

Global climate and development hotspots assessment: Asia under pressure

Dr Edward Byers

Contributors:

Simon Parkinson, Juraj Balkovic, Peter Burek, Kristie Ebi², Matthew Gidden, David Grey³, Peter Greve, Petr Havlik, Astrid Hillers⁴, Nils Johnson, Taher Kahil, Volker Krey, Simon Langan, David Leclère, Nebjosa Nakicenovic, Robert Novak⁵, Michael Obersteiner, Shonali Pachauri, Amanda Palazzo, Narasimha Rao, Joeri Rogelj, Yusuke Satoh, Yoshihide Wada, Barbara Willaarts, Keywan Riahi

- ¹ International Institute for Applied Systems Analysis, Laxenburg, Austria
- ² University of Washington, Seattle, WA, US
- ³ University of Oxford, Oxford, UK
- ⁴ Global Environment Facility, Washington DC, US
- ⁵ United Nations Industrial Development Organization, Vienna, Austria IIASA, International Institute for Applied Systems Analysis

Energy Program Core Competencies

- Energy and climate policy analysis (scenarios)
 - Globally comprehensive, Multi-sector (all energy/industry + ag/forestry/land), Multi-GHGs/SLCFs
 - Paris Agreement (NDCs + below 2 °C)
 - Activities ranging from IPCC, IAMC, UNEP, RCPs+SSPs, Global Energy Assessment (GEA), CD-LINKS, TWI2050
- Energy linkages with other sustainability objectives (policy synergies & trade-offs)
 - (1) Water-Energy-Land nexus, (2) Air quality and health, (3)
 Poverty and inequality
- Combining both modeling and empirical work (greater tech. and social detail)
 - e.g., MESSAGE integrated assessment framework
 - Improving representation of consumer heterogeneity and behavior in end-use/demand (policy 'nudges')

SUSTAINABLE GEALS

Catalysing sustainable development via SDG7

Global Investment Portfolios for 1.5 and 2 °C

[average annual investments, 2016-2050]

Low Energy Demand to achieve 1.5°C*

*without negative emissions technologies!

- 1. Thermal comfort
- 2. Consumer goods
- 3. Mobility
- 4. Food

EJ yr1

World Final Energy by demand 9 72 294 245

100-

d Literature comparison for 2050

literature

ENE Community Services and Data Repositories

- IPCC Working Group III (AR5)
- Representative Conc. Pathways (RCPs)
- Shared Socio-economic Pathways (SSPs)
- Energy Modeling Forum(EMF24, EMF27, EMF28)
- Global Energy Assessment (GEA)
- AMPERE (EU-FP7 project)
- LIMITS (EU-FP7 project)
- Asian Modeling Exercise (AME)
- Latin American Modeling Project (LAMP)

http://www.iiasa.ac.at/web/home/research/modelsData/models-tools-data.html

The Energy-Water-Land Nexus: Global to local

A flexible global vulnerability hotspots framework

Understanding the underlying challenges

- i. multiple development-climate pressures across multiple sectors
- ii. Impacting vulnerable people, and/or large populations
- iii. i + ii = vulnerability hotspots

...from multiple perspectives

Global IPCC regions River basins

Answering diverse questions

- Sectoral assessment and comparison
- Subset indicators and sectors
- Low income, high vulnerability and the low-latitude nexus
- Climate extremes and hydroclimate complexity
- Rural and urban, drivers of migration
- MEAs (SDGs, Sendai, Paris, etc.)

Dissemination, building capacity and increasing impact

- Development funders and knowledge institutions
- Practitioners and stakeholders
- From scientist... to student

Indicator dataset development

- Global coverage of 14 development and biophysical indicators at 0.5° resolution (~50km)
- 3 socioeconomic development scenarios SSPs 1,2 &3
- 3 climate change scenarios 1.5, 2.0 and 3.0°C

	Water	9	Energy	•	Land	\$ Socioeconomics
0 11	Water stress index	<u></u>	Clean cooking access	pt 6	Crop yield change	Population density
1	Non-renewable GW abstraction	· Ø -	Heat event exposure	<u> </u>	Environmental flow exploitation	\$ Income levels
3	Drought intensity	*	Cooling demand growth	30	Habitat degradation	
⊕ ∑	Peak flows risk	Bs	Hydroclimate risk to power	*dec	Nitrogen leaching	
1	Seasonality					
لللأ	Inter-annual variability					

Energy

4

1.5

e1: Lack of clean cooking access

e3: Cooling degree days

e2: Heat events

e4: Hydroclimate risk to power plants

Energy impacts: 2.0° SSP2

Water impacts: 2.0° SSP2

Land impacts: 2.0° SSP2

Global hotspot exposure

3.0 °C

Incorporating vulnerability

Vulnerability

Vulnerable to Poverty

"lack the economic stability and resilience to shocks that characterizes middle-class households"

Lopez-Calva & Ortiz-Juarez, World Bank, 2011

Poverty numbers

Poverty fluxes

< \$10 2.2 bi

< \$5 1.3 bi

< \$2 0.7 bi

Vulnerable to poverty

Extreme poverty

Net annual poverty reduction 2% per annum

Came out of poverty 15% Fell in to poverty 13%

Hot and vulnerable

3.0 °C

Vuln. pop. / km² income < \$10 /day MSR > 5.0

Regional impacts

3.0 °C

- Northern hemisphere regions have better than average impacts
- Most Asian and southern regions are on/worse than average

Exposure & vulnerability (27 regions)

2050 Exposed

b)

Exposed & Vul.

Byers et al. (2018, ERL)

No development 2010: 1.29 bi With SSP 2050: 0.50 bi

Middle of the road

Asian exposure

 Which countries have most people <u>exposed</u> and <u>vulnerable</u>, in absolute numbers?

Sustainability

Ranked by Exposed & Vulnerable (red)

Asian sectoral exposure contributions **

How do Asian countries compare by types of risk?

Climate exposure

Investment needs

- Substantial differences between 1.5° and 2.0°C
- South and SE Asia highly exposed even at 1.5°C

3.0 °C

Keep global mean temperatures as low as possible ... to reduce exposure of the global population and limit economic impacts

- Large vulnerable populations in low-latitude multi-sector hotspots

Pursue ambitious socioeconomic development, investments targeted in the most at-risk areas to most effectively reduce vulnerabilities

Global exposure and vulnerability to multi-sector development and climate change hotspots

Environmental Research Letters 2018, 13 055012 https://doi.org/10.1088/1748-9326/aabf45

