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Abstract
The nature of statistics, statisticalmechanics and consequently the thermodynamics of stochastic
systems is largely determined by how the number of statesW(N) depends on the sizeN of the system.
Herewe propose a scaling expansion of the phasespace volumeW(N) of a stochastic system. The
corresponding expansion coefficients (exponents) define the universality class the systembelongs to.
Systemswithin the same universality class share the same statistics and thermodynamics. For sub-
exponentially growing systems such expansions have been shown to exist. By using the scaling
expansion this classification can be extended to all stochastic systems, including correlated, constraint
and super-exponential systems. The extensive entropy of these systems can be easily expressed in
terms of these scaling exponents. Systemswith super-exponential phasespace growth contain
important systems, such asmagnetic coins that combine combinatorial and structural statistics.We
discuss other applications in the statistics of networks, aging, and cascading randomwalks.

1. Introduction

Classical statistical physics typically dealswith large systems composed ofweakly interacting components, which
can bedecomposed into (practically) independent sub-systems.The phasespace volumeWor the number of states
of such systems grows exponentiallywith system sizeN. For example, thenumber of configurations in a spin
systemofN independent spins isW(N)=2N. Formore complicated systems, however, where particles interact
strongly,which are path-dependent, orwhose configurations become constrained, exponential phasespace growth
no-longer occurs, and things becomemore interesting. For example, in blackholes the accessible number of states
does not scalewith the volumebutwith surface,which leads tonon-standard entropies and thermodynamics
[1–3]. A version of entropy that depends on the surface and the volumewas recently suggested in [4].

Other examples include systemswith interactions on networks, path-dependent processes, co-evolving
systems, andmany driven non-equilibrium systems. These systems are often non-ergodic and are referred to as
complex systems. For these systems, in general, the classical statistical description based onBoltzmann–Gibbs
statisticalmechanics fails tomake correct predictions with respect of the thermodynamic, the information
theoretic, or themaximum entropy related aspects [5]. Often the underlying statistics is then dominated by fat-
tailed distributions, and power-laws in particular. There have been considerable efforts to understand the origin
of power-law statistics in complex systems. Some progress wasmade for systemswith sub-exponentially
growing phasespace. It was shown that systemswhose phasespace grow as power laws,W N Nb~( ) , are tightly
related to so-called Tsallis statistics [6].

The tremendous variety and richness of complex systems has led to the questionwhether it is possible to
classify them in terms of their statistical behavior. Given such a classification, is it possible to arrive at a
generalized concept of the statistical physics of complex systems, or dowe have to establish the statistical physics
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framework for every particular system independently? For sub-exponentially growing systems such a
classificationwas attempted by characterizing stochastic systems in terms of two scaling exponents of their

extensive entropy [7]. Thefirst scaling exponent is recovered from the relation S W

S W
cl~l( )

( )
, which is valid if the

first three Shannon–Khinchin (SK) axioms (see appendix) are valid (the fourth, the composition axiom, can be
violated), and if the entropy is of so-called trace form,whichmeans that it can be expressed as S g pi

W
i= å ( ),

where pi is the probability for state i, and g some function. The second scaling exponent d is obtained from a
scaling relation that involves the re-scaling of the number of statesW→Wa.With these two scaling exponents c
and d it becomes possible to classify sub-exponentially growing systems that fulfil thefirst three SK axioms [7].
Further, the exponents c and d characterize the extensive entropy, S d c p1 , logc d i, ~ åG +( ( )). Practically all
entropies that were suggestedwithin the past three decades, are special cases of this (c, d)-entropy, including
Boltzmann–Gibbs–Shannon entropy (c=1, d= 1), Tsallis entropy (d= 0), Kaniadakis entropy (c= 1, d= 1)
[8], Anteneodo–Plastino entropy (c=1, d>0) [9], and all others that fulfil thefirst three SK axioms. In [10]
it was then shown that the exponents c and d are tightly relatedwith phasespace growth of the underlaying
systems. In fact, they can be derived from the knowledge ofW(N), c NW W1 1 limN- = ¢¥( ) , and
d = W W NW clim log 1N ¢ + -¥ ( ( ) ).

For super-exponential systems such a classification is hithertomissing. These systems include important
examples of stochastic complex systems that formnew states as a result of the interactions of elements. These are
systems that—besides their combinatorial number of states (e.g. exponential)—form additional states that
emerge as structures from the components. The total number of states then grows super-exponentially with
respect to system size, e.g. the number of elements. Stochastic systemswith elements that can occupy several
states (more than one) and that can form structures with other elements, are generally super-exponential
systems. It was pointed out in [11] that such systemsmight exhibit non-trivial thermodynamical properties.

An example for such systems aremagnetic coins of the following kind. Imagine a set ofN coins that come in
two states, up and down. There are 2N states. However, these coins are ‘magnetic’, and any two of them can stick
to each other, forming a newbond state (neither up nor down). If there areN=2 coins, there arefive states: the
usual four states, uu, ud, du, dd, and afifth state ‘bond’. If there areN=3 coins, there are 14 states, the 23

combinatorial states, and six states involving bond states: state 9 is bond between coin 1 and 2, with the third coin
up, state 10 is the same bond state with the third coin down, state 11 is a bond between 1 and 3with the second
con up, 12 the same bondwith the second coin down, state 12 is a bond between 2 and 3, with the first state up,
andfinally, state 14 is the bond between 2 and 3with the first coin down. It can be easily shown that the recursive
formula for the number of states is,W N W N NW N1 2 1+ = + -( ) ( ) ( ), which, for largeN, grows as
W N N eN N2 2~( ) , see [11].

In this paperwe show that it is indeed possible tofind a complete classification of complex stochastic
systems, including the super-exponential case. By expanding a generic phasespace volume W N( ) in a Poincaré
expansion, wewill see that for any possibility of phasespace growth, there exists a sequence of unique expansion
coefficients that are nothing but scaling exponents that describe systems in their large size limit. The set of scaling
exponents gives us the full classification of complex systems in the sense that two systems belong to the same
universality class, if it is possible to rescale one into the other with exactly these exponents. The framework
presented here has been proposed in the appendix of [12] and generalizes the classification approach of [7, 10]. It
includes the sub-exponential systems as a special case.We show further that these exponents can be used straight
forwardly to express—with a few additional requirements—the corresponding extensive entropy, which is the
basis for the thermodynamic properties of the system. Finally, we see in several examples thatmany systems are
fully characterized by a very few exponents. Technical details and auxiliary results are presented in the appendix.
We reference the appendix in the corresponding parts of themain text. However, readersmay also go through
the appendix before they continue reading.We use the following notation for applying a function f for n
times, f x f f x... ...n

n times

=   ( ) ( ( ( )) )( ) .

2. Rescaling phasespace

Suppose that phasespace volume depends on system sizeN (e.g. number of elements) asW(N).We use the
Poincaré asymptotic expansion for the l+1 th logarithmofW,

W N c N Nlog , 1l

j

n

j j n
1

0

å f f= ++

=

( ) ( ) ( ( )) ( )( )

where N Nlogj
j 1f = +( ) ( )( ) for N  ¥. A uniqueness theorem (see e.g. [13]) states that the asymptotic

expansion exists and is uniquely determined for anyW(N) for which W N Nlog l 1
0 f=+ ( ) ( ( ))( ) , see appendix.
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To see how the exponents cj correspond to scaling exponents, let us define a sequence of re-scaling
operations,

r x xexp log . 2n n nl=l ( ) [ ( )] ( )( ) ( ) ( )

For example r x x0 l=l ( )( ) , r x x1 =l
l( )( ) , etc. Obviously, r x xn

1 =( )( ) . The scaling operations obey the
composition rule

r r x r x . 3n n n=l l ll¢ ¢[ ( )] ( ) ( )( ) ( ) ( )

Wecannow investigate the scaling behavior of the phasespace volume in the thermodynamic limit,N?1. The
leading order of the scaling is given by thefirst rescaling r0.We show in the appendix that the rescaling of
phasespace is asymptotically described by

W r N r W N
W N

W N

log

log
, 4l

l

l
c0

c l

l

0

0
l

l~  ~l
l

( ( )) ( ( )) ( )
( )

( )( ) ( )
( )

( )( )
( )

where c l
0 Î( ) is the leading exponent, and l is determined from the condition that c l

0
( ) should befinite. Thus, to

leading order, the sample space grows asW N Nexp l c l
0~( ) ( )( ) ( )
.We now identify the scaling laws for the sub-

leading corrections through higher-order rescalingsW r Nk
l( ( ))( ) .We get (see appendix)

W r N

W N

r N

N

log

log

log

log
. 5

l k

l
j

k j k

j

c

c

0

1 j
l

k
l

 l~l l

=

- -⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ( ))

( )
( ( ))

( )
( )

( ) ( )

( )

( ) ( )

( )

( )

( )

Equivalently, one canexpress this relationas,W r N r W Nk
N

l
k

~l s( ( )) ( ( ))( )
( )

( ) ,where Nk j
k r N

N

c

0
log

log

j k

j

j
l

s =  =
l( )( ) ( ( ))
( )

( ) ( )

( )

( )

.

To extract cj
l( ), take thederivativeof equation (4)w.r.t.λ, setλ=1andconsider the limit N  ¥. For the leading

scaling exponentweobtain

c
NW N

W N
lim

log
. 6l

N
i

l i
0

0
=

¢
¥

=

( )
( )

( )( )
( )

The scaling exponent corresponding to the kth order is obtained in a similar way and reads,

c N N N
NW N

W N
c c clim log log ... log

log
... . 7k

l

N

k k

i

l i

l l
k
l1

0

0 1 1


=
¢

- - -
¥

-

=

-

⎛

⎝
⎜⎜⎜

⎛

⎝
⎜⎜⎜

⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟⎟

⎞

⎠
⎟⎟⎟

⎞

⎠
⎟⎟⎟( ) ( ) ( ) ( )

( )
( )( ) ( ) ( )

( )
( ) ( )

( )
( )

This expression is not identically equal to zero, because the expression on the rhs of equation (6) becomes c l
0
( )

only in the limit. As a result, the phasespace volume grows as

W N Nexp log , 8l

j

n
j c

0

j
l

~
=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( ( )) ( )( ) ( ) ( )

which is nothing but the Poincaré asymptotic expansion in equation (1). In the appendixwe show that the
formulas for cj, given by the theory of asymptotic expansions, correspond to the formulas for scaling exponents
cj

l( ) and therefore it is indeed possible to express anyW(N) in terms of an asymptotic expansion that is based on
the sequencefn(N). The expansion coefficients are scaling exponents determined by the rescaling of phasespace.
Here n denotes theminimal number of expansion terms. In the typical situations, only a few scaling exponents
are non-zero. If all exponents are non-zero, we can truncate the expansion after a few terms and still preserve a
high level of precision. Inmany realistic situations it is enough to consider n=2. The estimation of the leading
order exponent can be tricky, because looking for the order l incorporates calculation of several infinite limits.
Therefore, it is convenient to use an approach based on the corresponding extensive entropy.

3. The extensive entropy

The extensive entropy can be obtained by following an idea exposed in [7, 10]. Let us assume a so-called trace
form entropy for some probability distribution P p p, , W1= ¼( )

S p g p , 9g
i

W

i
1

å=
=

( ) ( ) ( )

where g is some function. The aim is tofind such a function g, for which the entropy functional Sg is extensive for
a givenW(N). Assuming that no prior information about the system is given, we consider uniformprobabilities
pi=1/W. The extensivity condition can be expressed by an equation for g, which is [10]

3
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S W N W N g W N N N1 for 1. 10g = ~ ( ( )) ( ) ( ( )) ( )

Alternatively, it is possible to define the extensive entropy as the solutionof Euler’s differential equation, see also [4],

N
S W N

N
S W N

d

d
. 11=

( ( )) ( ( )) ( )

The question now is, how the scaling exponents ofW(N) are related to scaling exponents of Sg(W).We begin
with thefirst scaling operation r 0( ). One can show that forN? 1, we have

S r W r S W
g

g
. 12g g

W N

W N

d0 0

1

1
d0

0l l~  ~l l

l( )
( )( ( )) ( ( )) ( )( ) ( ) ( )

( )

Thus, g x x1 d 10~ -( ) ( ) for x 0 . Again, it is possible to determine the relation for the nth scaling exponent

g r W r W

g W W

r W

W

1

1

log

log
, 13

n n

j

k j n

j

d

d

0

1 j

n l~l l l

=

- -⎛
⎝⎜

⎞
⎠⎟

( ( )) ( )
( )

( ( ))
( )

( )
( ) ( ) ( ) ( )

( )

or equivalently, S r W r S Wg
n

W g
0
n

~l r( ( )) ( ( ))( )
( )

( ) , where Wn j
n W

W

d

0
log

log

j k

j

j

r = 
l

= ( )( ) ( ( ))
( )

( ) ( )

( ) .We can extract the

scaling exponents dn by the same procedure as for ck
l( ) by taking the derivative w.r.t.λ, settingλ=1 and

performing the limit. For thefirst exponent we get

d
g W

Wg W
lim 1

1

1
. 14

W
0 = -

¢
¥

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )

DeL’Hospital’s rule and applying the extensivity condition of equation (10) gives g W N N¢ ~( ( )) , and

d
W N

NW N
lim . 15

N
0 =

¢¥

( )
( )

( )

Wementioned this result already above. The nth term can be found analogously to be

d W W W
W N

NW N
d d dlim log log ... log ... . 16n

N

n n
n

1
0 1 1=

¢
- - -

¥

-
-

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟( ) ( ) ( ) ( )

( )
( )( ) ( )

Wecan now relate the scaling exponents ck
l( ) and dn by comparing equations (7) and (16). For this we use a

similar notation as for the exponents ck
l( ) and assign d dl

l0 º( ) to thefirst non-zero exponent, d 0l ¹ . All higher

terms are denoted by d dk
l

l k= +
( ) . Using the fact that N Wlog l c1 l

0~ ( )( ) ( )
, wefinally obtain

d
c

d
c

c
k

1

, 1, 2 ,.... 17

l
l

k
l k

l

l

0
0

0

=

=- = ( )

( )
( )

( )
( )

( )

The corresponding extensive entropy can nowbe characterized by the function g(x), which scales as

g x x
x

xlog
1

for 0. 18l n

j

n
j l

d
,

0

j
l

~ 
=

+⎜ ⎟⎛
⎝

⎞
⎠( ) ( )( ) ( )

( )

the corresponding entropy scales as

S W Wlog . 19g
l n

j

n
j l d,

0

j
l

~
=

+( ) ( ) ( )( ) ( ) ( )

This equation is nothing but the asymptotic expansion of Slog g in terms of N Nlog ;n l
n l 1f =+
+ +( ) ( )( ) the

coefficients are again the scaling exponents that correspond to the rescaling of the entropy.
Note that the entropy approach allows us to obtain additional restrictions for the scaling exponents if further

information about the system is available. For example,many systems fulfil thefirst three of the four SK axioms,
see appendix. Therewe also show that it is possible tofind a representation of the entropy that obeys the three
axioms and the scaling in equation (19). In this case g(x) can be expressed as

g x a
y

y1 log
1

d , 20
d d
l n

x

i

n

i
i l

d

, ,
,

0 0
l

n
l

i
l

0 ò = + +
¼

=

+
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( ) [ ] ( )( )

( ) ( )
( ) ( )

( )
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where ai are constants. One possible choice for those is

a
d

n l d
max 1 , 0 . 21i

i
l

l
0

= - -
-

⎧⎨⎩
⎫⎬⎭( )

( )
( )

( )

The axioms impose restrictions on the range of scaling exponents. (SK2) requires that d 0;l
0 >( ) (SK3) requires

that d d 10
0

0º <( ) . The resulting entropy can be expressed by equation (12). One can trivially adjust the entropy
minimal value, such that for the totally ordered state, 1 0g =( ) . This is obtained by rescaling

P r S P g p g 1 , 22g g
i

W

i
1

1

 å= = -l
-

=

⎛
⎝⎜

⎞
⎠⎟( ) ( ( )) ( ) ( ) ( )( )

where gexp 1l = ( ( )). Note that the formof the entropy in equation (20) is equivalent to (c, d)-entropy for
c=1−d0 and d=d1, and dj=0 for all j�2.

4. Examples

Weconcludewith several examples of systems that are characterized by different sets of scaling exponents.

4.1. Exponential growth: the randomwalk
Imagine the ordinary randomwalkwith two possibilities at any timestep—a step to the left, or to the right. The
number of possible configurations (i.e. possible paths) afterN steps is

W N W N1 2 , 23+ =( ) ( ) ( )

whichmeans exponential phasespace growth,W N 2N=( ) .We obtain l=1, c 10
1 =( ) and c 0j

1 =( ) , for

j�1, and for the exponents of the entropy d0=0, d d 11 0
1º =( ) and dj=0, for j�2. This set of exponents

belongs to the class of (c, d)-entropies described in [7] for c=1−d0=1, and d=d1=1. They correspond to
the scaling exponents of the Shannon entropy: from (18)we obtain that g x x xlog~( ) and from (19)we get
S W Wlog~( ) , which is Boltzmann entropy. It is not immediately apparent what the entropy of a randomwalk
should be.However, the randomwalk is equivalent to spin systemofN independent spins, the 2N different paths
correspond one-to-one to the 2N configurations in the spinmodel, where the role entropy of it is clear.
Obviously, for the randomwalk, (SK1–3) are applicable.

4.2. Sub-exponential growth: the aging randomwalk
In this variation of the randomwalkwe impose correlations on thewalk. After the first random choice (left or
right) thewalker goes one step in that direction. The second randomchoice is followed by two steps in the same
direction, the next step is followed by three steps in the same direction, etc. For k independent choices, one has to
make N i k k1 2 1i

k
1
1= å = -=

- ( ) steps. For this walk, we get that the number of possible paths is

W N k W N2 , 24+ =( ) ( ) ( )
which leads toW N 2 2N k k 2= ~( ) . ForN?1, we have k N» , andwe obtain a stretched exponential
(sub-exponential) asymptotic behavior, W N 2 N~( ) . The order is again l=1 and the exponents are
c 1 20

1 =( ) and c 0j
1 =( ) , for j�1. In terms of the d exponents we have d0=0 and d d 21 0

1º =( ) .
Therefore, the three SK axioms are applicable and the resulting extensive entropy belongs to the class of
entropies characterized by the Anteneodo–Plastino entropy, sincewe have g x x xlog 2~( ) ( ) and
S W Wlog 2~( ) ( ) . This entropy is the special case of the (c, d)-entropy for c=1 and d=2, see [7].

4.3. Super-exponential growth:magnetic coins
ConsiderN coins with two states (up or down). These coins aremagnetic, so that any two can stick to each other
to create a pair which is a third state obtained by interactions of elements (one possible configuration). As
mentioned before, in [11] it is shown that the phasespace volume can be obtained recursively

W N W N NW N1 2 1 . 25+ = + -( ) ( ) ( ) ( )

For N 1 , we getW N N eN N2 2~( ) , which yields l=1, and the scaling exponents c 10
1 =( ) , c 11

1 =( )

and c 0j
1 =( ) , for j 2 . The scaling exponents of the entropy are d0=0, d d 11 0

1º =( ) , and d d 12 1
1º = -( ) .

For the entropy thismeans, that g x x x xlog log log~( ) ( )/ and S W W Wlog log log~( ) ( )/ . This case is not
contained in the class of (c, d)-entropies, because the third exponent, corresponding to the doubly-logarithmic
correction, is not zero. Actually we obtain c=1 and d=1, whichwould naively indicate Shannon entropy.
However, the correctionmakes the system clearly super-exponential. The SK axioms are still applicable, the class
of accessible entropy formulas is restricted by (SK2). For example, for the representative entropy equation (20)
wefind that a0�0 and a1�0, see appendix.

5

New J. Phys. 20 (2018) 093007 J Korbel et al



4.4. Super-exponential growth: randomnetworks
Imagine a randomnetworkwithNnodes.When a newnode is added, there emergeNnewpossible links, which
gives us 2Nnewpossible configurations for each configuration of the networkwithN links.We obtain the
recursive growth equation

W N W N1 2 , 26N+ =( ) ( ) ( )

which leads toW N 2
N
2= ( )( ) , as expected. For this phasespace growth, we obtain l=1, c 20

1 =( ) and c 0j
1 =( )

for j 1 , and d0=0 and d d1 0
1 1

2
º =( ) . The corresponding entropy can be expressed by g x x xlog 1 2~( ) ( ) ,

and S W Wlog 1 2~( ) ( ) . The entropy corresponds to the class of compressed exponentials, which are super-
exponential, however, the entropy belongs to the class of (c, d)-entropies for c=1 and d=1/2. Because all
exponents are positive the entropy observes the SK axioms.

4.5. Super-exponential growth: the cascading randomwalk
Consider a generalization of the randomwalk, where awalker can take a left or right step, but it can also split into
twowalkers, one of which then goes left, the other to the right. Eachwalker can then go left, right, or split again
(multiple walkers can occupy the same position). The number of possible paths afterN steps is

W N W N W N1 2 , 272+ = +( ) ( ) ( ) ( )

where thefirst term reflects the left/right decisions, the second the splittings.We haveW N 2 12N 1= --( ) ( ) , and
find that l=2, c 10

2 =( ) and c 0j
2 =( ) , for j 1 , and d 00 = , d 01 = and d d 12 0

2º =( ) . The corresponding
extensive entropy is g x x xloglog~( ) ( ) and scales as S W Wloglog~( ) . Because the coefficients are not
negative, SK axioms are applicable. However, even though all correction scaling exponents are zero, the system
cannot be described in terms of (c, d)-entropies, because l=2.Wewould naively obtain that c=1 and d=0,
whichwouldwrongly correspond to Tsallis entropy. Alternatively, we can think of an example of a spin system
with the same scaling exponents. In this case,Nwould not describe the size of a system, but its dimension. For
N=1, wewould have two particles on the line, forN=2we have 4 particles forming a square, forN=3we
have a cubewith 8 particles in its vertices, etc. In general, we can think of a spin systemof particles sitting on the
vertices of aN-dimensional hypercube. The number of particles is naturally 2N and for two possible spins we
obtainW N 2 2N=( ) ( ).

5. Conclusions

We introduced a comprehensive classification of complex systems in the thermodynamic limit based on the
rescaling properties of their phasespace volume. From a scaling-expansion of the phasespace growthwith system
size, we obtain a set of scaling exponents, which uniquely characterize the statistical structure of the given
system. Restrictions on the scaling exponents can be obtainedwith further information about the system. In this
context we discuss the first three SK axioms, which are valid formany complex systems. The set of exponents
further determine the scaling exponents of the corresponding extensive entropy, which plays a central role in the
thermodynamics of statistical systems. Thermodynamics is not the only context where entropy appears. Aswas
shown in [5] formany complex systems the functional expressions for entropy depend on the context, in
particular if one talks about the thermodynamic (extensive) entropy, the information theoretic entropy, or the
entropy that appears in themaximumentropy principle. It remains to be seen if for super-exponential systems
there exists an underlying relation between the scaling exponents of the extensive entropy, and the exponents
obtained from a information theoretic, ormaximum entropy description of the same complex systems.
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Appendix

A.1. SK axioms
The SK axioms read:

• (SK1)Entropy is a continuous function of the probabilities pi only, and should not explicitly depend on any
other parameters.
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• (SK2)Entropy ismaximal for the equi-distribution p W1i = .

• (SK3)Adding a stateW 1+ to a systemwith p 0W 1 =+ does not change the entropy of the system.

• (SK4)Entropy of a system composed of 2 sub-systemsA andB, is S A B S A S B A+ = +( ) ( ) ( ∣ ).

They state requirements thatmust be fulfilled by any entropy. For ergodic systems all four axioms hold. For non-
ergodic ones the composition axiom (SK4) is explicitly violated, and only the first three (SK1–SK3) hold. If all
four axioms hold the entropy is uniquely determined to be Shannonʼs; if only thefirst three axioms hold, the
entropy is given by the (c, d)-entropy [7, 10]. The SK axiomswere formulated in the context of information
theory but are also sensible formany physical and complex systems.

Given a trace formof the entropy as in equation (9), the SK axioms imply the restrictions on g(x): (SK1)
implies that g is a continuous function, (SK2)means that g(x) is concave, and (SK3) that g 0 0=( ) . For details,
see [7].

A.2. Rescaling in the thermodynamic limit
Wefirst prove a theoremwhich determines the general formof rescaling relations in the thermodynamic limit
for any general function.

Theorem. Let g(x) be a positive, continuous function on +. Let us define the function z :  l + +( )

z
g r x

g x
lim . A.1

x

n

l l

¥
( ) ≔

( ( ))
( )

( )
( )

Then, z cl l=( ) for some c Î .

Proof. From the definition of z l( ), it is straightforward to show that z z zll l l¢ = ¢( ) ( ) ( ), because

z
g r x

g x

g r x

g r x

g r x

g x

g r r x

g r x

g r x

g x
z z

lim lim

lim lim .

x

n

x

n

n

n

r x

n n

n x

n

n

ll

l l

¢ = =

= = ¢

ll ll

l

l

l l

l

l

¥

¢

¥

¢

¥

¢

¥l

( )
( ( ))

( )
( ( ))
( ( ))

( ( ))
( )

( [ ( )])
( ( ))

( ( ))
( )

( ) ( )

( ) ( )

( )

( )

( )

( ) ( )

( )

( )

( )

For the computationwe used the group property of rescaling in equation (3) and the continuity of g. The only
class of functions satisfying the functional equation above are power functions, z cl l=( ) . ,

Let us take thefirst scaling relation of the sample spaceW r N W N0 l=l( ( )) ( )( ) . From the previous theorem
we obtain

W N

W N
W r N r W N . A.2c 0 0

c0
0

l
l~  ~l l

( )
( )

( ( )) ( ( )) ( )( ) ( )

Itmay happen that c0 is infinite. Thus, wemay need to use higher-order scaling for the sample space, i.e.,
r W Nl

c0l ( ( ))( ) , as shown in themain text. l is determined by the condition that the scaling exponent should be

finite. Thefirst correction term is given by the scalingW r N W N1 =l
l( ( )) ( )( ) . To obtain the sub-leading

correction, we have to factor out the leading growth term. Thismeans that the scaling relation for the first sub-
leading correction looks like

W N N

W N N

log

log
, A.3

l c

l c

c

l

l

l0

0

1l~
l l( ( ))

( ( ))
( )

( )

( )

( )

( )

( )

which is again a consequence of the above theorem. To obtain the corresponding scaling relations for higher-
order scaling exponents for the sample space (A.4), we need to factor out all previous terms corresponding to
lower-order scalings, so the scaling relation looks like

W r N

W N

r N

N

log

log

log

log
. A.4

l k

l
j

k j k

j

c

c

0

1 j
l

k
l

 l~l l

=

- -⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ( ))

( )
( ( ))

( )
( )

( ) ( )

( )

( ) ( )

( )

( )

( )

Because the left-hand side of this relation has the formof the function z appearing in the theorem, the validity of
the relation is satisfied for N  ¥. Similarly, we can deduce the relations for scaling exponents that are
associatedwith the extensive entropy.
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A.3. Asymptotic expansion in terms of nested logarithms
The asymptotic representation ofW(N) is obtained by the rescaling that corresponds to the Poincaré asymptotic
expansion [13] of Wlog l 1+ ( )( ) in terms of N Nlogn

n 1f = +( ) ( )( ) for N  ¥. Let us consider a function f (x)
with a singular point at x0. It is possible to express its asymptotic properties in the neighborhood of x0 in terms of
the asymptotic series of functions xnf ( ), if f x x0 f=( ) ( ( )) and x xn n1 f f=+ ( ) ( ( )). The series is given as

f x c x x . A.5
j

k

j j j
0

å f f= +
=

( ) ( ) ( ( )) ( )

The coefficients can be calculated from the formulas in [13]

c
f x c x

x
lim . A.6k

x x

j

k
j j

k

0

1

0

å f

f
=

-



=
-( ) ( )

( )
( )

In our case, i.e., for N  ¥ and N Nlogn
n 1f = +( ) ( )( ) the function Wlog l 1+ ( )( ) can be expressed (for

appropriate l) in terms of this series, and the coefficients ck
l( ) are given by

c
W c N

N

W N

N

lim
log log

log

lim
log log log

log
.

k
l

N

l
j

k
j
l j

k

N

l
j

k j c

k

1
0

1 1

1

0

1

1

j
l

å



=
-

=

¥

+
=
- +

+

¥

=
-

+

( ) ( )

( )

( ( ) ( ) )

( )

( )
( ) ( ) ( )

( )

( ) ( )

( )

( )

Using L’Hospital’s rule and the derivative of the nested logarithm

x

x x

d log

d

1

log
, A.7

n

j

n j
0

1
=

=
-

( )
( )

( )
( )

( )

a straightforward calculation yields equation (7).

A.4.Derivation of g
d d
l n

, ,
,

l
n

l
0 ¼( )

( )
( ) ( )

Which entropy functional that fulfills axioms (SK1–3)? The choice is not unique, but a concrete entropy
functional serves as a representative of the class in the thermodynamic limit. The requirements imposed by the
first three SK axioms are: g(x) is continuous, g(x) is concave, and g 0 0=( ) . From equation (18)wehave,

g x x logj
n j l

x

d

0
1 j

l

~  =
+⎡⎣ ⎤⎦( )( ) ( )

( )

for x 0 , which gives us the scaling for the values around zero.

Unfortunately, the presented form cannot be extended to the full interval 0, 1[ ], because the domain of
xlog 1n ( )( ) is 0, 1 exp 1n 2-( ( ))( ) . This can befixed by replacing log n( ) by 1 log 1 log 1 log ...n+ = + +[ ] ( ( ))( ) ,

which is defined on thewhole domain 0, 1( ], where xlim 1 log 1x
n

0 + = +¥ [ ] ( )( ) and 1 log 1 1n+ =[ ] ( )( ) .
The scaling remains unchanged for x 0 .

The second problem is that in general the function is not concave. For this we introduce the transformation

f x
f y

y
yd . A.8

x

0

 ò=( ) ( ) ( )

The original function can be obtained by

f x x
f x

x

d

d
. A.9


=( ) ( ) ( )

This transform turns an increasing/decreasing function to a convex/concave function, while the scaling for
x 0 remains unchanged. Let us write the function g in the formof the transform

g x
y

y1 log
1

d . A.10
x

j

n
n

d

0 0

j

ò ~ +
=

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( ) [ ] ( )( )

Axiom (SK3)means g 0 0=( ) . This requires that the integrand should not diverge faster than x1 for x 0 .
This can be fulfilled for d d 10 0

0º <( ) .
Because x1 log 1n+[ ] ( )( ) is a decreasing function, g(x) is automatically concave if d 0n  , since a product

of positive, decreasing functions is also decreasing.However, for d 0n < , x1 log 1n dn+[ ] ( )( ) is an increasing
function from zero to one and thewhole productmay not be decreasing. In order to solve this issue, we
introduce a set of constants ai andwrite g(x) in the form
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g x a
y

y1 log
1

d . A.11
x

j

n

j
n

d

0 0

j

ò = + +
=

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( ) [ ] ( )( )

The constants ai can be chosen to ensure that the integrand is a decreasing function.We assume a 1i  - to
avoid problemswith powers of negative numbers. The second derivative of g(x), i.e., thefirst derivative of the
integrand is an increasing function and

g x

x x
d

d 0

2

2 = -¥ +∣( )
for d 0l > . For d 0l < , the entropy cannot be

concave, so d 0l > is the restriction given by (SK2). To obtain a negative second derivative on thewhole domain

0, 1[ ], it is therefore enough to investigate g x

x x
d

d 1

2

2 =∣( )
, which leads to the condition

a
d

a
1

1
0. A.12

j l

n

j
d

j l

n
j

j

1j  å+ -
+=

-

=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )

Because d d 0l
l0 º >( ) , we can choose al=0. In the following terms, i.e., for i l> , di can be both positive and

negative. Positive di pose no problem, because the term corresponding to di, i.e. d a1i i- +( ) is negative, sowe
can choose ai=0.When all di are negative we can compensate the positive contribution of the negative terms by
diminishing them through choice of appropriate ai. If we choose

a
d

nd
1 , A.13i

i
l

l
0

+ = - ( )
( )

( )

then equation (A.12) becomes zero. If this is given togetherwith previous results andwe summarize it as

a
d

nd
max 1 , 0 , A.14i

i
l

l
0

= - -
⎧⎨⎩

⎫⎬⎭ ( )
( )

which has been presented in equation (21) in themain text. Clearly, this is not the only possible choice. Note that
for all d 0i

l >( ) , onemay even choose a 1i = - . On the other hand, for the case of themagnetic coinmodel, one
obtains that for a 00 = , a 01 = as well.

Finally, let us show the connection to (c, d)-entropy derived in [7]. In this case, we assume only d0 and d1 can
be non-zero, which leads to

g x y a x y1 1 log 1 d . A.15
d d

x
d d

,
0,1

0
1

0 1

0 1ò= + +( ) ( ) ( ( )) ( )( )
( )

By the choice a 1
d1

1

1 0
= - +

-
, we get

g x
e

c
d c x1 , 1 log , A.16c d d, 1

= G + -
+

( ) ( ) ( )( )

for c d1 0= - and d d1= , which is nothing else than the gamma entropy of [7].

A.5.Ordering of processes and classes of equivalence
The set of scaling exponents formnatural classes of equivalence with natural ordering. Consider two discrete
randomprocessesX(N) andY(N)with sample spacesWX(N) andWY(N), respectively. The corresponding sets of
scaling exponents are denoted by c c, ,...X

l l
0 1 = { }( ) ( ) , and c c, ,...Y

l l
0 1 = {˜ ˜ }(˜) (˜) . One can introduce an ordering

based on the scaling exponents.Wewrite

X Y

l l

l l c c

l l c c c c
if

,

, ,
etc.

. A.17X Y

l l

l l l l

0 0

0 0 1 1

 

< ¢

= ¢ <

= ¢ = <
 

⎧
⎨
⎪⎪

⎩
⎪⎪

( ) ˜

˜ ˜
( )

( ) (˜)

( ) (˜) ( ) (˜)

This is equivalent to lexicographic ordering. One can also introduce an ordering, which takes into account only
certain a number of correcting terms. So, for example

X Y
l l

l l c c
if

,
. A.18X Y l l0 0

0 0

 
< ¢

= ¢ <
 

⎧⎨⎩( )
˜

( )( ) (˜)

Similarly, one can definepk, which takes into account only k correction terms. Additionally, it is possible to
introduce an equivalence relation

X Y l l c c iif ; A.19X Y i
l

i
l ~ º  = ¢ = "˜ ( )( ) (˜)

and also equivalence up to certain correction

X Y l l c c i kif ; . A.20k X Y i
l

i
l  ~ º  = ¢ = "˜ ( )( ) (˜)

As an example, formagnetic coinmodel and randomwalkwe have that X XMC 0 RW~ , but X XMC RW~ .
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A.6. Construction of a ‘representative process’
Tounderstand themechanismof how the scaling exponents correspond to the structure of a randomprocess, let
us discuss a simple procedure to generally obtain processes with given scaling exponents ck

l( ).We start with a
randomvariableX0 withN possible outcomes, so thatW N N1, ,X0

= ¼( ) { }. The scaling exponents of this
process are naturally c 10

0 =( ) and c 0k
0 =( ) for k 1 . Let us construct a new variable by choosing subsets

ofW NX0
( ).

First we can create all possible subsets ofW NX0
( ). This defines a new variableX1 withW N 2X

W NX
1

0=( ) ( ),

andwe get c 10
1 =( ) . Generally, the transform

X2: 2 , A.21X ( )

where 2X denotes a variable on all subsets ofX. One can easily show that this results in a shift of scaling exponents
c ck

l
k

l 1 +( ) ( ), and d dk
l

k
l 1 +( ) ( ), becauseW N 2W N

2X X=( ) ( ). The interpretation of this transformation is the
following: consider an ordinary randomwalkwith twopossible steps. If X N0( ) denotes a number of steps of a
randomwalker, then X N 2X N

1
0=( ) ( ) denotes the number of possible paths.Whenwe apply the transform

again, we obtain X N 2X N
2

1=( ) ( ). This denotes the number of possible configurations of a randomwalk cascade,
etc. As a result, bymore applications of 2, we obtain processes withmore complicated structure of the respective
phasespace.

To construct processes with arbitrary exponents, let us think about a procedure, wherewe create only partial
subsets, which number p(N) can be betweenN (no partitioning) and 2N (full partitioning).We denote this
procedure byP. This can be understood as a process corresponding to a correlated randomwalk. Thismeans
that not every step of thewalk is independent, but some steps can be determined by the previous steps, which
diminishes the number of possible configurations when compared to the uncorrelated randomwalk. The
resulting randomprocess is obtained as the composition of luncorrelated randomwalks (full partitioning) and a
correlated randomwalk

X X2 . A.22l
0= [ ( )] ( )( ) P

Let us now focus on the construction of correlated randomwalkwith a pre-determined number of states given
by p(N).

First we consider the full set of subsets ofN elements with natural ordering,

W n, 1 , 2 , , 1, , . A.232X = ¼ ¼{{} { } { } { }} ( )

The correlations can be represented bymerging subsets to p(N) sequences of length s s p N1 , ,¼{ ( ) ( ( ))}, i.e.,
W n, 1 , 2 ,... , , ..., 1, , . A.24X

s s p N1

= ¼ ¼     {{{} { } { } } { { }}} ( )( )

( ) ( ( ))

P

Thismeans that after one independent step, there are s 1 1-( ) dependent steps, after the second independent
step, there are s 2 1-( ) dependent steps, etc. Let us determine the formof function s for given p(N). The
function s can be obtained from

s i 2 . A.25
i

p N
N

1
å =
=

( ) ( )
( )

In the limit of largeNwe can assume that the function s does not depend onN, i.e., is a priori given by the scaling
exponents of the system. Let us also assume, without loss of generality, that s is an increasing function (we can
neglect the last cell, because its size is determined by the size of previous cells). For N 1 , we approximate the
sumby the integral and obtain

s i id 2 . A.26
p N

N

0
ò ~( ) ( )

( )

Denoting S m s y yd
m

0ò=( ) ( ) , and substituting x p N= ( ), we recast the previous equation as, S x 2p x1= -( ) ( ),

where p 1- denotes the inverse function of p. The function s(x) can be therefore determined as

s x
x p p x

d 2

d

2
. A.27

p x p x

1

1 1

= =
¢ -

- -

( )
( ( ))

( )
( ) ( )

Some examples for s(x) for a corresponding p(N) are

• p N 2N=( ) , i.e., full partitioning corresponding to uncorrelated randomwalk. In this case, we obtain that
s x const.=( ) , as expected.

• p N N=( ) , i.e., no partitioning tomaximally correlated randomwalk.We obtain that s x 2x~( ) , which can
be seen from the relation 2 2i

N i Nå ~ .
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• p N N Nlog=( ) , which corresponds to the correction in themagnetic coinmodel.
In this case, s x W x2 logW x~( ) ( ( ))( ) , whereW(x) is the LambertW-function.
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