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Half our planet’s population still suffer from
water insecurity

Floods & droughts Poor irrigation and food production
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Time series variation in hydrological drought RCP8.5

Index: Regional mean value of the total number of drought days in a year
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Time series variation in hydrological drought
Index: Regional mean value of the
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Water Demand - Asia
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Water demand in Asia region, by sector (km3/yr).

Asian total water demand in the 2010s is about
2410 km3/year and will be

3170 - 3460 km?3/year (increase 30 - 40% )
under the three scenarios
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Water Management Options and Economy?
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Scenario applying six
water-stress wedge strategies
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We present six strategies, or water-stress wedges, that collectively lead to a reduction in

the population affected by water stress by 2050, despite an increasing population.
- Water productivity — crop per drop

- Irrigation efficiency — decrease losses

- Water use intensity — industry and domestic
- P lation

- Reservoir storage

esalination Wada et al. (2014), Nature Geoscience

vs. Hard path




Hydro-Economic framework for investment options

D)

External scenario inputs

RCPs

Policy options and
economic database
SSPs

Hydrology

Economic |

optimization _ _ _,!
Energy
demand,
Hydropower
potential

Ag. demand E. demand

Irrigation Energy

Irrigation
efficiency

I Supply | Supply I
readjustment

L_______I_______

[ Portfolio of sustainable, robust and cost-effective policy ]

options and investment decisions

Key features represented in the
model:

Drivers: Demand growth; Resource
availability; Climate change; etc.

Processes: Reservoir
management; Irrigation use;
Electricity generation; Water
pumping; End-use efficiency;
Wastewater treatment; etc.

Impacts: Prices; Demands;
Emissions; Water quality;
Environmental flow; Groundwater
depletion; Resource security; etc.

Decisions: Extract resources;
Operate infrastructure; Expand
infrastructure; Trade resources

8
(Kahil et al., 2018)



Assessment of adaptation measures: technical potential and costs

= Build/enlarge dams = Efficient irrigation
= Rainwater harvesting technologies
= Drill/improve wells = Efficient domestic water
* Reuse of wastewater appliances
» Desalination * Energy cooling
= Reprogram reservoir technologies
operation = Better crop management
* Inter-basin transfer * Diet change

* Food loss reduction

* Improving education

= Controlling population
growth
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Model application: the case of Africa

150 BCUs

Three soclo-economic and climatic
scenarios:

1/ Middle of the Road (MoR): SSP2-
RCP6.0

2/ Regional Rivalry (RR): Water
demand increases over time in all
water sectors and water availability
decreases, compared to MoR.

3/ Sustainability (Sust): Water
demand decreases over time in all
water sectors and water availability
Increases, compared to MoR.



Relative change in human water use (SSP2)

2100 — 2010
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Results: Water demand and withdrawals
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Total water
demand

X

Total water demand
increases in 2050 by 190-
520 Km3 (40-110%)
compared to historical
demand

This increase requires the
Implementation of demand
and supply management
options to balance available
supply and demand

After implementing demand
management options,
withdrawals increase in
2050 by 100-360 Km?3
compared to historical
withdrawals



a) Results: Investment costs b) 2050 2050
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Results: Energy use intensity

RR

Adaptation of the water resource
system to future socio-economic
and climatic changes may
involve tradeoffs among various
environmental and economic
objectives

Some of the identified adaptation
options may be inconsistent with
climate change mitigation targets
because they involve high
energy consumption, such as
desalination, recycling, pumping,
and pressurized irrigation
systems

Our findings highlight that
electricity use in the water sector
can increase five-fold (or by 125
TWh) by 2050 compared to 2010
in the RR scenario

14, date



D)

Results: Cost implications

Building reservoirs is a practical solution for water supply and adapting hydrological
variability but a costly option. Increase in the use of seawater cooling in coastal basins

Water system cost in Africa is expected to increase from 67 billion USD in 2010 to 70-130
billion USD in 2050 (+5 - +100% compared to 2010)

Following a sustainable pathway (Sust scenario) will result in a smooth increase in the
water system cost while following the rocky road (RR scenario) will result in a
disproportionate increase in the water system cost

The largest cost by country is in South Africa, followed by Egypt and Sudan, and by basin
is in the Nile, Mediterranean South Coast, Niger and Zambezi

Adaptive strategies for hydrological variability need consideration for energy use (e.g.,
hydropower) and food production
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