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Abstract: Despite globalization and the scale of international food trade, access to sufficient food 62 
remains a major challenge in Africa. The most effective way to mitigate food insecurity is to increase 63 
crop production. To answer the question that whether African countries have capacity to mitigate 64 
food shortages by best cultivating practices observed on current cropland, in this study, we use the 65 
local net primary productivity scaling (LNS) method to evaluate the currently attainable potential 66 
yield-gap (CAYgap). The CAYgap is initially used to suggest steps towards best regional agricultural 67 
practices, and provide an indicator of regional divergence of cropland productivity in each 68 
homogeneous agro-climatic zone. Results indicate that under current climatic conditions, improving 69 
each countries’ productivity to the zonal optimal level, around ~90% of all African countries have the 70 
capacity to mitigate their current energy shortages independently. Thus, to achieve ending hunger, 71 
possible efforts are needed include 1) clarifying what and how socio-economic and institutional 72 
factors cause yield divergence across agro-climatic zones and establishing relevant practical policies; 73 
2) strengthening the resilience of food access to make national food availability favors households 74 
and individuals; and 3) establishing systematically monitoring platforms on dynamics of crop yields 75 
from pixel to regional, from growth phrase to decadal scales. Furthermore, our study demonstrates 76 
the feasibility of applying satellite-derived indicators for the maximum yield achieved method to 77 
quantify and map the current cropland yield divergence by LNS method, and this method could be 78 
applied on different spatial level from regional to global scale with reasonable homogeneous zone 79 
scheme.  80 

 81 

Keywords: cropland yield; spatial divergence; Agro-climatic homogeneous zone; NDVI; food 82 
security; Africa  83 
 84 

1. Introduction 85 
Despite globalization and the scale of international food trade, access to sufficient food remains 86 

a major challenge in Africa, particularly in Sub-Saharan Africa, which accounts for ~19% of the 87 
world’s undernourishment in 2015-2017 (FAO et al. 2017) and even higher than 2014-2016. Food 88 
security and nutrition in Africa is still at the heart of Africa’s development agenda. Currently, many 89 
countries and subregions in Sub-Saharan Africa depend on imports to fill up to a third of their cereal 90 
needs, suggesting that substantial demand for food exists for these countries, and calling a need to 91 
increase agricultural productivity and food production (FAO 2017; van Ittersum et al. 2016). 92 
Meanwhile, population growth, dietary preference towards resource-intensive foods, and achieving 93 
a world without hunger and malnutrition – an aim set by the second Sustainable Development Goal 94 
(SDG2) (FAO 2017), companioning with challenges from climate change on land resources and crop 95 
yield (Dawson et al. 2016), put significant pressure on Africa’s food security situation (Godfray et al. 96 
2010). 97 

Stagnant crop production is one of major contributors to food insecurity in Africa, but it is not 98 
because of lacking cropland. Africa land availability per capita (0.25ha) is higher than the world 99 
average (0.22ha) (FAOSTAT 2017). Additionally, the fraction of fallow cropland to total cropland is 100 
very high (Monfreda et al. 2008; Lobell 2013). Cropland systems in Africa are characterized as low-101 
external-input, rain-fed and low-yield (Luan et al. 2013). Though growth in total factor productivity 102 
is the most important source of growth in global agricultural production in the past two decades, in 103 
Sub-Saharan Africa the productivity grew by less than 1% per year over that period, and far lower 104 
than world average level (FAOSTAT 2017).  105 

Narrowing gaps between actual farm yields and yield potential is widely regarded as an 106 
important strategy to meet current and future food demand (Foley et al., 2011). Theoretically, the 107 
yield-gap is the difference between yield potential that could be achieved in situations with no water 108 
and fertilizer restrictions and the average farmer’s actual yield over a specified spatial and temporal 109 
scale of interest (Lobell et al. 2009). According to this definition, broadly there are three methods of 110 
assessing yield-gaps: (i) field-scale studies including field experiments and yield contests, (ii) crop 111 
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model simulations, and (iii) studies using maximum yield achieve, providing three kinds of yield-112 
gaps applicable at different scales (van Ittersum et al. 2013). Many studies have done works on 113 
assessing regional or global crop yield potential and related yield-gaps, and some studies argues that 114 
it is possible to meet projected future regional or global food demand on existing agricultural land 115 
by filling up the yield-gaps (Duku et al. 2018; Erb et al. 2016; Mauser et al. 2015; Mueller et al. 2012; 116 
Pradhan et al. 2015; Tilman et al. 2011). Most of these studies focuses on meeting projected scenarios, 117 
and using calculated yield-gaps mainly by crop model simulations or yield experiments which could 118 
provide agronomic potential yield and water-limited potential yield (van Ittersum et al., 2013). 119 
Although meeting the future demand may be possible, and indeed it is important to answer questions 120 
about whether and how to guarantee our future, whether different African countries would meet 121 
their basic food demands by adoptable best cultivating practices observed on current cropland is also 122 
need to be concerned. 123 

In reality, reaching a potential level of yield is prevented by a number of biotic and abiotic 124 
stresses, including: soil fertility or lack of fertilization, water availability, cultivar features (van 125 
Ittersum et al. 2013), and market access, etc. Given a specific biophysical and socio-economic 126 
environment, farmers try to maximize production or income after a consideration of all farming 127 
constraints. In any case, their efforts produce widely different results representing as yield 128 
divergence. Therefore, identifying and quantifying hotspot of yield divergence is an initial but 129 
essential step towards mitigating food insecurity by observing and adopting best regional 130 
agricultural practices.  131 

Spatial cropland yield divergences in agro-climatic homogeneous zones usually imply gaps 132 
which have potential to be closed up and then improve the local productivity by adopting currently 133 
observed best cultivating practices in the same zone. Such gaps could be observed and measured by 134 
maximum yield achieved method (van Ittersum et al. 2013; van Wart et al. 2013). Different from field-135 
scale studies and model simulations, the maximum yield achieved method compares yield to the 136 
observed maximum value achieved inside a region varying in size from landscape to agro-137 
ecosystems. Currently, spatial yield data used to derive yield-gaps are often based on country-level 138 
data (e.g. Licker et al. 2010; Johnston et al. 2011; or FAOSTAT 2017), or data from a particular year 139 
(e.g. SAGE datasets) of spatial yield values in coarse resolution. Such cases largely depend on external 140 
sources (e.g. Monfreda et al. 2008) and are characterized by absence of real-time monitoring, and 141 
multi-year values. 142 

Satellite data provide a unique opportunity to overcome both spatial and temporal scaling 143 
challenges (Atzberger 2013; Lobell 2013). Multiple sensors, especially the Moderate Resolution 144 
Imaging Spectroradiometer (MODIS) have generated time-series of remote sensing imagery that 145 
enable monitoring of the intra-annual, and inter-annual, dynamics of vegetation growth. The repeat 146 
coverage of remote sensing enables extracting the key points of crop growth period at pixel level to 147 
increase the accuracy of simulating crop yields (Duncan et al. 2015b). Satellite data also enable 148 
appropriate representation of spatially heterogeneous agricultural systems. Because of these 149 
characteristics, in the past decades, many studies have used established relationships between 150 
vegetation indices and crop yields to map and monitor crop yield distribution (Bolton and Friedl  151 
2013; Huang et al. 2013; Duncan et al. 2015a; Burke and Lobell, 2017).  152 

This study aims to assess currently whether African countries have capacity to mitigate their 153 
food shortages (on energy unit) by yield gaps between preferable attainable yield from currently 154 
observed best cultivating practices and actual yield. This is achieved by using the modified Local 155 
NPP Scaling (LNS) method proposed by Prince (Prince et al. 2009) on the growing season NDVI 156 
integral (GSI) (Funk and Budde 2009; Mkhabela et al. 2011). The LNS method is applied on cropland 157 
of African continent, and the GSI is chosen to represent cropland productivity derived from the 158 
MODIS datasets. Firstly, the difference between the observed preferable attainable yield and the 159 
actual yield in one same homogeneous agro-climatic zone is calculated and termed as currently 160 
attainable potential yield gap (CAYgap) of this zone. The CAYgap could be denoted as yield-gaps 161 
measured by maximum yield achieved method. Then, the CAYgap is converted to cereal equivalent 162 
(CE) measured unit, and furthermore, is used to estimate the relevant potential production gap of 163 
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each country. Finally, we use these production gaps to assess the capacity of each country to mitigate 164 
its energy shortages. 165 
 166 

2. Materials and Methods  167 
In this study, all herbaceous crops were aggregated and converted into cereal equivalent (CE). 168 

Here, the maximum yield in a target region was denoted as the currently attainable potential yield 169 
(CAYpotential) for the rest of the region; this was different from the agronomical potential yield. The 170 
gap between actual achieved yields and CAYpotential (denoted as CAYgap) was used to map the 171 
extent of regional yield divergence in respective agro-climatic zones and estimate the regional 172 
currently attainable potential production (CAPpotential). Materials used in this study and calculating 173 
flows is presented as Fig. 1, detailed descriptions of each step is described in following sections.   174 

 175 

 176 
Fig.1 Calculating flowchart 177 

2.1. Data sources and data pre-processing  178 

2.1.1. Datasets of cropland and agro-climatic zones 179 

To constrain the homogenous zones for upscaling potential yields, Global Environmental 180 
Stratification (GEnS) was used to characterize agro-climatic zones (Metzger et al. 2013). GEnS 181 
achieves a suitable balance between the number of zones needed for coverage of harvested areas and 182 
the homogeneity of agro-climatic variables within zones (van Wart et al. 2013). The cropland 183 
distribution layer, at a resolution of 1 km, was obtained and upscaled from the GlobCover 2009 184 
database (Global Land Cover Map) with resolution of 300m (Bontemps et al. 2011). Four classes were 185 
considered: (1) post-flooding or irrigated croplands, (2) rain-fed croplands, (3) mosaic cropland (50–186 
70%)/vegetation (20–50%) and, (4) mosaic vegetation (50–70%)/cropland (20–50%). The weighting of 187 
the cropland ratio of each pixel was set as 1.0 for classes (1) and (2), and a mean weight of 0.65 and 188 
0.35 was assumed for classes (3) and (4), respectively. Irrigated cropland was included because its 189 
proportion of the complete study region was small (~5% from GlobCover 2009).  190 
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2.1.2. NDVI data 191 

Satellite data used in this study came from the Terra MODIS Normalized Difference Vegetation 192 
Index (NDVI) 1-km product (MOD13A2, collection 5). The studying period was 2001-2010 in order 193 
to preferably match the time of other data. The iterative Savitzky-Golay filtered algorithm (Chen et 194 
al. 2004) was then applied to eliminate the noise caused by persistent cloud contamination, 195 
atmospheric variability, and bi-directional effects before extracting the phenological metrics. To 196 
eliminate the interference of soil background and cloud effects, and to exclude contaminated pixels, 197 
masking was performed on those pixels that had a 10-year average NDVI outside of the 0.1–0.8 range 198 
or those with a coefficient of variation of less than 0.1 (Vrieling et al. 2011). 199 

2.1.3. Agricultural statistics 200 

Three sources of agricultural statistics were used to train the relationship of cereal equivalent 201 
and growing season NDVI integral (GSI): the country-level data from FAOSTAT (2017), the 202 
provincial-level data from CountrySTAT (Kasnakoglu), and Agro-Maps (FAO et al. 2006). Statistics 203 
at the second administrative level were not included.  204 

Seven crop categories were grouped into one index, the cereal equivalent (CE), using cereal 205 
equivalent conversion coefficients (Rask and Rask 2014) as: cereals (1.0); starchy roots (0.25); sugar, 206 
sweeteners (1.08); pulses (1.06); vegetable oils primary (2.72); vegetables primary (0.08); and fruit 207 
(0.14). All crops in each category were on a primary level. Sugarcane and sugar beet were converted 208 
into sugar primary by using a unified extraction ratio of 12% (crop production weighted world 209 
average). Cottonseed was allocated into the vegetable oil category by using a world average 210 
extraction ratio of 0.63 (FAO 2000). Tree nuts and vegetable oil were excluded because they were 211 
sourced primarily from evergreen trees.  212 

FAOSTAT was set as the priority data due to its spatial and temporal availability. The principle 213 
of selecting provincial-level data from CountrySTAT was based upon the following assumption: (i) 214 
aggregated CE production of cereals and starchy roots and (ii) aggregated CE production of all crops 215 
from provincial-level data should be similar to the amount calculated from FAOSTAT (ratio of 216 
CountrySTAT’s CE to FAOSTAT’s CE ranged from 0.8 to 1.2). On this basis, a total of 10 countries 217 
were selected (accumulated 70 years’ data).  218 

Several countries were excluded from this study due to insufficient data: Comoros, Sao Tome 219 
and Principe, Cape Verde, and Western Sahara were missing GSI or statistical data. Four countries 220 
were also excluded during training the CE models of GSI: (i) DR Congo, Congo-Brazzaville, and 221 
Madagascar were missing most cropland GSI data due to adjacency contamination from forests and 222 
woods on NDVI profiles of cropland; (ii) Egypt, where almost all cropland was irrigated. Sudan and 223 
South Sudan were combined as Sudan (former) because they were politically delineated in 2011, after 224 
the study period took place.  225 

2.2. Methodology 226 

2.2.1. Extraction of vegetation phenological metrics 227 
In the current study, the threshold method proposed by White (White et al. 1997) was used to 228 

extract the phenological metrics from NDVI profiles: start of season data (SOS), end of season (EOS), 229 
and length of season between SOS and EOS (LOS; Fig. 2). This method was considered to be the 230 
simplest and moderately effective for phenological study (White et al. 2009; de Beurs and Henebry 231 
2010). 232 
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 233 

Fig. 2 Illustration of the method used to extract phenological metrics. The presented two time-series 234 
NDVI profile a two-growth cycle pixel for one year and its 10-year average respectively. There are 235 
two minima in the one-year profile. Two SOS values in this year are counted, and the one nearer to 236 
the advent of the minimum of 10-year average profile is the SOS for growth cycle 1, the other is for 237 
cycle 2. The dashed area is the GSI for each pair of SOS and EOS. 238 

Phenological extraction for continental Africa is complex because growing seasons span 239 
different calendar years and double growing seasons over one calendar year occur only in some 240 
regions. A method that was developed by Anton Vrieling (2011) was adopted with several 241 
refinements. First, the growth cycle intensity was calculated and each growth cycle was identified 242 
based on Biradar and Xiao’s (2011), and Liu’s studies (2012). Each growth cycle was determined as 243 
the period between two minima NDVI, which were the lowest values in a window of 112 days (7 244 
images of 16-day resolution). Because the study targeted herbaceous crop, growth cycle would be 245 
excluded if it had a growth amplitude (the gap between the maximum and minimum values in one 246 
growth cycle) less than 0.1 (Heumann et al. 2007) and/or with a time span shorter than 2 months (Liu 247 
et al. 2012), in order to weaken the impact of natural vegetation growth on crop growth. The 248 
maximum and minimum growth amplitudes of each pixel’s NDVI time-series profile were also 249 
excluded to remove outliers in the calculation of 10-year average intensity.  250 

Second, phenological metrics of each growth cycle were extracted and recorded. A yearly 251 
average NDVI profile for 2001–2010 was constructed and the minimum NDVI value of this profile 252 
was determined for each pixel. Then, for each pixel and for each year, the following steps were 253 
executed: 1) if only one SOS was documented, the SOS was referred to its corresponding growing 254 
season; 2) if there was more than one SOS and the growth cycle intensity was also greater than 1.01, 255 
the SOS nearest to the occurrence of the minimum NDVI was assigned as the beginning of the first 256 

                                                
1: We found that for some pixels, they showed more than one SOS but the growth cycle intensity for the period of 2001-2010 
was less than or equal to 1.0, due to irregular rainfall or other unexpected events.  
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growing cycle and the other SOS was identified as the second cycle (Fig. 2). There was no major 257 
instance of three or more growing cycles in Africa.  258 

The GSI was then derived by integrating the NDVI profile curve over the LOS. For those pixels 259 
with one more growth cycles per year, each cycle’s GSI was weighted by growth cycle intensity and 260 
then were summed (if there was no specific state, the GSI here referred to the sum value for all cycles). 261 
To eliminate the effects of climate variation, for example extreme events (Lobell 2013), we applied the 262 
LNS method on the 2001-2010 average GSI map. The temporal and spatial coefficients of variation 263 
(CVt and CVs, respectively) were produced respectively. The CVs was derived from the 10-year 264 
average GSI map. 265 

2.2.2. Relationship of cereal equivalent production and growing season NDVI integral  266 

The GSI was regarded as a proxy for productivity in terms of NPP (Mkhabela and Mashinini 267 
2005), from which the main sources of food were derived. All the pixels’ GSI values were weighted 268 
by the appropriate cropland ratio and summed per country/province per year. Subsequently, the 269 
relationship between CE and GSI was estimated using observations from the country-level or 270 
provincial level in three ways: 271 

Linear Form: CE = a ∗ GSI	 + c	 + 	ε         (1) 272 
Exponential Form: CE = 	 e.∗/0 123 454	6        (2) 273 

Or in Log Form: ln CE = a ∗ ln GSI + b + 	ε      274 
Binomial Form: CE = a ∗ GSI: + b ∗ GSI + c + ε       (3) 275 

where a, b, c were coefficients; CE was aggregated Cereal Equivalent; GSI was growing season NDVI 276 
integral; ε was an error term. The the relationships in Eq. 1 and Eq.3 were estimated with (c ≠ 0) and 277 
without (c = 0) an intercept. 278 

Training relationship of GSI and CE production was executed in two steps. First, statistical 279 
analysis was performed on the three forms of CE production models of GSI. All models were trained 280 
by four observation data pools: (i) each country’s provincial data; (ii) all country’s provincial data; 281 
(iii) all country’s national data and (iv) all provincial and national data. In this procedure, the 282 
performances of each of three models were tested along with the reliability of the relationship 283 
between CE production and GSI on different spatial scales. Subsequently, to test the robustness of 284 
these models, we used leave-one-year-out and 10-fold cross-validation.  285 

2.2.3. Estimation of currently attainable potential yield gap 286 
Firstly, we map the CAYgap by LNS method (Prince et al. 2009). Then the CAYgap was 287 

converted to CE-measured CAYgap (unit is tonnes/100 ha) by best performed CE-GSI model. The 288 
CAYpotential was value at the 50th, 75th, and 90th percentiles of the frequency distribution of the 10-289 
year average GSI map for each agro-climatic zone (descripted as 50th, 75th, and 90th percentile 290 
scenarios). The 90th percentile was an arbitrary cutoff as the upper boundary to exclude outlier values. 291 
The difference between the 10-year average GSI and the CAYpotential was the CAYgap. This 292 
procedure assumed that cropland having a CAYgap value could improve its productivity to the 293 
optimized level by adopting corresponding agricultural management that was undertaken in the 294 
same zone. 295 

To validate the rationality of the results, two other independent sources of crop model estimated 296 
potential yield were chosen: (i) the GAEZ v4.0 model outputs of high-input level potential yield at 297 
year 2010 (Fischer et al., 2012); and (ii) the maize potential yield modeled by Christian Folberth (2013). 298 
These two sources were used to evaluate the CAPpotential. It is important to mention that these 299 
sources were not used to validate the quantitative precision of results but only their quality. Since the 300 
potential yield estimated by crop models could be regarded as agronomical potential yield and as 301 
maximum yield ceilings for other studies (van Wart et al. 2013), the assumption of this validation was 302 
that our potential production gaps should lower than those from crop models. In the comparison, the 303 
potential yields of 18 major crops from the GAEZ v4.0 model were weighted by 2010 crop harvested 304 
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areas and aggregated into cereal equivalent potential production. A comparison was performed 305 
between the ratio of actual CE production to CAPpotential (actual achievement ratio) at the 90th 306 
percentile scenario in this study (CAP_LNS) and the corresponding actual achievement ratios under 307 
90%, 70%, and 50% of GAEZ high input potential production scenarios (denoted as GAEZ_HIPP50, 308 
GAEZ_HIPP70, and GAEZ_HIPP90). Only 43 countries in sub-Saharan Africa were considered. As 309 
maize was one of the most important and most widely cultivated cereal crop in Africa, we also 310 
calculated the ratio of actual maize production to modeled maize potential production of Folberth in 311 
2000 (base year 1997–2003) (denoted as Folberth_maize), and the ratio of actual maize production to 312 
90% of GAEZ high input maize potential production in 2010 (denoted as GAEZ_maize). Using actual 313 
achievement ratio makes crop model estimated potential productions and CAPpotential comparable.  314 

2.2.4. Assessment of capacity of mitigating energy shortages 315 
To assess each countries’ capacity of mitigating its energy shortages, we calculated additional 316 

population whose energy requirement could be met by the currently attainable production gap. We 317 
used the average dietary energy requirement (ADER) as a reference standard of a person’s daily 318 
energy requirement. The depth of the food deficit of each country was used to adjust the amount of 319 
currently attainable potential production before calculating the number of additional populations. 320 
The depth of the food deficit indicated how many calories would be needed to eliminate the 321 
undernourishment from their status. The calculation steps were as follow. Firstly, all the CE-322 
measured CAYgap were upscaled to the national scale. Secondly, the CE production gaps in weight 323 
units were converted to values in energy units by conversion factors. Thirdly, the energy required to 324 
cover up the depth of food deficit for each country were subtracted from CE production gaps. And 325 
finally, by dividing the remaining production gaps by each countries’ ADER and the days in a year, 326 
the number of additional population for each country under different percentile scenarios could be 327 
obtained:  328 

 ;<;=>?>@A?B =
CDEFGHI DJK@AL ∗DMNOBPQ>MNRAS?MPTUBL?VWBC>S>?∗;<;

JWEX∗YZ[
     (4) 329 

POP̂ _`_a.`b  was the additional population; fdeTfgh3 was the CE-GSI model (weight unit), 330 
fdeTfgh3 CAYgap  was upscaling pixel-level CE-measured CAYgap to production gap on country-331 

level (weight unit); ConversionFactor converted production gap in weight units to energy units 332 
(kcal/100g), depthDeficit was the depth of food deficit, and POP was each countries’ population.  333 

The weight-energy conversion factor considered all kinds of cereal products. Five-year average 334 
(2005-2010) of nine cereal crop production ratios to total cereal production in Africa (wheat, rice, 335 
barley, maize, rye, oats, millet, sorghum and other cereal crops) were used to weight each crop type’s 336 
weight-energy conversion factor. The conversion factors for each cereal crop product were from 337 
Kastner’s work (2012). Population data was for 2010. There were five countries having no ADER data: 338 
Burundi, Democratic Republic of Congo, Equatorial Guinea, Eritrea and Libya. Therefore, results 339 
only covered 43 countries. The 2009-2011 FAO undernourishment ratio was chosen as the reference 340 
for measuring each countries’ energy demand-supply imbalance. It focused on food energy supply 341 
aspect (Cafiero and Gennari 2011) and could be regarded as a synonym for hunger, measuring the 342 
shortage of energy (FAO et al. 2016). 343 

 344 

3. Results 345 

3.1. Performance of growing season NDVI integral 346 
The mean and trend of GSI are presented in Fig. 3. In general, GSI displays a strong spatial 347 

variation range, corresponding to the distribution of annual total precipitation (Fig. 3A). Nonetheless, 348 
the CVs of GSI varies with zones, and zones those are extremely hot and arid, extremely hot and 349 
xeric, and extremely hot and moist show relatively higher heterogeneity (> 0.3) (Table 3 in Appendix 350 
1).  351 
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 352 
Fig. 3 (A): mean of GSI value; (B): trend of GSI value. Blue or red pixels’ trend passed significant test 353 
at the 90% level. 354 

There is a clear distribution of significant positive and negative trends. Between Senegal and 355 
Benin, a large area of positive trend is observed. The area from Nigeria to Ethiopia shows mixed 356 
patterns with relatively more negative trends. Northern Africa, which mainly refers to Morocco, 357 
Algeria and Tunisia, show significant increasing trends. Increasing pattern is also observed in 358 
southern Africa. These trends can be interpreted as a recovery from the 2001-2002 droughts in 359 
southern Africa, Tunisia, and Algeria (Rojas et al. 2011). Significant negative trends occur in the areas 360 
near the Nile River, Uganda, Somalia, parts of central Africa and the western part of Tanzania, which 361 
all have sequentially suffered different degrees of drought since 2005 (drought in Central Africa was 362 
recorded approximately at 2005, and severe drought swept over East Africa from 2007 to 2009; Masih 363 
et al. 2014). These temporal fluctuations reflected, to a certain extent, the sensitivity of African 364 
cropland to extremely events.  365 

3.2. Modeling and validating the CE-GSI model 366 
Trained by observation data pools, the relationship between CE production and GSI is 367 

significant on different spatial scale level and in different form. Eight out of ten countries have a 368 
significant relationship on the provincial level (sig. test, P < 0.001; Table 4 in Appendix 2). According 369 
to goodness of fit statistics, GSI could explain greater variation of CE production at the country level 370 
(Adjusted R2 and F-statistic) than at the provincial level (Table 5 and 6 in Appendix 2). Furthermore, 371 
when models are trained by all provincial and national observations, the statistical fits are slightly 372 
improved in the coefficient of determination (adjusted R2), but particularly noticeable in the F-373 
statistics (Table 1). 374 

Table 1. Fit statistics of estimations of CE production against GSI in three forms, with or without 375 
constant terms. Models are trained by all provincial and national observations from 2001-2010. The 376 
estimation of currently attainable potential yield uses the model underlined.  377 

 
Statistic Models2 

Adjusted 
R-squared 

Prob. 
(F-statistic) 

Durbin-
Watson stat 

Linear  
Model 

Y = 1.2979*X - 411955 0.6703 <0.0001 0.7871 

Y = 1.2569*X 0.6677 <0.0001 0.7811 
Exponential 
Model 

LN(Y ) = 0.6736*LN(X) + 4.5609 0.6533 <0.0001 1.6948 
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Binomial  
Model 

Y = (6.51E-08)*X2 + 0.0388*X 
+10012551 

0.8091 <0.0001 1.3021 

Y = (5.60E-08)*X2 + 0.294*X 0.7956 <0.0001 1.2197 
1. P-value of X is 0.4394 378 
2. all models were trained by 1060 observations. 379 

 380 
The three forms of models perform somewhat differently. The results of linear and exponential 381 

forms show a better fit than the binomial form for each country (Table 4 in Appendix 2). Trained by 382 
provincial or national observations, the binomial form performs better than the other two forms 383 
(Table 5 and 6 in Appendix 2). However, when excluding the 4 observations from the Oromia 384 
province of Ethiopia, or the 10 observations from Nigeria, the binomial form’s goodness of fit get 385 
worse (adjusted R2 decreased from ~0.55 and ~0.78 down to ~0.32 and 0.51, respectively). In both 386 
cases, those observations have remarkably larger CE production and GSI values than others. 387 
Furthermore, there are no statistically significant differences in linear and binomial models with or 388 
without constant term (Table 1, Table 5 and 6 in Appendix 2). However, models without constant 389 
term have more properly physical significance in this study.  390 

The results of the 10-fold and leave-one-year-out cross-validations presented in Table 2 suggest 391 
that the exponential form has poor predictive ability. The binomial form performs better than the 392 
linear form in both validations, but its performance is weaker than the linear one when excluding 393 
Nigerian observations (Table 7 in Appendix 2). In summary, binomial form is more sensitive to 394 
extremely observation than linear form. Therefore, a single linear model without constant term 395 
trained by all provincial and national observations is used in this study to calculate the CAYpotential 396 
and CAPpotential (underlined model in Table 1; the scatter plot of all provincial and national CE 397 
production and their corresponding aggregated GSI is showed in Figure 7 in Appendix 2).  398 

 399 
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 400 

Table 2. Cross-validated coefficients of comparison between predicted and actual CE production. 10-fold cross validation is applied on two observations: 1) all provincial 401 
and national observations; 2) all national observations. Leave-one-year-out cross validation is applied on all national observations.  402 

    Linear Model   Power Model   Binominal Model 

  Model R2  Model R2  Model R2 

10-fold cross 
validation 

Provincial, National Obs. 0.656   0.289   0.788 
National Obs. 0.5803   0.3063   0.6874 

          

Leave-one-year-out 
cross validation  
(All National 
Observations) 
	 

2001 Y = 1.2104*X 0.5894  Y = 28.6160*X0.7616 0.4057  Y = (5.24E-08)*X2 + 0.2463*X 0.6351 
2002 Y = 1.2015*X 0.5857  Y = 30.2217*X0.7585 0.362  Y = (5.06E-08)*X2 + 0.2628*X 0.7121 
2003 Y = 1.1983*X 0.6236  Y = 30.0721*X0.7581 0.3565  Y = (5.11E-08)*X2 + 0.2556*X 0.745 
2004 Y = 1.1949*X 0.5803  Y = 30.2878*X0.7576 0.3197  Y = (4.99E-08)*X2 + 0.2721*X 0.7221 
2005 Y = 1.1776*X 0.6486  Y = 29.4819*X0.7588 0.3142  Y = (4.99E-08)*X2 + 0.2590*X 0.7735 
2006 Y = 1.1903*X 0.5275  Y = 28.2244*X0.7618 0.2732  Y = (4.99E-08)*X2 + 0.2745*X 0.6393 
2007 Y = 1.1887*X 0.5934  Y = 28.3168*X0.7620 0.3122  Y = (4.97E-08)*X2 + 0.2711*X 0.7264 
2008 Y = 1.1811*X 0.5487  Y = 33.8866*X0.7495 0.2536  Y = (5.01E-08)*X2 + 0.2534*X 0.6447 
2009 Y = 1.1821*X 0.6542  Y = 33.8465*X0.7488 0.2861  Y = (5.11E-08)*X2 + 0.2304*X 0.7371 
2010 Y = 1.1717*X 0.5983   Y = 29.2526*X0.7582 0.2485   Y = (5.07E-08)*X2 + 0.2337*X 0.6812 

 403 
 404 
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3.3. Currently attainable yield-gap and production 405 
The distribution of CAYgap (Fig. 4A, B, and C) is similar to the ratio of CAYgap to CAYpotential 406 

(Fig. 4D, E, F). The CAYgap areas mainly appear at the north of a transect from Senegal to Ethiopia, 407 
followed by the cropland region around the Horn of Africa (Fig. 4). The spatial distribution of 408 
CAYgap and the ratio of CAYgap to CAYpotential at three percentile scenarios are also similar, 409 
respectively, and present a reasonable pattern that the 90th percentile scenario has higher CAYgap 410 
value and corresponding larger yield improving space (Fig. 4C and 4F).  411 

 412 
Fig. 4 CAYgap (tonnes/100 ha) in Africa at (A) 50th-percentile, (B) 75th-percentile, (C) 90th-percentile 413 
scenario. Ratio of CAYgap to CAYpotential in Africa at (D) 50th-percentile, (E) 75th-percentile, (F) 90th-414 
percentile scenario. 415 

Upscaling CAYgap into country level, results are not optimistic (Fig. 5). Only 10 out of 48 416 
countries could potentially double or further improve their CE production at the 90th scenario, while 417 
7 out of those 10 countries rank in the top 10 of least actual CE production (Fig. 5). Improving the CE 418 
production of these 7 countries could help mitigate their internal food insecurity, but would 419 
contribute little to the continental situation by trade. Countries on the transect also have the capacity 420 
to double (or thereabouts) their CE production at the 90th scenario, and most of them already have 421 
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high actual CE production (except Somalia), especially Sudan (former) and Ethiopia. For the rest 422 
countries, 23 countries could only add less than a quarter of their actual CE production even under 423 
the 90th percentile scenario. Due to lacking valid NDVI values, the currently attainable CE production 424 
of Madagascar and DR. Congo are very low. Similarly, Egypt also has low currently attainable CE 425 
production because of lacking comparatively data on irrigated cropland.  426 

 427 
Fig. 5 Ratios of actual CE production to currently attainable CE production for each country. The light 428 
blue histogram represents the ratio for the 50th percentile scenario while the red short line represents 429 
the 90th percentiles scenario. Black line represents the position where ratio equals 0.5, as a reference. 430 
All countries are sorted from left to right by their total actual CE production.  431 

Comparing the pixel-level result (Fig. 4) to the upscaled aggregated country-level result (Fig. 5), 432 
many countries have a large area of high CAYgap hotspots but have low country-level potential 433 
production gaps. This is because places with high CAYgap may have very low actual yields and low 434 
CAYpotential. For example, in Nigeria, almost all places in Katsina and Yobe provinces have ratio of 435 
CAYgap to CAYpotential larger than 0.5, while places in Niger and Taraba provinces have ratio 436 
under 0.3 (Figure 3f). Yet in 2010, the actual CE production of the latter two provinces is 2.3 times 437 
than that of the former two, as well as the actual achievement ratio of this country is more than 0.78. 438 
Correspondingly, hotspots of high CAYgap occurring at high actual yield region would result in 439 
relatively lower actual achievement ratios at country-level, such as Ethiopia and Senegal. 440 

3.4. Additional population fed by currently attainable production gap 441 
Parts of countries have negative values under some scenarios, implying that they couldn’t make 442 

up for the current food energy deficit by their currently attainable production gaps. Results show that 443 
there are still 3 countries who have negative values under 90th percentile scenario, namely Rwanda, 444 
Madagascar and Djibouti. Under the 50th percentile scenario, this number reached up to 19 (Fig. 6). 445 
11 countries could additionally meet more than half of their 2010 population’s energy requirement, 446 
and 5 countries even could feed a number more than their 2010 population under 90th percentile 447 
scenario. However, only Gabon has the capacity of meeting the energy requirement of a half more of 448 
its 2010 population under the 50th percentile scenario.  449 

There are some very undernourished countries having high capacities to mitigate energy 450 
shortages, such as Chad, Namibia or Liberia. However, some countries have poor capacities, such as 451 
Central Africa, Rwanda and so on. For countries such as Zambia, Benin or Mozambique, they do not 452 
have the capacity to make up for their energy shortages under 50th percentile scenario, but do have 453 
at 75th or higher percentile scenario. Some countries, such as Mali or Gabon, not only could 454 
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additionally feed more population, but their FAO undernourishment values indicate that they do not 455 
hampered by energy shortage. It implies that these countries have strong potential for food security 456 
development in the future.  457 

 458 
Fig. 6 Ratio of additional population to 2010 population at different scenarios for each country. Dark 459 
green bars represent ratios of additional population to 2010 population when production reach to 50th 460 
percentile scenario CE production; blue-green bars represent ratios of additional population to 2010 461 
population when production reach to 75th percentile scenario CE production; blue bars represent 462 
ratios of additional population to 2010 population when production reach to 90th percentile scenario 463 
CE production; red short lines represent the ratio of undernourished to total population at 2009-2011 464 
(FAO undernourishment), respectively. All countries are sorted from left to right by ratios of 465 
additional population to 2010 population at 90th percentile scenario, from largest to smallest.  466 

 467 

4. Discussion 468 

4.1. Comparison between currently attainable potential production to crop-modelled potential production 469 

 470 
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Fig. 7 Comparison between ratio of actual CE production to currently attainable CE production at the 471 
90th percentile scenario in this study (CAP_LNS) and 1) the corresponding actual achievement ratios 472 
calculated using respectively 90%, 70%, and 50% of GAEZ high input potential production (denoted 473 
as GAEZ_HIPP50, GAEZ_HIPP70, and GAEZ_HIPP90), 2) ratio of actual maize production to 474 
modelled maize potential production of Folberth at 2000 (base year 1997-–2003) [43] (denoted as 475 
Folberth_maize), and 3) ratio of actual maize production to 90% of GAEZ high input potential 476 
production at 2010 (denoted as GAEZ_maize). Only 43 countries in sub-Saharan Africa were 477 
considered. 478 

In this case study, the CAPpotential estimated by LNS approach was much lower than that 479 
estimated by crop models (Fig. 7). Only 8 countries have lower actual achievement ratios by 480 
CAP_LNS at the 90th scenario compared to GAEZ_HIPP50. Similarly, the remaining countries’ actual 481 
achievement ratios of CAP_LNS are higher than the ratios of Folberth_maize and the ratios of 482 
GAEZ_maize, respectively. The high actual achievement ratios of CAP_LNS imply that, currently, in 483 
most agro-climatic zones the general yield (or in other words, the CE yield) of cropland in Africa is 484 
rather low. Furthermore, there are insufficient cropland pixels depicting superior performance to 485 
place the CAYpotential near to the theoretically modeled potential yield level. This emphasizes that 486 
the LNS approach is feasible for mapping divergences in regional crop yield and quantifying the 487 
yield-gaps between actual yield and observed preferable attainable yield, rather than accurately 488 
estimating the theoretically agronomic yield-gap.  489 

4.2. Uncertainties, assumptions and concerns 490 
The accuracy of phenological metrics is important for the estimation of GSI. Compared to other 491 

studies (Brown et al. 2012; Vrieling et al. 2011; Vrieling et al. 2013), the phenological metric values 492 
calculated in this study are reasonable. Considering the fact that the occurrence and duration of the 493 
rainy season directly affects the phenology of the rain-fed farming system, and the fact that 494 
germination period of many crops is very sensitive to rainfall, it is necessary to take into consideration 495 
of the precipitation phenology in future studies (Funk and Budde 2009).  496 

It is hard to verify the reliability of agricultural statistics reported by relevant departments, 497 
especially in Africa. Comparing crops of cereal and starchy roots categories from CountrySTAT to 498 
those from FAOSTAT, many countries have different crop production values in these two data source 499 
like Nigeria and Zambia. Though there are many arguments on the poor quality of FAOSTAT 500 
(Choudhury and Headey 2017), the characteristics of universality, comparability, long-time records 501 
and annual update for most countries make FAOSTAT still the most widely used and available 502 
agricultural statistics, especially for Africa. Cropland data could also bring uncertainty into the result. 503 
For example, there are many disagreements between GlobCover2009 and the IIASA-IFPRI cropland 504 
ratio product (Fritz et al. 2015). Since the quality of cropland data affects the quantity of provincial or 505 
national aggregated GSI and the goodness of model fitting, a comparison and validation of cropland 506 
data in Africa is very important (See et al. 2015; Waldner et al. 2015).  507 

Our analysis does not account for several factors that might be important for future agricultural 508 
production. First, we assume that the ratio of harvested NPP as crop matters to the NPP of the whole 509 
crop plant is constant during the period 2001–2010 for each crop plant and that they are the same 510 
across all countries. However, the harvested ratio of each plant could improve along with the 511 
application of advanced agricultural technologies. Second, due to lacking spatially temporal data of 512 
cropping intensity, we do not consider the contribution of divergence of cropping intensity to the 513 
CAYgap. 514 

Third, we do not consider shares of different crops to GSI or CAYpotential. In many parts of 515 
rural Africa, food is predominantly derived from local NPP, due to many poor communities lacking 516 
access to markets. Some studies have used proxy of NPP, for instance the GSI, as a proxy for yield 517 
(Becker-Reshef et al. 2010; Mkhabela et al. 2011). These studies are primarily based on fitting a 518 
regression model between NPP proxy and crop yield data for specific crops, as opposed to this 519 
application over a large range of crop categories. Therefore, the yield in the present study represents 520 
a generalized NPP yield of cropland, rather than yield of individual crops. It is suggested that the 521 
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ability to cultivate crops in regions with high potential productivity is not only determined by the 522 
suitability of the agro-climate, but also by food prices and market requirements, which hamper 523 
determination of the planned crop type for each pixel.  524 

The rationale of representativeness of maximum GSI (CAYpotential) is one of the core 525 
assumptions for this method. Several points should be addressed. In contrast to crops grown without 526 
irrigation or without fertilizer application, where productivity is often less than that of native 527 
vegetation growth (Lobell et al. 2009), high-input agriculture (for example, in North America and 528 
Europe) consistently displays higher annual NPP than the natural vegetation in cropland areas 529 
(DeFries et al. 1999). The most productive agricultural areas are usually located in well managed, 530 
fertilized, and possibly irrigated areas, and the selection of these as the estimator of potential NPP is 531 
an indicator of maximum productivity of each zone (Prince et al. 2009). Since the current study has 532 
zoned cropland into agro-climatic homogenous zones, the maximum NPP proxy in each zone is more 533 
likely to result from comparatively constant improved crop management, and it could be regarded 534 
as a currently attainable potential yield for each region. However, high input and output agriculture 535 
normally occurs in developed countries rather than in Africa. Since the current preliminary attempt 536 
focused only on the African continent, the yield values observed in the best performing grid-cells in 537 
each agro-climatic zone may have been lower than the global maximum yield, let alone values 538 
estimated by well-adapted crop models (Fig. 7). In other words, there calls further global scale studies 539 
to assess the spatial and temporal dynamics of gaps of agricultural productivity from African 540 
countries to the global best practices.  541 

4.3. Concerns about results 542 
Theoretically, if improve each countries’ productivity to the zonal optimal level, and the 543 

additional production distribute equally to all population, 24~40 out of all countries have the capacity 544 
to mitigate their current energy shortages independently. In reality, agricultural production is not 545 
only directly used for household consumption, most of them would convert to food products by 546 
multi-level processing, or be used as seeds, industrial raw materials, or more important be used as 547 
feed grain in animal husbandry. During those processes, many energies would be lost. Taking into 548 
consideration of energies obtained from grazing, nomadic and fisheries rather than cropland, and the 549 
potential energies from the gap between zonal optimal level and theoretically modelled level (Fig. 7), 550 
it implies that there is of great potential for African countries to solve the food security problems by 551 
their cultivated cropland.  552 

We argue that our study addresses only adopting observed best cultivating practice opportunity 553 
to increase production. It is difficult to conclude that those countries with a higher ratio of CAYgap 554 
to CAYpotential have a higher potential to contribute to food security or to the mitigation of 555 
undernourishment. Low production is not only caused by the ecosystem but also by social and 556 
economic issues. For example, of the high yield-gap ratio countries, Liberia experiences social war 557 
and conflict during the study period (Owadi et al. 2010), Mauritania experiences several years of 558 
drought (Daniel 2011), and Namibia has the highest poverty levels (Frayne 2005). Therefore, many 559 
socio-economic and institutional factors need to be attuned to allow for production increases, and it 560 
is these factors which cause the yield divergences in each homogeneous zone across the African 561 
continents.   562 

Increasing crop productivity may cause problems for the sustainability of ecological systems, 563 
since improvement in productivity would translate into environmental challenges or even into the 564 
intensification of the current issues (Chen and Li 2010; Hiernaux et al. 2009; Zaka and Erb 2009). 565 
However, this is a critical but at the same time necessary step to achieving food security. Given the 566 
increasing concerns associated with global food security projections, and rapid population growth 567 
seen especially in Africa, the targeting of regions with a lower than optimum crop yield is of 568 
paramount importance if a food crisis is to be avoided (Dawson et al. 2016). A greater consideration 569 
of the trade-offs between balancing the needs of humans and the ecosystem (Zhang et al. 2015), 570 
combined with a plan for sustainable improvement of crop productivity, is undoubtedly needed.  571 



 

	 18	

4.4. Global implications and strategy recommendations 572 
Identifying and quantifying hotspot of yield divergence is an initial but essential step towards 573 

mitigating food insecurity by observing and adopting best regional agricultural practices. Our study 574 
demonstrates the feasibility of the method that applies satellite-derived indicators for the maximum 575 
yield achieved to quantify and map the current cropland yield divergence and corresponding yield-576 
gaps by Local NPP Scaling method. Furthermore, this method could be applied on different spatial 577 
level from regional to global scale with reasonable homogeneous zone scheme. And this can help 578 
inform decision making at various levels, from micro- to macro- level policies.  579 

Increasing yield productivity to meet food energy requirement is not only a regional problem in 580 
Africa, but also a global issue. This study leads to identify agricultural management implications and 581 
adaptation strategies for both Africa and the globe. 582 

1. It is socio-economic and institutional factors rather than bio-geophysical factors that 583 
contributed most to hunger prevalence.  584 

The gaps between reality of hunger and results of capacity from our study emphasize the 585 
importance to figure out what and how socio-economic and institutional factors cause yield 586 
divergence across agro-climatic zones. Clarifying this causal mechanism happened on study region 587 
help people derive and implement more practical policies on agricultural development and food 588 
security improvement.  589 

2. Strengthening the resilience of individual/household food access is of essential importance 590 
for ensuring food security. 591 

Large uncertainty exists between adequate supply at the national level and demand satisfaction 592 
at the household level. Currently, many studies (Burchi and De Muro 2016; Leroy et al. 2015; 593 
Campbell et al. 2016) point out the importance of food access in ensuring food security from 594 
household to national level. According to the definition of food security, food access is directly 595 
determined by household or individual income level, physical capacity of accessing food, and rights. 596 
And these factors interact with upper stream determinants such as national policies, trends of 597 
globalization, and changes in economic structures. For example, global food trade shocks, food price 598 
volatility, and energy policies of other countries may cause great impact on food access and food 599 
availability of low-income countries. Additionally, different studies also have shown that climate 600 
change might cause significant impact on food access (Schmidhuber and Tubiello, 2007; Wheeler and 601 
von Braun, 2013). All those factors characterize the resilience and vulnerability of food access. 602 
Therefore�� it’s important to clarify what factors are at play and how they impact on 603 
individual/household food access and food availability in order to make effective resilience-604 
strengthening policies. Beyond the food availability on national level, more concerns should be paid 605 
to understand how those factors of food access would impact the future food security, and how to 606 
make national food availability favors households and individuals.  607 

3. Equipping agricultural systems with multi-spatial and temporal scale monitoring systems 608 
on dynamics of crop yields and yield divergence should be among the priority of 609 
development needs in less developed areas.  610 

The monitoring systems not only contribute to the detection of less-improving hotspots, but also 611 
to providing early warning impacts of climate extremes, climate variation and climate change. 612 
Currently, several international agricultural monitoring or researching platforms are well 613 
established, such as International Maize and Wheat Improvement Center (https://www.cimmyt.org/) 614 
on improving maize and wheat yields by field studies, Global Yield Gap Atlas 615 
(http://www.yieldgap.org/) on estimating crop agronomical potential yield, and GEOGLAM Early 616 
Warning Crop Monitor (https://cropmonitor.org/) on monitoring the climatic impact on yield. 617 
However, there is still call for providing comprehensive platforms that systematically serve for less 618 
developed countries which plagued by food security. 619 

 620 

5. Conclusion 621 
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Spatial cropland yield divergences in agro-climatic homogeneous zones usually imply gaps 622 
which have potential to be closed up and then improve the local productivity by adopting currently 623 
observed best cultivating practices. This work used satellite derived indicator as a proxy of the 624 
cropland productivity to reveal such spatial differences in cropland, to find the hotspots of cropland 625 
where having potential of improving productivity to currently observed optimal level, and to 626 
evaluate each countries’ current potential of making up the shortages of food energy.  627 

The results show that under the current agricultural climatic conditions, the hotspots of cropland 628 
in Africa are mainly at the Horn of Africa, as well as the transect from Senegal to the Ethiopia. 629 
Improving each countries’ productivity to the zonal optimal level, ~90% out of all countries have the 630 
capacity to mitigate their current energy shortages as measured by FAO undernourishment indicator, 631 
independently. After adjusted by the depth of the food deficit, 11 countries could feed more then half 632 
of the current population according to the average dietary energy requirement. And, for example 633 
Mali and Gabon, some countries not only have a high improving space of production, but the FAO 634 
undernourishment indicator show that these countries almost have no energy shortage, implying a 635 
great optimistic future.  636 

Compared to modelled potential production, the relatively low attainable potential production 637 
from our study implies that current cropland yields in most agro-climatic zones of Africa are 638 
depressed. In the view of the large difference between potential production achieved by this study 639 
and the one by crop model, the current cropland of each African country have further potential to 640 
improve their production. 641 

The present study demonstrates the feasibility of applying satellite-derived indicators for the 642 
maximum yield achieved method to quantify and map the current cropland yield divergence by LNS 643 
method, and this method could be applied on different spatial level from regional to global scale with 644 
reasonable homogeneous zone scheme. And based on results, three global global implications and 645 
strategies are recommended: 1) It is socio-economic and institutional factors rather than bio-646 
geophysical factors that contributed most to hunger prevalence; 2) Strengthening the resilience of 647 
individual/household food access is of essential importance for ensuring food security; and 3) 648 
Equipping agricultural systems with multi-spatial and temporal scale monitoring systems on 649 
dynamics of crop yields and yield divergence should be among the priority of development needs in 650 
less developed areas.  651 

 652 
  653 
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 654 
List of Abbreviations appeared in this study 655 

CAYgap Currently attainable potential yield gap 

CAYpotential Currently attainable potential yield  
CAPpotential Currently attainable potential production 
  
EOS The end of season  
GAEZ Global Agro-Ecological Zones – Model 
GEnS Global Environmental Stratification 
GlobCover 2009 GlobCover 2009 database 
GSI growing season NDVI integral 

HANPP 
Human appropriation of the vegetation net primary 
production  

LNS Local NPP Scaling  
LOS The length of season  
MODIS The Moderate-resolution Imaging Spectroradiometer  
MVC The Maximum Value Composite  
NDVI Normalized Difference Vegetation Index  
NPP The vegetation net primary production  
SOS The start of season 
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