,

2, 1,
1

0

(11)

where B (·)l
1 denotes a spline basis of the first degree. It can be readily observed that the basic spline in Eq. (11) is simply the product

of two overlapping basic splines of the 0-th degree from Eq. (10). This can be extended for basic splines of arbitrary degree >m 1,
with:

=
−

−
+

−
−+

− + +

+ + +
+

−x
x

x
x

xB
κ

κ κ
B

κ
κ κ

B( ) ( ) ( ).l
m

q
q l q

l q m l q
l
m

q
l m q q

l m q l q
l
m

q
,

, ,

1 1,

1, 1,
1

1

(12)

Such basis functions exhibit a number of desirable properties, which makes them numerically easy to handle. Thus they pose an
attractive choice for semi-parametric modeling purposes (Eilers and Marx, 1996; Ruppert et al., 2003; Fahrmeir et al., 2009). First of
all, they form a local basis. At any given point in the range of xq, only +m 1 piecewise functions are simultaneously not equal to zero.
Moreover, all local basis functions have the same functional form, they are merely shifted along the horizontal axis. Second, basic
splines bases have unit sums, that is ∑ == xB ( ) 1l

L
l
m

q1
q . Furthermore, their upper range is limited to be lower or equal to one. This

implies desirable numerical properties for regression analysis. Third, their derivatives are easy to calculate, due to the recursive
definition of basic spline piecewise polynomials. The first-order derivative of each basis function can be expressed as:

⎜ ⎟
∂

∂
= ⎛

⎝ −
−

−
⎞
⎠

−

+

+
−

+ + +x
x

x x
B m

B
κ κ

B
κ κ

( )
( ) ( )

q
l
m

q
l
m

q

l m q l q

l
m

q

l m q l q

1

, ,

1
1

1, 1, (13)

where ∂
∂ xB ( )x l

m
qq

denotes the first-order derivative of the basic spline function of order m. Thus, the total derivative of the q-th semi-

parametric function f (·) from Eq. (8) can be expressed as:

∑ ∑∂
∂

≈ ∂
∂

=
−

−= =

−

+

−

x
x

x
x xf θ B m

θ θ
κ κ

B( ) ( ) ( ).
q

q
q l

L

l q l
m

q
l

L
l q l q

l m l
l
m

q
1

,
1

, 1, 1
q q

(14)

This implies that the derivative of a full polynomial basic spline can be expressed using the differences in the knot points of a basic
spline of degree −m 1. Therefore, estimating the parameter vector θq not only provides an estimate for the polynomial form of xq, but
also for its derivatives.

We can write the full set of basis functions of xf ( )q in terms of a ×N Lq matrix = …B BZ [ , , ]q
m

L
m

1 q , so that =x θf Z( )q q q. In a similar

fashion, the total set of spline functions in Eq. (8) can be written in terms of an × ∑ =N Lq
Q

q1 design matrix = …Z Z Z[ , , ]Q1 . Thus, the
semi-parametric SAR model from Eq. (7) can be expressed as:

= + + + +y y ι γ β ερ βW Z XN 0 2 2 (15)

where = ′ … ′ ′γ θ θ[ , , ]Q1 denotes the ⎡⎣∑ ⎤⎦ ×= L 1q
Q

q1 vector of basic spline coefficients.
Given the set of design knots, a maximum likelihood estimation approach could provide an estimate for γ . This estimate is, of

course, dependent on the exact position and number of design knots, which we did not yet specify, except for the general require-
ments in Eq. (9). Note, that the exact number and position of the design knots has a considerable influence on the abilities of (·)F to
approximate non-linear functions. This would indicate that choosing a large number of equally spaced knot points is advantageous.
Consider, however, that such an approach drastically increases the size of the design matrix Z and the number of parameters to
estimate. To avoid such problems, the next section proposes an estimation method incorporating a novel approach for determining
the optimal number and position of spline knots.
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4. Adaptive spline knot selection

Due to the fact that basic splines are a parametric expansions of the modeled variables, we can use well documented procedures
for model estimation, conditional on an a priori given number and position of spline support knots. Given a set of spline knots κq for
( = …q Q1, , ), estimators for the coefficients γ βρ β σ, , , ,0 2

2 in Eq. (15) can be found by maximizing the log-likelihood conditional on ρ, in
an analogous fashion to Eq. (3):

= − + − ′e eN πσ σAlog( )/2 log[det( )] /2o o
2 2L (16)

= − − −e y ι γ ββA Z X .o N 0 2 2

While there generally is no closed form solution for an optimal set of spline knots, however, given a total set of candidate spline
knots κ (where = ′ … ′κ κ κ[ , , ]Q1 ), we can evaluate the likelihood of the resulting model. Thus, a possible way of selecting the optimal
number and position of spline knots would be using measures to compare models with differing number of spline knots. Such a
comparison can be performed, for instance using the information criterion proposed by Akaike (1974)2:

= − + +
− −

κAIC
N

( ) 2 2 ( 1)2
1c K L

K K

K (17)

∑= + +
=

L D 3
q

Q

q
1

K

whereK denotes the total number of parameters in Eq. (15) and D is the number of covariates modeled in a linear in the parameters
fashion. The Akaike information criterion is particularly well suited for the task of optimization, as it provides a convex optimization
space, with no local minima (Awad, 1996; Akaike, 1974).

The classic approach to spline knot selection is to subdivide the range of the explanatory variables into equal segments and select
a fixed number of spline knots. We refer to this spline knot selection strategy as fixed spline knot selection. The main drawback of this
approach is that the optimal number of spline knots is difficult to evaluate ex ante, and that placing equidistant knots could put a
large number of knots in the range of values where we have relatively few observations on explanatory variables.

Instead we elect to use an adaptive strategy for spline knot selection, which we denote as adaptive spline knot selection. Our main
assumption is that the position of the spline knots for each spline xf ( )q is not on a continuous scale, but restricted to the observations
in xq, that is ∈ ∀xκ l q,l q q, . The main drawback of this assumption is that we can’t model covariates with less than m unique ob-
servations (such as dummy variables).3 Moreover, xq should not contain a large number of outlying observations, as this might impact
the ranges of the basis functions. The advantage of this assumption is that it limits the number of possible spline knot locations and
transforms the problem of selecting a suitable κ to a (potentially large-scale) combinatorial optimization problem.

To facilitate combinatorial optimization, we can – based on the assumptions above – encode the candidate spline knots κ as a
binary candidate vector s. For this purpose, consider the matrix H, which corresponds to the matrix of covariates X1, with each
column having its elements sorted in an ascending fashion (that is ⩽ ⩽ …⩽ ∀h h h qq q N q1, 2, , , where hi q, is a typical element of the
matrix H). Let the ×Z 1 (where =Z NQ) vector be =h vec H( ), where the vec (·) operator stacks all columns of a matrix. Let the ×Z 1
candidate solution vector s be a binary vector, with a value of one at position z (with = …z Z1, , ) if a spline knot is placed on the z-th
element of the vector h, and zero otherwise. Thus, the total set of spline knots κ for a candidate solution s can be obtained by

= ⊙ =κ h s s[ | 1], where ⊙ denotes the Hadamard product. We will denote this encoding process via the function b (·) (where
→s κb ( ) ).

4.1. A genetic algorithm approach

We utilize a genetic algorithm approach, in order to solve the combinatorial optimization problem of adaptively selecting the
optimal number and positions of spline knots. Genetic algorithms are stochastic search algorithms inspired by evolutionary processes,
and have proved to be successful in tackling large scale combinatorial problems (Fischer and Leung, 1998), such as the well-known
traveling salesman problem (Kazemi et al., 2009; Aydin and Fogarty, 2004). The underlying mechanism involves an iterative pro-
cedure, where in each iteration a population of candidate solutions to a given problem is evaluated, based on some form of scoring
measure, termed as the fitness function. Such an approach favors a stochastic exploration of a large part of the solution space. While a
genetic algorithm in itself requires only simple computational steps (such as generating uniformly distributed numbers), their main
drawback is that a large number of fitness evaluations have to be performed.

The classical genetic algorithm – as outlined in the seminal work by Holland (1992) – is suited to tackle discrete optimization
problems formulated in the following fashion:

∈s sgmin{ ( )| Ψ} (18)

where the non-constant function g (·) is the so-called fitness function mapping the total candidate solution space Ψ, so that �→g: Ψ .

2 In practice, it is recommendable to use the adjusted AIC, termed as AICc , proposed by Hurvich et al. (1998), which corrects for finite sample size. The formula
provided here corresponds to AICc. The AICc has generally the same convexity properties as the original Akaike information criterion.
3 This is due to the fact that the basic spline representation of a given vector needs a minimal number of observations.
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We assume a single solution vector ∈s {0,1}Z , where Z is defined as =Z NQ, that is the total number of elements in X2. Note, that the
search space Ψ is a hypercube with dimensions 2Z .

The genetic algorithm is initialized with a population set P, containing NP candidate solutions ( …s s, , N1 P), with ⊂P Ψ. −N 1P of
these solutions are randomly generated, while the first of the initial solutions equals a model with a fixed set of spline knots. The
reasoning for the randomly generated initial population is that it is that is not known a priori where the globally optimal spline knots
in Ψ are located. The fixed spline knot initial solution, however, ensures that the algorithm performs at least as well as the fixed spline
knot model. Each individual candidate solution sr (with = …r N1, , P) represents a feasible solution to the problem in Eq. (18), and its
function value sg ( )k is termed as its fitness score, which has to be minimized. We use AICc as a fitness function, therefore:

=s sg AIC b( ) [ ( )].r c r (19)

Running the genetic algorithm involves an iterative execution of processing steps, which modify and delete members of P. Let us
denote the maximum number of iterations as T and a specific iteration as t (with = …t T0, , ), with the population at time t being
denoted as P t( ). Based on the population P (0) subsequent populations P t( ) are generated by using three genetic operators: selection,
mutation and crossover.

The selection into the sets Pmate and Pdeath is carried out via roulette wheel selection (Goldberg et al., 1989). The set Pmate contains all
the population members selected for crossover and mutation and the Pdeath set contains the population members to be removed from
the population. This is a proportional random selection technique, where a fixed number (NPmate and NPdeath, respectively) of random
experiments are carried out in succession. The probability of candidate solution sk being selected to be in the sets Pmate and Pdeath

4 is:

∈ =
−

∑ −=

s
s

s
p P

P t g
P t g

( )
max[ ( )] ( )

{max[ ( )] ( )}
r mate

r

r
N

r1
P (20)

∈ =
−

∑ −=

s
s

s
p P

g P t
g P t

( )
( ) min[ ( )]
{ ( ) min[ ( )]}

r death
r

r
N

r1
P (21)

where P tmax[ ( )] and P tmin[ ( )] denote the largest and smallest fitness scores from the population at t, respectively. In essence,
candidate solutions are selected (and copied into their respective intermediate populations) with probabilities according to Eqs. (20)
and (21), based on their fitness relative to the fitness of all other candidate solutions in the population. Note, that a single candidate
solution can be copied multiple times into the intermediate populations with this procedure.

After selection, the genetic operators of single point crossover and bit string mutation are applied subsequently to the intermediate
population Pmate, in order to create the population set in the next iteration +P t( 1). These two operators serve the purpose of
generating new sample points from the total solution space Ψ, while partially preserving the distribution of spline knots across the
hyperplanes present in the population at t. Single point crossover involves recombining existing spline knot sets to explore new regions
of Ψ. The NPmate candidate solutions are randomly matched in a pairwise fashion. Each pair (parents) is combined by choosing a
random point between one and Z with a uniform probability distribution. Then both binary vectors are cut into two parts and
juxtaposed, by using the first part from one parent up to the randomly selected point and then using the binary information from the
second parent. Through this procedure two new candidate solutions are generated. These are termed the offspring of the selected pair
of parents.

Finally, after the crossover operation has been completed, the bit string mutation operator is applied with a uniform probability to
randomly selected members of Pmate. This operation involves a bit-wise recombination of the binary vector sr . The role of this
operation is to ensure that the entire solution space of Ψ remains accessible and that the algorithm does not get stuck at local optima.
During this operation a random position between one and Z is selected in sr . If the value of sr at the z-th place was zero, then it is
flipped to one. If the value was one, it is flipped to zero. After this mutation step is complete, the selected candidate solutions,
together with the offspring from the crossover step, are copied to replace the ones selected in the step Pdeath. Then the whole process is
repeated for +t 1: with first evaluating the fitness of each population member, then selecting them into two intermediate sets and
finally applying the crossover and mutation operators.

The steps of the genetic algorithm can be expressed as:

• Generate NP candidate solutions form a uniform distribution. Let us denote the population at =t 0 as = …s sP (0) { , , }N1 P , with
⊂P (0) Ψ.

• Evaluate the fitness score (AICc) of each sr , that is calculate ∀sg r( )r in the current population P t( ).
• Apply the roulette wheel selection operator in order to generate two intermediate subpopulations of the same length (NPmate, with

<N NP Pmate ): the so-called mating pool Pmate [ ⊂P P t( )mate ] and the death pool Pdeath [ ⊂P P t( )death ].

• Generate new candidate solution from the mating pool Pmate via the single point crossover and the bit string mutation operators and
replace all members of the death pool Pdeath with the newly generated candidate solutions.

• Set = +t t 1 and proceed with Step 2, until one or both of the stopping criteria have been reached: either =t T or the relative gain
in the best fitness score is smaller than −10 4. Once the algorithm has stopped, designate the candidate solution with the highest

4 Note, that effectively two separate roulette wheel selections are carried out: one for Pmate and one for Pdeath. For this reason ∈sp P( )r mate in Eq. (20) assigns high
probability of being selected to population members with high ranking fitness scores, while ∈sp P( )r death in Eq. (21) assigns a high probability of being selected to
population members with low ranking fitness scores. This implies that it is entirely possible for a population member sr to be part of Pmate and Pdeath at t.
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fitness as the result of the genetic algorithm.

Note, that the above algorithm’s computational time to convergence increases sharply with the number of spline knots and
modeled explanatory variables. In order to alleviate this problem, we use an extension of the genetic algorithm approach, proposed
by Sycara (1998). Herein, we employ multiple genetic algorithms, which are executed in a parallel processing environment. Each
algorithm has an own independent population set. However, the population size, the size of the set Pmate and Pdeath can differ among
the genetic algorithms. After a fixed number of iterations, or when a set amount of processing time has passed, one randomly selected
member is deleted from each of the independent population sets. Finally, one randomly selected population member from each
independent population is transferred to another population set. This step ensures, that no genetic algorithm is stuck in a local
optimum. Talukdar et al. (1998) used the well-known shortest path problem as a benchmark for this approach. By applying this
methodology to the problem they demonstrated that the solutions provided by decentralized genetic algorithms converge quicker
towards an optimal solution.

5. Performance on artificial data

In order to asses the performance of the semi-parametric SAR model, we run a series of Monte Carlo studies, based on artificially
generated datasets. Our benchmark data generating process is a semi-parametric SAR model from Eq. (6), without a constant and
containing two semi-parametrically modeled explanatory variables ( =Q 2):

− = +y ερI W X( ) ( )N 1F (22)

= +x xf β f βX( ) ( , ) ( , )1 1 1 1 2 2 2F (23)

where = =ε x x xσ X(0, ), [ , ],2
1 1 2 1N and x2 are ×N 1 vectors with uniformly distributed elements between zero and one, and β1 and β2

are the corresponding scalar coefficients. W represents a row and column standardized spatial weight matrix (see Pace and LeSage,
2002). That is, each row and column of W sums up exactly to unity. The spatial weight matrix is constructed based on a randomly
generated spatial pattern, where the locations of the observations in two-dimensional space were randomly generated from a uniform
distribution. The concept of neighborhood is based on k-nearest neighbors5, where the nearest neighbors are determined via the
Euclidean distance between the randomly generated coordinates.

We assess the performance of the proposed semi-parametric estimation method with regard to sample size, signal to noise ratio
and strength of spatial dependencies. More specifically, we let =N {100,350,700}. and =ρ {0.1,0.5,0.8}. We do not set σ2 directly to
different levels, as the total model variance would also be dependent on the spatial structure and the autoregressive parameter.
Instead, we directly set the signal to noise ratio SNR, which is measured by:

̂
= =

− −y
y y

SNR Var
Var

Var ρ
Var

I W X( )
( )

[( ) ( ( ))]
( )

N
1

1F

(24)

where Var (·) denotes the variance of a vector. We set σ2 in such a fashion that the desired number of =SNR {0.1,0.5,0.8} is obtained
via Eq. (24).

In both of the presented Monte Carlo studies, we explore different configurations of the non-linear functions f (·)1 and f (·)2 .
Table 1 presents an overview of the Monte Carlo studies and the non-linear functions used as benchmark data generating processes. In
both studies two combinations of models are compared: (i) the classic SAR model [see Eq. (1)], and its counterpart with adaptive
spline knot selection via genetic algorithms (ii). The classic SAR model in this Monte Carlo study does not take the non-linearity in the
parameters of X( )1F into account and instead models x1 and x2 as linear in the parameters. The semi-parametric SAR model with
adaptive spline knot selection corresponds to the model presented in Eq. (15) and utilises the algorithm described in Section 4 to
determine the optimal number and position of spline knots6. In context of this Monte Carlo study we set the number of genetic
algorithms executed in a parallel fashion to twelve, each with a population size of 100 and =N 10Pmate , and a mutation rate of 2%7.
We execute the algorithm for up to a maximum of =T 100,000 cycles, where every 50 cycles the genetic algorithms exchange one
randomly selected member of their population.

The first Monte Carlo study [denoted as (a) in Table 1] aims to quantify the bias associated with using a linear in the parameter
model – such as the classic SAR model for modeling a non-linear in the parameters problem – and to assess what amount of this bias is
corrected by using a semi-parametric estimation method. In this spirit the semi-parametric part of the data generating process
contains both a quadratic and a square root term. These are often suggested non-linear transformation to explore in the freight
generation literature (see, e.g. Novak et al., 2011), thus it is important to establish that the proposed semi-parametric estimation
algorithm accurately assesses the impacts associated with such non-linearities in the parameters.

The second Monte Carlo study [denoted as (b) in Table 1] investigates the performance of the semi-parametric SAR model in the
absence of non-linearities in the parameters. For this purpose, we compare a classic SAR model [see Eq. (1)] to its semi-parametric
counterpart [see Eq. (13)] using the adaptive spline knot selection algorithm in Section 4. The data generating process used for

5 We use =k 7 neighbors for the Monte Carlo studies presented in this paper.
6 For the fixed spline knot solution included in the initial population, we use eleven equidistant spline knots (with = = …κ κ [0.0,0.1,0.2, ,0.9,1.0]1 2 ) to model x1 and

x2, respectively.
7 We explore the impact of varying the number of generic algorithms in Table 7 in the Appendix.
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benchmarking both models contains no non-linearities in the parameters.
The results of the first Monte Carlo [denoted as (a) in Table 1] study are presented in Table 2. Each row of the table corresponds to

300 Monte Carlo runs. The values in the first four columns characterize each set of Monte Carlo runs, in terms of signal to noise ratio,
spatial autoregressive parameter ρ, the sample size and the implied variance parameter σ2. Columns (i) to (iv) present the mean bias
for σ ρ,2 and the total effects obtained when estimating the data generating process with the linear in the parameters SAR model.
Columns (v) to (viii) contain the same information for the semi-parametric SAR model with adaptive spline knots.

Turning our attention to the results, we can observe that in the group of Monte Carlo studies where the signal to noise ratio is low
( =SNR 0.1), no clear best model emerges. In terms of σ2, in all but two cases (where the adaptive spline knot model performs the
best) with =SNR 0.1 the classic SAR model outperforms its semi-parametric counterparts. In terms of absolute bias in ρ, the semi-
parametric models show less absolute bias than the classic SAR in cases of =ρ 0 and =SNR 0.1, while in cases of =ρ 0.8 and

Table 1
Specification of f (·)1 and f (·)2 in both Monte Carlo studies.

Monte Carlo xf ( )1 1 xf ( )2 2

(a) x2 1
2 +x1.2 12

(b) x2 1 x1.2 2

Table 2
Monte Carlo study comparing the performance of the classic SAR model to its semi-parametric counterparts, with and without adaptive spline knots,
under the presence of moderate non-linearity in the parameters.

SNR ρ Sample size σ2 SAR Semi-parametric SAR

Mean bias σ2 Mean bias ρ Mean bias
∂ ∂y x/ 1

Mean bias
∂ ∂y x/ 2

Mean bias
σ2

Mean bias ρ Mean bias
∂ ∂y x/ 1

Mean bias
∂ ∂y x/ 2

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

0.1 0.0 100 1.54 0.0253 −0.1110 −0.5856 −0.4309 0.0443 0.1028 −0.0695 −0.0680
350 1.83 −0.0134 −0.1151 −0.5788 −0.5245 0.0050 0.0274 0.0278 −0.0242
700 1.83 0.0110 −0.1265 −0.5117 −0.5064 0.0278 0.0026 0.0048 −0.0045

0.5 100 1.97 0.0876 −0.1894 −0.0785 −0.1123 0.0902 −0.1723 −0.3837 0.7221
350 1.86 0.0630 −0.2327 −0.0377 0.1098 0.0646 −0.2355 −0.1191 0.3378
700 1.75 0.0413 −0.2331 −0.0363 0.0742 0.0437 −0.2329 −0.1371 0.0033

0.8 100 1.73 0.1028 −0.1191 −1.5414 1.2652 0.1014 −0.1440 −0.1552 0.1603
350 2.23 0.1259 −0.1599 −4.9549 4.3297 0.1322 −0.1822 −0.4223 0.5296
700 2.35 0.1250 −0.1584 −0.5791 1.7182 0.1330 −0.1793 −1.2797 2.0644

0.5 0.0 100 0.63 −0.0333 −0.3341 −0.1467 −0.0493 0.0084 0.0245 −0.0132 −0.0162
350 0.61 −0.0412 −0.3504 −0.0742 −0.1031 0.0031 0.0001 0.0015 −0.0005
700 0.59 −0.0431 −0.3853 −0.1117 −0.0923 0.0022 −0.0040 −0.0017 0.0035

0.5 100 0.61 −0.0274 −0.1855 −0.0207 −0.0279 0.0085 −0.0237 −0.0083 0.0378
350 0.60 −0.0300 −0.2139 −0.1632 −0.0034 0.0032 −0.0342 −0.0075 0.0017
700 0.57 −0.0315 −0.1994 −0.1694 −0.0819 0.0021 −0.0308 −0.0087 0.0422

0.8 100 1.00 0.0272 −0.0878 −0.2291 0.0589 0.0386 −0.0856 −0.1200 0.1746
350 0.62 −0.0235 −0.0876 −0.2512 −0.0042 0.0024 −0.0180 −0.0327 0.0726
700 0.62 −0.0236 −0.0884 −0.2466 −0.0188 0.0024 −0.0243 −0.0304 0.0905

0.8 0.0 100 0.31 −0.1005 −0.3615 −0.1903 −0.1163 0.0063 0.0040 0.0039 0.0022
350 0.32 −0.1011 −0.3733 −0.1400 −0.0700 0.0022 −0.0004 0.0021 0.0033
700 0.31 −0.1100 −0.3731 −0.0725 −0.0475 0.0011 0.0008 0.0006 −0.0001

0.5 100 0.30 −0.0888 −0.1774 −0.2410 −0.1900 0.0091 −0.0028 0.0026 0.0076
350 0.30 −0.0915 −0.1995 −0.1423 −0.0791 0.0019 −0.0021 −0.0001 0.0036
700 0.31 −0.0914 −0.2001 −0.1161 −0.0348 0.0010 −0.0014 −0.0006 0.0040

0.8 100 0.30 −0.0971 −0.0890 −0.4791 −0.0145 0.0047 0.0033 0.0006 0.0111
350 0.31 −0.0849 −0.0831 −0.2491 −0.0799 0.0029 0.0009 0.0003 0.0062
700 0.30 −0.0883 −0.0841 −0.2718 −0.0427 0.0004 −0.0009 −0.0003 0.0061

Notes: = + +x xX( ) 2 1.2 11 1
2

2F . SNR stands for signal to noise ratio; the reported partial derivatives correspond to the total effects summary
impact measures from LeSage and Pace (2009). Each row reports average values over 300 Monte Carlo runs. We used twelve parallel genetic
algorithms, which exchange one member of their population every 50 cycles. The adaptive spline knot algorithm ran for a maximum of =T 100,000
cycles, with a population size of =N 100P and =N 10Pmate , and mutation probability of 2%.
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=SNR 0.1, the classic SAR exhibits the least absolute bias in the spatial autoregressive parameter. However, in the test cases with
=SNR 0.5 and =SNR 0.8, the semi-parametric model with adaptive spline knots exhibits the least absolute bias in σ2 in all but one

case ( = =SNR ρ0.5, 0.8, sample size 100). Moreover, the semi-parametric model with adaptive spline knots outperforms the classic
SAR in terms of absolute bias in ρ for all test cases with =SNR 0.5 and =SNR 0.8. The semi-parametric models outperform the classic
SAR in terms of absolute bias in total effects of x1 in all Monte Carlo cases with =SNR 0.5 and =SNR 0.8. In the case of absolute bias
in total effects of x2, the semi-parametric models only consistently outperform the classic SAR model in cases of =SNR 0.8. In the case
if =SNR 0.5, the semi-parametric model performs better with lower ρ values, while with =ρ 0.8 and =SNR 0.5, the classic SAR
exhibits less overall bias in the total effects of x2.

Table 3 presents the results of the second Monte Carlo study [denoted as (b) in Table 1]. Each row of the table represents the
average over 300 Monte Carlo runs. The first four columns contain the signal to noise ratio, the spatial autoregressive parameter, the
sample size and the implied variance, that characterizes each set of Monte Carlo runs. Columns (i) to (iv) and columns (v) to (viii)
show the bias in terms of σ ρ,2 and total impact effects of both variables, for the SAR and the semi-parametric SAR model, respectively.

These results indicate that overall in 20% of cases the classic SAR model outperforms the semi-parametric SAR in terms of
absolute bias. In the case of absolute bias in σ2, the classic SAR outperforms its semi-parametric counterpart in all cases. The
coefficient estimates for ρ exhibit in all but two (with = =SNR ρ0.8, 0.0, sample size 100, and = =SNR ρ0.8, 0.5 and sample size 100)
of the Monte Carlo cases less absolute bias in the classic SAR model.

In terms of absolute bias in the total impact estimates of the coefficients the semi-parametric SAR model outperforms its linear in
the parameters counterpart in ∼ 63% of Monte Carlo test cases with a low signal to noise ratio ( =SNR 0.1). In the test cases with

Table 3
Monte Carlo study comparing the performance of the classic SAR model to its semi-parametric counterpart with adaptive spline knots for a DGP
without non-linearity in the parameters.

SNR ρ Sample size σ2 SAR Semi-parametric SAR

Mean bias
σ2

Mean bias ρ Mean bias
∂ ∂y x/ 1

Mean bias
∂ ∂y x/ 2

Mean bias
σ2

Mean bias ρ Mean bias
∂ ∂y x/ 1

Mean bias
∂ ∂y x/ 2

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

0.1 0.0 100 1.98 0.0924 0.0707 −0.1296 −0.0635 0.4879 0.1188 0.2186 0.1075
350 1.89 0.0271 0.0281 −0.0496 −0.0577 0.1264 0.0458 −0.1262 −0.0424
700 2.13 0.0158 0.0141 −0.0144 −0.0384 0.0772 0.0147 −0.0083 0.0025

0.5 100 1.90 0.0932 −0.1540 0.3198 0.7685 0.4614 −0.1863 1.7962 1.4238
350 2.16 0.0562 −0.2149 0.5432 0.5538 0.1931 −0.2471 0.0235 0.0963
700 1.89 0.0334 −0.1939 0.4517 0.5145 0.0886 −0.2478 −0.2656 −0.0074

0.8 100 2.41 0.1828 −0.1334 −0.5227 1.6868 0.7959 −0.1452 0.9145 −1.5881
350 1.85 0.0637 −0.1223 0.6437 1.0073 0.1788 −0.1816 −0.3686 −0.1889
700 2.21 0.0971 −0.1484 0.7928 1.1767 0.1893 −0.1861 −0.7829 −1.3713

0.5 0.0 100 0.59 0.0136 0.0045 −0.0022 −0.0035 0.0449 0.0532 0.0117 −0.0144
350 0.66 0.0027 0.0043 0.0008 −0.0076 0.0145 0.0201 0.0026 0.0173
700 0.68 0.0026 0.0026 −0.0022 −0.0019 0.0087 0.0042 0.0112 0.0149

0.5 100 0.69 0.0142 −0.0004 0.0087 0.0212 0.0643 −0.0653 −0.1241 −0.0397
350 0.64 0.0020 −0.0115 0.0333 0.0305 0.0147 −0.1013 −0.0370 0.0015
700 0.68 0.0010 −0.0097 0.0257 0.0312 0.0080 −0.0760 −0.0528 0.0086

0.8 100 0.69 0.0118 −0.0012 0.0233 0.0340 0.0632 −0.0672 −3.3999 −0.7793
350 0.79 0.0032 −0.0084 0.0439 0.0698 0.0263 −0.0800 −0.2824 −0.0277
700 0.60 0.0021 −0.0037 0.0258 0.0259 0.0087 −0.0502 −0.1096 −0.0871

0.8 0.0 100 0.32 0.0078 0.0043 0.0044 0.0077 0.0179 −0.0002 0.0068 −0.0045
350 0.33 0.0011 0.0023 0.0010 0.0016 0.0045 0.0058 0.0031 0.0050
700 0.34 0.0012 0.0002 0.0004 −0.0006 0.0028 0.0000 −0.0027 0.0072

0.5 100 0.36 0.0028 0.0026 −0.0018 0.0086 0.0198 0.0084 0.0155 −0.0025
350 0.35 0.0022 0.0008 0.0028 0.0025 0.0061 −0.0054 −0.0016 −0.0100
700 0.33 0.0004 −0.0003 0.0025 0.0014 0.0023 −0.0061 −0.0028 −0.0032

0.8 100 0.30 0.0028 0.0062 0.0060 0.0052 0.0137 −0.0002 0.0050 0.0097
350 0.33 0.0015 0.0007 0.0038 0.0035 0.0042 −0.0042 −0.0026 −0.0034
700 0.34 0.0004 0.0006 0.0025 0.0047 0.0027 −0.0042 −0.0070 −0.0099

Notes: = +x xX( ) 2 1.21 1 2F . SNR stands for signal to noise ratio; the reported partial derivatives correspond to the total effects summary impact
measures from LeSage and Pace (2009). Each row reports average values over 300 Monte Carlo runs. We used twelve parallel genetic algorithms,
which exchange one member of their population every 50 cycles. The adaptive spline knot algorithm ran for a maximum of =T 100,000 cycles, with
a population size of =N 100P and =N 10Pmate , and mutation probability of 2%.
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=SNR 0.5 and =SNR 0.8 the semi-parametric model performs worse in terms of absolute total impact estimate bias, only out-
performing the classic SAR model in ∼ 16% of Monte Carlo test cases. It should be noted that while the classic SAR model clearly
outperforms its semi-parametric counterpart, the magnitude of the differences in absolute biases strongly decreases in the Monte
Carlo cases with signal to noise ratios =SNR 0.5 and =SNR 0.8 and sample size =n 700. This implies that if no non-linearities are
present in the data generating process, the linear in the parameters SAR model exhibits less absolute bias overall. However, while it
generally remains larger, the relative difference in absolute bias of the classic SAR and the semi-parametric model decreases as the
SNR and sample size increases.

The results of both Monte Carlo studies suggest that the proposed semi-parametric adaptive spline knot approach can accurately
estimate, not only the functional form of f (·), but also its derivative. With increasing sample size, the accuracy of the estimates
increases as well, but note that the mean bias of σ2 does not exhibit drastic changes. This indicates that despite the increased sample
size, the algorithm does not tend to overfit the model. The estimation procedure seems to be robust regarding different levels of ρ,
though it should be noted, that with higher ρ and lower signal-to-noise ratio, the classic SAR performs marginally better. This seems
logical, since in very noisy dependent variables a simpler model is expected to perform better. Finally, we have demonstrated that the
estimation approach performs on a comparable level to the classic SAR, when confronted with a data generating process without any
non-linearities in the parameters.

6. European freight generation

We assess the performance of the proposed semi-parametric SAR estimation method on a real world example. For this purpose,
our dependent variable is the volume of road freight generated by European NUTS-2 regions in 2011. We consider the total volume of
road freight generated (across all sectors). The freight generation dataset was obtained from Eurostat. We measure the volume of road
freight in million tons. The dataset covers 258 European NUTS-2 regions (2006 version of regions), which include all EU-27 countries,
with the exception of Cyprus and Malta. Furthermore, all island NUTS-2 regions were excluded from the study, since they usually do
not report road freight generation. For a complete list of the NUTS-2 regions included in this study, refer to Table 6 in the Appendix.
Fig. 4 in the Appendix displays a map of NUTS-2 level freight generation [panel (i)].

Our explanatory variables were selected based on Novak et al. (2011). We explain the volume of regional freight generated in
2011, by a set of explanatory variables measured in 2010. Following Novak et al. (2011) we use the regional share of employment
and the regional share of employment in agriculture (NACE rev 2 A to B) and manufacturing (NACE rev. 2 C to I) as an indicator of a
region’s sectoral configuration. All of these explanatory variables stem from Eurostat. Further explanatory variables are the length of
the road network (measured in 10,000 km) and the distance to the closest seaport (measured in travel time in minutes). The latter two
variables are available from ESPON.

For the construction of the spatial weight matrix, the geodesic distance between regions’ centroids was used. The results are based
on a k-nearest spatial weight matrix configuration, with =k 7. 8

6.1. Aggregate freight generation

Table 4 presents the results of the estimation using the classic SAR [panel (i)] and the semi-parametric SAR with adaptive spline
knots [panel (ii)]. For the initial population of the semi-parametric SAR model, a SAR model with ten equidistant spline knots per
variable was selected. The semi-parametric SAR adaptive spline knot algorithm was evaluated with =T 100,000 cycles. We used
twelve parallel genetic algorithms, which exchange one member of their population every 50 cycles. The population and mating pool
lengths were set to =N 100P and =N 10Pmate , while mutation probability was 2%.

For the purposes of reporting the results, we make use of the summary impact measures suggested by LeSage and Pace (2009).
Direct effects are the average impact of an explanatory variable on a region’s generated freight, without affecting its neighbors.
Indirect effects summarize the average impact of an explanatory variable on only a region’s neighbor. Finally, total effects are the
average impacts of an explanatory variable, which both affect the region itself and its neighbors. For the semi-parametric SAR model,
the summary impact measures were calculated using the first order derivatives of the splines. The convergence of the semi-parametric
SAR algorithm – in terms of its best, median and average fitness score – is illustrated in Fig. 5 in the Appendix.

The first point to note is that the semi-parametric SAR model performs better when the two models are compared using their
respective AICc. A likelihood ratio test confirms these results, with a value of −635.684 and <p 0.001 in favor of the semi-parametric
SAR model. The same is true if we turn our attention to the coefficient of determination corrected for sample size: the R 2. The classic
SAR exhibits an =R 0.712 , while the semi-parametric SAR has an =R 0.872 . 9

Second, the comparatively better performance – in terms of AICc and R 2 – of the semi-parametric SAR model, might raise
concerns that the model is in fact over-fitting. To rule out this problem, we compare the predictive performance of both models by
projecting them one year ahead. For this purpose, we collected a corresponding matrix of explanatory variables from 2011 (the
sources of our data are the same as in the original data set). Then, using the estimated co-efficients and the 2011 explanatory

8 Configurations with =k [3,5,9] were tested as well, however the estimation results did not change in a significant manner.
9 In fact the high =R 0.872 might raise concerns of multi-collinearity bing present in the model. In order to rules this out, we have performed tests for multi-

collinearity for the full explanatory variable matrices of both models in Table 4. Both the eigenvalues based condition index, as well as the χ2 test proposed by Farrar-
Glauber indicates no multicollinearity for the models, with values of =CI 1.839 ( =CI 2.701 for the semi-parametric SAR case), and =χ 1.3532 ( =χ 1.9572 for the
semi-parametric SAR case), respectively.
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variables, we project the model and compare it with observed freight generation from 2012. The accuracy of this projection is
measured by the root mean squared error (RMSE), in Table 4. If the semi-parametric SAR model indeed over-fits the data, we would
expect to observe a lower predictive performance. This seems to be not the case, with the classic SAR having an =RMSE 0.389 and the
semi-parametric SAR having an =RMSE 0.328.

Third, note the differing spatial autocorrelation parameter between the SAR ( =ρ 0.654) and the semi-parametric SAR ( =ρ 0.277)
estimates. This – in conjunction with the log-likelihood test and the R 2 – implies that the SAR model might contain a bias in the
spatial estimates. Nonetheless, both models indicate a highly significant degree of spatial autocorrelation, thus confirming our hy-
pothesis that the freight generation of one region depends on the freight generation of its neighbors. This is in line with the findings of
Novak et al. (2011) and Krisztin (2017).

Turning our attention to the linear in the parameter SAR model impact estimates [panel (i)]: total employment is significant and
positive both for the own endowment of regions, as well as for neighboring regions. This is inline with the results from Novak et al.
(2011). Similarly, the negative impact of agricultural employment, both directly and for neighbors, is similar to the results of Novak
et al. (2011). Also in line with the study by Novak et al. (2011) is the fact that the impact of manufacturing employment is negative.
However, as opposed to the results presented in Novak et al. (2011), the impacts are not significant. The significantly positive
influence of infrastructural variables, such as road network is well documented in the literature (Novak et al., 2011; Chun et al., 2012;
Lawson et al., 2012). The travel time to seaport is not significant for neighboring regions’ freight generation, only for a region’s own
freight generation, where it plays a comparatively minor role (0.082).

The semi-parametric SAR results in panel (ii) of Table 4 show that only agricultural employment seems to play a significant
( <p 0.001) and negative role in directly affecting a region’s freight generation. A ceteris paribus increase of 1% of agricultural
employment in a region would decrease the region’s own freight generation by 1.6 million tons. Note, that the indirect effects from
agricultural employment are only weakly significant, thus an increase or decrease in a region’s agricultural employment does not
necessarily lead to a significant change in neighboring regions’ freight generation. Moreover, Manufacturing employment does not
exhibit a significant influence. This is in contrast to the classic SAR model, where manufacturing employment was weakly significant.
The length of the road network, which proxies the transportation infrastructure in the model, exhibits a positive effect, both directly
and indirectly on a region’s neighbors. This provides evidence for the fact that increasing a region’s transportation infrastructure does
not only benefit the region itself, but also its neighbors. Increasing the length of the road network by 10,000 km, would indicate an

Table 4
Summary impact measures of the SAR (i) and semi-parametric SAR with adaptive spline knots (ii) freight generation models.

Variable Direct Indirect Total

(i) – Spatial autoregressive model

Total employment (in %) 0.577∗∗∗ 0.933∗∗∗ 1.510∗∗∗

Agricultural employment (in %) −1.076∗∗∗ −1.755∗∗ −2.830∗∗

Manufacturing employment (in %) −1.821 −3.049 −4.870
Length of road network (10,000 km) 0.742∗∗∗ 1.221∗∗∗ 1.963∗∗∗

Travel time to seaport (min.) 0.082∗∗ 0.135∗ 0.216∗∗

ρ 0.654∗∗∗

σ2 0.155
Log-likelihood −35.181
AICc 80.600
RMSE 0.389
R 2 0.71
Number of observations 258
Number of parameters 8

(ii) Semi-parametric spatial autoregressive model
Total employment (in %) −0.096 −0.039 −0.135
Agricultural employment (in %) −1.642∗∗ −0.535∗ −2.177∗∗

Manufacturing employment (in %) −1.408 −0.461 −1.869
Length of road network (10,000 km) 1.101∗∗∗ 0.364∗ 1.465∗∗∗

Travel time to seaport (min.) 0.087 0.029 0.116

ρ 0.277∗∗∗

σ2 0.140
Log-likelihood −153.023
AICc 8.695
RMSE 0.328
R 2 0.87
Number of observations 258
Number of parameters 24

Notes: ∗∗∗ and ∗∗ denote statistical significance at the one percent level and five percent level, respectively (significance levels calculated using
the algorithm proposed by LeSage and Pace (2009)). RMSE denotes the root mean squared error, when projecting the model to 2012 using
explanatory variables from 2011. The semi-parametric SAR reached convergence after 23,291 cycles (no AICC improvement). A spatial
neighborhood matrix configuration with seven nearest neighbors was used.
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increase of 1.231 million tons in a region’s freight generation, while its neighbors would generate 0.436 million tons more freight.
Note, that in contrast to the classic SAR model, the travel time to seaports in minutes is not significant in the semi-parametric model.

While Table 4 displays aggregate impact measures, the semi-parametric spline based representation also allows us to plot the
functional form of the variable over its range. This visualizes the underlying non-linearities and allows us to interpret possible non-
linear influences. Fig. 2 shows the estimated functional form for the explanatory variables. The vertical bars along the x-axis display the
distribution of the data. Note, that the significance measures in Table 4, panel (ii) assess whether a summary impact measure is
significantly different from zero over its full functional form. In order to assess whether non-linear impacts of a variable are significant
over specific intervals only, we need to estimate error bounds for the estimated functional forms. These error bounds (confidence
intervals) were obtained using bootstrapping. For this purpose, we iteratively estimate the model using the adaptive spline knot
procedure and resample the full set of observations from the model residuals. We used 1000 iterations for the functional fits.

Turning our attention to the functional forms in Fig. 2, we can observe that in the case of total employment (i), agricultural
employment (ii), and length of road network (iv) the support for spline knots in higher ranges of the covariates is sparse. The ex-
planatory variables manufacturing employment (iii) and length of road network (iv) exhibit clearly significant non-linear functional
forms. For manufacturing employment, the impact is initially increases until around 7% of employment, after which it starts to
decrease and the non-linear impact becomes insignificant at around 11%. In the case of road network, the functional fit would
indicate that up to about 31 million kilometres the impact of road network is positive, but after this it seems to decrease and becomes
insignificant at around 56 million kilometres, after which the frequency of observations on the covariate decreases very strongly. In
the case of agricultural employment and travel times to seaport, the slope of the coefficient is relatively linear and not significant.

Fig. 2. Functional fit of the semi-parametric SAR model terms. Notes: The dotted lines represent 90% confidence intervals. The solid line corre-
sponds to the estimated functional fit. The vertical bars along the x-axis display the distribution of the data.
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6.2. Sectoral freight generation

While the previous results highlight potential non-linearities in aggregate freight generation, the question remains open, whether
this pattern is also prevalent across different sectors of freight generation. Therefore, in a second step of our analysis, we consider the
case of sectoral freight generation, in contrast to aggregate freight generation. More specifically, we consider three sectors of freight
generation, according to the European Commission’s NST/R (NST/R - Nomenclature uniforme des marchandises pour les Statistiques de
Transport, Révisée) classification: mining and minerals (NST/R codes GT03 and GT09), food products (NST/R code GT04), and
agricultural products (NST/R code GT04). The choice of these sectors is motivated by the fact that they generated the total largest
volume of freight in Europe in 2011. Fig. 4 in the Appendix display maps of the volume of sectoral freight generated on a NUTS-2
level [panels (ii) - (iv)]. The same set of explanatory variables is used, as in the aggregate freight generation case. For the purpose of
inference, a separate semi-parametric SAR model was run for each sectoral dataset. The algorithm settings for each sectoral model
exactly correspond to the aggregate freight generation model from the previous subsection.

Table 5 presents summary direct, indirect, and total impacts, as well as summary statistics for the mining (i), food (ii), and
agricultural sector (iii). First, note that the signal to noise ratio (R 2) of the sectoral models is comparable to the aggregate semi-
parametric freight generation model, with the model of the food sector having the highest R 2 of 0.84. 10 Second, in all three sectoral
models the spatial autoregressive parameter ρ is positive and highly significant. This confirms the evidence from the aggregate model

Table 5
Summary impact measures of the semi-parametric SAR freight generation model for the mining (i), food (ii), and agricultural (iii) sectors.

Variable Direct Indirect Total

(i) – Mining

Total employment (in %) −0.075 −0.040 −0.115
Agricultural employment (in %) −0.411 −0.204 −0.615
Manufacturing employment (in %) −0.277 −0.140 −0.417
Length of road network (10,000 km) 0.481∗∗∗ 0.238∗∗ 0.718∗∗∗

Travel time to seaport (min.) 0.062 0.032 0.094

ρ 0.336∗∗∗

σ2 0.033
Log-likelihood 42.498
AICc −82.940
R 2 0.73
Number of parameters 16

(ii) – Food
Total employment (in %) 0.027 0.007 0.034
Agricultural employment (in %) −0.168∗∗ −0.050 −0.218∗∗

Manufacturing employment (in %) −0.015 −0.002 −0.017
Length of road network (10,000 km) 0.098∗∗∗ 0.030∗ 0.128∗∗∗

Travel time to seaport (min.) 0.005 0.002 0.007

ρ 0.231∗∗∗

σ2 0.080
Log-likelihood 385.433
AICc −768.466
R 2 0.84
Number of parameters 18

(ii) - Agriculture
Total employment (in %) −0.045 −0.026 −0.072
Agricultural employment (in %) −0.068 −0.038 −0.106
Manufacturing employment (in %) 0.029 0.019 0.048
Length of road network (10,000 km) 0.079∗∗∗ 0.045∗∗ 0.124∗∗∗

Travel time to seaport (min.) 0.018 0.010 0.028

ρ 0.371∗∗∗

σ2 0.115
Log-likelihood 420.232
AICc −810.628
R 2 0.78
Number of parameters 14

Notes: ∗∗∗ and ∗∗ denote statistical significance at the one percent level and five percent level, respectively (significance levels calculated using
the algorithm proposed by (LeSage and Pace, 2009)). The semi-parametric SAR reached convergence (no significant AICC improvement) after
24,932,47,102, and 62,654 cycles. A spatial neighborhood matrix configuration with seven nearest neighbors was used.

10 Note, that the log-likelihood and AICc scores are not directly comparable between models, as the independent variable vector y differs per sector.
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that spatial dependence plays an important role in freight generation.
The signs of the summary impact estimates provide for all sectors a similar pattern, as in the aggregate freight generation case.

Note, however, that the agricultural employment is only significant for the direct impacts in the food sector [panel (ii) in Table 5].
That is, a ceteris paribus one percent change in the agricultural employment of a region would lead to a decrease of 0.168 million tons
of freight originating from that region, but would not significantly impact the region’s neighbors. For the freight generation in the
mining and agricultural sectors, agricultural employment is insignificant. The length of the road networks – our proxy for regional
road infrastructure – is positive and significant for all three models. It plays, however, a smaller role in the food (0.128 total impact)
and agricultural sectors (0.124 total impact), as in the case of the aggregate freight generation over all sectors (1.565 total impact). In
the case of the mining sector, however, an increase of 10,000 kilometres in the road network would lead to a corresponding increase of

Fig. 3. Functional fit of selected semi-parametric SAR model terms for the mining, food, and agricultural sectors. Notes: The dotted lines represent
90% confidence intervals. The solid line corresponds to the estimated functional fit. The vertical bars along the x-axis display the distribution of the
data.
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0.481 million tons of mining and mineral goods in the region itself and to an increase of 0.238 million tons in its neighbors. This
reflects the fact that infrastructure is of particular interest to the mining industry.

The number of parameters per sectoral model provides an indication of the underlying non-linearities. Note, that the sectoral
models converge on a lower number of parameters (14 to 18 parameters, respectively) as the aggregate freight generation (24
parameters). This indicates that the underlying curves might be flatter, and is also reflected in the lower number of significant
summary impact estimates.

Fig. 3 displays the functional fit of the B-spline curves per sector (rows) and explanatory variable (columns). The variable total
employment was not depicted, as its functional form is flat in all case and never significantly different from zero. The overall functional
forms of the sectoral B-splines is similar to the aggregate freight generation case in Fig. 2, where the explanatory variables manu-
facturing employment (iii) and length of road network (iv) exhibit clearly significant non-linear functional forms. In case of the man-
ufacturing employment, both the mining sector and the agricultural sector exhibit clearly non-linear patterns.

7. Closing remarks

This paper addresses two key weaknesses in freight generation modeling. First, the classic regional freight generation model
assumes that observations are independent. This is not correct, since spatial dependencies have been shown to play a role in freight
generation (Novak et al., 2011). However, the approach by Novak et al. (2011) only takes spatial dependence in the error terms into
account. This paper introduces spatial lags of the dependent variable in the classic freight generation model.

The second weakness of freight generation modeling that is addressed in the paper is the presence of non-linearities in the
parameters in freight generation models. Such non-linearities can arise in freight generation modeling, where the derivative impact of
regional GDP or employment in manufacturing can first be positive, but this effect is hypothesized to decrease with higher values of
the covariate. In this paper we put forth a novel estimation method for a SAR model with non-linearities in the parameters. Non-
linearities in the parameters can be adequately captured through semi-parametric techniques, such as basic splines. Spline models
rely on subdividing the impact space of the modeled variable based on a set of so-called support knots. Each potentially overlapping
subdivision of the impact space is modeled in a linear in the parameters fashion. Obviously the ability of spline-based semi-para-
metric approaches to adequately capture non-linearities in the parameters is based on the number and relative position of support
knots over the impact space of the explanatory variables.

Current approaches, such as that by Basile et al. (2014) rely on setting a fixed number and position of spline knots. Such an
approach is inefficient, since it might well overparametrize the problem and might lead to overfitting. Instead we suggest an adaptive
approach, based on a variant of genetic algorithms, which selects the optimal – in terms of AIC – number and position of spline knots
per explanatory variable. Moreover, we show that this approach is compatible with the classic summary spatial impact estimates,
proposed by LeSage and Pace (2009).

We investigate the performance of the proposed semi-parametric SAR estimation method with adaptive spline knots in a series of
Monte Carlo studies. First, we show that the proposed method exhibits on average lower bias in the parameters than both a linear in
parameters SAR model, and a semi-parametric SAR with fixed spline knots. Second, we demonstrate that in the absence of non-
linearities in the parameters, the bias of the proposed semi-parametric estimation method is comparable to that of the classic linear in
the parameters SAR model. This indicates that the estimation method is robust to overfitting in cases where there are no non-
linearities in the parameters. Additionally, in the presence of high non-linearities, the performance of our proposed estimation
method exhibits lower bias in the signal to noise ratio and spatial autoregressive parameter, as the semi-parametric SAR model with
fixed spline knots.

Finally, we demonstrate the applicability of the approach to freight generation modeling, in an applied case study for European
NUTS-2 level regions in 2010, based on the study by Novak et al. (2011). In this case study we demonstrate that (i) spatial de-
pendence plays a key role in European freight generation modeling, (ii) not taking prevalent non-linearities in the parameters into
account leads to biased estimates, even when controlling for spatial lags of the dependent variable. Moreover, (iii) we present
evidence for significant non-linearities in freight generation stemming from the length of the road network and manufacturing
employment.
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Appendix A

(See Tables 6–8).
(See Figs. 4 and 5).

Table 6
List of countries and NUTS-2 regions.

Code Region name Code Region name Code Region name Code Region name

Austria Denmark Italy Sweden
AT11 Burgenland (AT) DK01 Hovedstaden ITC1 Piemonte SE11 Stockholm
AT12 Niedersterreich DK02 Sjlland ITC2 Valle d’Aosta SE12 stra Mellansverige
AT13 Wien DK03 Syddanmark ITC3 Liguria SE21 Smland med arna
AT21 Krnten DK04 Midtjylland ITC4 Lombardia SE22 Sydsverige
AT22 Steiermark DK05 Nordjylland ITF1 Abruzzo SE23 Vstsverige
AT31 Obersterreich Estonia ITF2 Molise SE31 Norra Mellansverige
AT32 Salzburg EE00 Eesti ITF3 Campania SE32 Mellersta Norrland
AT33 Tirol Greece ITF4 Puglia SE33 vre Norrland
AT34 Vorarlberg EL11 Anatoliki Makedonia,

Thraki
ITF5 Basilicata Slovenia

Belgium EL12 Kentriki Makedonia ITF6 Calabria SI01 Vzhodna Slovenija
BE10 Rgion de Bruxelles-

Capitale
EL13 Dytiki Makedonia ITG1 Sicilia SI02 Zahodna Slovenija

BE21 Prov. Antwerpen EL14 Thessalia ITG2 Sardegna Slovakia
BE22 Prov. Limburg (BE) EL21 Ipeiros ITH1 Provincia Autonoma di

Bolzano
SK01 Bratislavsk kraj

BE23 Prov. Oost-Vlaanderen EL22 Ionia Nisia ITH2 Provincia Autonoma di
Trento

SK02 Zpadn Slovensko

BE24 Prov. Vlaams-Brabant EL23 Dytiki Ellada ITH3 Veneto SK03 Stredn Slovensko
BE25 Prov. West-Vlaanderen EL24 Sterea Ellada ITH4 Friuli-Venezia Giulia SK04 Vchodn Slovensko
BE31 Prov. Brabant Wallon EL25 Peloponnisos ITH5 Emilia-Romagna United Kingdom
BE32 Prov. Hainaut EL30 Attiki ITI1 Toscana UKC1 Tees Valley, Durham
BE33 Prov. Lige EL41 Voreio Aigaio ITI2 Umbria UKC2 Northumberland, Tyne and

Wear
BE34 Prov. Luxembourg (BE) EL42 Notio Aigaio ITI3 Marche UKD1 Cumbria
BE35 Prov. Namur EL43 Kriti ITI4 Lazio UKD3 Greater Manchester

Bulgaria Spain Latvia UKD4 Lancashire
BG31 Severozapaden ES11 Galicia LT00 Lietuva UKD6 Cheshire
BG32 Severen tsentralen ES12 Principado de Asturias Luxembourg UKD7 Merseyside
BG33 Severoiztochen ES13 Cantabria LU00 Luxembourg UKE1 East Yorkshire and
BG34 Yugoiztochen ES21 Pas Vasco Lithuania Northern Lincolnshire
BG41 Yugozapaden ES22 Comunidad Foral de

Navarra
LV00 Latvija UKE2 North Yorkshire

BG42 Yuzhen tsentralen ES23 La Rioja Netherlands UKE3 South Yorkshire
Czech Republic ES24 Aragn NL11 Groningen UKE4 West Yorkshire

CZ01 Praha ES30 Comunidad de Madrid NL12 Friesland (NL) UKF1 Derbyshire, Nottinghamshire
CZ02 Stredn Cechy ES41 Castilla y Len NL13 Drenthe UKF2 Leicestershire, Rutland and
CZ03 Jihozpad ES42 Castilla-la Mancha NL21 Overijssel Northamptonshire
CZ04 Severozpad ES43 Extremadura NL22 Gelderland UKF3 Lincolnshire
CZ05 Severovchod ES51 Catalua NL23 Flevoland UKG1 Herefordshire, Worcestershire

and
CZ06 Jihovchod ES52 Comunidad

Valenciana
NL31 Utrecht Warwickshire

CZ07 Stredn Morava ES53 Illes Balears NL32 Noord-Holland UKG2 Shropshire, Staffordshire
CZ08 Moravskoslezsko ES61 Andaluca NL33 Zuid-Holland UKG3 West Midlands

Germany Finland NL34 Zeeland UKH1 East Anglia
DE11 Stuttgart FI19 Lnsi-Suomi NL41 Noord-Brabant UKH2 Bedfordshire, Hertfordshire
DE12 Karlsruhe FI1B Helsinki-Uusimaa NL42 Limburg (NL) UKH3 Essex
DE13 Freiburg FI1C Etel-Suomi Poland UKI1 Inner London
DE14 Tbingen FI1D Pohjois- ja It-Suomi PL11 Ldzkie UKI2 Outer London
DE21 Oberbayern France PL12 Mazowieckie UKJ1 Berkshire, Buckinghamshire

and
DE22 Niederbayern FR10 le de France PL21 Malopolskie Oxfordshire
DE23 Oberpfalz FR21 Champagne-Ardenne PL22 Slaskie UKJ2 Surrey, East, West Sussex
DE24 Oberfranken FR22 Picardie PL31 Lubelskie UKJ3 Hampshire, Isle of Wight
DE25 Mittelfranken FR23 Haute-Normandie PL32 Podkarpackie UKJ4 Kent
DE26 Unterfranken FR24 Centre (FR) PL33 Swietokrzyskie UKK1 Gloucestershire, Wiltshire,

Bristol

(continued on next page)
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Table 6 (continued)

Code Region name Code Region name Code Region name Code Region name

DE27 Schwaben FR25 Basse-Normandie PL34 Podlaskie UKK2 Dorset, Somerset
DE30 Berlin FR26 Bourgogne PL41 Wielkopolskie UKK3 Cornwall, Isles of Scilly
DE40 Brandenburg FR30 Nord - Pas-de-Calais PL42 Zachodniopomorskie UKK4 Devon
DE50 Bremen FR41 Lorraine PL43 Lubuskie UKL1 West Wales, The Valleys
DE60 Hamburg FR42 Alsace PL51 Dolnoslaskie UKL2 East Wales
DE71 Darmstadt FR43 Franche-Comt PL52 Opolskie UKM2 Eastern Scotland
DE72 Gieen FR51 Pays de la Loire PL61 Kujawsko-Pomorskie UKM3 South Western Scotland
DE73 Kassel FR52 Bretagne PL62 Warminsko-Mazurskie UKM5 North Eastern Scotland
DE80 Mecklenburg-

Vorpommern
FR53 Poitou-Charentes PL63 Pomorskie UKM6 Highlands, Islands

DE91 Braunschweig FR61 Aquitaine Portugal UKN0 Northern Ireland (UK)
DE92 Hannover FR62 Midi-Pyrnes PT11 Norte
DE93 Lneburg FR63 Limousin PT15 Algarve
DE94 Weser-Ems FR71 Rhne-Alpes PT16 Centro (PT)
DEA1 Dsseldorf FR72 Auvergne PT17 rea Metropolitana de Lisboa
DEA2 Kln FR81 Languedoc-Roussillon PT18 Alentejo
DEA3 Mnster FR82 Provence-Alpes-Cte

d’Azur
Romania

DEA4 Detmold FR83 Corse RO11 Nord-Vest
DEA5 Arnsberg Hungary RO12 Centru
DEB1 Koblenz HU10 Kzp-Magyarorszg RO21 Nord-Est
DEB2 Trier HU21 Kzp-Dunntl RO22 Sud-Est
DEB3 Rheinhessen-Pfalz HU22 Nyugat-Dunntl RO31 Sud - Muntenia
DEC0 Saarland HU23 Dl-Dunntl RO32 Bucuresti - Ilfov
DED2 Dresden HU31 szak-Magyarorszg RO41 Sud-Vest Oltenia
DED4 Chemnitz HU32 szak-Alfld RO42 Vest
DED5 Leipzig HU33 Dl-Alfld
DEE0 Sachsen-Anhalt Ireland
DEF0 Schleswig–Holstein IE01 Border, Midland,

Western
DEG0 Thringen IE02 Southern, Eastern
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Table 7
Monte Carlo simulation results with varying number of genetic algorithms.

7 GAs 10 GAs 15 GAs

SNR ρ Sample size Mean
bias σ2

Mean
bias ρ

Mean
bias

∂ ∂xy/ 1

Mean
bias

∂ ∂xy/ 2

Mean
bias σ2

Mean
bias ρ

Mean
bias

∂ ∂xy/ 1

Mean
bias

∂ ∂xy/ 2

Mean
bias σ2

Mean
bias ρ

Mean
bias

∂ ∂xy/ 1

Mean
bias

∂ ∂xy/ 2

0.1 0.0 100 0.57 0.02 −0.09 0.14 0.54 0.06 0.00 0.14 0.62 0.02 −0.09 0.30
350 −0.53 0.00 −0.07 0.06 −0.56 −0.02 −0.21 0.06 −0.49 0.00 −0.07 0.14
700 −0.61 0.00 −0.04 −0.02 −0.63 0.02 0.12 −0.02 −0.65 0.00 −0.07 0.06

0.5 100 0.94 0.03 −0.06 0.15 0.96 −0.01 −0.16 0.15 0.94 0.02 0.03 0.05
350 −0.53 0.00 −0.07 0.03 −0.49 0.02 −0.15 0.03 −0.53 0.00 −0.06 0.08
700 −0.78 0.00 0.00 −0.03 −0.74 −0.04 0.18 −0.03 −0.76 0.00 −0.06 −0.09

0.8 100 1.30 0.03 −0.03 0.16 1.25 0.04 0.12 0.16 1.25 0.03 −0.02 −0.01
350 −0.52 0.00 −0.06 −0.01 −0.48 −0.04 −0.17 −0.01 −0.48 0.00 −0.13 −0.04
700 −0.94 0.00 0.04 −0.03 −0.90 −0.04 −0.13 −0.03 −0.97 0.00 0.01 0.15

0.5 0.0 100 0.32 −0.03 −0.10 −0.07 0.28 −0.06 0.01 −0.07 0.29 −0.03 −0.19 0.09
350 −0.29 0.01 −0.11 0.12 −0.26 −0.03 0.03 0.12 −0.33 0.01 −0.19 0.22
700 0.13 0.00 −0.98 −0.09 0.14 0.03 −0.82 −0.09 0.17 0.00 −0.89 0.08

0.5 100 0.51 −0.02 −0.78 0.12 0.50 −0.01 −0.67 0.12 0.56 −0.02 −0.69 −0.01
350 −0.47 0.01 0.09 0.08 −0.48 0.05 0.18 0.08 −0.43 0.01 0.09 0.04
700 −0.35 −0.01 0.12 −0.06 −0.32 0.02 0.17 −0.06 −0.39 −0.01 0.10 −0.02

0.8 100 −0.08 0.04 −0.22 −0.25 −0.12 0.05 −0.10 −0.25 −0.11 0.04 −0.32 −0.39
350 0.12 −0.02 0.09 0.07 0.07 −0.03 −0.13 0.07 0.10 −0.02 0.13 −0.08
700 0.10 0.01 0.12 −0.03 0.05 0.05 0.01 −0.03 0.13 0.01 0.20 −0.21

0.8 0.0 100 −0.19 −0.03 −0.12 −0.28 −0.14 −0.01 0.13 −0.28 −0.23 −0.03 −0.12 −0.27
350 −0.15 0.01 −0.01 0.18 −0.16 −0.01 −0.15 0.18 −0.11 0.01 −0.04 0.11
700 −0.08 0.01 −0.14 −0.15 −0.05 0.02 −0.03 −0.15 −0.11 0.01 −0.21 −0.21

0.5 100 −0.27 0.00 −0.11 −0.17 −0.24 0.02 −0.33 −0.17 −0.22 0.01 −0.13 −0.27
350 0.10 0.02 0.03 0.13 0.08 0.04 −0.05 0.13 0.12 0.02 −0.07 0.17
700 −0.02 0.03 −0.14 −0.09 −0.04 0.03 −0.08 −0.09 −0.01 0.03 −0.12 0.02

0.8 100 −0.17 0.00 −0.09 −0.65 −0.19 −0.02 −0.15 −0.65 −0.18 0.00 −0.11 −0.80
350 −0.09 0.00 0.07 0.15 −0.12 0.02 0.11 0.15 −0.07 0.00 0.04 0.04
700 −0.07 0.01 −0.14 −0.03 −0.09 0.04 −0.21 −0.03 −0.11 0.01 −0.07 0.16

Notes: The numbers in the first row denote the number of genetic algorithms (GAs) executed in a parallel fashion, based on the algorithm by Sycara
(1998). = + +x xX( ) 5 0.8 1.51 1

3
2F . SNR stands for signal to noise ratio; the reported partial derivatives correspond to the total effects summary

impact measures from LeSage and Pace, 2009. Each row reports average values over 300 Monte Carlo runs. The algorithms exchange one member of
their population every 50 cycles. The adaptive spline knot algorithm ran for a maximum of =T 100,000 cycles, with a population size of =N 100P

and =N 10Pmate , and mutation probability of 2%.

Table 8
Summary impact measures of the semi-parametric SAR with fixed spline knots freight generation model.

Variable Direct Indirect Total

Total employment (in %) 2.646 1.586 4.232
Agricultural employment (in %) 0.810 1.919 2.729
Manufacturing employment (in %) −2.520 −1.245 −3.297
Length of road network (10,000 km) 1.405∗ 0.764∗ 2.170∗

Travel time to seaport (min.) −0.582 −0.386 −0.968

ρ 0.396∗∗∗

σ2 0.151
Log-likelihood −96.641
AICc 320.123
R 2 0.23
Number of observations 258
Number of parameters 50

Notes: ∗∗∗ and ∗∗ denote statistical significance at the one percent level and five percent level, respectively (significance levels calculated
using the algorithm proposed by LeSage and Pace (2009)). A spatial neighborhood matrix configuration with seven nearest neighbors was
used.
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Fig. 4. Yearly million tons of freight generated by NUTS-2 regions in 2011; (i) aggregate over all sectors, (ii) mining, (iii) food, and (iv) agricultural
sector. Notes: Mining – NST/R GT03 Metal ores and other mining and quarrying products, peat, uranium and thorium ores; NST/R GT09 Other non-
metallic mineral products; Food – NST/R GT04 Food products, beverages and tobacco; Agriculture – NST/R GT01 Products of agriculture, hunting,
and forestry, fish and other fishing products. Source: Eurostat.
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