I

10
11
12
13
14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Global Environmental Change 53 (2018) 12-23

https://doi.org/10.1016/j.gloenvcha.2018.08.004

I dentifying effects of land use cover changes and climate change on terrestrial ecosystems

and carbon stocksin Mexico

Declarations of interest: none

Alma Mendoza-Ponég, Rogelio Corona-NUfi8zFlorian Kraxnet, Sylvain Ledug,

Piera Patrizid

2 International Institute for Applied Systems AnadysSchloRpl. 1, 2361 Laxenburg, Austria.
® Procesos y Sistemas de Informacién en GeomatfcdeSCV. Calle 5 Viveros de Peten, No.
18, Col. Viveros de Valle, Tlalnepantla, Edo de MéR 54060, Mexico

* Corresponding author.

E-mail address: mendoza@iiasa.ac.at and almame@upnail.com (A. Mendoza-Ponce)
Abstract

Land use cover change (LUCC) has a crucial rogabal environmental change, impacting
both ecosystem services and biodiversity. Evalgdtie trends and possible alternatives of
LUCC allows quantification and identification ofetlnotspots of change. Therefore, this study
aims to answer what the most vulnerable ecosysémashe carbon stocks losses to LUCC are
under two socioeconomic and climate change (CG)as@s—Business as Usual (BAU) and
Green. The scenarios integrate the Representativedtration Pathways, and the Shared
Socioeconomic Pathways, with a spatially expli¢tt@C. Distance to roads and human
settlements are the most explicative direct drieédisUCC. The LUCC projections include
thirteen categories of natural and anthropogenieisoat a fine resolution for Mexico for the
two scenariosThe results show that 83% of deforestation incilintry has taken place in
tropical dry forests, scrublands, temperate forestd tropical evergreen forests. Considering

the range of distribution of natural vegetation #melimpacts of LUCC and climate change,
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tropical dry and evergreen forests, followed byeotegetation and cloud forests are shown to
be most vulnerable. By 2011, anthropogenic covecsunted for 26% of the country’s cover,

and by 2050, according to the BAU scenario, thaycaccount for 37%. The Green scenario
suggests a feasible reduction to 21%. In 1985, btekiad 2.13 PgC in aboveground biomass,
but the LUCC would be responsible for 1 to 2% of@@ global emissions, and by 2100, it may
account for up to 5%. However, if deforestationeverduced and regeneration increased (Green
scenario), carbon stocks would reach 2.14 PgC &&X050. Therefore, identifying which

natural covers are the most vulnerable to LUCC@@8dand characterizing the principal drivers
of ecosystems loss are crucial to prioritizing area implementing actions addressing

resources to combat the loss of ecosystems andrcatbcks.

Key words: carbon emissions; deforestation; drivers of chasgenarios, Mexico.

[. Introduction

Land use cover change (LUCC) is the result of huaggropriation of resources, a practice that
undermines the capacity of the planet to sustasystem services, including climate regulation
and biodiversity (Foley, 2017; Foley et al., 200"preover, positive feedbacks among forest
loss, fragmentation, and climate change (CC) apimeagasingly likely (Laurance William and
Williamson, 2002). These interactions may exacerpatssure on ecosystems due to changes in
agricultural productivity (Asseng et al.,, 2013; @Galt et al., 2010), soil quality, increasing
population, and demand for resources. This wiltum increase competition for arable land,
thus modifying the LUCC processes (Licker et all1@ Ward et al., 2014) in terms of both
extension and intensity. As a consequence, thegiomgupatterns and processes in LUCC will
impact the tropical and developing countries ar@ir tbontribution to C@emissions (Laurance,

2007).
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To better understand the causes, impacts, conseggieand dynamics of socio-ecological
systems, LUCC research needs to be integrated sadigsrse fields (Turner et al., 2007).
Research into complex LUCC phenomenon has beesdédcon (1) analyzing historical trends
and patterns (Goldewijk, 2001; Lambin and Meyfrpid011) that are rooted in empirical-

statistical and simulation models (Pontius et a001; Verburg et al., 2004) and cellular
automata (Soares-Filho et al., 2002); and (2) itlenmty the drivers and agents related to
decision making (Berger, 2001; Pocewicz et al.,800UCC models have been developed
using a scenario framework (Hurtt et al., 2011;Pepal., 2017; Rounsevell et al., 2006) that is
not predictive of the future, but rather providdaugible, comprehensive, integrated, and
consistent descriptions of how the future mightolsh{Nakicenovic et al., 2000). Scenarios are
based on quantitative projections and qualitatiesumptions that constitute storylines
(Rounsevell and Metzger, 2010). Quantitative priges usually refer to socioeconomic or
biophysical elements, while storylines focus on ploéicies and technologies that influence the
trajectories of those projections. Other than tkangples of LUCC models under scenario
assumptions, there are few case studies that @nsittractive feedback between LUCC and
CC under different scenarios (Oliver and Morecr2@14) and even fewer for those that model
different natural vegetation categories under C@dammns (Beaumont et al., 2011; Gilliam,

2016; Zomer et al., 2014). Thus, LUCC research benunderstood only in light of

socioeconomic aspects, policies, biophysical cantexd CC.

Common scenarios are necessary to understand [go&sibres within the same framework.
These scenarios facilitate the comparison of ingpanotd changes on earth systems. Moreover,
they are necessary to assess the adaptation amerahility of ecosystems (van Vuuren et al.,

2014). The common scenarios proposed by the Intergovertah@anel on Climate Change
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(IPCC) in its Fifth Assessment Report display a sétfour scenarios known as the
Representative Concentration Pathways (RCPs), wanehdentified by their approximate total
radiative forcing in 2100 relative to 1750: the 2\8n?, 4.5 Wni?, 6.0 W n¥, and 8.5 W rif
(IPCC, 2013). In a parallel process, a set of §iteeylines have been developed by the scientific
community. These are the Shared Socioeconomic Rgth\ESPs), which describe different
socioeconomic trends, including sustainable devetq, regional rivalry, inequality, fossil-
fuel development, and middle-of-the-road develop{&miegler et al., 2012; O’Neill et al.,
2017; O'Neill et al., 2014). These scenarios cog#ferent drivers of the radiative forces
according to their narratives on demography (Jares O’'Neill, 2016; Kc and Lutz, 2017),
urbanization (Jiang and O’Neill, 2017), economyd$pro Cuaresma, 2017; Dellink et al., 2017;
Leimbach et al., 2017), and energy and land usepFa al.,, 2017; Riahi et al.,, 2017; van

Vuuren et al., 2017).

There are global LUCC models that have integratedRCP scenario assumptions (Hurtt et al.,
2011) and the SSPs (Fricko et al., 2017; Popp.e2@17), as well as combinations of both sets
(Hasegawa et al., 2014). However, those models Iaeeimportant limitations: (1) they
consider only one category as natural vegetatiamaty, forest; and (2) the finest resolution is
0.5 x 0.5 degrees (Havlik et al., 2014; Popp et2014; Schaldach et al., 2011). As these
models focus on possible socioeconomic rules basedjlobal trade, they fail to provide
detailed spatially explicit information of hotspais change, making it difficult to evaluate the

possible impacts on biodiversity such as the snaafie species (Jetz et al., 2007).

A few studies focused on carbon (C) stocks in MeXiCartus et al., 2014; Rodriguez-Veiga et
al., 2016) or C fluxes (Murray-Tortarolo et al.,18%), but only the latter integrates LUCC.

However, studies at fine resolution that take axtoount LUCC drivers and the vulnerability of
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natural covers—understood as the propensity talbersely affected (IPCC, 2014) in the short-,
medium-, and long-term under “the common scenarfeah Vuuren et al., 2014)—are lacking,

especially for megadiverse and developing counsiies as Mexico.

Mexico is one of the richest countries in biologidaversity worldwide. Biologically, it is in
fourth place and represents around 70% of knowcispgMittermeier et al., 1997; Sarukhan
and Dirzo, 2001). Mexico also has huge culturakdbity, with indigenous groups and different
cultural practices that have led to biological dsiy (Perales and Golicher, 2014). Considering
that half of Mexico is represented by agrarian camities gidos) that are collectively and
individually managed (Bonilla-Moheno et al., 2018)d that 80% of the forests are collectively
managed (Bray et al., 2003), the country is an gtkmeal and interesting case study for
analysing the possible LUCC trends under diffemytioeconomic and CC scenarios and its
impacts on C stocks. Therefore, the key questiorth@ research is: What are the most
vulnerable ecosystems and the C stocks losses @CLuhder different socioeconomic and CC
scenarios? To answer this questive set the following aims: (1) identify which nedlicovers
have been most vulnerable to LUCC; (2) which natacaers will be the most vulnerable to
LUCC and CC in the short, medium and long term; Baracterize the direct and indirect
causes of habitat loss at a national level; andy¢éntify C stock changes and £€&missions

under two socioeconomic and CC scenarios.

[I. Materialsand methods
The LUCC model was developed in Dinamica EGO (werd.0.17.0). The model includes: (1)
the definition of the land use and cover categaaiss the calculation of transition matrices; (2)

the categorization of continuous variables; (3)nestions of the weights of evidence of the
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explanatory variables; (4) analyses of the corni@tabetween variables; and (5) a short-term
simulation to validate the model and long-term @ctipns under different trajectories (Soares-
Filho et al., 2009) into which the socioeconomial @he CC scenarios were incorporated

(Figure A1, Appendix A).

I1.1 Classification of land use cover and calculation of transition matrices

The most complete and detailed (1:250,000) natitevadl use cover maps are available for
different years from the National Institute of $tats and Geography (INEGI) (1985; 1993;
2002; 2007; 2011). These maps include several acagsgthat vary from 375 classes in the map
of 1985 to 175 for 2011 in the most disaggregatdsdication. These categories were
reclassified into thirteen classes, eight natuoalecs, four anthropogenic uses and covers, and
one for barren land (Table Al). Considering thertélein categories and excluding the
permanence, there are 156 possible transitionshafhwonly 56 were modeled. The total extent
for Mexico in this study was 1,932,347 kend the transitions related to deforestation and

regeneration that were modeled, explained more T0&t of the total changes (Table A2).

[1.2 Explanatory variables, categorization, and drivers of change

A set of 24 explanatory variables (13 socioeconcamid 11 biophysical) were used to identify
the principal drivers of change (Table A3). Contins variables were categorized following a
modification of Agterberg and Bonham-Carter’'s metti®990), in which ranges are calculated
creating breaking points based on the original datacture (Soarekilho et al., 2009). The
weights of evidence (WoE) method was used to giyattie significance of the explanatory
variables (Bonham-Carter, 1994; Goodacre et ab3)1@nd to produce a transition probability
map that depicts the areas prone to change (Sbdheset al., 2004; Soares-Filho et al., 2002).

WOoE is a Bayesian approach, in which the effectao$patial variable on a transition is
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calculated independently (Soares-Filho et al., 2008xt, a correlation analysis was performed

to select the most relevant, as well as the noreladed variables for each transition.

Socioeconomic historical data were taken from thgonal census from INEGI (Table A3).
Future national socioeconomic projections (popafatand Gross Domestic Product (GDP))
were taken from the International Institute for Apgd Systems Analysis (IIASA) (2016).
Demographic figures were downscaled to municipaliével by assuming a constant
municipality representation over time, based onmigan historical contribution taken from the
national census for population (Table A3; Equatign The same method was used for the
economic data, using the National Information Systdor Municipalities (SNIM, 2005) for
GDP. The sum of socioeconomic data at municipdéixel equals the total national value.

Finally, climatic variables were taken from Worldel(Table A3; Fick and Hijmans (2017)).

Equation 1

n
Var _ Var,a: (y) * Z Var mun (x.0)
mun (x,y) n b Var nat (i)

In this formula, Vag,n refers to the socioeconomic variable (population GIDP) of a
municipality x in a timey, andVar 4 refers to the same variable at a national leva timey.

They denotes the time from which the national obseovatiare downscaled. Theefers to the
time when the observations were collected (natiaresus). Then is the total number of

national datasets.

[1.3 Set up, smulation, and validation of the model
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The land use and cover maps of 1993 and 2007 vee@ to calibrate the model. A short-term
simulation was set up to project the land use aoderc map of 2011. The model was
independently validated by comparing the observetithe simulated maps for the year 2011.
The performance of the model was spatially and tpadinely evaluated. The spatial validation
was conducted using an exponential and multipledain constant decay function, following

the method proposed by Soares-Filho e(24109).

[1.4 Long-term projections and scenario building
Two scenarios were modeled by combining socioecanontimatic variables, and LUCC

rates—the business as usual (BAU) scenario anGtéen scenario.

Business as usual (BAU) scenario

This scenario uses the SSP2 assumptions definediddie of the road, in which social,
economic, and technological trends do not chang#eddy from historical patterns (O’'Neill et
al., 2017; Riahi et al., 2017). In terms of dem@gng for this scenario, Mexico is considered to
be a country designated as low fertility (O’'Neill &., 2017), which means that fertility,
mortality, and migration is medium. Education isiceived by two elements a slow shift of the
country to develop and to improve. Consequentlycational cumulative capability over the
past 40 years is medium (Kc and Lutz, 2017; O’Neillal., 2017). Similarly, the economy
shows moderate development—there are significatdrdgeneities across the country and
LUCC trends that fall into the middle of the histotrends. To incorporate these trends of
change quantitatively, we calculated all rates bynlgining the available national maps and
using the Food and Agriculture Organization (FAQuation (1995) to calculate deforestation

(Equation Al). The period selected was 1993-20Gl@ A4). Finally, the climatic data was
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updated including the RCP 4.5 scenario by differardilable time slices (2050s and 2070s;

Fick and Hijmans (2017)).

Green scenario

This scenario is considered to be the sustainadile (D’Neill et al., 2017) for which SSP1
socioeconomic data were used. This scenario defwetsfertility, mortality, and migration
leading to a rapid demographic transition for coestlike Mexico (Kc and Lutz, 2017; O'Neill
et al., 2017). Education shows the most rapid esipanin recent history, as does cumulative
experience (Kc and Lutz, 2017). In terms of econo®$P1 reflects shifts toward a broader
emphasis on human wellbeing. GDP growth is higmeiSEP2, but in SSP1 there is less
population growth and reduced inequality. This scenshows a consumption-oriented path
toward low material growth and lower resource anergy intensity, with a strong reduction in
tropical deforestation (Popp et al.,, 2017). Conseatly, this scenario takes into account the
lowest historical deforestation rates and the hsgHastorical regeneration rates for every
natural cover (Table A5). The Green scenario usé® R.6 bioclimatic data. This scenario
supports the active participation of sectors taucedradiative forcing, such as an increase in
forest growth for activities like bioenergy withrban capture and storage (van Vuuren et al.,

2011).

The climatic variables used in the models (RCP a8 2.6) were taken from four general
circulation models (GCM) (CNRMC M5; GFDL CM3; HADGR2 E5; and MPI-ESM LR).

These models were selected to integrate the vAtyamong the most contrasting GCMs on
climate change for Mexico (INECC, 2016) and to make results comparable to the National
Vulnerability Atlas to Climate Change (INECC, 2018y a result, four different maps of future

land use and cover under climate change and sarioeuc scenarios were produced. This
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information also helped us to evaluate the unaagtaof the scenarios. The uncertainty of the
models was based on the transitions from naturarsao anthropogenic covers and vice versa
for every single pixel. A total agreement for deftation or regeneration is when the four

resulting maps coincided in the same projected gésn

[1.5 Aboveground biomass, C stock estimates, and uncertainty

To estimate the aboveground biomass (AGB) we uaedelements: (1) the National Forest
Inventory of Mexico (NFI 2004-2009) (CONAFOR, 201@JONAFOR, 2012) (CONAFOR,
2012) (CONAFOR, 2012) and (2) a set of allometquaations available for Mexico and tropical
ecosystems. The NFI database consists of rectanguath circular plots (depending on the
ecosystem) of 400feach. Within each plot, diameter at breast heiBfH), tree height, and
species classification were recorded. The samplegign follows a systematic grid with the
distance between plots varying from 5 km in temfggraloud, tropical evergreen, and
hydrophilic forest including other vegetation, 16 kn tropical dry forest, and 20 km in arid
regions and grasslands. This study included 58d@&& of data of live trees with DBH7.5
cm. We considered that the high density of thedfidbts would reflect the degradation of the

ecosystems on the mean AGB, an observation sitoildrat reported by Cairns et al.

The dataset of allometric equations has 478 equatid the most common species and genera
(Rojas-Garcia et al., 2015). To complement theseysed the allometric equation developed for
tropical species wherever species were not incluélde Mexican dataset (Chave et al., 2014).
We constructed an iterative decision-tree appraaddelect the optimal allometric equation for
each tree based on the plot location. When mone ¢me allometric equation was available,
equations developed for the specific species welected, especially when the equation was

collected within the ranges of DBH, mean annualperature, and rainfall. Complementarily, to
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estimate the AGB of anthropogenic covers, we asdumenean of 5 MgC Ha(Ruesch and
Holly, 2008) with an uncertainty ranging from 2 8MgC ha', which are similar figures to
other reports for Mexico (Cairns et al., 2000; daglet al., 2010; Hughes et al., 2Q08hally,
the AGB densities (Mg h8 were transformed to aboveground carbon (AGC)rests (MgC
ha') by applying specific constants of carbon contentvood for each land use and cover
(Corona-Nufiez et al., 2018; Feldpausch Ted e@Db4; IPCC, 2006; Lamlom and Savidge,

2003; Thomas and Matrtin, 2012).

Finally, we used the Monte Carlo analysis to edi@nthe uncertainty of the AGC. All the
analyses were conducted using R software versioh X84 (R-Core-Team, 2014). We
reconstructed the distribution of each variablengghe library fitdistrplus (Delignette-Muller
and Dutang, 2015), and calculated the uncertaisityguthe library mc2d (Poillot et al., 2013).
We included sources of uncertainty of the mean Af6B each land use and cover, the

conversion factor to C stocks, and the total afesoh land class.

[11. Results

[11.1 Natural covers, historical LUCC trends, and future projections under different

scenarios

Temperate forests represented 17% of the nati@rakory in 1985, but they have been
declining (Figure 1). Their highest deforestatiaterwas during the period 1993 to 2002 (Table
AB6). By 2050, the BAU scenario shows that tempefatests would cover close to 16% of
Mexico and that by the end of the century they dalédcrease to 14.7% (Figurel). The losses
are related to the expansion of rain-fed agriceltand pastures (Figure 2). Under the Green

scenario, it is shown that, by the end of the agntiemperate forests could cover as much as
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278  18% of the countryThe most affected regions are in the center otransvolcanic belt, while
279  the major areas of regeneratare in the center and in southern pdiks, thesierras of Oaxaca

280 and Guerrero, and tlhiapas Highlanc (Figure 3 and Figure A2).
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Figure 1. Representativeness of historical land uses anerspand future projections of a)
extent of land uses and covers in Mexico, and byafjround biomass of the land uses and

covers.

Mexican scrublands represent the most widespreagahaover. By 1985, they covered more
than 642,000 kA ~33% of the country (Figure 1). However, by 20ftey fell to 29% of
Mexico’s cover. Scrublands showed their highestsatf change during the period 1985 to 1993
(-1.75% yi), after which rates diminished. Rates did howestart rising again in the period
2007 to 2011 (Table A6). By 2050 and 2100, underBAU scenario, scrublands represented
26% and 25% of the country respectively, with de$tation rates lower than 0.21%yafter the
2030s. The Green scenario shows a slight recovetyhat by the end of the century scrublands
could cover ~29% of the country (Figure 1). The tradfected regions are in the southern part
of their distribution (up to the trans-volcanic fpelue to the expansion of rain-fed agriculture—
principally in the central part of the ChihuahuaesPrt, in the north of the Sonoran Desert, and
the ecoregions of the southern Texas plains. Téasgorone to regeneration are at the southern

distribution of scrublands on the borders of tlams$rvolcanic belt (Figure 3).

In 1985, tropical dry forests covered 12% of th&amal territory (Figure 1). Although for the
period 1985 to 1993, an increase in these foresdepicted. The forests start diminishing after
1993, showing their highest deforestation raterdu#002 to 2007 (Table A6). It is important to
note that although the rate of deforestation deeathese forests have the highest rates of
change in comparison with other natural vegetati®y.2050, the BAU scenario shows that
tropical dry forests account for 7% of land cowemMexico, and that by the end of the century
this figure could decrease to 6%. In contrast, withe same time frame, the Green scenario

depicts that tropical dry forests could nearly redtteir 1985 extent. This vegetation has been
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308 principally affected by rain-fed agriculture andspaes (Figure 2), mainly in Sinaloa state,
309 matching an ecoregion known as the Sinaloa copkials, as well as by pasture expansion in

310 the southern Pacific coastal plains and hills (Feggiand Figure A2).
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Figure 2. Deforestation and regeneration patterns (19939072 a) Conversion to
anthropogenic covers from natural covers; and ¢¢meration from two anthropogenic covers

to natural vegetation.

Tropical evergreen forests have a constrictedidigion. By 1985, they occupied around 7% of
land cover, and they have been continuously deicrgd&igure 1). This vegetation has the
highest deforestation rate in comparison with ofbeests, losing 2.57%Vr(Table A6). It has
mainly been converted to pastures and rain-fectalgure. By 2050, the BAU scenario depicts a
decrease in the representation of tropical evengferests in the country, and by 2100, they
could halve (Table A6). In contrast, the Green adenshows a slight recovery at a rate of
0.07%yf", but even by the end of the century the contrisu6%) of tropical evergreen forests
do not reach the representativeness they had i (Egure 1). The most perturbed areas are on

the coast of the Gulf of Mexico (Figure 3).
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Figure 3: Land use and land cover historical and projectedsnader two scenari: BAU and

Green (GCM: CNRMC M5).
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In 1985, natural grasslands accounted for less3B&if cover in Mexico, although their extent
increased in the periods 1985 to 1993, and 1993062. Natural grasslands started to show
recovery in the latest historical periods (20022@07, and 2007 to 2011; Table A6). The
projections show that by 2050, grasslands mightesemt 5.3% to 8.9% of Mexico in the BAU
and the Green scenarios. According to the BAU soenlby the end of the century it shows a
similar extent to that of 1985 (Table A6). The direrivers of this change were mainly the
expansion of rain-fed agriculture (Figure 2), falkd by irrigated agriculture and pastures in the

southern part of their distribution (Figure 3).

Cloud forests and hydrophilic vegetation have therawest distribution of any vegetation in
Mexico. By 1985, they represented 0.9% and 1.1%lexXico’s cover, respectively (Figure 1).
These kinds of vegetation show the highest defatiest rates during 1985 to 1993 (Table A6).
The BAU scenario depicts a continuous decreaseshwkiworse for cloud forest. By 2050, both
vegetation types decrease and represent only OngP0.8% of the country’s cover (Figure 1).
In contrast, the Green scenario shows that botletaégn types could reach the same extent as
they had in 1985. Cloud forests were mainly affedig the expansion of rain-fed agriculture
and pastures, while hydrophilic vegetation was mauierable to pastures and irrigated

agriculture (Figure 2 and Figure 3).

The category, other vegetation, which includes gatmdesert ecosystems, covered almost 3%
of Mexico in 1985 and during the period 1993 to 2@&howed the highest deforestation rate
(Table A6). Both scenarios depict a reduction irs thegetation compared with historical
figures, and by the end of the century, they cardy 1.9 and 2.2% of the country in the BAU
and Green scenario respectively, (Figure 1). Theytaeatened mainly by irrigated agriculture,

rain-fed agriculture, and the expansion of bareaml$ in the north of the country (Figure 3).
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I11.2 Deforestation and driversof change

In the period 1993 to 2007, more than 83% of detateon in the country was accounted for by
tropical dry forests (30%), scrublands (22%), terafee forests (18%), and tropical evergreen
forests (13%). 45% was accounted for by the expansi rain-fed agriculture, 41% by pasture,

and 11% by irrigated agriculture.

In 1985 and 2011, pastures covered 7% and 9% ofiddexespectively (Figure 1). Pastures
show their highest historical expansion during 1883993, growing at ~3%yrafter which,
they begin to decrease (Table A5). Pastures areciedly widespread in tropical evergreen
forests, temperate forests, and hydrophilic vegetafFigure 2). The principal element pushing
their expansion was closeness to localities, roahsl population. However, biophysical
variables related to those transitions were annumabn temperature, range of annual
temperature, seasonality, and precipitation, wiéstor settlement of this land (Figure A3). In
terms of pasture expansion on natural grasslahddjiophysical elements were more important
than the socioeconomic (Figure A3). The BAU scandgpicts a substantial increase, possibly
accounting for 13% and 15% in the 2050s and 2100,gbowing at lower rates than in the
historical periods (Table A6). The Green scendlistrates a reduction in pasture cover to ~7%

of the country, as it was in 1985 (Figure 1).

Rain-fed agriculture was the second most impomatiiropogenic cover in terms of extent in all
historical periods. In 1985, it covered ~10% of Mex(Figure 1) and had the highest expansion
rate during the period 1985 to 1993 (Table A6).udland temperate forest were the most
affected by this type of cover (Figure 2). The magbortant elements in the expansion of rain-

fed agriculture were distance to roads, cities, landlities, and population size. Protected areas



381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

19

(PA) played an important role by avoiding this siion—particularly in tropical evergreen

forests. From a biophysical perspective, type df aod seasonality were significant for all the
natural covers, except for tropical dry forests ahoud forests (Figure A3). Slope was an
element restricting the expansion of rain-fed agtigce in temperate forests. Precipitation was
related to this transition in grasslands, and tiege of annual temperature was influential in
grasslands, hydrophilic vegetation, and scrubldrdgire 2 and Figure A3). The BAU scenario
showed that by the end of the century rain-fed cagiire could cover ~15% of Mexico,

expanding especially in the center of the coumryhie trans-volcanic belt and the surrounding
areas, and also in the ecoregion known as the esgusiemi-arid highlands (Figure 3). Although
rain-fed agriculture was the second most widespesdldropogenic cover in historical periods,
for the Green scenario it became the third mosespdead, covering 5% of the country (Figure

1).

Irrigated agriculture showed a continuous incressee 1985, accounting for 4 to 5% in 2011
(Figure 1). The period with the highest rates chrgie was 1985 to 1993 (Table A6). The
natural covers most affected by the expansionisfahthropogenic cover were other vegetation,
scrubland, and hydrophilic vegetation (Figure 2)e Televant socioeconomic variables for these
transitions were the distance to roads and popuatensity. For cloud forests and hydrophilic
vegetation, precipitation was essential and inctee of grasslands and cloud forest, distance to
protected areas was important in terms of restgctts expansion (Figure A3). In terms of
biophysical variables, it was found that type of and temperature were important for all the
natural covers, and that altitude was relevanséoublands, grasslands, and tropical dry forests
(Figure A3). The BAU scenario shows that this caveght increase to 11% by 2100, while in

the Green scenatrio it will cover 8% of the courgifigure 1).
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In addition, socioeconomic variables were extrenplgdictive regarding transitions to urban
covers (Figure A3). Transitions to urban coversemeore representative in other vegetation,
scrublands, and tropical evergreen forests (Fi@)relThe most important elements were the
socioeconomic ones: distance to the existing cdied human settlements, distance to roads,
localities, population size, and GDP. Regardingbysical variables, altitude was shown to be
the most important. This category had the highatst of change during the period 1985 to 1993
with an expansion of 24%yr(Table AB). For both scenarios, this cover showsmatinuous
increment until the end of the century of betweéh dnd 2% of the territory (Figure 1). The
places where these transitions occur are in theopaitan area of Mexico City, Monterrey
(State of Nuevo Leon), and Guadalajara (Jalis¢m itiree biggest cities in the country) (Figure
A2). However, the southern cities of Cancun (Quiat&koo) and Merida in the Peninsula of

Yucatan also increased their extent (Figure 3 agdré A2).

[11.3 Regeneration and itsdrivers of change

Regeneration from pastures and rain-fed agricultexplained 47% and 46% of total
regeneration. More than 80% of the regeneratiok fdace in tropical dry forests, temperate
forests, and tropical evergreen forests (Figurelr2the case of regeneration from pasture to
natural covers, socioeconomic variables were namnasrtant as biophysical ones (Figure A2).
However, distance to roads was relevant, especfaltytemperate forests, cloud forests,
scrublands, and grasslands—the more distant tres avere from the roads, the higher the
regeneration. Small population size was importanttfopical evergreen forests, hydrophilic
vegetation, tropical dry forests, and grasslanderms of allowing regeneration (Figure A3).
The biophysical variables that played a criticdenm regeneration were altitude, mean annual
temperature, seasonality, and the mean and maxiteonperatures in the warmest and wettest

guarters for all the natural covers (Figure A3)sgness to the coasts with reduced precipitation
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was however important for promoting regeneratiorhydrophilic vegetation and tropical dry
forests (Figure A3).

Most of the regeneration from rain-fed agricultuook place in tropical dry forests and
temperate forests (Figure 2). These transition®vi@d a similar pattern to pastures, where
biophysical elements were more important than smcnomic ones (Figure A3). The steep
slopes were especially key for temperate forestscdoud forest. Other biophysical variables
favoring regeneration were temperature and allvasiants (range, mean, maximum, and
minimum) (Figure A3). Precipitation was relatedthe regeneration transition of cloud forests.
Moreover, soils were significant in terms of explag these transitions for all the natural covers
(Figure A3). Population size was relevant in chandem hydrophilic vegetation and
grasslands, while the distance to localities aratisowvas related to regeneration of scrublands

(Figure A3).

[11.4 Validation and agreement between models

The spatial validation of the model goes from 40% =& 1 cell, to 80% at 8 x 8 cells (resolution
~2 knf). However, the similarity between maps reaches @0%. knf resolution. Over the four
GCMs, the agreement in terms of the projected absrsipows that the BAU scenario has a
better agreement than the Green scenario. By 20B0BAU scenario shows that 16% of the
country could undergo changes due to deforestatioregeneration, while the rest depicts
permanence of the land covers. Of these changés,ar@ due to deforestation, which showed
an agreement of 100% across the GCMs. By the samethe Green scenario changes account
for 20% of the cover of Mexico. Of these chang&%o3are due to deforestation and the rest to
regeneration. In the Green scenario, deforestatiaa completely agreed upon by the four
GCMs in 75% of the changes, while 12% and 13% apire75% and 50% of them. The

agreement regarding deforestation is principallytlo® Pacific coast, Peninsula de Yucatan,
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matching with the tropical dry forest distributiand the northern part of the tr-volcanic belt,
while the regeneration areas are located in theecer the country and some areof the Gulf
of Mexico (Figure 4). By 207(oth scenarios illustrate a total agreement of &8k 78% fol
the permanence of natural cover, especially insitreblands, vegetation, and anthropog:
covers located in the tran®icanic belt, where there the most important concentration
human settlements, and in the Gulf of Mexico wheastures for cattle ranching are loce

(Figure 1).

BAU scenario 2050 Green scenario 2050

Kilometers
0 500 1,000

I 100% Agreement of permanence of natural covers

|_| 100% Agreement of permanence of anthropogenic covers
- 100% Agreement of deforestation

|:| 100% Agreement of permanence of regeneration

Figure 4: Agreement of permanence, deforestation, and regeoeramong the four GCMs t

2050 under the BAU an@reen scenaric

[11.5Historical and future changes of C stocks and CO, emissions

The ecosystems with the highest AGB densities dred¢ tropical evergret, and temperate
forests, contrasting with scrublands and grass, which showed the lowest valueFigure
A4). The major contributionto AGB in Mexico wereby temperatgetropical evergree, and
tropical dry forestswhich account fo~65% of land cover (Figure 1The historical period
studied depict a reduction aftal AGC stocks (lgure 5. The total C stock estimated in 1€

was 2.13+0.04 (mean +1D$ PgC,reducing by2011 (2.05+0.04 PgC). By 20, the BAU
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scenario shows a C stock of 1.86+0.07 PgC and byetid of the centunythis shrank to
1.76x0.08 PgC. Convsely, the Green scenario descs a rapid rise i€ stocks by 20z, with
no significant increaseafter tha. By 2050 the Green scenario depicts 2.14+0.09 PgCha

2080 C stockseach their maximum (2.15+0.08 Pg!

N
(o]
o ]
(o]
O
j=)]
o
© ]
Historic
BAU scenario
(o] .
- Green scenario
|
5/
O .

T | T T T T T
1980 2000 2020 2040 2060 2080 2100

year
Figure5: Historical and futuréotal aboveground C stocks for Mexico. The shadepgesent:

uncertainty (x 1 SD).

During the period 2007 t8011 the lowest rate of change of C sto-0.10+0.01TgC yr') was
observedThe BAU scenario suggests that the maximum C lossetd occul during the period
2020 t02030 at a rate of 3.620.6 TgC™, with a slight reduction between 2( and 2050 to
3.0+0.5 TgC yr". By the end of the centy, it would decreas® 1.7+0.3 TgC y* (2070-2100).
Moreover, the Green scenario suggests thagreatestC sink would be observed during 1
period 2020 t030 at a rate of 0.7+0.6 TgC™. However, even in the Green scen, a small

C loss would be observed in the period Z to 2100 (0.1+0.1 TgC .
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Temperate forests, tropical dry and tropical eveggrforests, and scrubland concentrate ~80%
of the total Mexican AGC. By 2050, the BAU scenasimgests that these natural covers would
represent 70% and by 2100, up to 63% of the totaloCks respectively, due to the LUCC. In
1985, the anthropogenic covers accounted for 10%eofotal C stocks, but by 2050 and 2100,
they would rise to 19.4% and 23.6% respectivelynt@stingly, in the Green scenario and the
same time slices, C stocks in temperate and clowasts, and hydrophilic vegetation would rise
from 5 to 20%, while natural grasslands would nedduble the values they had in 1985 with
an increment of >30 TgC. It is important to notattBven in the Green scenario by 2100, other

vegetation and scrublands show a reduction in haitocks of 22% and 15% respectively.

Mexico has experienced a substantial reduction ©f €quivalents because of LUCC. The
values go from 7.8+0.1 Pg G@ 7.5+0.1 Pg C©(1985 and 2011, respectively) at a rate of
12.2+0.1 Tg CQyr'—close to the rate recorded for the period 199307 (11.0+0.1 Tg CHr

1). Moreover, the BAU scenario suggests that dutiegperiod 2020 to 2050 there would be a
significant rise in C@emissions (11.6+1.9 Tg GQr?), contrasting with the sequestration in
the Green scenario (1.8+1.4 Tg §@%). By the period 2050 to 2100, the BAU scenarioictsp

a reduction of C@emissions rates (7.2+1.3 Tg €@, while the Green scenario illustrates

close to neutrality CQemissions (0.2+0.2 Tg GQr™?).

V. Discussion

LUCCs have a crucial role in the global environnaémhange impacting ecosystem services,
such as the C cycle and biodiversity. Evaluating titends and possible LUCC alternatives,
allows us to quantify the impacts on these enviremtal components and to identify what
natural covers and ecosystems are more susceptibleose changes. Global and national

studies report that deforestation for ecosysterfferdisignificantly in terms of localizing the
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hotspots of change when compared to more detaiietlies that included more categories for
Mexico. This study is the first national researcthtive modeled detailed types of natural and

anthropogenic covers by looking at historical tieadd their drivers of change.

Comparing LUCC models in Mexico is difficult becausf the different inputs, methodologies,
and categories used. Some studies at a nationall ilevMexico have focused on analyzing
historical changes (Mas et al., 2004; Mas et 8092 Rosete-Vergés et al., 2014; Veldzquez et
al., 2010; Veladzquez et al., 2002), while othengeh@nalyzed ecosystems or mosaics. Studies on
tropical dry forests (Burgos and Maass, 2004; Careh al., 2016; Navar et al., 2010) and
temperate and tropical evergreen forests have sisegharios (Camacho-Sanabria et al., 2015;
Cruz-Huerta et al., 2015; Flamenco-Sandoval et2@07; Kolb and Galicia, 2017), and other

vegetation classes also incorporated CC (BallestBesrera et al., 2007).

At the national level, our results have shown thathistorically highest deforestation rates of all
the natural covers has been for tropical evergfeessts and scrublands between 1985 and 1993.
This may be the result of policies related to agtiral expansion in Mexico and the promotion of
cattle ranching in the southeast of country from 1960s to the late 1980s (Diaz-Gallegos and
Mas, 2009; Dirzo and Garcia, 1991; Revel-Mouro801Tudela, 1989). After the 1985 to 1993
period, the deforestation rates of tropical evengrand cloud forests decreased, perhaps because
the remnants of these ecosystems were inside oected areas—deforestation inside the PAs has
been recognized (Dirzo and Garcia, 1991; Mendodalarzo, 1999; Ortiz-Espejel and Toledo,
1998). However, the efforts are inadequate, conagléhat tropical evergreen forest under the
BAU scenario was the second most affected covéinderopical dry forests. This is different to
Trejo et al. (2011)’s observations, which sugdest tiry ecosystems, including tropical dry forests,

would naturally expand their distribution. Howewveuy results support that tropical dry forests and
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natural grasslands will keep decreasing despitenfheence of CC due to the LUCC. For instance,
in the period 2002 to 2007, they showed the higlastof loss ever seen for grasslands in Mexico
(Ceballos et al., 2010), providing evidence thardzcosystems have been disregarded in terms of
conservation policies in comparison to tropical rgveen forests (Koleff et al., 2009). This
misrepresentation of dry ecosystems such as tiapigdorests, grasslands, and even scrublands is
evident when the deforestation rates are repoftecbrding to the FAO (2016), Mexico showed
lower rates of forest change for the periods 1992000 (-0.3%yf) and 2000 to 2010 (-0.2%yr

!). Those differences result from the FAO’s definitiof forests (FAO, 2012) in which neither
scrublands nor grasslands and other vegetationakes into account. Although these natural
covers are not forests, they should be integratéal quantifications of how much natural
vegetation has been lost. This is not only becabiieeir importance for ecosystem services and
biodiversity, but also because grasslands, scrdblaand other vegetation, are more affected by
irrigation agriculture that will be very sensitite CC (Elliott et al., 2014; Schlenker et al.,

2007).

There is one national study that includes LUCCgntipns at a national level (Mas et al., 2004).
This study suggests that by 2020, temperate foresgsical forest (including tropical dry and
evergreen forests), and scrublands would show gnsion of ~300,000 ki ~260,000 krfy

and ~520,000 kmrespectively. These results are similar to thosederived for the BAU
scenario (312,876 k260,142 krhand 529,442 kA). Nevertheless, there are local studies to
which we can compare our findings, even thoughetstgdies are not based on the RCP or SSP
assumptions. The studies show that by 2030, thenexf tropical forest and temperate forests
in the southeast could be reduced by anything f&9% to 89% in comparison to 2000
(Flamenco-Sandoval et al., 2007) or to 19% to 3A@%amparison to 2007 (Ramirez-Mejia et

al.,, 2017). Our national study shows that by 2088s¢ forests could lose 4% and 17%
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respectively under the BAU scenario for the santaralicovers. These findings support that the
southeast of Mexico is one of the most exposedsaieaeforestation, with higher rates than
those national estimates. However, the Green siceslaows that by 2030 it would be possible
to increase between 7% and 10% of the same natovals in comparison to their extent in

2002 by reducing deforestation and increasing rattm.

In this study we incorporated assumptions abouiréupolicies related to the expansion of
covers for bioenergy purposes that can be promatedrding to the RCP 2.6 scenario (van
Vuuren et al., 2011). However, the Mexican conteflects that more than 70% of LUCC are
caused particularly by the expansion of pasture#biie ranching and rain-fed agriculture. The
70% figure includes all natural covers except hptitic vegetation and other vegetation with
low potential for agricultural use. Consequentlyg wonsidered the importance of focusing on
the expansion of agriculture and pasture, tryinglepict a possible future that Mexico might
face. By 2050, it has been projected that dependingiets and production systems, Mexico
could use 60 to 80% more land for agricultural anelstock purposes to meet needs (lbarrola-
Rivas and Granados-Ramirez, 2017). However, ouwltseswhich do not consider dietary

changes, suggest that by 2050, under the BAU siceNBaxico would require 15% more land

than in 1985, which means 35% of the country. Thee@ scenario depicts a reduction to 19%

of the country for agriculture or cattle ranchirgelas a result of changes in productivity.

The analysis of the effects of LUCC on the AGB sgjgdifferent successional stages in the
Mexican forests in diverse natural covers with famivalues for secondary and mature
temperate forest, natural grasslands, and scrubléDdirns et al., 2000; Mendoza-Ponce and

Galicia, 2010), tropical evergreen forest (de Jeh@l., 2010), tropical dry forests (Corona-
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Nufiez et al., 2018; Martinez-Yrizar et al., 1992orkl et al., 2017; Roa-Fuentes et al., 2012),

cloud forests (Cairns et al., 2000), and hydrophiggetation (Adame et al., 2013).

The total C stocks accounted for Mexico in the Z0@0this study (2.1+0.3 Gt C) fall within the
range of other reported studies (1.7 - 2.4 Pg Qcébii et al.,, 2012; de Jong et al., 2010;
Masera et al., 2001; Rodriguez-Veiga et al., 2@Hgitchi et al., 2011). However, it is important
to notice that low values in the published data edrom studies that did not include scrublands,
grasslands, or other vegetation in their analyssause they focus on temperate, tropical dry,
and tropical evergreen forests that have showrhitjeest C stocks as suggested by de Jong
(2010). In terms of C emissions from LUCC, Mexicaslreported rates of between 17.4 and
20.0 TgC yi* (1977-1992) (Cairns et al., 2000). Those are higien our estimate (5.47 TgC
yr) for the period 1985 to 1993. In this study, rasé<C loss for the period 1993 to 2002 (-
3.67+0.06 TgC yf) were similar to those proposed by de Jong €RalL0) (2.63+0.90 TgC yr

) for the same period. Interestingly, Murray-Toolar et al. (2016) reported that Mexico
showed a C sequestration between 21.4 and 31.4yT@8uring the period 1990 to 2009 as a
result of CQ fertilization. These figures are higher than &lé tother previous studies for
Mexico for those periods. This could be the restllthe authors’ aggregation of contrasting
bioclimatic vegetation classes and the use of hégl woody mean AGC (eg. 229+9 MgCha
for broadleaf evergreen forest) in contrast to ottedies with mature vegetation (Corona-

Nufiez et al., 2017; Chave et al., 2004).

According to our results, future G@missions from LUCC are expected to decrease xidde
and as has been previously suggested, in the sdrart (2000 to 2030) (Masera et al., 1992;
Masera et al., 2001). This study shows that by 20%{er the Green scenario, the total C stocks

stored in vegetation would be close to those reploidr the 1990s (Masera et al., 2001). Under
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the Green and the BAU scenario however, our reshitsv that by 2100 Mexico would have
2.14 and 1.76 PgC respectively. These results @sintwvith those published by Murray-
Tortarolo et al. (2016) who reported 3.0 and 2.1 PgC for RCPs 26 45 respectively,

suggesting that Mexico is a sink rather than as®of C.

In the period 1850 to 2000 global deforested biamaas 63-156 PgCQO(Arora and Boer,
2010; Houghton, 2010; Houghton and Nassikas, 20&uygesting rates of 420 to 1,040
TgCOyr. For the period 1985 to 1993, we estimated emissates (20.1 TgCQr™) that
would show Mexico to be responsible for 1 to 2%hase emissions, an observation similar to
that reported by De Jorgyal. (2010) . Moreover, by the end of the century,@®issions from
LUCC are expected to be between 222 and 2,333 FgCQNard et al., 2014), and according
to those figures, we conclude that Mexico coulddetributing 0.5 to 5.2% of global emissions
under the BAU scenario (11.67 Tge@™). Under a Green scenario it could be neutral (zero

emissions from LUCC).

Scenario studies rarely consider uncertaintiesingrisrom spatial data (Dendoncker et al.,
2008). However, the uncertainty is intrinsic to tsgdadata and ignoring uncertainty may result
in unreliable scenarios (Fang et al., 2006). To im&e the reliability of the scenarios, we
minimized, to the extent possible, different sosroéerror as intrinsic errors by using the best
national data available for LUCC—the accuracy ofalwhhas been reported for INEGI's >90%
for all covers (Mas et al., 2004). In terms of s@m building, we tried to develop scenarios in
the most transparent way. However, the assumptdnscenarios may represent the major
source of uncertainty because their interaction \Gay over time. Besides the limitations of
long-term projections for Mexico, it is importamt tontinue developing these kinds of studies.

There are still elements that future studies shogldo integrate at a national or local level.
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640 From a biophysical perspective it is necessaryoisicler the impacts of CC on major crops
641 (changes in phenology, droughts, flooding and p@g#tsvden et al., 2007; Tubiello et al., 2007;
642  Tucker et al., 2010)), and the feedbacks betwediux@s in order to quantify the fertilization
643 effects of the C@ (Houghton, 2003; Strassmann et al.,, 2008). Fromoeosconomic
644  perspective it would be necessary to include: (itgrimunicipality migration (rural-urban)
645  (Nawrotzki et al., 2015); (2) changes in labor fegcpractices, for example, from agricultural
646  activities to tourism (Corona et al., 2016; Garefapolli et al., 2007); (3) effects of policies on
647  crops related to bioenergy (Kato and Yamagata, RBREBDD++ projects (Corbera et al., 2011);
648  (4) market economy according to the internatiomal aternal trades (Lambin and Meyfroidt,
649 2011), especially those focused on key crops foxitte (5) agricultural subsidies and cultural
650 land management practices (Roy Chowdhury, 2010Ye{@tionship between land tenure on the
651 LUCC (Bray et al., 2003); (7) the effects of in@ieg violence on LUCC dynamics (Duran et al.,
652  2011); and (8) corruption (Arial et al., 2011) adrdg plantations (Bradley and Millington, 2008).
653 Challenges to future integration will be overcomighwnore accurate and refined data. Further
654  work capable of incorporating the feedbacks betwagants could be used to produce spatially
655  explicit results.

656

657

658 |V. Conclusions

659 LUCC is due to the human appropriation of resoutoegermining the capacity of the planet to
660  sustain ecosystem services and biodiversity. LUC& complex phenomenon and its modeling
661 requires the integration of diverse fields to hettederstand the causes, impacts, consequences,
662 and dynamics of change. The use of scenarios alassible descriptions of the future to be
663  depicted. This work is the first study at a natideael to model different and detailed natural
664 and anthropogenic covers by integrating the scenapproach, including RCP and SSP

665  scenarios, into a spatially explicit LUCC model afine resolution for Mexico. This study
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identified that, historically, scrublands have bées natural cover to lose most area, but due to
their representativeness, tropical dry and tropeadrgreen, followed by cloud forests, other
vegetation, and grasslands, have shown the higiefsirestation rates. This shows that
conservation policies in tropical evergreen andidléorest have been inadequate and that drier
ecosystems, such as tropical dry forests, natuaslstands, and other vegetation have been lost.
Moreover, Mexico has reduced its C emissions frddCC. However, according to the BAU
scenario, by the end of the century C emissions m@asesent up to 5% of global emissions due
to LUCC. Nevertheless, by reducing the deforestataies and increasing the regeneration of
natural covers, Mexico could return to the totaktGck estimated in 1985. We agree that, to
better understand the dynamic of the socio-ecoddbgsystems under changing conditions,
further work is needed to integrate more detaiféddrmation on the feedbacks between LUCC
and CC, in addition to more accurate socioecon@nd policy data that reflect the social and

political context.
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