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FOREWORD 

Demography is concerned with the evolution of human populations, their age and 
sex structure, and the way in which the components of change, births and deaths, alter 
this structure over time. Accordingly mathematical demographers have focused their atten- 
tion on population stocks and on population events. The need to  include several regional 
populations and theflows that interconnect them to  form a national multiregional popula- 
tion system has led to the development of multiregional mathematical demography, which 
is concerned with the evolution of human populations over space as well as time. 

The papers in this volume deal with problems concerning data and measurement, 
methods of constructing life tables, population projections, analyses of migration patterns 
and age profiles, aggregation procedures, and the evolutionary dynamics of populations 
experiencing changing rates of natural increase and migration. The authors are allmembers 
of an international group of scholars studying national problems of human settlement at  
the lnternational Institute for Applied Systems Analysis (IIASA). 

The first paper examines an important measurement problem in migration analysis: 
the transformation of data collected over one unit of time into information covering a 
different period of time. Data on migration often appear in the form of a response to  the 
question: where did you live n years ago? In Canada and the USA, for example, n is usu- 
ally taken t o  be five. Yet the data on births and deaths are reported annually. Thus it is 
necessary to  reconcile one-year with five-year data. Pave1 Kitsul of the Soviet Union and 
Dimiter Philipov of Bulgaria tackle this problem in their contribution to  this volume. 
They outline an elegant mathematical procedure using matrix theory. The method is illus- 
trated with data for a three-region disaggregation of the population of Great Britain. 

Migration data and mortality data for a multiregional population system may be 
combined to  produce estimates of the probabilities of population redistribution and surviv- 
al. The demographer's normal method of assessing such probabilities is the life table. Jacques 
Ledent of France considers two alternative methods of constructing multiregional life 
tables, and demonstrates that a computational procedure based on probabilities specific 
to  an individual's region of birth yields more accurate allocations of life expectancies than 
the more conventional Markov-based solution. 

Dimiter Philipov of Bulgaria and Andrei Rogers of the USA, in work related to  that 
of Ledent, have developed a procedure that generates multiregional population projec- 
tions disaggregated by region of birth. They outline two classes of projections: native- 
independent projections, in which identical probabilities of transition are assigned to all 
residents of a region, and nativedependent projections, in which these probabilities are 
further disaggregated by region of birth. The results once again emphasize the importance 
of including region~f-birth-specific information in demographic analysis. 

As part of its work on patterns of migration and settlement in individual nations, 
IIASA has introduced new techniques for inferring age-specific migration flows from 
aggregated data. Frans Willekens of Belgium, Andras Por of Hungary, and Richard Raquillet 



of France report on their collaborative work dealing with this topic. They outline a general 
estimation procedure that incorporates both maximum-likelihood and minimum chi-square 
estimates. Data for Austria and Sweden are used to illustrate the methodology. 

A common demographic approach in mortality studies is the decomposition of 
mortality rates by cause of death. Andrei Rogers of the USA and Luis Castro of Mexico use 
an analogous method to analyze migration rates. They show that different age profiles are 
associated with different causes of migration. Using data for Czechoslovakia, they dem- 
onstrate the ways in which the levels and age profiles of different cause-specific migration 
schedules contribute to  the aggregate age patterns of migration which change over time 
and space. 

The theory of stable population dynamics has been developed quite thoroughly in the 
demographic literature, but it is virtually all based on the assumption that fertility, mortali- 
ty ,  and migration rates remain unchanged. The case of changing rates has received relatively 
little attention; not much is known about the influence of variable rates on the age com- 
position and regional distribution of populations. Young Kim of the Republic of Korea 
considers how multiregional zerogrowth populations evolve over time when experiencing 
variations in birth, death, and migration rates. Her paper identifies ways in which the age 
structure in each region is influenced by the pattern of recent rates and how the effect of 
the initial composition decreases over time until it is finally lost. Data for lndia and the 
Soviet Union illustrate some of the key concepts. 

The seventh and last paper in this collection develops a formalism for determining 
the relationships between a linear Markovian population model and the corresponding 
aggregated model. Robert Gibberd of Australia first shows that an aggregated population 
model is generally non-Markovian. He then suggests several Markovian approximations, in- 
cluding two which provide upper and lower bounds for the aggregated population distri- 
bution. Australian migration data are used t o  illustrate the results. 

It is hoped that the publication of this collection of papers will stimulate further 
contributions in the field of multiregional demographic analysis. 

Andrei Rogers 
Chairman 

Human Settlements 
and Services Area 
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THE ONE-YEARIFIVE-YEAR MIGRATION PROBLEM* 

Pave1 Kitsul and Dimiter Philipov 

1 THE PROBLEM 

The analysis of mobility is often restricted by the unavailability of data. 
Frequently models use cross-sectional data to approximate longitudinal patterns. 
Problems also arise because the cross-sectional data may refer to different periods of 
time. 

In the case of migration, registration statistics in many countries can be used to 
produce origin4estination tables of migration flows over a period of one year. 
Censuses usually also provide such flow data, but over a five- or ten-year period. 
Statisticians are thus faced with two sets of data, which give different information that 
may be difficult to reconcile (Rees 1979b). Is one set of data more accurate than the 
other, or do they reveal different patterns of migration? 

This paper investigates the problem of reconciling demographic data collected 
over different periods of time. The migration example discussed above can be 
incorporated at an early stage in the construction of the simplest multiregional 
model: the multiregional life table. 

Consider a multiregional population, disaggregated by age, and for which the 
necessary data on regional populations, births, deaths, and interregional migrations 
are readily available. Assume that the width of the age group is five years and that the 
periods of observation can be either one year or five years. Then the multiregional 
life-table probabilities of migrating can be computed according to eqn. (1) (Rogers 
and Ledent 1976, Willekens and Rogers 1978) 

P ~ ( x )  = [I+ $MI(X)]-'[I -$M~(x)]  (1) 

where Ps(x) is the matrix of probabilities pf'(x) that a person at exact age x in region i 
will be living in region j five years later; I is the identity matrix; Ml(x) is the matrix: 

where Mij(x) are the one-year observed gross migration rates for people aged x to 

* Based on WP-80-81. 
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2 Paoel Kitsul and Dimiter Philipov 

x + 4 moving from region i to region j, and Mi,(x) is the annual death rate in region i 
for individuals aged x to x + 4. The matrices M,(x) and P5(x) are of dimension n x n, 
where n is the number of regions. 

A factor of five is introduced into eqn. (1) to reconcile the one-year observed 
data with the five-year probabilities. It is assumed that the migrations are uniformly 
distributed over the five-year period (Ledent 1978). 

When the observed data refer to a five-year period, the above assumption is not 
necessary. In this case, eqn. (2) can be used 

where MS(x) is a matrix constructed analogously to Ml(x) from five-year observed 
gross migration and death rates. 

If the assumption that the migrations are uniformly distributed over the period 
studied is correct, eqns. (1) and (2) should give approximately equal results. In such a 
case eqn. (1) would be a good approximation to eqn. (2). Results computed for 
people of exact age 15 migrating within the subsequent five years to another region in 
Great Britain (East Anglia, South East England, and the rest of Britain) are given in 
Table 1 both for a one-year period of observation (1970) and for a five-year period 

TABLE 1 Probabilities of a person at exact age 15 in one of three regions of Great Britain 
(East Anglia, South East England, or the rest of Britain) living in thesame or another region five 
years later. Calculated using one-year observations and five-year observations and eqns. (1) 
and (2) respectively." 

Probability of living in region 
Probability 

Region of origin East Anglia South East Rest of death 

One-year observations (1970) and eqn. (1) 
East Anglia 0.838896 0.084048 0.073464 0.003591 
South East 0.010098 0.917494 0.069230 0.003178 
Rest of Britain 0.005401 0.047277 0.944153 0.003169 

Five-year observations (1966-1 971) and eqn. (2) 
East Anglia 0.898068 0.053417 0.044920 0.003595 
South East 0.007041 0.948826 0.040965 0.003168 
Rest of Britain 0.003073 0.030466 0.963210 0.003251 

" Taken from Rees (1978, 1979a). 

(1966-1971). The corresponding results for other ages are given in Appendix C. Two 
sets of data have been used for the estimations in this paper. The data from the first 
set refer to the five-year period from 1966 to 1971, and were taken from Rees 
(1978). The second set refer to the single year 1970, and can be found in Rees 
(1979a). In the second case the data were originally disaggregated for ten regions but 
were reaggregated to the three-region system considered here. 

It is clear that the probability of leaving the region of origin is substantially 
higher when calculated using one-year observed data than when calculated using 
five-year data. Therefore, eqn. (1) must overestimate the probability of migration 
and underestimate the probability of living in the same region five years later. The 
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probabilities of remaining in the region of origin are represented by the elements of 
the main diagonal of each table. This is also true for other ages, as shown by the data 
in Appendix C. 

The two sets of probabilities are shown to be significantly different by compar- 
ing the corresponding distribution of expectations of life given in Table 2 (see also 
Appendix D). 

TABLE 2 Distribution of expectationsof life at exact age 15 in three regionsof Great Britain. 
Calculated using one-year observations and five-year observations and eqns. (1) and (2) 
respectively. 

Number of years spent in region 

Region of origin East Anglia South East Rest Total 

One-year observations (1970) and eqn. (I) 
East Anglia 18.46 17.76 23.16 59.38 
South East 2.82 34.36 22.14 59.32 
Rest of Britain 1.62 11.48 45.70 58.80 

Five-year observations (1966-1971) and eqn. (2) 
East Anglia 28.78 13.86 17.01 59.65 
South East 2.48 40.97 16.01 59.46 
Rest of Britain 1.29 8.22 49.25 58.76 

The  distribution of the expectation of life for an individual born in the first 
region, East Anglia, is markedly different in the two cases. Although not so large, the 
differences in the distribution of life expectancy for natives of the other two regions 
are also significant. The same holds true for other ages (Appendix D). 

Now compare the probabilities for dying, as shown in Table 1. They are 
obviously so close that the probability of death calculated using one-year data and 
eqn. (1) is a good approximation to that calculated using five-year data and eqn. (2). 
However, eqn. (1) still contains the assumption that invalidated the corresponding 
approximation in the case of migration; namely, that the observed deaths/migrations 
are uniformly distributed over the five-year period. 

One  and the same assumption gives different results: in the case of deaths it is 
valid, but in the case of migrations it is unjustified. The reason for this difference is 
that migration may be repeated, unlike death. Migrants are usually identified by 
comparing their places of residence at the beginning and at the end of the period of 
interest. Therefore, multiple moves within this period are not counted. 

A n  example is presented in Figure 1. Let an individual reside in region 1 at time 
0. He will be a resident of the same region at the end of the first year, but at the end of 
the second year he will be a resident of region 2. At  the end of the third and fourth 
years he will reside in region 3. Figure l (a )  assumes that he remains in region 3 until 
at  least the end of the fifth year while Figure l (b )  assumes that he moves back to 
region 1 during this year. 

In a one-year data collection system this individual would be registered as 
a migrant either twice (Figure l a )  or three times (Figure lb) .  But if data are 
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Region 1 Region I 
- 

0 1 2 3 4 5  
- 
0 1 2 3 4 5  

Year Year 

(a) (b) 

FIGURE 1 Migration of an individual among three regions over a period of five years. 

collected over a five-year period, the same individual would register only one move 
in the case of Figure l (a)  and no move in the case of Figure l(b). 

In the above example, an additional move (from region 3 to region 1 in Figure 
l(b)) was registered correctly by yearly observations but resulted in the measurement 
of one move less in the case of five-year observations. This is one type of move 
responsible for the inaccurate results produced by using a multiplicative factor of 
five. A detailed description of the ideas outlined above may be found in Rees (1977). 

These ideas suggest that an individual's migratory behavior may be represented 
as a stochastic process. If each move is independent from every other move, and if the 
probability of a move does not depend on time, the process can be described as a 
homogeneous Markovian process. 

The Markovian assumption gives rise to a new kind of estimating procedure, 
represented by eqn. (3) 

which is based on the equality 

for any Markovian process. Here Pl(x) is the matrix of probabilities pL(x) that an 
individual at exact age x in region i will be living in region j one year later. Thus 
defined, this probability has little demographic meaning, because of the inconsis- 
tency between the width of the age group (5 years) and time-period of interest (1 
year), but its formal definition is correct. If the Markovian assumption proves to be 
valid, then [p1(x)l5 is already demographically meaningful.* 

* However, if the matrices P , ( x )  for x  = 1.2, 3,. . . are available, P S ( x )  should be approximated by the 
matrix 
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The probabilities of people of exact age 15 living in the same or another region 
of Great Britain five years later have been calculated using eqn. (3) and are displayed 
in Table 3. These results are very similar to those obtained using eqn. (1). Hence the 
Markovian assumption has not introduced any significant improvement. This is 
also true for other ages (Appendix B). 

TABLE 3 Probabilities of a person a t  exact age 15 in one of three regions of Great Britain 
living in the same or another region five years later. Calculated using the Markovian assump- 
tion. 

Probability of living in region 
- Probability 

Region of origin East Anglia South East Rest of death 

East Anglia 0.839297 0.083767 0.073345 0.003591 
South East 0.010063 0.917623 0.069137 0.003178 
Rest of Britain 0.005394 0.047212 0.944226 0.003169 

Rogers (1965) and Rees (1977) have suggested that the Markovian assumption 
should be used in analyses of interregional migration. Rees has applied the approach 
to two sets of data for Great Britain: data from a questionnaire referring to the 
migration of heads of households, and census data on interregional migration. In the 
first case, the results obtained were satisfactory but in the second analysis, which 
included ten regions of Great Britain, the calculated rates differed significantly from 
the observed rates. After a detailed examination of the problem the author 
concluded that ". . . a  more complex [than the Markovian] process is involved 
when an interregional framework is employed" (Rees 1977, p. 262). 

The Markovian assumption is theoretically better than the assumption of a 
uniform distribution of migrations over time, because it allows return migration to be 
considered (see Figure lb). It can therefore be thought of as dividing the population 
into two different groups. Ideas of this kind have been explored by Blumen et al. 
(1955), who gave rise to what is known today as the "mover-stayer" model. This 
model was later elaborated by Goodman (1961), Spilerman (1972), Boudon (1975), 
Bartholomew (1973), and others. 

The mover-stayer model is based on the assumption that a certain part of the 
population has a zero probability of migration (stayers), while the rest of the 
population has a non-zero probability of migration (movers). Thus all the migrations 
are made by the "movers". The formal description of the model is 

where 0 < a  < 1, PS(x) and 7r5(x) are matrices representing probabilities of migra- 
tion within the next 5 years for people at exact age x, and I is the identity matrix. P5(x) 
and lrs(x) are defined similarly but are different in magnitude. 

The Markovian assumption is now applied to the matrix lr(x), instead of the 
matrix P(x). Therefore, if only .rrl(x) were available, a possible approximation of 
eqn. (2) would be 

P ~ ( x )  = a[.rrl(x)15+(1 -a )1  (5) 
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Note that for a = 1, eqn. (5) reduces to eqn. (3a). Note also that, according to this 
presentation of the mover-stayer model, a does not depend on the region of origin or 
destination. 

Instead of elaborating on the last equation we shall proceed further by 
considering a possible extension, the high- and low-intensity movers model. 

2 THE HIGH- AND LOW-INTENSITY MOVERS MODEL 

The mover-stayer model was based on the existence of two homogeneous 
groups of individuals-movers and stayers. In the demographic literature, however, 
migrants themselves are often divided into two groups with respect to the "parity" or 
number of moves. One group comprises those migrants who move only once during 
the period of observation, and the other is composed of individuals who migrate 
more often. The latter are sometimes referred to as "chronic" migrants. Long and 
Hansen (1975) report that the rates of return migration to the southern states of the 
USA are much higher than those for first-time moves to the same destination. 
However, at the same time, the return migrants constitute only a small part of the 
total number of migrants (10-20%). 

Spilerman (1972) has tried to extend the mover-stayer model by developing 
the suggestion made by Blumen et al. (1955) that a continuous range of intensities of 
migration should be considered. He proposes a solution to the problem on this basis. 
However, this model is Markovian and cannot be used in the present case. Boudon 
(1975) suggests that two homogeneous populations should be considered, both with 
probabilities of migration greater than zero. He focuses basically on inter- 
generational occupation tables. The solution of the resulting model is based on the 
maximum likelihood principle, which causes substantial computational difficulties 
when dealing with large numbers of equations and unknowns. 

In this paper we shall assume, like Boudon, that the population consists of two 
groups with different intensities of migration, but we propose a different method of 
solution (matrix diagonalization). It is believed that this will bring the model closer to 
the demographic idea of migration propensities, and will provide more theoretical 
insight into methods of dealing with such problems as return migrants or chronic 
migrants. 

Let p i (x)  be the probability that an individual at exact age x in region i will live 
in region j one year later. Let C:=, pi(x) = 1, where n is the number of regions. This 
equation does not take into account the effect of mortality. This assumption is made 
for convenience, since the matrix of the p;(x) will then be stochastic and its 
properties will be easier to describe and understand. 

Note that the probabilities p;(x) described here are linked with the estimated 
probabilities @;(x) from 

where @l(x) =[p*$(x)], by the equality 

where $ib(x) is the estimated probability that a person at exact age x in region i will 
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be dead one year later. Bearing in mind that X I = ,  f i ; j ( x ) + f i & ( x )  = 1 ,  it must be true 
that X I = ,  p ; , ( x )  = 1 .  

The formal description of the extension of the mover-stayer model considered 
here is based on the equality 

P ; , ( X )  = a i j ( x ) f l i j ( x ) + [ l  - a i j ( x ) I ~ i j ( x )  ( 6 )  
where rij and pi, are probabilities with meanings analogous to that of p,!,, and a i j ( x )  is 
a real parameter, 0 < a  < 1 .  The equality shows that the probability p ; ( x ) ,  which 
refers to the total population of region i at exact age x ,  is the weighted sum of two 
probabilities ?r i j (x )  and p i , ( x ) ,  which refer to subgroups of this regional population, 
with weights a i , ( x )  and [ I  - a i j ( x ) ]  respectively. The model defined by the above 
probabilities is called the high- and low-intensity movers model, to differentiate it 
from the extension developed by Spilerman ( 1 9 7 2 ) .  

In order to make use of this model to estimate p i i ( x ) ,  it is necessary to know the 
values of a ; , ( x ) ,  r i , ( x ) ,  and p i j ( x ) .  Unfortunately, these data are unavailable. A 
number of further assumptions must therefore be made in order to find a convincing 
method of solving for a, T ,  and p. 

We shall first assume that the parameter a i j ( x )  does not depend on the regions i 
and j, i.e., that the two groups with different probabilities of migration are not 
separated on a regional basis. This means that factors other than the region of 
residence (for instance, social status and economic occupation) affect the prob- 
abilities of migration and the number of return migrants and chronic migrants. The 
validity of this and other assumptions is discussed later in the paper. 

The matrix equivalent of eqn. ( 6 )  is 

where a ( x )  is a scalar depending on the age x .  Note that a ( x )  and the elements of the 
two matrices n l ( x )  and p l ( x )  are all non-negative. 

We shall further assume that the stochastic processes defined by the stochastic 
matrices m l ( x )  and p l ( x )  are Markovian. Thus we assume that these matrices satisfy 
the Kolmogoroff-Chapman equations (Chiang 1 9 6 8 ,  Karlin 1 9 6 9 ) .  If so, the overall 
process, defined by P ( x ) ,  is a mixture of two Markovian processes. 

The mixture of two Markovian processes is generally not itself a Markovian 
process. Since a ( x )  = 1  reduces the process to the Markovian process defined by 
P l ( x ) ,  the high- and low-intensity model is a non-Markovian extension of the 
Markovian model. 

Equation (7) was based on a one-year period of observation. More generally, if 
the period of observation is T years, the process can be represented by eqn. ( 8 ) .  

P , ( x )  = a ( x ) m , ( x ) + [ l  - a ( x ) I p , ( x )  ( 8 )  

The Markovian assumption for m, and p,  gives the following relationships between 
processes involving different values of T ( T  = 1  and T = 5, say): 

With a knowledge of eqns. ( 9 ) ,  eqn. ( 8 )  can be used to form the system 

P , ( x )  = a ( x ) m 1 ( x ) + [ l  - a ( x ) I p 1 ( x )  
( 1 0 )  

P d x )  = a ( x ) [ . r r l ( x ) 1 5  + [ I  - ~ ( x ) 1 [ P l ( x ) l 5  
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If this system can be solved with respect to the unknowns a  ( x )  and the elements 
of m l ( x )  and p l ( x ) ,  the one-yearlfive-year migration problem can be attacked using 
the newly formulated model. Hence we proceed to solve system (10)  with respect to 
a ( x ) ,  .rrii(x), and pi j (x)  for each i,j = 1 , 2 , .  . . , n. There are 2 n 2 +  1  unknowns in 
system ( l o ) ,  where n  is the number of regions, and 2 n 2 + 2 n  equations (the 2n2 
comes from the dimension of the matrices, and the 2n from the restrictions 
CYel rij = 1 and pi, = 1 ) .  

In finding the solution of system (10)  we are faced with a problem caused by the 
large number of non-linear equations. This non-linear system is also overdeter- 
mined. For instance, for n  = 3 there are 19 unknowns and 24 equations. The two 
problems will be considered together. 

Consider the system of Kolmogoroff differential equations (Chiang 1968) 

with the initial condition 

The elements F~~ of the matrix p  represent the "intensity" or  "force" of migration 
from region i to  region j. The elements satisfy the conditions 

Some important properties of p  are given by Chiang (1968) .  
The formal solution of the system of Kolmogoroff differential equations is 

The definition of e" as a matrix function is given by Gantmacher (1959, Chapter V). 
The matrices m l ( x )  and p l ( x )  represent Markovian processes and (for 7 = 1 )  

they can therefore be written 

m l ( x )  = efi-(x) 

p l ( x )  = e"~"' 

Then system ( l o ) ,  with a ( x )  set equal to a, may be transformed to 

Note that on the right-hand side of the equation the probabilities of migration have 
been replaced by the corresponding intensities of migration. 

Next we introduce the assumptions 

p p ( x )  = k ( x ) p , ( x )  O < k ( x ) <  1 

k ( x )  = k  for all x  
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This means that the difference in the propensity to migrate for individuals from the 
two groups (weighted by the parameter a )  is independent of the regions i and 1. 
Introducing assumptions (13) into system (12) and denoting p, by p we obtain 

Introducing the assumptions (13) means that the number of unknowns is 
reduced from 2 n Z +  1 in eqns. (10) to n z + 2  in eqns. (14), the number of equations 
being reduced to 2n + n, as the restrictions 21=, T;, = 1 and XI=,  pi, = 1 are replaced 
by x;=, pi, = 0. 

For n = 3, there will be 11 unknowns and 21 equations. For n > 3, the number 
of equations will increasingly exceed the number of unknowns. Therefore, for n 2 3, 
the solution must be found indirectly. We shall use the method of matrix diagonal- 
ization to decrease the dimension of the problem and the degree of its overdeter- 
mination. 

Assume that there are n eigenvalues of PI  and that they are all different.* (This 
assumption is usual in the social sciences and adequately reflects real-world situa- 
tions.) Then the transformation T1 which diagonalizes PI  is defined by the n different 
right eigenvectors. Analogously let P5 be diagonalized by T5. By T-' we denote the 
inverse of the matrix T. Hence, T;' and T;' are constructed by the left eigenvectors 
of PI and PS, respectively. For more details about diagonalization see, for instance, 
Bellman (19601, Chiang (1968), or Gantmacher (1959). 

Let T ~ ~ P ~ T ~  = diag (P , )  = A 1 ,  where A1 is a diagonal matrix of the eigenvalues 
of P I .  Correspondingly, let diag (P,) = As. Introducing the diagonalization into eqns. 
(14) gives 

and hence 

It will be necessary to use a certain class of matrices, which are defined as 
follows: 

The matrices A and B are related** if they can be diagonalized by the same 
transformation T. 

It is easy to show that if the matrices A and B are related, then the matric C, 
where 

* T o  simplify the notation, age groups will no longer be denoted. 
**The  authors would like to thank A. Seifelnasr, who indicated that the word "similar" which was used 
here originally was inappropriate because this term is used in the literature to define another class of 
matrices. 
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and f( .  ) and g( . )  are scalar functions and a and b are real numbers, is also related to 
A and B (Gantmacher 1959, Chapter V). In particular, if v is the diagonalized matrix 
diag ( p ) ,  then 

diag (e') = ev 

Consider now the system (14a). Since the left-hand side of each equation is a 
diagonal matrix, the same will be true of the matrix sum on the right-hand side. But 
the matrices p and k p  are related and therefore, from the equation above, the 
matrices e' and ek' are also related. Hence they are diagonalized by the same 
transformation U. Then U diagonalizes a linear combination of e' and ek'. and 
hence diagonalizes P1 as well. Then P1 and e', or ek', are also related. If so, the 
transformation T1 diagonalizes e' and ek". 

Analogously, T5 diagonalizes the related matrices P5, e5", and e5k'. Then eqns. 
(14a) can be represented as 

bearing in mind the similarity between p ,  kp, 5p ,  and 5 kp,  and applying successively 
the property of matrix functions cited above. 

Note that e' and e5' (or ek' and e5k") are related, so that the transformations 
T1 and TS should diagonalize them both. This implies that the matrices P1 and P5 
should also be related, and be diagonalized by either T1 or T5. However, since 
transformations are unique, T I  and Ts should be equal. This condition is too rigid to 
be met in practice, but we can relax it a little by assuming that T I  and T5 are 
empirically close enough to meet the theoretical requirements, i.e., that when 
applied to the diagonal matrices Al and A5, they yield the initial matrices P1 and Ps, 
as shown in eqns. (16) 

If the expressions (16) do not hold, the whole theory developed up to now is not 
valid. This would mean that the Markovian assumptions or some of the assumptions 
made for the matrices .sr and p are not justified. The accuracy of eqns. (16) therefore 
provides a measure of the validity of the model considered here.* The numerical 
expressions for and P are compared in the next section; at the moment it is 
sufficient to state that @and P are close enough to suggest that the model is valid. The 
observed and estimated results are given in full in Appendix B. 

Let A,(P1) be the ith eigenvalue of P1 and A,(PS) the ith eigenvalue of Ps. Let V, 
be the ith eigenvalue of p .  Then the system of matrix equations (15) can be presented 
as the non-linear system of equations 

The matrices P I  and Ps are stochastic. Therefore their largest eigenvalue is 
equal to unity and the corresponding eigenvalue of p is equal to zero. Hence, two of 

- 

* Some theoretical aspects of this approximation are considered in Appendix A .  
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the equations from system (17) must be excluded. The number of the equations will 
then decrease to 2n - 2 .  At the same time, the number of unknowns is n  + 1 (since for 
some i, vi = 0), which is a substantial decrease when compared with the n 2 + 2  
resulting from eqns. (14). 

Let n  = 3 (the case n  = 2  is better handled by eqns. 14). There are 4 equations 
and 4 unknowns; therefore the system is well defined. 

Let n  > 3 .  There are then more equations than unknowns. Therefore, if the 
system is consistent, we can use the same method of solution as for n  = 3. 

The solution for the case n  = 3 is considered below. 
In order to simplify the notation, let z, = e"'. Let Al(P1) and Al(P5) be equal to 

unity, hence vl = 0. Then eqns. (17) can be rewritten as 

Let k be held fixed. System (18) can be rearranged as in eqns. (19) 

and hence 

Note that the above equations are well defined, since the exclusion of the eigenvalue 
vl = 0 ensures that ail the denominators are non-zero. 

This leaves us with three unknowns: k, z2, and 23. An additional restriction is 
provided by the assumption that a does not depend on the regions. Therefore the 
solutions for 2 2  and 23 must be such that eqns. (19) yield the same value for a .  The last 
condition is used to construct an algorithm for solving eqns. (18). 

Step 1.  Fix an arbitrary value for k such that 0 < k < 1. 
Step 2. Form the function 

for the given value of k. 
Step 3. Find the roots of f(zi)  = 0 using the Newton-Raphson approximation 

starting with zo=  0.01. Recall that zi is bounded in the interval (0, 1) because 
zi = exp (v,) and v, < 0. 

Step 4. With the values of zi, estimate a from eqns. (19). Let z, provide an 
estimated value of a denoted by a,. 

Step 5. If a2 Z a3, go back to Step 1. If a2 = a 3  (up to a predefined tolerance 
level), the solution has been found. 

The small initial value for zo is assumed in order to exclude the trivial root 
zi = 1, which gives 1 = zi = e"', i.e., v, = 0. 
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The solution of eqns. (18) and the values of a, k, v2, and v3 can be used to 
construct the matrices .rr and p. Thus the initial system (10) can be constructed 
numerically. 

It is possible to find an approximate solution by minimizing a function F of four 
variables: 

This method of solution was found to give the same results as the one described 
above, and is to be preferred if library nonlinear-optimization routines are available. 

3 NUMERICAL VERIFICATION 

Consider the two matrices P I  and Ps for the group aged 15-19 years in the three 
regions of Great Britain considered in the first section. Let the effect of mortality be 
eliminated, so that the two matrices are stochastic, that is, with row elements 
summing to unity. Their numerical expressions are then 

The eigenvalues are: Al(P1) = 1; A2(Pl) = 0.96405; A3(Pl) = 0.97419; A ,(Ps) = 1; 
Az(P5) = 0.89477; A3(P5) = 0.92473. 

The eigenvalues of each matrix are different, and therefore the eigenvectors are 
also different. The eigenvectors define the diagonalization transformations. 

The system (15) now becomes 

The equivalent of system (18), after removing the two trivial equalities, is 



The one-yearlfive-year migration problem 

We now search for a solution for a ,  k, v2,  and v3. Replacing eU2 by z2  and e"' by z 3 ,  
system (18a) yields 

The algorithm at the end of the previous section was then applied. The unique 
value k = 0.01 was found to give & 2  = A3 = a .  For this k,  a = 0.0233, v2 = -1.6848, 
and v3 = - 1.005 1 (v i  = In 2 ,  j .  

The values of Q and k imply that 2.3O/0 of the group aged 15-19 have a "force" 
of migration one hundred times greater than that of the remaining 97.7% in this age 
group. Note that this large difference in the intensities or "force" of migration does 
not imply the same difference in the probabilities of migration! The probabilities of 
migration may be deduced from system (10) once .rrl and p l  have been calculated 
using the relations 

Note that if PI is diagonalized by the transformation TI,  .rrl and p ,  are 
diagonalized by the same transformation (97' and p l  are related). Then eqn. (20) 
yields 

diag (97 ' )  = T T ' . ~ ~ ~ T ~  = T;' ewT1 = ev 

diag (PI)  = T ~ ' ~ , T ~  = e k V  

Then 

.rrl and p l  can be found from the last two expressions by applying the reverse 
transformations 

.rrl = TI diag (.rrl)T7' 
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The estimated values for nl and p l  are 

While pl has a similar structure to P l ,  this is not true of nl. The elements on the 
main diagonal of nl reflect the probabilities that the high-intensity movers will 
remain in the same region for one year. The values are much lower than the typical 
values for an average population. Note that these probabilities are very dependent 
on the size of the regional population; this explains why the comparatively small 
region of East Anglia is connected with high out-migration probabilities. 

The following expressions may be derived for (nl) '  and (PI)': 

(nl ) '  = T 1  diag [ ( n l ) 5 ] ~ ; 1  

(PI)' = T I  diag [(PI)']T;' 

where 

0 

diag = [i e z  

Using the expression 

PS(X)=  a [ n l ( ~ ) ~ 5 + ( 1  - a ) b l ( x ) l 5  

where x = 15, we obtain the final numerical estimate of P5(15) 

Using the expression 
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where x = 15, we obtain the final numerical estimate of P1(15) 

Note that the estimated matrix PS(15) is very close to the observed matrix 
PS(15) given at the beginning of Section 3, while the estimated and observed matrices 
P1(15) are exactly the same. 

The matrix [.rr1(15)15 in the numerical expression for PS(15) above is of 
particular interest because each column contains three numbers which are approxi- 
mately equal. This is a consequence of the fact that .rrl refers to the group with an 
intensity of migration approximately one hundred times greater than that of the 
other group. Since [.rrllT = e"' and [pllT = ek"', both processes tend to the same 
asymptote, but the first approaches it much more quickly. This is illustrated in Figure 
2, where [aIij denotes an element from the ith row and jth column of a matrix a. 

7 

FIGURE 2 Asymptotic behavior of e" and ek". 

[.rr1I5 is seen to be very close to the asymptotic distribution described by [.rrlIm. 
But [.rrl]" defines the stable state of the high-intensity movers, and therefore, even if 
this part of the population is not stable in the initial period of time, it should reach 
spatial stability over a period of 5-10 years. Since real demographic processes are 
quite homogeneous over such a short period of time, it is reasonable to suppose that 
the spatial distribution of the high-intensity movers is approximately stable at the 
initial point of time. 
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Because the matrices P1, ml and p1 are related, P? = .rr? = p?. This proves 
that the process described by the high- and low-intensity movers model retains the 
important demographic properties of stabilization and ergodicity, although the 
model is not Markovian. 

Only one age group (1 5-19 years) has been considered up to now. We therefore 
decided to repeat the procedure for the other fourteen age groups, solving system 
(18) with respect to a, k, v2, and v 3  using the algorithm described earlier in this paper. 
The method of solution failed twice, for the age groups 50-54 and 70-74, although 
the solutions obtained for ages greater than 50 were generally not satisfactory. The 
results are shown in Table 4. 

It is believed that this procedure gives bad results for the older population 
primarily because of the method of solution. When trying to solve system (18) for 
ages greater than 50, it was observed that a and k tended to zero. However, as k + 0 
the high- and low-intensity movers model tends to the mover-stayer model, and 
a + 0 reduces it still further to a Markovian process. It is therefore possible that the 
more sophisticated estimation procedures employed in the high- and low-intensity 
movers model are more inaccurate than those used in the simpler models when the 
migration movements are very low. This could explain to some extent the differences 
between the solutions for the age groups 45-49 and under and 55-59 and over. 

Consideration of the values of a, k,  v2, and v 3  for the first ten age groups in 
Table 4 leads to the following conclusions: 

1. The values of k are quite similar, the mean being 0.01202. 
2. The values of a generate a curve which resembles a migration curve. 

[Different migration schedules for Great Britain are given in Rees (1979b).] 
3. The absolute values of each of the v i  also generate a curve resembling a 

migration curve, although the resemblance is not as close as for the curve 
generated by a. 

These features can be used in the implementation of the model, which is 
discussed in the next section. 

TABLE 4 Values of a ,  k, v2, and v, for different age groups 

Age group a k v2 v3 

" Solution not found 
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4 IMPLEMENTATION OF  THE MODEL 

The previous two sections described the mathematical and numerical aspects of 
the high- and low-intensity movers model. The numerical results justify the assump- 
tions made, and therefore verify the model itself. However, the numerical results 
were derived from two sets of data-one-year and five-year observations-both 
disaggregated by age. 

In the general case, we must assume that only one set of data is available, and 
then use it to obtain approximations for the other set. Since one-year data are usually 
available in most countries, we will assume these to be given. Before considering the 
numerical results any further, however, the theoretical background must be 
developed. 

In Section 2 it is shown that starting with the matrix equation 

it is possible to construct the system of scalar equations 

omitting the dependence on age x for clarity. System (21) contains two equationsand 
four unknowns, a, k, v,, and v3; two of the unknowns must therefore be specified 
exogenously. This is in fact the basis for the implementation of the model. 

Recalling the conclusions drawn from Table 4 at the end of the previous 
section, it seems reasonable to search for values of a and k which might be applicable 
to the total population aggregated by age (a,,, and k,,,, respectively). Then two 
approaches are possible: keep these values constant for all ages, or disaggregate 
them in accordance with the results from Table 4 [i.e., kt,, may be kept constant, and 
a,,, may be used to generate a set a ( x )  for all x, such that the a ( x )  form a curve 
similar to that of the observed migration rates, and the arithmetic mean of a ( x )  is 
equal to a,,,]. 

In either case, it is only necessary to obtain values for a,,, and k,,,. The 
derivation of these values will be discussed later in this section, but for the moment 
let us suppose they are available. In this case, kt,, and a,,,, or a (x), can be used to 
solve system (21) for vz(x) and v3(x). System (22) can then be solved with respect to 
the unknowns h2(P5) and A3(P5) 

where the dependence on age x is again omitted. The diagonalized matrix A5 = 

diag (P5) therefore becomes available since it is already known that Al(P5) = 1. In 
order to find P5 it is necessary to know its diagonalizing transformation. But the 
discussion here suggests that P5 is a function of PI ,  i.e., P5 = f(P1), where the function 
f ( . )  may be deduced from system (10). Therefore, T1 must diagonalize P5 and hence 

Note that eqn. (23) implies T, = T5. This equality was discussed on page 10, and 
it was concluded that it should be approximately true (Appendix B). This then 
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implies that eqn. (23) is also an approximation. According to the structure of the 
model, this approximation should yield better results than those discussed in the first 
section. 

It is still unclear how values for a and k may be obtained, even for the total 
population. One possible method is to look at sociological studies: a can be deduced 
from information on which section of the population migrates more frequently, and k 
can be estimated from discussions of the difference in migration frequency between 
the two groups. (It should be borne in mind that k indicates differences in the 
intensity, and not the probability, of migration.) 

However, there is another, more preferable, way of deriving a and k. Many 
countries hold censuses or enquiries every five or ten years, and these yield data on 
interregional migration flows aggregated by age (the migration-flow matrix). Since 
the mid-period multiregional population data are usually available, it is possible to 
estimate a matrix of origin-destination migration rates for the total population, 
aggregated by age. Let this matrix be Ms(tot). The numerical form of M5(tot) for 
Great Britain was estimated to be 

The corresponding matrix for a one-year period is 

Note that these matrices have the same structure as those given at the beginning of 
Section 3. Their eigenvalues are: A1(Ms) = 1; A2(Ms) = 0.91973; A3(Ms) = 0.94296; 
A l(M1) = 1; AZ(M1) = 0.97286; A3(M1) = 0.98159. Applying the procedures 
described in Section 3, the unknown parameters are found to have the values 

a,,, = 0.02198, kt,, = 0.01049, 

vz(t0t) = -1.1735 v3(tot) = -0.7092 

These values will be used to derive the age-specific migration-rate matrices, 
M5(x). This can be done in two different ways. First, the parameters a and k are kept 
constant at the values given in eqns. (25) for all x. Consider the case when x = 15. 
New values for v2 and v3 may be estimated from system (21). In a similar way, values 
for A 2  [Ms(15)] and A 3  [Ms(15)] (0.89003 and 0.92254, respectively) are calculated 
using system (22). The diagonalized matrix A5(15) = diag [M5(15)] then becomes 
available, since A1[M5(15)] = 1. Finally, the transformation T1(15), which diagonal- 
izes M1(15), may be used to obtain M5(15) 

The second way of deriving the matrices MS(x) for each x is to keep k constant 
at kt,, once again, but to use a,,, and the observed migration schedules to yield values 
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a (x)  for each x. Suppose that the migration schedule is given by the age-specific rates 
ml(x),  which can be estimated at the national level. Let n be the number of age 
groups. Then, from the expressions for the means 

we obtain 

For x = 15, a (15) was estimated to be 0.03404. This value of a and kt,, from 
eqns. (25) were used to derive the matrix 

Each of the matrices in eqns. (26a) or  (26b) can be rearranged as on  p. 1, and then 
substituted into eqn. (2), which yields the desired matrix P5(15). The results obtained 
are given in Table 5. 

TABLE 5 Approximate probabilities of a person at exact age 15 in one of three regions of 
Great Britain living in the same or another region five years later. Calculated using eqns. (26a) 
and (26b). 

Probability of living in region 
Probability 

Region of origin East Anglia South East Rest of death 

Calculated using eqn. (26a) 
East Anglia 0.898531 0.052791 0.045082 0.003595 
South East 0.006347 0.948149 0.042336 0.003168 
Rest of Britain 0.003291 0.028926 0.964532 0.003251 

Calculated using eqn. (266) 
East Anglia 0.911296 0.043880 0.041226 0.003598 
South East 0.005237 0.952348 0.039248 0.003 167 
Rest of Britain 0.003050 0.026778 0.966927 0.003251 

Both methods yield estimated probabilities very close to the probabilities 
calculated using eqn. (2) and shown in Table 1, and produce much better results than 
eqn. (1) (also shown in Table 1). It is worth noting that a,,, gives better results than 
a (x) even though the numerical values of the a (x) are substantially different. This 
shows that the high- and low-intensity movers model is relatively insensitive to the 
values of its parameters. 

Table 6 gives the expectations of life at age 15 estimated using eqns. (26a) and 
(26b) as described above. 

Again, in both cases, the results are very close to the values calculated using 
eqn. (2) given in Table 2, and a,,, yields better results than a ( x ) .  

These numerical results have been calculated using data for age 15, but the 
general conclusions are also valid for all other ages. For convenience to  the reader, 
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TABLE 6 Distribution of expectationsof life at exact age 15 in three regionsof Great Britain. 
Calculated using eqns. (26a) and (26b). 

Number of years spent in region 

Region of origin East Anglia South East Rest Total 

Calculated using eqn. (26a) 
East Anglia 27.69 14.69 17.25 59.63 
South East 2.33 40.65 16.47 59.45 
Rest of Britain 1.17 8.52 49.07 58.76 

Calculated using eqn. (26b) 
East Anglia 30.40 13.03 16.25 59.68 
South East 2.11 41.91 15.45 59.47 
Rest of Britain 1.11 7.86 49.77 58.74 

the complete set of expectations of life is given in Appendix D, together with the 
levels of migration. The latter are the regional distributions of life expectancy at age 
0, and represent a measure of the accuracy of the approximations made in the various 
methods (see the introductory remarks to Appendix Dl. 

We conclude that the model suggested here provides a reasonable approxima- 
tion to the problem considered. A number of assumptions were made in order to find 
a solution, but it has been shown that these assumptions are justified. The assumption 
that certain variables, a and k, are independent of the regions of origin or destination 
may be used to show that differences in the population arising from the interpretation 
of a and k do not depend on regional factors. 

The fact that the transformations TI and T5 are approximately equal may be 
interpreted as a preserved ranking in the attraction of the regions for migrants. That 
is, the magnitude of the migration flows between various regions may be different in 
different periods of time, but their relative proportions will remain the same. 

Finally, the fact that a and k are almost independent of the age groups was 
unexpected, but it has its demographic or social interpretation: the differences 
between the age-specific migration curves of "chronic" migrants and those of "all" 
migrants are insignificant when considering the one-yearlfive-year migration 
problem. 
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APPENDIX A 

In the text it was shown that the empirical transition matrices P1 and P5 can be 
diagonalized by approximately equal matrices T I  and Tg, such that 

p1 = T;'(T,P~T;')T~ ( A l l  

This empirical fact led to the conclusion that the n (n - 1)-dimensional problem 
of estimating the five-year transition matrix from the one-year matrix (or vice versa) 
can be reduced to the (n - 1)-dimensional problem of estimating the eigenvalues 
Ai(P5) [or Aj(PI)], i = 2, 3 , .  . . , n ;  A l  = 1. Further, we will consider only the case 
when all the A, are real and positive. For simplicity let n = 3. This case is presented 
graphically in Figure A l .  

If the matrices P1  and P5 are known, it is then necessary to describe the 
empirical points [ I ,  A2(1), A2(5)] and [ I ,  A3(1), A3(5)] as functions of time. 

In this paper we suggested making use of the approximating function 
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FIGURE A1 Dependence of eigenvalues A of a transition matrix on time 7. 

where (Y and k are known (or can be found from aggregate data, in which case they 
will also be approximated). 

Decreasing the dimension of the problem from n (n - 1) to (n - 1) inevitably 
presents additional theoretical difficulties. In this case, the problems are 

1. Is it always possible to solve eqn. (A3) for T = 1 if a and k are given? 
2. Are  1, eU2, and e"' eigenvalues of any stochastic matrix? 
3. Are 1, e"', and e"' eigenvalues of any continuous-time Markovian transition 

matrix? 
4. Are 1, eU2, and e"' eigenvalues of any stochastic matrix which can be 

diagonalized by a given transformation T I ?  

The answers to these questions are given below. 

1. Equation (A3) has a unique non-negative solution. It is easy to see that the 
function 

is monotonically decreasing, f (0) = l,lim,,-, f(v) = 0, and, hence, for 0 < 
A 6 1, the equation f (v )  = A has a unique non-negative solution. 

2. Theorem. (Suleimanova 1949). The set of n + l  real numbers 
(1, A 2 ,  A 3 ,  . . . , A,}, where \ A i l  < 1 for i = 2 , 3 ,  . . . , n is a set of eigenvalues of 
a positive stochastic matrix provided that the sum of the modulus of the 
negative numbers of the set is less than unity. 

3. The problem of representing some stochastic matrix as a continuous-time 
Markovian transition matrix (embedding problem) can be avoided by 
considering an integer l l k  and discrete time. The necessary conditions for 
such embedding can be found in Singer and Spilerman (1976). 

4. If the transformationT1 of the matrix P1 is such that A is equal to 1, then it is 
easy to show that the matrix 
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has the property .rrii = 1. This is so because the eigenvector cor- 
responding to h l  has components always equal to (1, 1, 1 , .  . . , 1). It is 
necessary only to check whether .rr > 0. 

Empirical results show that in our case .rr is always positive and hence 
stochastic. In the general case it is necessary to prove that the transformation 

p- '(p) 
where 

p ( x ) = a x + ( l - a ) x k  

leaves the matrix .rr positive, where 

.rr =p- ' (p)  

and this problem is still unresolved. 

APPENDIX B 

This Appendix contains data which verify the assumption that the transition 
matrices Pl(x)  and P5(x) can be diagonalized by the same transformation matrix T(x) 
for each age group. The following matrices are compared: 

P5 (five-year observed migration probabilities) 

p5 = T ~ A ~ T ; ~  (five-year estimated migration probabilities) 

P1 (one-year observed migration probabilities) 

= T ~ A ~ T ; ~  (one-year estimated migration probabilities) 

Migration probabilities calculated using the "Markovian" approximation 

PS = (pl)' 

P1 = ( ~ 5 ) ~ ' ~  

are also given (fifth degree and fifth root). 

age group 1 (0-4 years) 

flra-year obs. flra-year ant. flfth dearer 

one-year obs. one-year est. fifth root 

age group 2 (5-9 years) 
f 1 re-year obs. flve-year est. flfth dasree 

one-year obs. one-year est. fifth root 
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age group 3 (10-14 years) 

f ire-ymmr obs. fire-year act. fifth dmgree 

one-yeor obs. one-year eat. fifth root 

age group 4 (15-19 years) 

fire-year obs. five-year eat. fifth dearem 

ole-yeor obs. one-year art. fifth root 

age group 5 (20-24 years) 

fire-year obs. five-year est. fifth dearee 

one-year obs. one-year est. fifth root 

age group 6 (25-29 years) 

fire-year obs. firm-year est. fi f th degree 

one-year obs. one-year est. flfth root 

age group 7 (30-34 years) 

flve-year obs. fire-year est. fifth degree 

one-year obs. one-year es t .  fifth root 



The one-yearlfive-year migration problem 
P 

age group 8 (35-39 years) 

lire-year obs. flre-year es t. 

one-year obs. one-year est. fifth root 

age group 9 (40-44 years) 

flre-year obs. flre-year est. flfth degree 

one-year obs. one-year .st. fiftn root 

age group 10 (45-49 years) 

flre-year obs. tire-year est. flfth desree 

one-year obs. one-year est. flfth root 

age group 11 (50-54 years) 

flre-year obs. 

one-year obs. 

age group 12 (55-59 years) 

flre-year obs. 

one-year obs. 

flre-year est. flfth degree 

one-year est. fifth root 

lire-year est. fllth degree 

one-year est. fifth root 
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age group 13 (60-64 years) 

flre-year obs. fire-year est. fifth degree 

one-year obs. one-year est. fifth root 

age group 14 (65-69 years) 

flre-year obs. fire-year est. flfth degree 

one-year obs. one-year art. fifth root 

age group 15 (70-74 years) 

flre-year obs. flre-yaar est. fifth degree 

one-year obs. one-year est. fifth root 

APPENDIX C 

This Appendix presents the probabilities of a person at exact age x in one of 
three regions of Great Britain (East Anglia, South East England, and the rest of 
Britain) living in the same or another region five years later. 

The probabilities are calculated using four different methods: 

1. Calculated using eqn. (2). These estimates are accepted in this paper as the 
correct ones. 

2. Estimated using the parameters a (x)  and kt,,, a being disaggregated by age 
such that the schedule is the observed migration schedule for Britain, and 
the area under the curve is equal to a,,,. 

3. Estimated using the parameters a,,, and kt,,, where a,,, is aggregated by 
age. 

4. Estimated using eqn. (1). 

The results given by the second and third methods are approximately equal. 
Both are much closer to the correct values obtained by the first method than are the 
results obtained using the last method. 
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Probabilities of death and migration within the subsequent five years for a person aged x resident in the "rest of Britain". 

Calculated using eqn. (2)  

age death migration from r.brit lo 
e.anglia s.east r.brit 

Estimated using parameters kt,, and a ( x )  

age death migration from r.brit to 
e.anglia s.easl r.bril 

Estimated using parameters kt , ,  and a,,, 

age death migration from r.brit to 
e.englie s.east r.brit 

Calculated using eqn. (1) 

age death migra t i o n  f r o m  r.bri t to 
e.anglia s.easl r.brit 

0 0.021738 0.004698 0.029974 0.943598 
5 8.881798 0.003871 0.023720 0.970611 
10 0.001556 0.003043 @.@I9920 0.975481 
15 0.003169 0.805401 0.047277 0.944153 
28 0.003588 0.007540 0.077211 0.911661 
25 0.083647 0.006435 0.049150 0.940768 
30 0.004809 0.864348 0.033083 63.957769 
35 0.007492 0.003422 0.024503 0.964583 
40 0.013599 0.002444 0.017808 0.966149 
45 0.023844 0.001625 0.012251 0.962281 
50 0.038534 0.@@1478 0.011135 0.948853 
55 0.061789 0.001125 0.008033 0.929053 
60 0.098387 0.001260 0.007278 0.893125 
65 0.153253 0.001212 0.007210 0.838325 
70 I.0nOtX)B 0.000000 0.000000 0.000000 
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APPENDIX D 

This Appendix gives the distribution of expectations of life at exact age x in 
three regions of Great Britain. The data are calculated in four different ways, as in 
Appendix C. The expectations of life provide a better empirical verification of the 
discussion in the text than the probabilities of migration and death given previously. 

The Appendix also includes the regional distribution of life expectancies at age 
0, as a proportion of the total life expectancy. This is called the migration level. 

Migration levels (regional distribution of life expectancy at exact age 0 as a proportion of total l ~ f e  
expectancy). 

Calculated uslng eqn ( 2 )  Lsr~ina~ed I I S I I I ~  pararileters k,ol and a ( x )  

t o t a l  l.B0@000 I.BOOOfM 1.0000CiM t o t a l  1.068086 1.0000W I.06MW 

Est~n~at rd  using parameters k,ul a i d  a,,, Calculated using eqn. ( I )  

t o t a l  1 . 0 O O O B  1.000@06 1 . 0 0 0 0 0 0  



Distribution of life expectancy at exact age x for people born in East Anglia. 

Calculated using eqn. (2) Estimated using parameters k,,, and a ( x )  

age  t o t a l  e . a n g l i a  s . e a s t  *ge t o t a l  e . a n g l  i a  s . e a s t  r . h r i  t 

35. 
3 1 .  
26 .  
22 .  
IS. 
15.  
12. 

Calculated using eqn. ( 1 )  Estimated using parameters kt,, and a,,, 

age t o t a l  e . a n g l i a  age  t o t a l  e . a n g l i ~  s . e a s t  r . h r i  t 



APPENDIX D (continued) 

Distribution of life expectancy at exact age x for people born in South East England. 

Calculated using eqn. ( 2 )  Estimated using parameters k,,, and a(.r) 

a 8  e t o t a l  e . a n g l i a  s . e a s t  r . b r i t  a 8  e t o t a l  e . a n g l i a  s . e a s t  r . b r i t  

Estimated using parameters k,,, and a,,, 

a 8  e t o t a l  e . a n g l i a  s . e a s t  r . b r i t  

16.87598 
1 7 . 1 2 9 8 8  
1 6 . 8 7 0 1 4  
16 .46672 
1 5 . 9 4 0 4 6  
I S .  16919 
14 .  13102 
1 2 . 9 2 7 5 9  
1 1 . 6 3 3 2 7  
1 0 . 3 0 6 9 2  
8.98518 
7.67961 
6 . 4 4 4 2 6  
5.30700 
4 . 2 9 8 5 9  

Calculated using eqn. (1) 

a8 0 t o t a l  e . a n g l i a  s . e a s t  r . b r i t  



Distribution of life expectancy at exact age x for people born in the "rest of Britain" 

Calculated using eqn. ( 2 )  Estimated using parameters k,,, and a ( x )  

age t o t a l  e . a n g l i a  s . e a s t  r . b r i t  age  t o t a l  e . a n g l i a  s . e a s t  r . b r i t  

Estimated using parameters k, , ,  and a , , ,  

age  t o t a l  e . a n g l i a  s . e a s t  r . b r i t  

Calculated using eqn. ( 1 )  





CONSTRUCTING MULTIREGIONAL LIFE TABLES 
USING PLACE-OF-BIRTH-SPECIFIC MIGRATION 
DATA 

Jacques Ledent 

1 INTRODUCTION 

The  ordinary life table is a device for following a closed group of people, born at  
the same time, as it decreases in size until the death of its last member. The  emphasis 
is put o n  the nonreversible transition from one  state (being alive) to  another (being 
dead). A straightforward extension of this model is the multiple-decrement life table 
which recognizes transitions to  more than one final absorbing state (e.g., decrements 
d u e  to various causes of death). 

However, when recurrent, non-final transitions occur, the latter model does not 
permit one  to follow persons who have moved from one state to  another and to  
analyze their subsequent experiences. Such a problem may be  handled with the help 
of more-complex life tables which recognize entries, o r  increments into states, as well 
as exits, o r  decrements from states. Because of their general nature, such life tables, 
known as increment-decrement life tables, are valuable in the analysis of marital 
status, labor-force participation, birth parity, and interregional migration; in the last 
case, they a re  often referred to as multiregional life tables (Rogers 1973). 

Among such generalized life tables, a distinction is often made between 
uniradix increment-decrement life tables, for which the initial cohort is concentrated 
in a unique state, and multiradix increment-decrement life tables, for which the 
initial cohort is allocated t o  several, if not all, of the  intercommunicating states. 

The  key feature of all increment-decrement life tables-whether uniradix o r  
multiradix-lies in their formulation as simple Markov-chain models. As a 
consequence, such generalized life tables rely on stringent assumptions (population 
homogeneity and Markovian behavior) which are  far from reflecting reality and thus 
often lead t o  faulty results (Ledent 1980a). This is especially true in the case of 
multiregional life tables since, as is well known, individuals with identical demo- 
graphic characteristics (age, sex, and race) can exhibit quite different propensities for 
migration depending o n  past events in their lives. 

In particular, consider perhaps the most interesting results that may be drawn 
from a multiregional life table, namely, the  number of years (both total and 
distributed according t o  the regions in which they are to  be spent) that an  individual 
born in any of the regions can expect to  live. These results are  likely t o  be highly 
inaccurate if they are derived from a multiregional life table calculated with the  
traditional approach (that is, as a multiradix increment-decrement life table based o n  
the type of migration data commonly available). This inaccuracy arises because the  
application, in the traditional approach, of the same age schedules of mobility to 
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the individuals of a given region (regardless of their region of birth) ignores the 
generally well-established fact that migration propensities are heavily dependent on 
the birthplace of the individuals concerned. (For a quantitative observation of this 
effect in the United States, see Long and Hansen 1975; see also Ledent 1981). 

Therefore, to provide more-acceptable values of the regional expectations of 
life at birth (both total values and regional shares), multiregional life tables should 
rely on interregional migration data cross-classified by place of birth. This paper 
demonstrates the construction of such multiregional life tables, which involves the 
calculation of a uniradix increment-decrement life table for each of the regional 
shares of the initial cohort. It also compares such an approach (hereafter called the 
place-of-birth-dependent approach) with the traditional approach based on com- 
monly available migration data (the place-of-birth-independent approach). An 
illustration is provided by applying it to a system consisting of the four US Census 
Regions observed during the period 1965-1970, for females only; the necessary 
migration data can be readily derived from published census information (US 
Bureau of the Census 1973). 

The rest of this paper is divided into five sections. Section 2, intended as a 
background section, presents a brief reminder of the theory and mathematical 
treatment of increment-decrement life tables. Section 3 is a discussion of the issue at 
hand, i.e., the influence of the population-homogeneity assumption on the cal- 
culation of such tables: the discussion is centered on the particular role of the 
birthplace in migration decisions. Section 4 reports on the implementation of the 
place-of-birth-dependent approach and Section 5 provides some perspectives on 
the contrast which this approach offers with respect to the usual place-of-birth- 
independent approach. Finally, Section 6 summarizes and presents the general 
conclusions of the paper. The general method used to construct the various incre- 
ment-decrement life tables considered in this paper is described in the Appendix. 

2 INCREMENT-DECREMENT LIFE TABLES: A REMINDER 

Although some of the issues underlying the construction of increment-decre- 
ment life tables were considered long ago, it is only recently that thorough and 
systematic discussion of the methodological and empirical problems raised by such 
construction has appeared in the literature. Nevertheless, in less than a decade, the 
contributions of a number of researchers (Rogers 1973, 1975; Schoen and Nelson 
1974; Rogers and Ledent 1975,1976; Schoen 1975; Hoem and Fong 1976; Schoen 
and Land 1977; Ledent 1978, 1980a; Krishnamoorthy 1979) have led to the 
development of a formal mathematical treatment which now gives increment- 
decrement life tables a status comparable to that of the ordinary life table. 

Perhaps the single most important factor responsible for this development was 
the realization that an increment-decrement life table can be regarded as a general- 
ized life table in which elements in matrix format are substituted for the scalar 
elements of the ordinary life table (Rogers and Ledent 1975, 1976; Rogers 1975). 

In this section we present an overview of a mathematical treatment of incre- 
ment-decrement life tables that parallels the classical exposition of the ordinary life 
table: the correspondence between the formulas relevant to the ordinary and the 
increment-decrement life tables, respectively, is stressed in Table 1. Equation 
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TABLE 1 A tabular comparison of the theoretical exposition of ordinary and increment-decrement life 
tablesa. 

Ordinary life table Increment-decrement life table 

d(y)  . . ~ ( y ) =  lim - (1) 'd'(y) 
' f i l ( y ) =  lim - 

d y - O  [(y) dy d y - 0  l i (y)  dy 

m m 

l ( x + t ) d l  (9) T X = l a  l ( x + t ) d t  (9') 

ex = T,/L (10) e, =T,I;' (10') 

" Taken from Ledent (1980a. p. 536 and 542). 

numbers (1 ) - (10)  and (1 ' ) - (10 ' )  used below refer to the numbered equations in 
Table 1. 

Suppose we have a system of r  + 1  states ( r  intercommunicating states plus the 
state of death) in which the initial cohort is allocated among s states ( 1  G s s r ) :  let 
l ' ( 0 )  be the "radix" of state i. The principal problem here is one of estimating the 
state-specific curves of survivors l ' ( y )  at each age y. Such estimation is centered 
around the differential equation ( 3 ' ) ;  it presents a vector notation of the r  scalar 
equations arrived at by substituting the equations ( 1 ' )  defining the instantaneous 
mobility rates into the accounting equations (2') showing the increments and 
decrements to each l l ( y )  group. [Note that eqn. ( 3 ' )  is a straightforward vector 
extension of the basic differential equation ( 3 )  of the ordinary life table.] 

Equation ( 3 ' )  admits r  linearly independent solutions, which can be expressed 
as eqn. (4'), a straightforward matrix extension of the ordinary life table solution, 
eqn. (4). These independent solutions of eqn. ( 3 ' )  are the r stationary populations 
that are generated by an arbitrary radix in each of the r states (regardless of whether 
some of the states are initially empty o r  not). 

The matrix n(y) is a proper transition probability matrix showing the state- 
specific survival probabilities a t  age y  of the members of each radix. [Note that unlike 
its counterpart in the ordinary life table, this matrix cannot be  simply expressed in 
terms of the instantaneous mobility rates, but has to be determined by the 
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infinitesimal calculus of Volterra (Schoen and Land 1977).] The number of survivors 
I,, at fixed ages 0, n,  2n, . . . , may be derived by applying in succession, as shown in 
eqn. (67, a set of age-specific transition probability matrices p, (generalizing the 
age-specific survival probabilities px of the ordinary life table). 

Now, it is possible to define multistate life-table functions generalizing the 
usual statistics found in a life table. Equation (8') defines the multistate life-table 
function L, whose (i, j)th element represents the number of people born in state j 
and alive in state i of the life table between ages x and x + n ,  or alternatively, the 
number of person-years lived in state i between those ages by the membersof the jth 
radix. From there, it is possible to define generalized T-statistics [eqn. (9')] and, 
finally, generalized e-statistics [eqn. (lo')]: the (i , j) th element of ex denotes the 
number of future years that an x-year-old individual present in state j can expect to 
spend in state i. 

Another generalization of interest is that of the mortality rates m, and 
survivorship proportions s, of the ordinary life table, because the calculation of 
applied increment-decrement life tables is centered around the equalization of the 
life-table values of the generalized m- or  s-statistics with their observed counter- 
parts. The relevant approaches are known as the movement and transition 
approaches, and were devised by Schoen (1975) and by Rogers (1973, 1975), 
respectively. 

O n  the one hand, interstate "passage" can be observed as a move, that is, an 
instantaneous event similar to a death. This leads to the movement approach- 
consistent with the approach taken in the ordinary life table-in which the linkage 
with the observed population is ensured through an equalization of the life-table 
mortality and mobility rates with their observed counterparts. On  the other hand, 
interstate "passage" can be observed as a change in an individual's state of presence 
between two points in time (regardless of the number of moves made in the 
meantime). This is the essence of the transition approach, in which the linkage with 
the observed population is ensured through an equalization of the life-table 
survivorship proportions with their observed counterparts. 

These two alternative approaches are not competitive but complementary, in 
that the choice of either is dictated by the type of data at hand (for a detailed 
comparison, see Ledent 1980a). In fact, in most applications of increment-decre- 
ment life tables to real situations, the movement approach is the more relevant. The 
major exception, which requires the use of the transition approach, occurs in the field 
of interregional migration when data are obtained from population censuses that 
describe changes of residence between two points in time. 

3 THE ISSUE ADDRESSED IN THIS PAPER 

The most important feature of increment-decrement life tables is the formula- 
tion of their underlying model as a simple Markov-chain model. It follows that all the 
individuals of a given age present at the same time in a given state have identical 
propensities for moving out of that state (the population-homogeneity assumption) 
and that these propensities are independent of the past history of the individuals 
concerned (the Markovian assumption). 
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Clearly, in some instances, such an assumption is far from being realistic. Take, 
for example, the case of interregional migration in which the place of birth of the 
prospective migrant heavily influences his decision to move and his choice of 
destination. For example, in their study of migration flows to the South from the rest 
of the USA, Long and Hansen (1975) present convincing evidence that the prob- 
ability of moving to the South is considerably higher for those.born in the South than 
for those born elsewhere. Also, the present author (Ledent 1981) has described some 
more general evidence of the influence of the place of birth on migration patterns, 
with reference to a four-region disaggregation of the USA. 

The migration data set used in this paper was obtained by reordering data taken 
from the volume Lifetime and Recent Migration published by the US Bureau of the 
Census (1973). The lengthy Table 11 of that volume provides estimates of the 
numbers of residents in each Federal state in 1970, cross-classified by place of birth 
and place of residence in 1965 (ten geographical units have been used: the state of 
residence in 1970 and the nine US Census Divisions). These estimates are provided 
for each sex and for each race and are subdivided into ten age groups: 0-4, 5-9, 
10-14, 15-19,20-24,25-29,30-39,40-49,50-59,60 and over (all ages referring to 
1965). The data concerning females in the ten age groups were aggregated and 
rearranged to show the changes of residence (cross-classified by place of birth) which 
were made between 1965 and 1970 in the US Census four-region system. The 
interregional migration streams thus obtained for the highly migratory group of 
women aged 20-24 in 1965 are shown in Table 2. For example, 73,703 women in 
that age group moved from the South region to the North Central region. Of that 
total, 43,047 were born in the South, and 30,656 elsewhere. Interestingly enough, 
most of the non-Southern-born migrants-24,847 or 81%-were born in the North 
Central region. 

These figures do indeed show large differences in the propensity to migrate 
according to the place of birth. If we ignore for a moment the place of birth, then the 
average female 20-24-year-old Southern resident has a 0.0392 probability of moving 
to the North Central region over a five-year period; however, when place of birth is 
taken into account, we find that the probability is either lower (0.0260 for the 
Southern-born) or higher (for the non-Southern-born) than the averagevalue. For the 
case of those born outside the South, the probability reaches 0.0449 and 0.0495, for 
women born in the Northeast and the West, respectively, but increases to almost 
25% (0.2491) for those born in the North Central region. More generally, someone 
living outside his or her region of birth appears to have a high probability of returning 
there. (For a detailed analysis of this subject, see Ledent 1981.) 

Clearly, the large mobility differentials according to place of birth, just 
described, sharply contradict the population-homogeneity assumption which 
underlies the calculation of a multiregional life table from migration data relating to 
the total national population. Thus, we may reasonably predict that statistics on 
expectations of life at birth obtained from such multiregional life tables will be 
inaccurate, because they are based on average mobility propensities rather than on 
mobility propensities specific to the regional shares of the initial cohort. 

However, the availability of interregional migration data cross-classified by 
place of birth, such as those shown in Table 2, immediately suggests the possibility of 
circumventing or, more exactly, reducing the effects of the population-homogeneity 
assumption that underlies the calculation of a multiregional life table from aggregate 
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TABLE 2 Place-of-birth-specific interregional migration flows over the period 1965-1970, for females 
aged 20-24 in 1965". 

From Northeast North Central South West 

Born in rhe Northeast 
Northeast 
North Central 
South 
West 

Born in the Norrh Central 
Northeast 
North Central 
South 
West 

Born in rhe South 
Northeast 
North Central 
South 
West 

Born in the West 
Northeast 
North Central 
South 
West 

Place of birth not considered 
Northeast 
North Central 
South 
West 

" Data obtained by aggregating data from the US Bureau of the Census (1973, Table 11). 

(place-of-birth-independent) migration data. The main idea here is to construct 
separate uniradix increment-decrement life tables for each of the radices, i.e., the 
regional shares of the (arbitrary) initial cohort. In this way, multistate life-table 
statistics can be obtained which no longer relate to a single homogeneous population 
but to a population divided into r homogeneous groups (as many as there are 
regions), defined by place of birth. 

4 AN ILLUSTRATION OF THE PLACE-OF-BIRTH-DEPENDENT 
APPROACH 

Methodologically, the implementation of the approach just suggested does not 
raise any problem: it simply requires the calculation of r increment-decrement life 
tables instead of one (the fact that they are uniradix rather than multiradix incre- 
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ment-decrement life tables does not have any bearing on the actual calculation of the 
multistate life-table functions). Thus, in this section, we simply demonstrate this new 
approach by applying it to the set of US place-of-birth-specific migration data 
discussed in Section 3. 

Because the migration information available here evidently concerns changes 
of residence between two points in time, the relevant approach here is the transition 
approach. The actual calculation method used (an overview is presented in the 
Appendix) combines the estimation of the age-specific survival probability using a 
method developed elsewhere by this author (Ledent 1980b) and the calculation of 
the number of person-years lived, L,, from a linear integration approach (Rogers 
1973, 1975). 

Note that because no mortality information cross-classified by place of birth is 
available we simply use the same set of age-specific mortality rates: those observed 
for the population of each region regardless of the region of birth (US Department of 
Health, Education, and Welfare, selected years). Actually, this treatment hardly 
constitutes a problem. In effect, although it does not yield the most precise values for 
the multistate statistics referring to each regional cohort, the consideration of 
identical mortality rates for the calculation of the four uniradix increment-decre- 
ment life tables appears to be quite acceptable: the dependence of mortality on the 
place of birth is probably minimal as long as the spatial units considered are broad 
geographical areas (this is certainly less true in the case of rural-urban systems, 
especially in developing countries). Therefore, comparison of the multistate life- 
table statistics relating to each radix offers an assessment of the influence of 
differential mobility according to the place of birth, with the effect of mortality 
differentials removed. 

Let us now examine the actual results obtained for the application described 
above. Table 3, which sets out the transition probabilities according to their region of 
birth for women exactly 20 years old, confirms the general observation that the 
probability of moving from region i to region j is smaller for those born in region i 
and much higher for those born in region j than for those who were born neither in 
region i nor in region j. 

Table 4 shows the numbers of remaining years-disaggregated into periods 
specific to the regions in which they are spent-that 20-year-old residents of each 
region can expect to live, depending on their place of birth. For example, a resident of 
the South region who was born in the South is expected to survive a further 56.55 
years, of which 49.29 years (about 87.2%) will be spent in the South. However, if this 
Southern resident had been born in another region, a much smaller part of her 
remaining lifetime (from 56.27 to 57.53 years according to the region of birth) would 
be spent in the South: 22.08 years if born in the Northeast, 20.09 years if born in the 
North Central region, and 16.45 years if born in the West. 

Observe the regional variations in the total expectations of remaining life 
according to the place of birth, in spite of the fact that the mortality pattern is 
independent of the place of birth. For example, the total expectation of remaining 
life for a Southern resident is much higher (lower) if she was born in the West 
(Northeast) than if born in the South: this is indeed a consequence of the assumption 
underlying multiregional life tables that an in-migrant adopts the mortality regime of 
the region to which she has just moved. 
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TABLE 3 Place-of-birth-dependent approach: transition probabilities for females exactly 20 years old. 

To 

From Northeast North Central South West Death 

Born in the Northeast 
Northeast 0.9138 
North Central 0.2114 
South 0.2359 
West 0.1264 

Born in the North Central 
Northeast 0.5914 
North Central 0.0137 
South 0.0339 
West 0.0173 

Born in the South 
Northeast 0.7795 
North Central 0.0164 
South 0.0184 
West 0.0167 

Born in the West 
Northeast 0.5943 
North Central 0.0271 
South 0.0299 
West 0.0104 

5 COMPARISON BETWEEN THE PLACE-OF-BIRTH-DEPENDENT 
AND PLACE-OF-BIRTH-INDEPENDENT APPROACHES 

This section tries to provide a meaningful comparison between the place-of- 
birth-dependent and place-of-birth-independent approaches to the construction of a 
multiregional life table. In principle, this requires firstly the aggregation of the 
separate uniradix increment-decrement life tables previously calculated and 
secondly the comparison of the results thus obtained with those of the multiradix 
increment-decrement life table based on the same set of data aggregated over all 
birthplaces. 

There is, however, an interesting conclusion which we can derive even before 
aggregating the various uniradix life tables. This relates to the life expectancies at 
birth and their regional distributions. Instead of focusing on expectations of life at 
age 20, let us consider the analogous expectations of life at age zero. In this case, the 
only expectations of life with any meaning are those calculated for people born and 
resident in the same region. Each of the uniradix increment-decrement life tables 
calculated provides a value for the expectation of life at birth for females born in the 
region concerned, broken down into several numbers indicating the time to be spent 
in each region. The values obtained from each uniradix life table can then be grouped 
into a single matrix, such as the one shown in the first part of Table 5 .  It appears that 



Constructing multiregional life tables 43 

TABLE 4 Place-of-birth-dependent approach: totals and regional distributions of remaining life (in 
years) for females exactly 20 years old. 

Number of years spent in region 
Region of 
residence Northeast North Central South West Total 

Born in the Northeast 
Northeast 47.31 1.66 4.48 2.67 56.11 
North Central 23.53 19.25 7.49 6.15 56.42 
South 25.26 3.45 22.08 5.48 56.27 
West 18.76 3.20 6.97 27.85 56.78 

Born in the North Central  
Northeast 14.86 25.17 7.62 9.18 56.82 
North Central 0.99 46.73 3.80 5.30 56.83 
South 2.15 25.76 20.09 8.78 56.78 
West 1.29 17.48 4.79 33.72 57.27 

Born in the South 
Northeast 27.88 3.73 2 1.47 3.41 56.49 
North Central 1.58 30.21 21.10 3.87 56.76 
South 1.51 3.17 49.29 2.58 56.55 
West 1.66 4.01 23.04 28.37 57.08 

Born in the West 
Northeast 12.59 3.64 4.99 36.37 57.60 
North Central 1.50 17.41 4.38 34.31 57.60 
South 1.64 3.39 16.45 36.05 57.53 
West 0.66 1.53 1.99 53.66 57.83 

an American woman has a total expectation of life greater than 74 years (from 74.20 
years if born in the South to 75.85 years if born in the West), of which more than 60  
years are to be spent in the region of birth (from 60.21 years if born in the North 
Central region to 68.51 years if born in the West). 

How do these expectations of life compare with those obtained with the 
place-of-birth-independent approach, that is, from the multiradix increment- 
decrement life table based on the same data set aggregated over all birthplaces? The 
matrix of expectations of life at birth produced by the latter approach is shown in the 
second part of Table 5; it indicates a much smaller proportion of total lifetime spent 
in the region of birth (from 64.7% to 70.1%) than does the place-of-birth-dependent 
approach where it ranges between 81.0% and 90.3%. 

Thus, the substitution of place-of-birth-specific migration data for the more 
traditional place-of-birth-independent data increases the expected numbers of years 
to be spent in the region of birth by about ten years (9.69 years in the case of the 
Northeast, 9.78 years in the case of the North Central, 9.99 years in the case of the 
South) except in the case of the West where the increase is almost twice this size 
(19.81 years). This result is consistent with the earlier observation that, once an 
American woman-and most particularly one born in the West region-has moved 
out of her region of birth, she is very likely to return. In addition, note that the use of 
place-of-birth-specific migration data implies increased differentials between the 
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TABLE 5 Totals and regional distributions of expectations of life at birth (in years): comparison 
between the place-of-birth-dependent and place-of-birth-independent approaches. 

Number of years spent in region 

Region of birth Northeast North Central South West Total 

Place-of-birth-depettder~t approach 
Northeast 6 1.78 
North Central 1.44 
South 2.49 
West 1.10 

Place-of-birth-independent approach 
Northeast 52.09 
North Central 4.10 
South 5.55 
West 4.45 

total regional expectations of life, which take on values nearing those they would 
have if migration were ignored. 

A n  equivalent and perhaps more telling way of assessing the impact on the 
calculation of a multiregional life table of using place-of-birth-specific migration 
data is to look at the changes in the regional percentage shares of the expectations of 
life at birth caused by using such data. From the values shown in Table 5, it can be 
readily established that the introduction of such disaggregated data cuts the propor- 
tion of lifetime to be spent outside the region of birth by about half, except in the case 
of the Western-born women for whom the cut amounts to slightly more than 70%: 
the proportion decreases from 30.0 to 16.8% for women born in the Northeast, from 
32.1 to 19.0% for women born in the North Central, from 29.1 to 15.6% for 
Southern-born women, and from 35.3 to 9.7% for Western-born women. 

We now turn to the aggregation of the four uniradix increment-decrement life 
tables-calculated for each regional share of the initial cohort-into a multiregional 
life table directly comparable to that obtained from the approach based on com- 
monly available data. This aggregation raises the fundamental question of how to 
choose the most appropriate regional distribution of the initial cohort. 

We suggest here that, since the mobility and mortality patterns studied in our 
USA illustration are those of a given period (1965-1970), the radices o r  regional 
shares of the initial cohort ought to be in proportion to the numbers of female births 
observed in each region over the same period. On  this basis, the initial cohort, which 
we can arbitrarily set equal to 100,000 persons, should be allocated as follows: 
22,735 (Northeast), 27,791 (North Central), 32,245 (South), and 17,229 (West). 

The aggregated transition probabilities (for females of exact age 20) which 
result from such a regional allocation are shown in the first part of Table 6; the second 
part of the table shows the corresponding transition probabilities obtained with the 
place-of-birth-independent approach. 

The  two corresponding sets of transition probabilities are very similar, with 
significant discrepancies arising only in the probabilities of migration out of the West. 
The  retention probability for the West region calculated using the place-of-birth- 
dependent approach is 0.9106 as compared with 0.8907 from the place-of-birth- 
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TABLE 6 Transition probabilities for females exactly 20 years old: comparison between the place-of- 
birth-dependent and place-of-birth-independent approaches. 

From Northeast North Central South West Death 

Place-of-birth-dependent approach 
Northeast 0.8975 
North Central 0.0191 
South 0.0285 
West 0.0156 

Place-of-birth-independent approach 
Northeast 0.8959 
North Central 0.0194 
South 0.0289 
West 0.0187 

independent approach; this corresponds to an absolute difference of 19.9 per 
thousand, compared to a maximum difference of 3.0 per thousand for the other 
regions. Similar results may also be observed for all the other age groups. 

By contrast, the expectations of life which we obtain by aggregating the four 
place-of-birth-specific increment-decrement life tables calculated for each radix are 
quite different from those derived from the place-of-birth-independent approach. 
For example, the aggregated expectations of life for females of exact age 20 indicate 
that the number of remaining years to be spent in the region of residence are as 
follows: 45.4 years (if resident in the Northeast), 44.3 (if resident in the North 
Central region), 45.8 (if resident in the South), and 49.4 (if resident in the West); 
these should be compared with the values of 42.0, 41.1, 43.3, and 40.6 years, 
respectively, obtained from the place-of-birth-independent approach (see Table 7). 

TABLE 7 Totals and regional distributions of expectations of remaining life (in years) for females 
exactly 20 years old: comparison between the place-of-birth-dependent and place-of-birth-independent 
approaches. 

Number of years spent in region 
Region of 
residence Northeast North Central South West Total 

Place-of-birth-dependent approach 
Northeast 45.39 
North Central 1.60 
South 2.53 
West 1.43 

Place-of-birth-independent approach 
Northeast 41.95 
North Central 2.57 
South 3.46 
West 2.80 
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Comparison of the results given in Tables 6 and 7 thus indicates that the 
place-of-birth-dependent approach leads to aggregate multistate life-table functions 
which are either similar to or largely different from those obtained from the 
place-of-birth-independent approach, depending on whether they relate to events 
occurring over a single age interval or over a longer period of time. 

However, we should note that the results just derived rely on an aggregation of 
the four uniradix increment-decrement life tables calculated for each regional share 
of the initial cohort using one particular system of statistical weighting: the system 
seems intuitively reasonable, but arguments can be made for and against it. This 
raises the problem of whether alternative allocations of the initial cohort among the 
regions would lead to quite different aggregated multiregional life tables. In view of 
this uncertainty, we performed an alternative aggregation of the four uniradix 
increment-decrement life tables, this time using identical weights (radices). The 
multistate life-table functions thus obtained (which are not shown here) did not 
appear to differ very significantly from those calculated earlier. Thus we conclude 
that as long as the state allocation of the initial cohort consists of radices which more 
or  less reflect the weights of the regions with regard to some meaningful socio- 
economic factor-these weights are expected to represent an allocation which does 
not depart too much from an allocation into r equal parts-very similar estimates of 
the aggregate multistate life-table functions should be produced. 

To  summarize briefly, unlike the place-of-birth-independent approach, the 
more desirable place-of-birth-dependent approach leads to aggregate multistate 
life-table functions which depend on the regional allocation of the initial cohort. 
However, as long as the radices are chosen on a reasoned basis, this "radix problem" 
does not exert an overly large influence on the values obtained. 

6 SUMMARY AND CONCLUSION 

An important assumption common to all life-table models is the population- 
homogeneity assumption stemming from the Markovian formulation of the models. 
This assumption is in sharp contrast to the observation that, in the real world, equally 
aged individuals of a given status category (i.e., belonging to a given state of the 
system) generally exhibit quite different tendencies to move out of their current 
status category. 

These mobility differentials can be related first to different personal charac- 
teristics (e.g., sex, race) or socioeconomic characteristics (e.g., occupation) which 
affect the level of mobility at a given instant. Thus, to obtain more accurate estimates 
of increment-decrement life tables, it is possible simply to calculate separate life 
tables for those groups of people which can be easily distinguished, such as men and 
women or whites and non-whites, etc. 

Second, and more important in the case of increment-decrement life tables, 
mobility differentials may also depend on whether the phenomenon may be repeated 
or not, and on the frequency of this repetition. Unfortunately, such differentials 
cannot generally be attributed to an easily identifiable characteristic and it is 
generally not possible to calculate separate life tables for more homogeneous groups. 
An exception to this statement occurs in the analysis of migration, when adequate 
census data allow one to distinguish homogeneous groups of migrants on the basis of 
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their place of birth. In this case an alternative multiregional life table can be 
constructed as a set of uniradix increment-decrement life tables corresponding to 
each of the regional shares of the initial cohort. 

Compared with the traditional approach to the calculation of a multiregional 
life table, this alternative approach appears to provide not only more detail (in the 
case of the transition probabilities) but also more accuracy (in the case of the 
expectations of life at birth): this improvement is the result of considering a more 
realistic migration pattern, one which explicitly accounts for return migration to the 
birthplace (a demographic phenomenon of considerable importance, as shown in 
Section 3). 

However, we must note that the improvements in the calculation of multi- 
regional life tables thus achieved represent only a partial step toward the total 
removal of the population-homogeneity assumption implicit in the traditional 
approach: this assumption is still present within the stationary population associated 
with each radix. 
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APPENDIX A: A BRIEF DESCRIPTION OF THE METHOD OF 
CALCULATION 

The general calculation procedure used to construct both the uniradix and the 
multiradix increment-decrement life tables considered in this paper consists of two 
main steps: 

1. First, estimating a set of transition probabilities p, conditional on survival, 
from the observed transition proportions conditional on survival (obtained 
from the matrices shown in Table 3 by dividing each element by the sum of 
the elements in the same row). 

2. Second, transforming the p, into the required set of transition probabilities 
p, by introducing mortality information. 

More specifically, this procedure means that p, is derived from 

where p, is a matrix of transition probabilities conditional on survival, evaluated in 
terms of the observed transition proportions conditional on survival (S,), and p; is a 
diagonal matrix of survival probabilities. 

As a first approximation, p, can be estimated using the averaging formula 
proposed by Rees and Wilson (1977) 

P, = t ( S 1 "  + S,) 
However, a better estimation can be performed by interpolating between the 
conditional transition proportions in a less crude fashion. Ledent (1980a) suggests 
that for each pair of states i and j (if  i ) ,  one could interpolate between the 
conditional transition proportions 'Si by using cubic-spline functions, which are 
increasingly coming into use in the field of demography (McNeil et al. 1977). Since 
we are dealing here with a five-year time interval (1965-1970), the ordinate-for age 
y-of the continuous curve thus obtained represents the probability that an indivi- 







MULTISTATE POPULATION PROJECTIONS 
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1 INTRODUCTION 

Much of mathematical demography is concerned with the measurement and 
projection of changes of state, or status, experienced by individuals during their 
lifetime, e.g., changes in marital status, in employment status, in educational status, 
and in residential location. The study of such transitions from state to state and the 
evolution of the associated status-specific populations is the focus of a growing body 
of methodological techniques and applications sometimes referred to as multistate 
demography (Rogers 1980). 

Recent work in multistate mathematical demography has identified a unifying 
matrix-based generalization of classical techniques, which illuminates the common 
features of many of the well-known methods for dealing with transfers between 
multiple states of existence. For example, it is now understood that multiple 
decrement life tables, marital status life tables, tables of working life, tables of 
educational life, and multiregional life tables are all members of a general class of 
increment-decrement life tables known as multistate life tables. It has also become 
evident that projections of populations disaggregated by status can be carried out 
using a common methodology-multistate projection. 

Although traditional single-state methods are more parsimonious in their data 
requirements and provide reasonably adequate results for many purposes, they 
cannot deal with interstate transitions differentiated by origins and destinations and 
must, therefore, account for changes in stocks by reference to net totals, e.g., net 
migration. In a recent paper we have shown that such an approach may introduce 
biases and inconsistencies into a projection and that multistate models have a 
decisive advantage over single-state models as a consequence of their ability to 
produce disaggregated projections that trace the evolution of subcategories of a 
population over time and space (Rogers and Philipov 1979). This feature of 
multistate projection methods is developed in this paper, in the particular context of 
multiregional demography. 

2 STATIONARY AND STABLE POPULATION DISTRIBUTIONS 

To make our argument less abstract, imagine a single-sex population (females) 
disaggregated into five-year age groups, and for simplicity consider its spatial 
distribution to extend over only two regions, North and South. For a numerical 
illustration let us draw on 1965-1970 data for the United States previously examined 
in Rogers and Castro (1976) and, more recently, in Ledent (1980). These data are set 
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out in the Appendixes and will be used throughout this paper.* Note that three 
Census Regions, Northeast, North Central, and West, have been aggregated 
together to form a single region: the "rest of the United States" or, more simply, the 
North. 

In 1968, the female population of the USA stood at 102.3 million, with 32.5 
million in the South and 69.8 million in the North (Appendix A). Conventional 
single-region life table calculations give a Southern-born baby girl a life expectancy 
of 74.1 1 years, just four months less than the corresponding life expectancy of a 
baby girl born in the North. The gross reproduction rates in the two regions are 1.18 
and 1.16, respectively. 

Consider next the results of a multiregional (two-state) analysis (Rogers 1975). 
First, computing a biregional life table (Appendix B) we observe that about 27% of a 
Southern-born baby girl's life expectancy can be expected to be lived in the North. 
Projecting the biregional population 30 years forward on the assumption of constant 
rates gives a 1998 national total of 138.6 million, with 33.0% residing in the South 
(Appendix B). Continuing this projection to stability yields an ultimate share for the 
South of 34.5% and an intrinsic rate of growth of 4.361 per thousand (Appendix B). 

The expectation of life at birth in a conventional single-state life table with a 
unit radix may be interpreted as the stationary population that underlies the life table 
calculations. This is also true for multistate life tables; hence, we may conclude that in 
the stationary biregional population set out in Appendix B about 72.6% of the total 
Southern-born population resides in the South as natives, whereas 84.8% of the 
Northern-born population lives in the North. This leaves the remaining 15.2% to live 
in the South as aliens (i.e., individuals living in a place different from their place of 
birth). 

Multiplying the stationary population in each age group by exp [-r(x +2.5)], 
where r is the intrinsic rate of growth and x is the starting age of the age group, gives 
the relative age distribution of the place-of-birth-specific stable population resident 
in each region. Since r is relatively small in our USA illustration (r  = 0.004361), the 
stable share of natives and aliens in each region differs only slightly from the 
stationary (life-table) share, with the percentages of natives given above (72.6% and 
84.8%) shifting to 72.3% and 86.4%, respectively. Multiplying each of these by the 
stable shares of the national population in each region (i.e., 34.5% and 65.5%, 
respectively) gives the stable shares of the national population in each of the four 
place-of-residence-by-place-of-birth (PRPB) subcategories, as shown in the bottom 
line of Table 1. 

3 NATIVE-INDEPENDENT MULTISTATE PRPB POPULATION 
PROJECTIONS 

Several recent studies of migration have emphasized the importance of analyz- 
ing the flow patterns of return migrants, pointing to the not-surprising empirical fact 
that the migration rates of people returning to their region of birth are significantly 
higher than average (Ledent 1980, Lee 1974, Long and Hansen 1975, Miller 1977). 

* Appendix A contains the Rogers and Castro data; Appendix C presents the Ledent data. 
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TABLE 1 PRPB distribution at stability of national and regional female population of the USA 
( r  = 0.004361). 

Resident in South Resident in North 

Born in South Born in North Born in North Born in South 

Percentage of 72.3 27.7 86.4 13.6 
regional population 

Percentage of 34.5 65.5 
national population 

Percentage distribution 24.9 9.6 56.6 8.9 
of national population 

In the next section we follow this advice and introduce higher transition probabilities 
for return migrants in the multistate projection model. W e  shall call the outputs of 
such models native-dependent projections. In this section, however, we treat first the 
simpler case of native-independent projections, i.e., projections carried out with 
models assuming that all of the individuals in a regional population experience 
identical age-specific probabilities of moving, dying, and bearing offspring.* 

3.1 Fertility 

In projecting a multistate population forward over time, we shall at times refer 
to  people by where they live and at  other times by where they were born. This poses 
no difficulties when we are  dealing with survivors of a current population; it simply 
becomes a matter of keeping track of individuals born in each region. It is the births 
of new individuals that need to  be  examined, because the babies may be born in the 
region of residence of their parents at  the start or  at  the end of the unit interval of 
time, and they themselves may migrate during the same interval into yet another 
region. 

In the conventional multistate projection model, some of the babies born in a 
given region during a unit time interval ( t ,  t + 1 )  may be living in another region at the 
end of that interval. Consequently, at time t + 1 these babies can be distinguished 
both by their place of residence, j, and by their place of birth, i. Moreover, they may 
also be  classified by the region of residence, say k, of their parent at  the start of the 
time interval, because each regional population of parents is a potential contributor 
of babies to  each PRPB-specific category of babies. For example, in our  two-region 
illustration based on USA data, we distinguish four categories of babies for parents 
initially resident in each region. Figure 1 shows the four categories corresponding t o  
parents initially resident in the South; there are of course four equivalent categories 
for babies born to  parents initially resident in the North. 

* Because of the unavailability of the necessary fertility and mortality data, we are unable to introduce 
native-dependency in birth and death rates. 
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Time t 
Region of residence 
of parent 

Time (t, t + 1 ) 
Region of birth 
of baby 

Time ( t  + 1)  
Region of residence 
of baby 

FIGURE 1 The four categories of babies born to parents resident in the South at time r. 

Let 

denote the average number of babies born during the five-year time interval ( t ,  t  + 1 )  
in region i and alive in region j at time t  + 1, for every individual between the ages of x 
and x + 4  living in region k at time t. Summing over all birthplaces i gives the 
conventional multiregional birth rate (Rogers 1975, p. 121) 

where 

Fh (x) is the annual birth rate of people aged x to x +4 residing in region h 

hoL,(O) is the total number of person-years lived between ages 0 and 5 in region j, 
per person born in region h 
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skh(x) is the proportion of people living in region k and aged x to x + 4  that survive 
to be in region h and aged x + 5 to x + 9, five years later 

lh(0) is the radix of region h (set equal to unity in our calculations) 

m is the total number of regions 

Since, by definition 

it is easy to develop computational formulas for bLj(x) by taking the appropriate 
components from eqn. (2). For our two-region (South-North) example, this gives 
four equations of the form 

for (k, i) = (n, n), (s, s), (n, s), (s, n) 

for parents in two regions who do not migrate between time t and the birth of the 
infant (i = k), but whose child may or may not migrate before t + l ( j  = k or j # k);  
and four equations 

corresponding to parents who do migrate between time t and the birth of the infant 
(i # k), but whose child may or may not migrate before t +  l ( j  = i or j# i). This 
implies that a child may migrate without its parents between the ages of 0 and 5. 

3.2 Projection 

The age-specific birth rates, by region of birth of child, may be incorporated 
into the standard multiregional projection model (Rogers 1975, Chap. 5) transform- 
ing that model into a multistate projection model, where the states of interest are 
places of birth. This transformation makes it possible to generate projections that 
keep track of the regions of birth, i.e., that produce PRPB projections. 

Appendix B describes the matrix model. Note that the Markovian assumption 
is still retained. All individuals in a region, recent in-migrants as well as established 
residents, aliens as well as natives, are assumed to experience identical probabilities 
of transition. This assumption is relaxed in Section 4. 

Appendix B sets out the multistate growth matrix for our two-region (South- 
North), two-state (natives and aliens) example. Appendix B also presents the stable 
distribution across states that ultimately arises if this projection matrix is applied to 
any observed population. The stable distribution depends only on the elements of 
the growth matrix and not on the initial (base-year) population distribution. (Since it 
is also of some interest to use the matrix to generate projections, a 30-year projection 
based on the 1968 population is included in Appendix B.) 
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The stable growth results in Appendix B may be compared with the results of 
the conventional projection presented earlier in the same Appendix. Note that the 
intrinsic rate of growth remains the same (r =0.004361), as does the spatial 
distribution of the national population (sha, = 34.46% and sha, = 65.54%). The 
national and regional age compositions remain unchanged, with the mean age in the 
South being 37.94 years and that in the North 36.65. In short, the two projections to 
stability give identical results, as they indeed must. The multistate projection, 
however, includes additional information: it disaggregates regional populations by 
place of birth. It reveals, for example, that, at stability, the mean age of the alien 
population in the South will be about 15.3 years older than that of the native 
population and some 2.5 years older than the North's alien population. All of these 
stable growth results, however, could be  obtained without the multistate growth 
matrix. W e  have shown earlier (Table 1 )  that a simple weighting of the stationary 
multiregional life table population gives identical results. The  usefulness of the 
growth matrix, therefore, lies in generating projections such as that presented at  the 
end of Appendix B. 

4 NATIVE-DEPENDENT MULTISTATE PRPB POPULATION 
PROJECTIONS 

4.1 Data 

It is widely recognized that the migration rates of return migrants are 
significantly greater than the average rates of migration to the same destination 
(Ledent 1980, Long and Hansen 1975, Miller 1977). Migration data published by 
the 1970 U S  Census provide empirical support for this observation (US Bureau of 
the Census 1973). Appendix C contains the relevant figures for our  two-region 
example. 

The  first table in the Appendix presents data on the Southern-born population 
residing in the South in 1968. It shows that the crude rate of migration of Southern- 
born females to the North was 6.12 per thousand. The next table sets out the 
corresponding data for the Southern-born population living in the North; this group 
has a crude migration rate to the South (i.e., return migration) of 18.30 per thousand, 
roughly three times as large. Nevertheless, because the Southern-born population 
resident in the South is much larger than that resident in the North, the correspond- 
ing net migration of Southern-borns into the South is negative. 

The  data on the Northern-born population living in the South show that the 
crude rate of return migration to the North is 32.39 per thousand, about ten times the 
rate of Northern-borns migrating to the South (3.72 per thousand, according to 
Appendix C). Once again, the net migration of natives into their region of birth is 
negative. 

Appendix C also indicates that the native-alien composition of the flows in the 
two directions differs. The five-year flow from the South to the North consists of 
883.4 thousand Southern-borns and 580.9 thousand Northern-borns, a 1.5 : 1 
ratio. The flow from the North to the South, on the other hand, consists of 1.2 million 
Northern-borns and 562.1 thousand returning Southern-borns, a 2.1 : 1 ratio. The 
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principal reason for this difference is the 2 :  1 ratio of the two populations under 
consideration. The North, with about two-thirds of the national population, sends 
roughly 1.2 times more migrants to the South than it receives in return (Figure 2). 

Although native-dependent migration data are available for the USA, there is 
apparently no comparable data on fertility and mortality. Thus, in the next sections 
we retain the Markovian assumption for birth and death rates, assuming that 

Population stocks, 1968 Migration flows, 1965-1970 Migration rates per thousand 
(in thousands) (in thousands) 

N--+S S - + N  

Born in North Born in North Born in North 3.72 32.39 

Born in South Born in South Born in South 18.30 6.1 2 

FIGURE 2 Population flows between two regions (North and South) of the USA, disaggregated by 
region of birth. Note that the migration flows cover a five-year period (1965-1970) but the migration rates 
are crude (annual) values for 1968. 

everyone residing in a given region is exposed to the same fertility and mortality 
regimes. Consequently, our development of a native-dependent multistate pro- 
jection model will treat only migration as being native-dependent. The necessary 
extensions to include fertility and mortality should be straightforward, but for the 
USA, at least, it is not likely that such an extension would produce significantly 
different results. There are situations, however, where it could make a great deal of 
difference, e.g., in projecting urban and rural populations. 
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4.2 Life Table 

The computation of a PRPB native-dependent life table is a straightforward 
exercise (Ledent 1980). One simply calculates a separate table for each cohort, 
applying to it the appropriate PRPB probabilities. No conceptual innovations are 
required; indeed, a standard multiregional life table program (Willekens and Rogers 
1978) may be used. A program of this type and the data in Appendix C were used to 
produce the native-dependent life table summarized in Appendix D. 

Appendix D shows that the probabilities of return migration are significantly 
larger than those of non-return migration. For example, the probability that a 
Southern-born 20-year-old female living in the South will be in the North five years 
later is 0.055 1. For the corresponding Northern-born females living in the South this 
probability is 0.2749; i.e., return migration is five times more probable than 
non-return migration. Roughly the same ratio is exhibited by the probabilities of 
aliens and natives migrating to the South (0.0263 compared with 0.1300). 

Applying these probabilities to Southern-born and Northern-born cohorts in a 
multistate life table results in the expectations of life given in Appendix D. As an 
example, Table 2 presents the expected distribution of remaining lifetime for the two 
cohorts at age 20. The table illustrates the striking effect that place of birth has on the 
locations where the individual is expected to spend the rest of her life. A Southern- 
born female living in the North at age 20 is likely to spend over half of her remaining 
expected lifetime of 56.59 years in her region of birth, while a Northern-born female 
of the same age and place of residence is only likely to spend five years of her 
remaining lifetime in the South, i.e., six times less than the native Southerner. 

TABLE 2 Distribution of life expectancy at exact age 20 by place of birth, place of residence at age 20, 
and place of future residence. 

Born in South Born in North 

Resident in Resident in 
South North 
(age 20) (age 20) 

Resident in Resident in 
South North 
(age 20) (age 20) 

Future years spent 46.41 32.43 
in South 

Future years spent 10.10 24.16 
in North 

Total remaining life 56.51 56.59 
expectancy 

4.3 Fertility 

The introduction of native-dependent migration behavior into the calculation 
of the fertility elements of the multistate growth matrix is straightforward and uses 
the native-dependent probabilities and survivorship proportions defined in the 
native-dependent life table. The formulas for bLj(x) become 

m 
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where the rates now include a subscript on the left-hand side to denote the place of 
birth of the parent and hence the place-of-birth-specific probabilities used to 
calculate expected births. 

The required computation procedure can be more readily understood if eqns. 
(4) and (5) are first re-expressed in the alternative form (Willekens and Rogers 1978, 
p 59) 

since 

and 

when the linear integration formula is used to calculate person-years on a unit radix. 
Equations (7-10) may be made native-dependent by replacing pk,(0) by hpki(0) 

and ski(x) by h ~ k i ( ~ ) .  The native-dependent probabilities and survivorship propor- 
tions may be obtained from the multistate life table (see, for example, Appendix D). 
In our two-region numerical example, the birth rates with h equal to the baby's place 
of birth may be found as a residual 

4.4 Projection 

The various native-dependent birth rates and survivorship proportions are 
collected to form the matrices B(x) and S(x) defined in eqn. (B6) of Appendix B and 
organized in the structure of the growth matrix defined in eqn. (B5), and illustrated in 
Appendix D .  This yields a native-dependent multistate projection model that 
distinguishes among transition probabilities and regional populations according to 
place of birth. Such a model produces projections somewhat different to those of the 
native-independent counterpart discussed in Section 3 of this paper. Table 3 
compares selected outputs; more detailed results from the native-dependent model 
may be found in Appendix D.  

Table 3 identifies two very important characteristics of native-dependent and 
native-independent projections. First, aggregate totals and growth rates are the same 
in both projections if the Markovian assumption is retained for fertility and mortality 
rates. For example, both methods predict that the total female population of the 
USA will be 138.6 million in 1998 and will ultimately attain astable rate of growth of 
0.00436. Second, the percentage share of natives in each regional population is 
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TABLE 3 Native-dependent and native-independent PRPB projections of the 1968 female population 
of the USA: to 1998 and to stability. 

Resident in South Resident in North 
Total 

Year Born in South Born in North Born in North Born in South population" 

( a )  Native-dependent projectionsb 
1968 28,885,548 3,586,779 63,662,232 6,142,451 102,277,016 
(Oh of total) (28.2) (3.5) (62.2) (6.0) (1 00) 
1998 38,495,044 6,289,250 86,446,904 7,378,696 138,609,888 
(% of total) (27.8) (4.5) (62.4) (5.3) (100) 
(% of stable (26.9) (5.0) (63.3) (4.7) (1 00) 

population) 

( b )  Native-independent projections' 
1968 28,885,548 3,586,779 63,662,232 6,142.45 1 102,277,016 
(Oh of total) (28.2) (3.5) (62.2) (6.0) (100) 
1998 34,966,964 10,832,081 81,580,392 11,213,492 138,592,928 
(% of total) (25.2) (7.8) (58.9) (8.1) (1 00) 
(% of stable (24.9) (9.6) (56.6) (8.9) (1 00) 

population) 

" Totals may not equal the sums of the columns due to independent rounding. 
From Appendix D (r = 0.004360). 
' From Appendix B (r = 0.004361). 

consistently underestimated in the native-independent projections because they do 
not take into account the higher probabilities of return migration. This suggests that 
disaggregations by place of birth may not lead to significant improvements in the 
accuracy with which national population growth is projected; however, they are 
important in analyzing projected redistributions of national populations. 

Note that in the native-dependent projection the South's share of the national 
population consistently hovers at the level of 32%, whereas in the native-indepen- 
dent projection it increases slightly over time to an ultimate share of just over 34%. 
A comparison of the mean ages of natives and aliens as given in Appendixes B and D 
suggests that the native-dependent projection generates a slightly older native 
population and a younger alien population in each region. 

5 EXTENSIONS 

The fundamental concepts discussed in this paper have been illustrated with a 
four-state projection model in which two of the states referred to regions of residence 
and the other two to regions of birth. This disaggregation produced PRPB popu- 
lation projections, i.e., projections of regional populations disaggregated into natives 
and aliens. The extension of this projection methodology to a larger number of states 
is relatively straightforward. For example, we may further disaggregate natives into 
stayers*, who have never left the region of birth, and returners, who have left the 

* Stayers can only be approximated by assuming that individuals present in a region both at the beginning 
and end of a unit interval of time did not leave the region during this period. 



Multistate population projections 61  

region of birth and come back again. Similarly, aliens may be disaggregated into 
recent aliens, aliens who have arrived during the most recent time interval, and 
established aliens, who arrived previously. Thus we have the disaggregation 

residents = natives + aliens 
= stayers + returners +established aliens + recent aliens 

The projected native-independent stable population presented in Appendix B is 
disaggregated in this way in Appendix E. An analogous result could be obtained for 
the native-dependent stable population in Appendix D. 

Table 4 contains selected results from Appendix E. It is interesting to note the 
surprisingly low shares of the native and alien populations accounted for by returners 
and recent aliens, respectively, and to observe the large variations in the mean ages of 
the various status-specific populations. 

TABLE 4 Characteristics of four different resident categories in the stable population", calculated using 
the native-independent projection ( r  = 0.004361). 

South North 

Stable O/O of Stable % of 
regional regional Mean regional regional Mean 

Type of resident population total age population total age 

Natives 
Stayers 30,996,010 69.3 32.71 71,193,688 83.7 34.48 
Returners 1,377,703 3.1 56.29 2,320,481 2.7 53.83 

Aliens 
Established aliens 10,674,229 23.8 51.82 10,225,156 12.0 49.35 
Recent aliens 1,700,556 3.8 3 1.42 1,360,090 1.6 25.42 

All residents 44,748,500 100 37.94 85,099,416 100 36.65 

" The stable population given here is proportional to that listed in Appendix B, and can be scaled to the 
same totals. 

6 CONCLUSION 

Multistate population projections disaggregate conventional population pro- 
jections into a number of state-specific subcategories, such as region of residence, 
region of birth, and duration of residence in the current location. The disaggregated 
projections should produce more accurate results if interstate transition probabilities 
are dependent on the categories chosen. This appears to be particularly true for 
projections of the distribution of an aggregate population across categories of several 
types. In our numerical example it was necessary to assume native-independent 
fertility and mortality rates, and so the aggregate growth rate of the population, not 
surprisingly, was unaffected by the disaggregation. However, more interesting 
results are likely to be obtained, for example, by using urban-rural fertility data in a 
projection for a typical developing country. 
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